
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SMOOTH PROBABILISTIC INTERPOLATION BENEFITS
GENERATIVE MODELING FOR DISCRETE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Though typically represented by the discrete node and edge attributes, the graph
topological information can be sufficiently captured by the graph spectrum in a
continuous space. It is believed that incorporating the continuity of graph topo-
logical information into the generative process design could establish a superior
paradigm for graph generative modeling. Motivated by such prior and recent
advancements in the generative paradigm, we propose Graph Bayesian Flow Net-
works (GraphBFN) in this paper, a principled generative framework that designs
an alternative generative process emphasizing the dynamics of topological infor-
mation. Unlike recent discrete-diffusion-based methods, GraphBFN employs the
continuous counts derived from sampling infinite times from a categorical distri-
bution as latent to facilitate a smooth decomposition of topological information,
demonstrating enhanced effectiveness. To effectively realize the concept, we fur-
ther develop an advanced sampling strategy and new time-scheduling techniques
to overcome practical barriers and boost performance. Through extensive exper-
imental validation on both generic graph and molecular graph generation tasks,
GraphBFN could consistently achieve superior or competitive performance with
significantly higher training and sampling efficiency.

1 INTRODUCTION

Generative modeling of graph-structured data is an important task with applications in various impor-
tant scenarios, e.g. molecule generation (Jin et al., 2018; Zang & Wang, 2020), traffic modeling (Yu
& Gu, 2019) and protein design (Ingraham et al., 2019). With the development of deep generative
models, there have been fruitful lines of research conducted to tackle the challenges, e.g., Generative
Adversarial Networks (Martinkus et al., 2022; De Cao & Kipf, 2018), Variational Auto-encoders (Jin
et al., 2018; 2020), and Autoregressive models (You et al., 2018).

Recently, diffusion models (DMs) (Song & Ermon, 2019; Ho et al., 2020) have emerged as a powerful
generative model across various fields (Zeng et al., 2022; Li et al., 2022). Learning DMs for graphs
is challenging due to the discrete and complex relational nature of graphs. Niu et al. (2020); Jo
et al. (2022) propose to dequantize the node vector and adjacent matrix with uniform/Gaussian
noise and learn Gaussian DMs over the dequantized variables. However, these approaches face
problems due to the incompatibility of continuous Gaussian diffusion processes with discrete data.
For instance, they involve noisy graph samples that lack well-defined topological information, e.g.,
clusterability or connectivity. To alleviate these problems, Vignac et al. (2022) proposed discrete
graph diffusion models based on discrete DMs (Austin et al., 2021). It utilizes a structured categorical
corruption process (corresponding to successive graph edit operations such as additions, deletions,
and replacements) to destroy the graph and learns to generate by reverting this process. Such discrete
formulation ensures noisy samples are valid discrete graphs with well-defined graph topologies. This
enables the discrete DMs to extract rich graph spectral features, such as graph spectrums, that aid the
generation process, thus achieving better performance.

However, though always ensuring valid graph topology, the discrete graph diffusion process is very
unbalanced. Some graph editing steps can significantly change the adjacency matrix and unexpectedly
perturb the graph topology, making it difficult to learn a satisfactory model for the reverse diffusion
process. Recently, utilizing certain kinds of topological information formed in continuous space to
provide smooth and consistent information flow for the generative process has been demonstrated

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to be effective for graph generative model (Martinkus et al., 2022; Vignac et al., 2022; Jo et al.,
2024). Based on such phenomena, we hold the intuition that stabilized dynamics of graph topological
information during the generation process could be favorable for discrete graphs. Furthermore, we
aim to design a new generative framework for discrete graphs that could conduct a smooth transition
from data to noise, where the smoothness is quantified by generalized graph topological features.

Figure 1: The top figures compares the sampling trajectories
of GraphBFN to DiGress and GruM (Vignac et al., 2022; Jo
et al., 2024). A smaller spectral gap reflects better graph clus-
terability (i.e. clearer sample). Both the visualizations and
curves demonstrate that GraphBFN allows a much smoother
transformation of graph topology information.

Well motivated by this philosophy, we
bring the concept of Bayesian Flow
Networks, a recent advancement of
generative paradigms, into the context
of graph generation. Different from
the discrete diffusion model whose la-
tent variable is the discrete variable
following a predefined forward cate-
gorical noisy distribution, the latent
variable of the Bayesian Flow Net-
work could be defined with the counts
of discrete variables by sampling infi-
nite times from the same forward cate-
gorical noisy distribution and is hence
continuous. By projecting the contin-
uous latent of BFN into probability
simplex, we obtain a mixed-state rep-
resentation of different discrete states
which enables the smooth interpola-
tion between an uninformative prior
to the concrete observation. Based on
such appealing property, we propose
a new and general graph generative
framework named Graph Bayesian
Flow Networks (GraphBFN). By sub-
stituting the discrete variable to prob-
ability simplex in the intermediate state of the generative process, GraphBFN makes a probabilistic
generalization of the adjacency matrix as probabilistic adjacency matrix whose entries represent the
probability of corresponding edge type to emerge. Fortunately, graph topological features, like the
graph spectrum, easily generalize to the probabilistic adjacency matrix, enabling straightforward
analysis and the implementation of effective techniques such as spectrum conditioning. Quantitative
measurements in Fig. 1 show that GraphBFN enables stabilized topological dynamics compared
to diffusion-based methods with the target graph topology being smoothly recovered during the
generation process. Specifically, our contribution can be summarized as follows:

• We firstly prove the concept of smooth transformation over topological information could
facilitate the discrete graph generation with a new method termed GraphBFN based on
Bayesian Flow Networks. We empirically demonstrated the effectiveness of smooth topo-
logical recovery. GraphBFN could fit more general graphs with rich node and edge features.

• To successfully implement the method and boost empirical performance, we introduce
several innovations to sampling and training, including the adaptive sampling strategy which
provides better tradeoffs between quality and diversity, a general time-scheduling that shows
good compatibility with low entropy prior, and a novel graph spectrum conditioned strategy
for large graphs.

• We conduct extensive experiments and ablation studies on several benchmarks including both
abstract and 2D molecules. The empirical results show that the GraphBFN can consistently
achieve superior or competitive performance in generating realistic and diverse graphs.
Furthermore, GraphBFN also enjoys a high sampling efficiency with up to 10× speedup
while matching the performance diffusion-based methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARY

2.1 NOTATIONS AND BACKGROUND

We define the space of undirected graphs as G = (V, E), where E represents a categorical edge
space and V a node space. For a graph G with n nodes, the adjacency matrix E ∈ Rn×n×ce and the
node vector V ∈ Rn×cn are both represented using one-hot encoding. Here, ce and cn denote the
respective cardinalities. The absence of an edge is treated as a specific edge type. This framework
encompasses both abstract graphs and 2D molecules studied in this work.

Then, we introduce the basics of spectral graph theory for better illustration. Spectral graph theory
explores the relationships between graph properties and the eigenvalues of associated matrices, such
as the adjacency matrix or Laplacian matrix. Previous works (Martinkus et al., 2022; Vignac et al.,
2022) have demonstrated the effectiveness of conditioning on graph spectra in generating graphs.
This motivates us to revisit the generative process from the perspective of building graph spectra, as
shown in Fig. 1. Detailed discussions on spectral graph theory are presented in Appendix B.

2.2 BAYESIAN FLOW NETWORKS

In this section, we aim to provide a very intuitive introduction to the Bayesian Flow Networks
(BFNs) (Graves et al., 2023) and leave an in-depth discussion and more details in Appendix A.
Similar to the diffusion models, the BFNs also take the form of latent variable models with a series of
noisy samples y{1:n} = ⟨y1, · · · ,yn⟩ of observation x are introduced as latent. We note that y1 of
the start of the sequence refers to the uninformative sample of pure noise, which is the opposite of the
diffusion literatures. Besides, BFNs also optimize the variational lower bound of the likelihood:

log pϕ(x) ≥ E
y{1:n}∼q

[
log

pϕ(x|y{1:n})pϕ(y{1:n})
q(y{1:n}|x)

]
= −DKL(q∥pϕ

(
y{1:n}

)
) + E

y{1:n}∼q
log
[
pϕ
(
x | y{1:n}

)]
(1)

where q is a predefined distribution for creating the noisy samples similar to the noise-application
distribution in the forward process of diffusion models (sender distribution) and pϕ refers to the prob-
abilistic distribution(receiver distribution) implied by BFNs. From the graphical model perspective,
BFNs differs from diffusion models in the construction of latent variables y{1:n} = ⟨y1, · · · ,yn⟩,
which is defined as non-Markovian and could be extended as:

pϕ (y1, . . . ,yn) = pϕ(y1)

n∏
t=2

pϕ(yi | y{1:t−1}) (2)

The pϕ(yi | y{1:t−1}) could be further represented with a predefined deterministic aggregation
function of the process as pϕ(yi | f(y{1:t−1})). The f is related to the concrete Bayesian update
rule for different distributions, and f(y{1:t−1}) is also notated as θt−1. Putting Eq. 2 into Eq. 1, the
ELBO of BFNs could be further expressed as:

L(x) = −LELBO =

n∑
t=1

DKL

(
q(yt|x)∥pϕ(yt|θt = f(y{1:t−1}))

)
− log pO(x|θn, ϕ) (3)

The term log pO(x|θn, ϕ) is also known as reconstruction loss, which is directly computed over the
network prediction with θn. As the term is generally negligible as θn is very close to x, we do not
involve the term in training loss following (Graves et al., 2023).

3 METHODOLOGY

In this section, we first identify the key difference between the GraphBFN and discrete diffusion-
based approaches and discuss how the GraphBFN could generalize smooth dynamics of topological
information for graph generation. Then, we provide a detailed formulation of our GraphBFN, along
with a visualization of the training and testing procedure in Fig. 2. Lastly, we delve into several
innovations for successfully realizing the concept and boosting the applications in graph generation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 SMOOTHING TOPOLOGICAL TRANSFORMATION VIA INFINITE NOISY DISCRETE GRAPHS

We consider the following specific case of the perturbation distribution over discrete variables:
pnoise (yt | x) = Cat (yt;ωtx+ (1− ωt)π) (4)

Hence x refers to the one-hot representation over the K categories and π is the uniform prior over
the categories, i.e. [1K , · · · , 1

K]. For the discrete diffusion model (Vignac et al., 2022; Austin et al.,
2021), the Eq. 4 could be seen as continuous-time variant of the variational distribution q(yt|x) in
Eq. 1, i.e. the extension of discrete-time uniform transition diffusion (Austin et al., 2021). In this
scenario, the latent variable yt exists in a discrete space and is generated through random substitution
or deletion of elements from the clean sample x, with a probability of 1 − ωt. In the context of
graphs, these operations can significantly alter the topology; for example, deleting a single edge in
the adjacency matrix may impact the entire graph’s connectivity.

Bayesian Flow Networks introduce a different concept of latent yt: Given the noisy distribution
pnoise, we assume sample noisy samples from the noise distribution for m times instead of once,
thus incurring a count variable over the different categories as c = [c1, · · · , ck]. Based on the
normalized counts (c − m

K) and central limit theorem limm→∞ = c−mql√
mql

∼ N (0, I) (where
ql = ωtx+ (1− ωt)π), we could construct a continuous latent variable y with the k-th dimension as
as:

yk
def
= lim

m→∞,ω→0

(
ck −

m

K

)
ln(1 +

ωK

1− ω
), we have q (yt | x;αt) = N (αt (Kx− 1) , αKI)

(5)
where mω2 = α is a condition and α is a predefined finite number. The above y is obtained
by assuming sampling infinite samples from the noise distribution. Detailed discussion is left as
Appendix H.

In the context of graph generative modeling, the x could refer to the unit component of the graph,
e.g. a node in the node vector (Vi) or an edge entry in the adjacency matrix (Ei,j). For topological
analysis, we focus on the discussion of the adjacency matrix. We use Eyt to denote the latent variable
for the whole matrix E, where the latent variable for each entry is therefore referred to as Eyt

i,j .
Under the framework of GraphBFN, Eyt

i,j is a count-based latent as shown in Eq. 5. Though the
latent variable enjoys continuity and real-valued, it could be hard to view the Eyt as valid adjacency
matrices and analyze the topological dynamics from the perspective of the latent variable. Fortunately,
we could instead focus on the parameter variable θt which is the aggregation of the latent variable as
introduced in Sec. 2.2. The aggregation f in Eq. 3 for the discrete variable is defined by applying the
following update rule recursively:

θt = h(θt−1, yt) =
eytθt−1∑K

k=1 e
y
(k)
t θ

(k)
t−1

(6)

Here θ lies in the probability simplex, i.e
∑K

i=1 θ
k = 1. In the above adjacency matrix setting,

we use Eθt
i,j to denote the corresponding parameter. Given Eθt

i,j is on the probability simplex, it
could be naturally interpreted as the probability over whether there is an edge between node i and
node j. We design a Probabilistic Adjacency Matrix P based on Eθt

i,j : we force Eθ to symmetric
by Eθ = (Eθ + (Eθ)T)/2; then, we derive the probability of whether there exist an edge at Ei,j

from Eθ
i,j and make it as the corresponding value for the Pi,j . Under this definition of P each entry

Pi,j ∈ [0, 1] could be seen as the parameter of the Bernoulli distribution.
Remark 3.1. The graph spectrum, which is defined as the eigenvalues or eigenvectors of the adjacency
matrix or Laplacian matrix could be directly extended by viewing P as the generalization of the
adjacency matrix. We leave the detailed discussion over the graph spectrum in Appendix B.

The probabilistic adjacency matrix can be viewed as a special case of random graphs as in Athreya
et al. (2018), providing bounds between the graph spectrum of sampled discrete graphs from P and
the generalized spectrum directly over P (Chung & Radcliffe, 2011). The theoretical discussion
is in Appendix C. The generation process in GraphBFN defines a transformation from Eθ0 to Eθn ,
interpolating between P θ0 , a prior probabilistic matrix with all entries of 0.5, and P θn , representing
authentic graphs with binary entries. This interpolation enables GraphBFN to smoothly decompose
complex discrete structures, as illustrated in Fig. 1. The detailed formulation of interpolation and
training objectives will be introduced in the following section.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

...
Network

Bayesian Flow

.
Network

Bayesian Flow

Bayesian Flow

Bayesian
Update

Bayesian
Flow

Aggregation

Noising

Figure 2: Diagram of GraphBFN. The solid lines and dashed lines denote the inference and training
procedures, respectively. We note that ∆ϕ = ∥ϕ(Gθt , t)− ϕ(Gθt−1 , t− 1)∥2.

3.2 GRAPH BAYESIAN FLOW NETWORKS

We elaborate on the components introduced in Sec. 2.2 to get a complete formulation of GraphBFN.
Recall that the graph variable is denoted as G = (V,E). Correspondingly, the latent variable at
time step t is referred to as Gyt = (Vyt ,Eyt) and the corresponding aggregation parameter Gθt =
(Vθt ,Eθt). Then, we revisit the ELBO training objective introduced in Eq. 3. To improve conciseness,
we use the adjacency matrix E as the primary example for derivation. Below, we illustrate the concrete
formulation for the two key elements in the Eq. 3, q (yt | x) and pϕ

(
yt | θt = f

(
y{1:t−1}

))
.

Sender distribution The q (yt | x) in the context of BFN is termed sender distribution. To define
the sender distribution, we need extra involve an accuracy parameter αt as also mentioned above in
Eq. 5. Note the sender distribution for the adjacency matrix is set as independent for different entries,
then the sender distribution here takes the form of

q (Eyt | E, αt) = Π1≤i,j≤nq
(
Eyt

i,j | Ei,j , αt

)
= Π1≤i,j≤nN

(
Eyt

i,j | αt (ceEi,j − 1) , αtceI
)

(7)

Receiver distribution pϕ
(
yt | θt = f

(
y{1:t−1}

))
here is also named as the receiver distribution.

Intuitively, pϕ (yt | θt) could be decomposed into first predict a distribution of x with neural net-
work ϕ based on θt and combine predicted distribution with the sender distribution above to get a
distribution over y. In our case, the receiver distribution takes the form of:

pϕ(E
yt | Gθt) = Π1≤i,j≤npϕ(E

yt

i,j | G
θt)

pϕ(E
yt

i,j | G
θt) =

ce∑
k=1

Ei,j [ϕ(G
θt , t)](k)N

(
Eyt

i,j | αt (ceek − 1) , αtceI
)

(8)

Here ek is the one-hot vector with k-th dimension as 1 and the other ce − 1 dimensions are all 0.
Given the Gθt and t as network input, here Ei,j [ϕ(G

θt , t)](k) is the probability on k-th category of
the predicted categorical distributions for Ei,j . Note the network ϕ usually has the final layer as
softmax and hence output could be naturally seen as the probability of the predicted distribution,
which is also referred to as output distribution.

Simulation-free Training However, as mentioned above and also shown in Eq. 3, the network
input is θt which is determined by y1, · · · ,yn and the discrete update rule in Eq. 6. Fortunately, with
the discrete update rule, we could do aggregation in the distribution level for q(y1|x), · · · , q(yn|x)
and directly obtain the analytic form of distribution over θt, i.e. q(θt|x). With the notation of E, the
distribution could be illustrated as:

q
(
Eθt

i,j | Ei,j ,E
θ0
i,j

)
= E

N(Ey
i,j |β(t)(ceEi,j−1),β(t)ceI)

δ

Eθt
i,j −

eE
y
i,j ⊙Eθ0

i,j∑ce
k=1

(
eE

y
i,j

)
k

(
Eθ0

i,j

)
k

 (9)

where β(t) =
∑t

j=0 αj . Note that ⊙ denotes the element-wise product between the vectors, and in

eE
y
i,j , the exponential function is applied to each dimension individually. Such distribution is also

noted as the Bayesian flow distribution. Putting Eq. 9, Eq. 8 and Eq. 7 in Eq. 3, we could obtain the
final training objective.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Continuous-time Training Objective The above discussion is based on that the number of latent
variables is n, which is finite. It could also be possible to put n→∞, which could correspond to the
continuous-time training. For convenience, we consider the value of timestep t in [0, 1]. In this case,
β(t) =

∫ t

0
α(t). For flexibility, we could use different scheduler of α(t) for edge and node, i.e. αe(t)

and αv(t). With the following notations as:

q
(
Eθt | E,Eθ0

)
= Π1≤i,j≤nq

(
Eθt

i,j | Ei,j ,E
θ0
i,j

)
, q

(
Vθt | V,Vθ0

)
= Π1≤i≤nq

(
Vθt

i | Vi,V
θ0
i

)
q
(
Gθt | G,Gθ0

)
= q

(
Eθt | E,Eθ0

)
q
(
Vθt | V,Vθ0

)
(10)

Under the continuous-time steps, there is a very concise analytic form for the KL divergence between
the sender distribution (Eq. 7) and the receiver distribution (Eq. 8) over time step t as:

L(E, t) = ce
1

2
αe(t) E

q(Gθt |G,Gθ0)

∑
1≤i,j≤n

∥∥Ei,j −Ei,j [ϕ(G
θt , t)]

∥∥2
L(V, t) = cv

1

2
αv(t) E

q(Gθt |G,Gθ0)

∑
1≤i≤n

∥∥Vi −Vi[ϕ(G
θt , t)]

∥∥2
Combining the above terms, our final objective for GraphBFN is as:

L(G) = L
(
(E,V)

)
= E

t∼U(0,1)
L(E, t) + L(V, t) (11)

The detailed training and sampling algorithms are illustrated in Appendix E. And with perturbation
equivariant architecture for ϕ, e.g., Graph Transformer, we have following properties:

Proposition 3.2. If ϕ is a permutation equivariant function, then for any permutation π, we have:

• The objective in Eq. 11 is permutation invariant: L(G) = L((E,V) = L(πTEπ, πTV)

• The density function, pϕ, implied by the generative process of GraphBFN is also permutation
invariant, i.e., pϕ(E,V) = pϕ(π

TEπ, πTV)

We leave the proof of the Proposition 3.2 in the Appendix I.

3.3 IMPROVED TECHNIQUES FOR GRAPHBFN

Sampling with Adaptive Flowback The Bayesian Flow Networks conducted an autoregressive
sampling procedure. For example, the t-th step vanilla sampling of BFN could be introduced as:
first sample Ĝt−1 according to the network output distribution ϕ(Gθt−1 , t − 1); and assuming Ĝ

as the final generated targets to sample Ĝyt

t−1 based on the sender distribution, and then apply the
Bayesian update function to get Gθt . However, there exists a notable discrepancy between training
and sampling: During training the noisy samples y are sampled based on real data; while at inference,
the y are sampled based on model prediction which brings extra errors, especially for the initial steps
where there lacks information in the model inputs. The error will always be kept in the inputs due to
the autoregressive Bayesian update, which could potentially hurt the performance.

To the end, we introduce another sampling procedure to make the sampling focus on the current
prediction by using the Bayesian Flow distribution:

pϕ
(
Gθt | Gθt−1

)
= q

(
Gθt | ϕ(Gθt−1 , t− 1),Gθ0

)
(12)

q
(
Gθt | ϕ(Gθt−1 , t− 1),Gθ0

)
here is the Bayesain flow distribution analogy to Eq. 9. We termed

this approach as Flowback. Though the error accumulation is fixed, Flowback sampling could collapse
due to that the network output distribution ϕ(Gθt , t) could hold low entropy practically. To balance
exploration and exploitation, we combine the two sampling procedure and introduce the adaptive
Flowback: with a predefined constant ϵ, for any time t, when ∥ϕ(Gθt , t)− ϕ(Gθt−1 , t− 1)∥2 ≥ ϵ,
we conduct vanilla sampling; when ∥ϕ(Gθt , t)− ϕ(Gθt−1 , t− 1)∥2 < ϵ, the Flowback (Eq. 12) is
conducted. Empirically, we find the adaptive Flowback could be approximately implemented by
setting a threshold over t to determine which kind of sampling to conduct to improve efficiency. The
detailed sampling process is presented in Algorithm 2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Accuracy Scheduling for Any Prior The accuracy scheduling is defined by the function β(t) =∫ t

0
α(t), which represents the level the sender distribution corrupted the original information of the

data samples. The original BFN paper (Graves et al., 2023) defines the accuracy scheduling as
β(t) = β(1)t2 and, correspondingly, the accuracy rate as α(t) = β(1)2t. Such design relies on
the intuition that, with a uniform prior, the expected entropy of θ could linearly decrease along the
Bayesian flow distributions. The scheduling also implies the fact that the accuracy is 0 for the prior
θ0 as it is fully uninformative. However, in some scenarios of graph generation, an informative prior
has been demonstrated to be effective (Vignac et al., 2022). To this end, we introduce a more general
accuracy scheduling with a simple yet effective formulation:

α(t) = a+ 2 (β(1)− a) t and β(t) = at+ (β(1)− a) t2 (13)

0.0 0.25 0.5 0.75 1.0
Time (t)

0.2

0.4

0.6

0.8

In
pu

t D
ist

. E
nt

ro
py

(t) = 5t2

(t) = 3.5t + (5 3.5)t2

Figure 3: The entropy change of
the input distribution Gθt along the
Bayesian flow equipped with a non-
uniform prior.

Here a is a hyperparameter. One degenerated case of Eq. 13
is when a = β(1), which assigns a constant accuracy at each
time. As shown in Fig. 3, Our general accuracy scheduling
exhibits more steady paces of information reconstruction. This
scheduling could be compatible with low-entropy prior, i.e.
assigning a non-zero accuracy for informative prior, and also
have a faster input entropy decrease.

Conditioned Graph Features on Output Distributions Pre-
vious literature (Beaini et al., 2021; Vignac et al., 2022) has
demonstrated that incorporating extra features of input graphs
can enhance the representation power of graph neural networks.
For example, Vignac et al. (2022) computes various graph de-
scriptors of the noisy graph and includes them in the input of
the denoising network during both training and sampling. In
GraphBFN, we could also calculate the graph descriptors of
the probabilistic adjacency matrix for the inclusion of the inter-
dependency modeling network, i.e. ϕ. We note that the extra
graph feature is not necessarily used, and the choice is determined by the data property and complexity.
For the usage of extra features, we apply a different strategy compared to previous literature (Vignac
et al., 2022) by conditioning the network output distribution. We denote the module for computing
the extra features as M(·), for example, obtaining the eigenvalues or eigenvectors of the adjacency
matrix. The computation of the output distribution with the spectral feature conditioning is then
formulated as:

ϕ(Gθt , t) = ϕ
(
Gθt , t,M(sg ϕ(Gθt , t))

)
(14)

where sg is the stop gradient operator. The key motivation of the proposed method is related to the
self condition as proposed in Chen et al. (2022), which helps to improve the inner consistency of the
generated samples. Such techniques are only used in large graphs such as the SBM dataset.

4 RELATED WORKS

From the fruitful lines of research conducted on generative modeling for graphs, we focus on
the discussion over diffusion-based approaches as they are most related to our method. Recently,
given the remarkable performance of diffusion models (Ho et al., 2020) in fields such as image
generation, there has been a growing interest in graph diffusion models within the community.
Research conducted by Jo et al. (2022); Niu et al. (2020); Luo et al. (2023) has successfully made
the diffusion framework compatible with discrete graphs through the dequantization approach that
adds continuous noise to discrete node and edge features. Jo et al. (2024) demonstrates the advantage
of explicitly learning the final graph structures in the diffusion process; Vignac et al. (2022); Kong
et al. (2023) highlights the benefits of modeling in the original discrete data space; Qin et al. (2023);
Chen et al. (2023) leverage the spasity nature of graphs and show the possibility to scale the models
up to larger graphs; Karami (2024) introduce hierarchical graph generative framework that captures
the hierarchical nature of graphs. Furthermore, Vignac et al. (2022) highlights the potential issue
of topology information getting distorted by continuous noise and thereby suggests utilizing more
compatible discrete diffusions, resulting in noteworthy performance improvement.

In the literature of Bayesian Flow Network (Graves et al., 2023), there are several recent applications
to the structured multi-modality data (Song et al., 2023; Qu et al., 2024) while the topological

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Main results on the general graph generation.

Planar SBM

Synthetic, |V | = 64 Synthetic, 44 ≤ |V | ≤ 187

Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ V.U.N. ↑ Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ V.U.N. ↑
Training set 0.0002 0.0310 0.0005 0.0052 100.0 0.0008 0.0332 0.0255 0.0063 100.0

GraphRNN 0.0049 0.2779 1.2543 0.0459 0.0 0.0055 0.0584 0.0785 0.0065 5.0
GRAN 0.0007 0.0426 0.0009 0.0075 0.0 0.0113 0.0553 0.0540 0.0054 25.0
SPECTRE 0.0005 0.0785 0.0012 0.0112 25.0 0.0015 0.0521 0.0412 0.0056 52.5

EDP-GNN 0.0044 0.3187 1.4986 0.0813 0.0 0.0011 0.0552 0.0520 0.0070 35.0
GDSS 0.0041 0.2676 0.1720 0.0370 0.0 0.0212 0.0646 0.0894 0.0128 5.0
DiGress 0.0003 0.0372 0.0009 0.0106 75 0.0013 0.0498 0.0434 0.0400 74
GruM 0.0005 0.0353 0.0009 0.0062 90.0 0.0007 0.0492 0.0448 0.0050 85.0

GraphBFN 0.0005 0.0294 0.0002 0.0046 96.7 0.0005 0.056 0.037 0.0053 87.5

information modeling is less explored. Drawing inspiration from Graves et al. (2023), we propose
the concept of probabilistic graph space, where the representation of topological information can be
generalized, allowing for a smoother decomposition of information of discrete graphs. We leave a
more detailed discussion over discrete diffusion models in the Appendix J.

5 EXPERIMENTS

In this section, we empirically study the effectiveness of the proposed framework. We conduct
extensive experiments on both the abstract graph datasets and 2D molecule datasets to compare
the performance of GraphBFN against several competitive graph generation baselines, including
diffusion/score matching based methods, such as Digress (Vignac et al., 2022), GruM (Jo et al., 2024),
GDSS (Jo et al., 2022) and EDP-GNN (Niu et al., 2020); latent variable models, such as JT-VAE (Jin
et al., 2018). GAN-based method SPECTRE (Martinkus et al., 2022); Flow-based methods such as
GraphAF (Shi et al., 2020), MoFlow (Zang & Wang, 2020) and GraphDF (Luo et al., 2021). Please
refer to Appendix K for details about our experiment settings, the link to our implementation, and
additional experiment results.

5.1 ABSTRACT GRAPH GENERATION

The abstract graph generation experiments test the model’s ability to model complex graph topology.
We conduct experiments on the benchmarks introduced in Vignac et al. (2022); Martinkus et al.
(2022). It should be noted that we only need to model edge connections for the generation tasks of
abstract graphs. The benchmark consists of two datasets: Planar with the constant number of 64
nodes per graph and Stochastic Block Model (SBM) with up to 200 nodes per graph. We evaluate the
maximum mean discrepancy (MMD) of four graph statistics, i.e. degree (Deg.), clustering coefficient
(Clus.), count of orbits with 4 nodes (Orbit), and the eigenvalues of the graph Laplacian (Spec.)
between the generated graphs and test sets. Besides, we also report the percentage of valid, unique,
and novel (V.U.N.) graphs, where a graph is considered valid if it satisfies the statistical properties of
the SBM model or being planar and connected for the Planar dataset (Martinkus et al., 2022). The
experiment result can be found in Tab. 1. GraphBFN has shown superior or competitive performance
compared to all the baselines on both datasets. Specifically, on the Planar dataset, GraphBFN obtains
a V.U.N. value approaching the limits, demonstrating the advantages of modeling the discrete graph in
the probabilistic matrix space. We include more details of visualizations and analysis in Appendix Q
and Appendix F.

5.2 2D MOLECULE GENERATIONS

For the molecule datasets, we conduct experiments on 2D molecule datasets with various scales:
QM9 which includes 100k molecules with up to 9 heavy atoms in the training set; ZINC250k which
contains 250,000 drug-like molecules with a maximum atom number of 38; MOSEs with 1,936,962
drug-like molecules whose atom number is up to 38. GraphBFN jointly models the node features
V and the graph typologies E of the molecular graphs. Besides, for the experiments on QM9, we
consider both the without-hydrogen version and the more challenging version where the hydrogen
will be explicitly modeled. For QM9 with explicit hydrogen, we evaluate GraphBFN’s performance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Main results on the QM9 with implicit hydrogens and ZINC250k.

QM9 (|V | ≤ 9) ZINC250k (|V | ≤ 38)

Method Valid (%)↑ FCD↓ NSPDK↓ Scaf.↑ Valid (%)↑ FCD↓ NSPDK↓ Scaf.↑

Training set 100.0 0.0398 0.0001 0.9719 100.0 0.0615 0.0001 0.8395

MoFlow (Zang & Wang, 2020) 91.36 4.467 0.0169 0.1447 63.11 20.931 0.0455 0.0133
GraphAF (Shi et al., 2020) 74.43 5.625 0.0207 0.3046 68.47 16.023 0.0442 0.0672
GraphDF (Luo et al., 2021) 93.88 10.928 0.0636 0.0978 90.61 33.546 0.1770 0.0000

EDP-GNN (Niu et al., 2020) 47.52 2.680 0.0046 0.3270 82.97 16.737 0.0485 0.0000
GDSS (Jo et al., 2022) 95.72 2.900 0.0033 0.6983 97.01 14.656 0.0195 0.0467
DiGress (Vignac et al., 2022) 98.19 0.095 0.0003 0.9353 94.99 3.482 0.0021 0.4163
GruM 99.69 0.108 0.0002 0.9449 98.65 2.257 0.0015 0.5299

GraphBFN (Ours) 99.73 0.101 0.0002 0.9386 99.22 2.116 0.0013 0.5304

Table 3: Main results on MOSES.

Model Class Val ↑ Unique↑ Novel↑ Filters↑ FCD↓ SNN↑ Scaf↑

VAE SMILES 97.7 99.8 69.5 99.7 0.57 0.58 5.9
JT-VAE Fragment 100 100 99.9 97.8 1.00 0.53 10.0
GraphINVENT Autoreg. 96.4 99.8 – 95.0 1.22 0.54 12.7

ConGress 83.4 99.9 96.4 94.8 1.48 0.50 16.4
DiGress One-shot 85.7 100 95.0 97.1 1.19 0.52 14.8
GraphBFN 88.5 99.8 89.0 98.3 1.07 0.59 10.0

with two additional metrics, the Atom Stability, i.e. the percentage of the atoms with valid valency,
and Molecule Stability for the percentage of generated molecules whose atoms all have valid valency.
For other datasets, we follow the evaluation of previous works (Jo et al., 2024; Vignac et al., 2022) and
report the corresponding metrics, including FCD, SNN, Scaffold similarity(Scaf), NSPDK, Novelty,
and Validity, etc.

The experiment results of QM9 can be found in Tab. 2 and Tab. 4. It could be found that GraphBFN
shows superior or competitive performance compared with the previous method. In the challenging
setting of QM9 with explicit hydrogen, the GraphBFN could beat the baselines with a large margin
and approach the empirical limits in the sense of molecule stability, which justifies the effectiveness of
jointly modeling the distribution of node features and edge feature under the probabilistic parameter
space.

The empirical results of ZINC250k and MOSEs in Tab. 2 and Tab. 3 show GraphBFN’s consistently
superior performance compared to the baselines, demonstrating its scalability to the large complex
datasets. It should be noted that in Tab. 3, compared with other one-shot models, GraphBFN shows a
slight decrease in novelty while maintaining a high uniqueness. One possible explanation lies in that
the probability distribution learned with GraphBFN is so close to the training distribution that causes
some overlap of the support. Despite this overfitting, the novelty still lies at a high level (89%). It
also demonstrates the generalization ability of GraphBFN. We leave the visualization of generated
samples in Appendix Q.

5.3 ABLATION STUDIES

Sampling Steps We conduct extensive ablation studies of GraphBFN. We first consider
GraphBFN’s property of sampling any steps and then examine the improved techniques we claimed
in Sec. 3.3. One appealing property of GraphBFN is that with continuous-time objectives, the
GraphBFN could sample with any steps. We conduct an ablation study of sampling steps on the
dataset of QM9 with explicit hydrogen and Planar in Tab. 4. It could be found that the GraphBFN
with as few as 25 and 50 sampling steps could be on par with diffusion models with 500 and 1000
steps. This result implies a more than 10× increase in sampling efficiency.

Adaptive Flowback Sampling We verified the effectiveness of the Adaptive Flowback sampling
on the abstract graph dataset Planar. The experiment results can be found in Tab. 5. We note

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation study on GraphBFN’s ability to tradeoff sampling
quality and efficiency. Our experiment on QM9 with explicit hydrogen and
Planar demonstrates that GraphBFN can produce equally good samples
as the previously best models with only 10% of their sampling steps (500
for QM9 and 1000 for Planar). A few entries are left as blank because
the corresponding experiment results are presented or implemented in the
original works (Vignac et al., 2022; Jo et al., 2024).

QM9 with H |V | ≤ 29 Planar |V | ≤ 64

% Sample Steps Valid (%) ↑ Unique (%) ↑ Atom Stab. (%) ↑ Mol. Stab. (%) ↑ V.U.N. (%) ↑
100 99.2 94.9 99.4 94.7 96.7
20 98.8 95.6 99.1 91.4 93.8
10 97.6 95.9 98.7 87.4 71.1
5 94.2 96.4 98.1 79.7 14.8

100 (DiGress) 95.4 97.6 98.1 79.8 75.0
100 (GruM) – – – – 90.0

Table 5: Ablation study on the impact of the adaptive Flowback threshold ϵ on generation quality and
diversity. According to our experiment on Planar Graph, increaseing the use of Flowback sampling
strategy always yields better sampling quality (as reflected in the strictly increasing V.U.N). However,
overusing it might compromise sample diversity (as reflected in the sub-optimal graph statistics of
ϵ = 1.0 in comparison to ϵ = 0.5).

Planar

ϵ Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ V.U.N. ↓
Training Set 0.0002 0.0310 0.0005 0.0052 100.0

Flowback (1.0) 0.0015 0.0703 0.0017 0.0047 98.2
Adaptive Flowback (0.5) 0.0005 0.0294 0.0002 0.0046 96.7

Vanilla (0.0) 0.0051 0.1793 0.0278 0.0099 14.1

that with vanilla sampling (i.e., ϵ = 0.0, where the vanilla BFN sampling is used throughout the
sampling process), the performance of V.U.N. is only 14.8%. With full Flowback, we could obtain a
competitive performance with V.U.N. consistently outperforming the baseline, while the distribution-
level metrics are still sub-optimal due to the collapse phenomenon. With adaptive Flowback, we
could obtain the best quality-diversity tradeoff which makes adaptive Flowback a more appealing
strategy.

Due to space limit, We defer the additional ablation studies on Time Scheduler and Output Condi-
tioned Feature to Appendix G. Furthermore, we conducted an empirical study that quantifies the
benefits of smooth graph topology transformation, with details presented in Appendix F.2.

6 CONCLUSIONS

We introduce GraphBFN for the generative modeling of discrete graphs. GraphBFN is motivated
by the intuitive idea of smoothly decomposing and modeling the information of the graph topology
by introducing a probabilistic matrix space. We first identify the train-test discrepancy issues in the
vanilla formulation of Bayesian Flow Networks and propose several innovations under the framework.
These appealing properties and improved techniques help GraphBFN achieve consistently superior
performance on extensive graph generation benchmarks. Furthermore, GraphBFN can maintain
decent sample quality while requiring much fewer sampling steps, thus largely improving the sample
efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

We confirm that our work complies with the ICLR Code of Ethics, and we have carefully considered
potential ethics concerns relating to the development and use of our proposed method GraphBFN for
generative modeling of graph-structured data.

Our model is designed for general graph generation tasks and does not involve the use of sensitive
personal data. However, we acknowledge that generative models, when applied to specific domains,
such as molecular generation and social networking modeling, may inadvertently create synthetic
data that could mimic private structures and details. Thus, we encourage users to apply our model in
compliance with relevant privacy regulations and to critically evaluate its outputs.

We are committed to full transparency in our research. All datasets used in our experiments are
publicly available and documented in detail to ensure reproducibility and compliance with legal
standards. The methods and assumptions made in our research are clearly documented, and we
provide substantial reproduction details in Appendix K. Furthermore, there is no conflict of interest,
financial or otherwise, that could influence the development or presentation of this work.

Based on these considerations, we do not anticipate any violations of the ICLR Code of Ethics
through the development or application of this model. However, we emphasize again that GraphBFN
should not be used for malicious purposes, such as generating misleading data or creating harmful
content.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a thorough description of the proposed Graph
Bayesian Flow Networks (GraphBFN) in the main text, including details on the model architecture,
training procedures, and evaluation metrics. All datasets, hyperparameters, and implementation
details are clearly specified in both the main paper and Appendix K. Additionally, we will release our
code along with instructions for reproducing the experiments upon the reception of the review result.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Avanti Athreya, Donniell E Fishkind, Minh Tang, Carey E Priebe, Youngser Park, Joshua T Vogelstein,
Keith Levin, Vince Lyzinski, Yichen Qin, and Daniel L Sussman. Statistical inference on random
dot product graphs: a survey. Journal of Machine Learning Research, 18(226):1–92, 2018.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro
Liò. Directional graph networks. In International Conference on Machine Learning, pp. 748–758.
PMLR, 2021.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning. arXiv preprint arXiv:2208.04202, 2022.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling, 2023. URL https://arxiv.org/abs/2305.04111.

Fan Chung and Mary Radcliffe. On the spectra of general random graphs. Electr. J. Comb., 18, 10
2011. doi: 10.37236/702.

F.R.K. Chung. Spectral Graph Theory. Number no. 92 in CBMS Regional Conference Series.
Conference Board of the Mathematical Sciences, 2006. ISBN 9780821889367. URL https:
//books.google.com/books?id=YUc38_MCuhAC.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Alex Graves, Rupesh Kumar Srivastava, Timothy Atkinson, and Faustino Gomez. Bayesian flow
networks. arXiv preprint arXiv:2308.07037, 2023.

Robert Grone, Russell Merris, and VS_ Sunder. The laplacian spectrum of a graph. SIAM Journal on
matrix analysis and applications, 11(2):218–238, 1990.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint
arXiv:2006.11239, 2020.

John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph-
based protein design. Advances in neural information processing systems, 32, 2019.

Jiaqi Jiang. AN INTRODUCTION TO SPECTRAL GRAPH THEORY. The University of Chicago,
2012. URL https://math.uchicago.edu/~may/REU2012/REUPapers/JiangJ.
pdf.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. In International conference on machine learning, pp. 4839–4848. PMLR,
2020.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. arXiv preprint arXiv:2202.02514, 2022.

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. In
Forty-first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=cZTFxktg23.

Mahdi Karami. Higen: Hierarchical graph generative networks. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=KNvubydSB5.

12

https://arxiv.org/abs/2305.04111
https://books.google.com/books?id=YUc38_MCuhAC
https://books.google.com/books?id=YUc38_MCuhAC
https://math.uchicago.edu/~may/REU2012/REUPapers/JiangJ.pdf
https://math.uchicago.edu/~may/REU2012/REUPapers/JiangJ.pdf
https://openreview.net/forum?id=cZTFxktg23
https://openreview.net/forum?id=cZTFxktg23
https://openreview.net/forum?id=KNvubydSB5
https://openreview.net/forum?id=KNvubydSB5

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B. Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation, 2023. URL https://arxiv.org/abs/
2307.08849.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
LM improves controllable text generation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=3s9IrEsjLyk.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast graph generation via spectral diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International Conference on Machine Learning, pp. 7192–7203. PMLR, 2021.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spec-
tral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
International Conference on Machine Learning, pp. 15159–15179. PMLR, 2022.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
tation invariant graph generation via score-based generative modeling. In International Conference
on Artificial Intelligence and Statistics, pp. 4474–4484. PMLR, 2020.

Yiming Qin, Clement Vignac, and Pascal Frossard. Sparse training of discrete diffusion models for
graph generation, 2023.

Yanru Qu, Keyue Qiu, Yuxuan Song, Jingjing Gong, Jiawei Han, Mingyue Zheng, Hao Zhou, and
Wei-Ying Ma. Molcraft: Structure-based drug design in continuous parameter space. arXiv
preprint arXiv:2404.12141, 2024.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation. arXiv preprint arXiv:2001.09382,
2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, pp. 11918–11930, 2019.

Yuxuan Song, Jingjing Gong, Hao Zhou, Mingyue Zheng, Jingjing Liu, and Wei-Ying Ma. Unified
generative modeling of 3d molecules with bayesian flow networks. In The Twelfth International
Conference on Learning Representations, 2023.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Justin Wyss-Gallifent. Graph Theory. The University of Maryland, 2021. URL https://www.
math.umd.edu/~immortal/MATH401/book/ch_graph_theory.pdf.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. In Advances in neural information
processing systems, pp. 6410–6421, 2018.

James Jian Qiao Yu and Jiatao Gu. Real-time traffic speed estimation with graph convolutional
generative autoencoder. IEEE Transactions on Intelligent Transportation Systems, 20(10):3940–
3951, 2019.

Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 617–626, 2020.

Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and Karsten Kreis.
LION: Latent point diffusion models for 3d shape generation. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=tHK5ntjp-5K.

13

https://arxiv.org/abs/2307.08849
https://arxiv.org/abs/2307.08849
https://openreview.net/forum?id=3s9IrEsjLyk
https://www.math.umd.edu/~immortal/MATH401/book/ch_graph_theory.pdf
https://www.math.umd.edu/~immortal/MATH401/book/ch_graph_theory.pdf
https://openreview.net/forum?id=tHK5ntjp-5K

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DETAILED INTRODUCTION TO BAYESIAN FLOW NETWORKS

In this section, we introduce the basic components of Bayesian Flow Networks (BFNs) (Graves et al.,
2023). The graphical model of BFN could be expressed in the form of a latent variable model whose
prior is non-Markov autoregressive, distinguishing it from the diffusion models that have Markov
priors. That is, for learning the probability distribution pϕ over sample space x, a series of noisy
versions y{1:n} = ⟨y1, · · · ,yn⟩ of x are introduced as latent variables. Then the model seeks to
optimize the variational lower bound of the likelihood:

log pθ(x) ≥ E
y{1:n}∼q

[
log

pϕ(x|y{1:n})pϕ(y{1:n})
q(y{1:n}|x)

]
= −DKL(q∥pϕ

(
y{1:n}

)
) + E

y{1:n}∼q
log
[
pϕ
(
x | y{1:n}

)]
(15)

The variational distribution q is defined by so-called sender distribution pS (yi | x;αi). The sender
distribution could be understood as adding noise to the data sample x with a predefined accu-
racy αi. The variational distribution is the fixed mean-field combination of sender distribution by
q
(
y{1:n} | x

)
=
∏n

i=1 pS (yi | x;αi).

For the autoregressive prior pϕ (y1, . . . ,yn), the joint distribution could be extended with Bayesian
decomposition as:

pϕ (y1, . . . ,yn) = pϕ(y1)

n∏
t=2

pϕ(yi | y{1:t−1}) (16)

Note in BFN, the y is non-Markov contrast to diffusion models. In BFN, a new variable is introduced
based on a fix-form functional transformation f , e.g. a weighted average function, as θt = f(y{1:t})
with t > 1 and θ0 as a constant. We elaborate more on the definition of t, which is implied by
successive Bayesian updates as θt = h(θt−1,yt, αt). Given the constant prior θ0 and a series noisy
versions y{1:n} of x, we could obtain θ{1:n} through a sequence of Bayesian updates. The only
randomness of the above process comes from y, hence it could be summarized as a deterministic
function f over y. θ has the statistical interpretation as the parameter of the factorized distribution
over the sample spaces by p(x | θ) =

∏D
d=1 p

(
x(d) | θ(d)

)
. The conditional distribution pϕ(yt |

y{1:t−1}) is defined as pϕ(yt | y{1:t−1}) = pϕ(yt | θt−1 = f(y{1:t−1})). Thus, Eq. 16 could be
rewritten as: pϕ (y1, . . . ,yn) =

∏n
t=1 pϕ(yt | θt−1). We then clarify pϕ(yt | θt−1). To obtain this

term, we will first input θt−1 into the neural network Φ to capture the interdependency between
different dimensions. Hence the distribution implied by θt−1, the neural network input, is also named
as input distribution. The output of the neural networks denoted as θ̂t−1 = Φ(θt−1) still lies in
the parameter space and the corresponding distribution is usually referred to as output distribution.
Combining the formulation and accuracy αt of sender distribution pS , the distribution pϕ(yt | θt−1)
is defined as

pϕ(yt | θt−1) = EpO(x̂|Φ(θt−1))pS (yt | x̂;αt) (17)

Note the pϕ(yt | θt−1) is also formulated as receiver distribution pR(yt | θt−1; Φ, αt).

Integrate Eq. 17 to Eq. 15, with pϕ(x|y{1:n}) = pO(x|θn), we could get the objective as:

LELBO =

n∑
t=1

DKL(pS(t)∥pR(t)) + log pO(x|θn) (18)

Here pS(t) and pR(t) is abbreviation for pS(yt|x, αt) and pR(yt | θt−1; Φ, αt). To conduct
simulation-free training on the ELBO, Graves et al. (2023) proposed to use the so-called Bayesian
flow distribution pF (θ{0:n}|x) formulated as pF (θt|x) = E∏t

k=1 pS(yk|x;αk)
f(y{1:t}) , which allows

for teacher-forcing-like training and generally has an analytical formulation.

B SPECTRAL GRAPH THEORY

Following previous literature (Vignac et al., 2022; Martinkus et al., 2022), we consider the definition
of graph spectrum as the eigenvalues of the Laplacian matrix. For a graph G with n nodes, the graph

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Laplacian matrix is defined as L = D−A, where A is the n×n adjacency matrix with Ai,j = 1 if the
node vi and node vj are connected and Ai,j = 0 otherwise. D is the degree matrix, a diagonal matrix
defined as D = diag (d1, · · · , dn). Here di denotes the degree of the node vi as di =

∑n
j=1 Ai,j .

Besides, the normalized Laplacian Matrix Lnorm is defined as Lnorm = I −D− 1
2AD− 1

2 . For the
symmetric positive semi-definite matrix L or Lnorm, the eigen-decomposition is UΛUT where
U = [u1, · · · ,un] is an orthogonal matrix for the eigenvectors and Λ = diag (λ1, · · · , λn) denotes
the collection of eigenvalues. The eigenvalues and eigenvectors of the graph Laplacian imply some
key properties of the graph topology structure, such as connectivity, clusterability, and distance
between nodes (Grone et al., 1990).

Spectral Gap and Graph Clusterability In this paragraph, we elaborate on the relationship
between graph clusterability and the spectral gap that we’ve used to quantity graphs’ topological
information in Figure 1.

The spectral gap is computed by taking the difference between the first two smallest eigenvalues of
graph matrices. Its definition varies slightly depending on whether the eigenvalues are taken from
a graph’s adjacency matrix or the Laplacian matrix. Nevertheless, regardless of which matrix it
takes, the correlation holds that a smaller spectral gap implies poor graph connectivity and good
clusterability. In our paper, we stick to the definition according to the Laplacian Matrix.

The Laplacian matrix L is symmetric and has non-negative and real eigenvalues. The multiplicity of
0 in the eigenvalues of L is equivalent to the number of connected components in the graph (Jiang,
2012).

Let λ1, · · · , λn denote the eigenvalues of L in the increasing order. The spectral gap in this scenario
is defined as λ2 − λ1 (Martinkus et al., 2022). Since the smallest eigenvalue is always 0 (as the graph
must have at least one connected component), the spectral gap is nothing but the second smallest
eigenvalue of the Laplacian.

The second smallest eigenvalue is known as the Fiedler Value or the algebraic connectivity of a graph,
and it reflects the connectivity of a graph (Wyss-Gallifent, 2021). Specifically, given a fixed graph
volume, the second smallest eigenvalue lowerbonds the diameter of a graph (Chung, 2006), which
is a connectivity metric that measures the maximum distance between a pair of nodes in the graph.
Therefore, if the second eigenvalue is small, the graph will contain nodes that are separated far apart
from each other, implying loose connections and more clusters.

To gain more intuition for why a small spectral gap corresponds to a highly clustered graph, we can
think about the extreme case where the spectral gap is 0. A zero spectral gap means that the second
smallest eigenvalue of the Laplacian is also 0, implying the multiplicity of zero eigenvalues is at least
2. This means that the graph has at least 2 connected components (i.e. at least 2 clusters with no
bridge between them).

C SPECTRAL FEATURES IN THE SPACE OF PROBABILISTIC ADJACENCY
MATRICES

Clarification on Probabilistic Adjacency Matrix Space Instead of focusing on the properties
customized on the graph domain, we generalize the graph featured by its adjacency matrix to the
more general matrix domains. The eigenvalues or eigenvectors of the matrices could be effective
tools to reflect the essential properties. Then there are the following facts that are proved in (Chung &
Radcliffe, 2011):

Theorem C.1. (Properties and Bounds of PAM) For Dp defined as the EA∼ApD, i.e. the expectation
of the Degree matrix of the graph whose adjacency matrix A sampled from Ap. Let δ be the minimum
expected degree of G, and L = I −D−1/2AD−1/2 the (normalized) Laplacian matrix and similarly
definition Lp = I − (Dp)−1/2Ap(Dp)−1/2. Choose ϵ > 0:

• for ∆ > 4
9 ln(2n/ϵ). Then with probability at least 1 − ϵ, for n sufficiently large, the

eigenvalues of A and Ap satisfy

∀1 ≤ j ≤ n |λi(A)− λi(A
p)| ≤

√
4∆ ln(2n/ϵ)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• There exists a constant k = k(ϵ) such that if δ > k lnn, then with probability at least 1− ϵ,
the eigenvalues of L and Lp satisfy

∀1 ≤ j ≤ n, |λj(L)− λj(L
p)| ≤ 3

√
3 ln(4n/ϵ)

δ

The above theorem helps us connect the probabilistic matrix space to the graph space with theoretical
justification. In particular, the Laplacian matrix could also get a similar definition in the probabilistic
space whose eigenvalues could relate to the graph spectrum of sampled discrete graphs.

D BEYOND SIMPLE UNDIRECTED GRAPH

Our experiment shows that GraphBFN could handle the generation of undirected graphs. Furthermore,
it could be naturally extended to other types of graphs, and we elaborate on how it could be adapted
to them in the following.

Directed graphs Compared to undirected graphs, directed graphs differ only in that they do not need
the adjacency matrix to be symmetric. In our current implementation, we enforce the symmetricity
on the network input Eθt by the operation Eθt = (Eθt + (Eθt)T)/2, and on the final sample by
Efinal = (Efinal+ET

final)/2. To study the directed graphs, we can simply remove these operations.

Weighted graphs For weighted graphs where each edge in the graph is assigned a numerical
value, the GraphBFN could still be applied by normalizing the numerical value to the [0,1] space. In
this way, we could obtain a reformatted adjacency matrix, where an entry is set as the normalized
numerical value if the corresponding edge exists and 0 otherwise. Then, we could apply the same
objective of GraphBFN to such samples. It should be noted that the weighted graph is a hybrid of
continuous and discrete variables, we could also use a hybrid GraphBFN for modeling, i.e. continuous
BFN for modeling continuous variables and discrete for other discrete types like node and edge types.

Attributed graphs When presenting our methodology, especially when we introduce the proba-
bilistic adjacency matrix, we assume the edge type to be binary (existence and non-existence) for the
simplicity of presentation. However, it could be noted that the GraphBFN framework could be easily
extended to the attributed graphs where the node and edge have categorical attributes, e.g., more
than two node/edge types. Furthermore, BFN’s effectiveness on this general type of graph has been
empirically verified in our experiments on molecule generation, where the graphical representations
of molecules are attributed graphs. Lastly, we could still obtain the topological information under
this setting by accumulating the probability of all categories other than the no-edge category to build
the probabilistic adjacency matrix space.

E ALGORITHMS

Algorithm 1 Discrete Variable Bayesian Flow

1: Require: K ∈ R
K is the possible state number of a discrete variable

2: function BayesianFlow(x ∈ RD×K , β ∈ R)
3: y ∼ N (β(Kx− 1), βKI)
4: θ ← softmax(y)
5: Return θ
6: end function

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 2 Sampling procedure with Adaptive Flowback

1: Require: T, n ∈ Z+, cv, ce ∈ R, ϕ(·), βv(·), βe(·), αv(·), αe(·), ϵ
T denotes the sampling step, N is the number of nodes, cv, ce is the possible state of a node
and edge variable, ϕ(·) is the optimized neural network.β and α are the corresponding scheduler
functions.ϵ is the predefined constant

2: Initialize: Vθ,Eθ with Vθ0 ,Eθ0

3: for i = 1 to T do
4: t← i−1

T

5: V[ϕ(Gθt , t],E[ϕ(Gθt , t)]← ϕ(Gθt = (Vθt ,Eθt), t)
6: V,E ∼ Categorical(V[ϕ(Gθt , t)),Categorical(E[ϕ(Gθt , t)])
7: tn = t+ 1

T , tp = t− 1
T

8: if i > 2 and ∥ϕ(Gθt , t)− ϕ(Gθtp , tp)∥2 ≥ ϵ then
9: Vytn ,Eytn ∼ q (Vytn | V, αv(tn)) , q (E

ytn | E, αe(tn))
10: Vθtn ,Eθtn ← Bayesian Update(Vytn ,Eytn ,Vθt ,Eθt) as Eq. 6
11: else
12: Vθtn ← BayesianFlow(V[ϕ(Gθt , t], βv(tn))
13: Eθtn ← BayesianFlow(E[ϕ(Gθt , t], βe(tn))
14: end if
15: end for
16: V[ϕ(Gθ1 , 1)],E[ϕ(Gθ1 , 1)]← ϕ(Gθt = (Vθ1 ,Eθ1), 1)
17: V,E ∼ Categorical(V[ϕ(Gθ1 , 1)),Categorical(E[ϕ(Gθ1 , 1)])
18: Return: V,E

Algorithm 3 Training procedure for one step

1: Require: functionβv(t) =
∫ t

0
αv(t), βe(t) =

∫ t

0
αe(t), cv, ce ∈ R, an NeuralNetwork ϕ(·)

2: Input: V ∈ Rn×cv E ∈ Rn×n×ce , t ∈ [0, 1]
3: Vθt ← BayesianFlow(V, t)
4: Eθt ← BayesianFlow(E, t)
5: V[ϕ(Gθt , t)],E[ϕ(Gθt , t)]← ϕ(Gθt = (Vθt ,Eθt), t)

6: L = ce
1
2αe(t)

∑
1≤i,j≤n

∥∥Ei,j −Ei,j [ϕ(G
θt , t)]

∥∥2+cv
1
2αv(t)

∑
1≤i≤n

∥∥Vi −Vi[ϕ(G
θt , t)]

∥∥2
7: Minimize loss L

F ANALYSIS OF THE GENERATION PROCESS

F.1 TRANSFORMATION OF GRAPH TOPOLOGY

GraphBFN and the diffusion-based models share the same advantage of gradually recovering the graph
topological information in the generation process. However, the diffusion-based models experience
more fluctuations in recovering graph topology. The instability arises because the denoising steps in
these models are conditioned on the atomic samples Gt represented in binary adjacency matrices,
and such samples could involve significant noises and randomness. In contrast, in GraphBFN, the
intermediate steps are conditioned on the input distribution Gθt represented in the probabilistic
adjacency matrix, which changes smoothly across the Bayesian update at each time step.

Experiment Setup To verify this discrepancy, we train GraphBFN and the diffusion-based models,
Digress and Grums, to overfit a 2-cluster community graph with 20 nodes. The topological infor-
mation of the graph is captured by the spectral gap, as it reflects clusterability—the most important
topological feature of our overfitting sample. Recall that the spectral gap is calculated by taking the
difference between the 1st and 2nd eigenvalues of the Laplacian for diffusion-based models and the
probabilistic Laplacian for GraphBFN. The spectral gaps are measured on the intermediate noisy
samples Et for DiGress and the input distribution Gθt for GraphBFN, and, for GruM, we use the
quantized Et.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 4: Topology recovery of GraphBFN.

tTable 6: The smoothness of spectral gap transformation in the generation process of GraphBFN and
the diffusion-based basline models

Model MASD(1e-2)↓ MLSTD(1e-2)↓ MVar(1e-2) ↓
DiGress 1.14 0.78 0.65
GruM 1.43 0.79 0.77
GraphBFN 0.39 0.25 0.26

Results We plot the changes of the spectral gaps in Figure. 4. In this figure, we see that GruM
transforms information more smoothly than DiGress but not as smoothly as GraphBFN. Such
observation is further confirmed by quantifying smoothness using the following metrics three metrics.
The results of these metrics are shown in Table. 6.

• Mean Absolute Second Derivative(MASD): MASD calculates the second derivative
of the data, the 2nd derivative is then averaged out, and the equation is SMASD =∑n−2

i=1

∣∣∣ d2

dx2 (datai)
∣∣∣

n−2 .

• Mean Local Standard Deviation(MLSTD): MLSTD computes standard deviation in a
small window, where, in our case, the window is set to 5 and then averages the local standard
deviation. Intuitively, MLSTD captures relatively long-range smoothness in the window.

• Mean Variation(MVar): MVar calculates the difference between neighboring data points,
and we report the average. It emphasizes more on short-range smoothness.

F.2 ADVANTAGES OF “SMOOTH” TRANSFORMATION

We further conduct an empirical study that quantized the benefit of smooth graph topology transfor-
mation toward generation quality, thus revealing issues of diffusion-based graph generation models.
We follow the same measure of smoothness described in the previous subsection.

Experiment Setup The toy overfitting experiments in the previous experiment does not reflect
sample quality well, so in this experiment, we employ a more generalized setting of training on a
complete dataset. In the first experiment, we train GraphBFN and DiGress (Vignac et al., 2022) on
the complete SBM dataset (using the best configuration for both) and let each sample 200 graphs

tTable 7: The study of the advantages of smoothness topology transformation at generation by
comparing GraphBFN and the diffusion-based model DiGress. The smoothness metrics are in the
scale of 1e-2

Model MLSTD↓ MVar ↓ Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ V.U.N. ↑
DiGress 0.79 0.62 0.0015 0.0512 0.0396 0.0379 73.5
GraphBFN 0.23 0.25 0.0004 0.0509 0.0328 0.0050 90.0

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

t
Table 8: The study of the advantages of smoothness topology transformation at generation through
the failure cases of the diffusion-based model DiGress. The smoothness metrics are in the scale of
1e-2.

Model MLSTD↓ MVar ↓ Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ V.U.N. ↑
DiGress (original) 0.79 0.62 0.0015 0.0512 0.0396 0.0379 73.5
DiGress (highest 100) 1.04 0.76 0.0018 0.0518 0.0461 0.0450 63
DiGress (lowest 100) 0.54 0.48 0.0007 0.0498 0.0336 0.0212 84

Figure 5: A comparison of the transformation of graph topology between GraphBFN and the diffusion-
based models, DiGress and GruM.

with 1,000 sample steps. We then collect intermediate noise samples and compute the smoothness
metrics MLSTD and MVar on the spectral gap as in Sec. F.1. For the final generated samples, we
compute the sample quality metrics as in Tab. 1.

Furthermore, we investigate how smoothness in transformation correlates with failure cases diffusion-
based approach. We equally partition the 200 samples generated by DiGress into two categories
based on the smoothness metric MLSTD, with one group containing the samples with the bottom
100 MLSTD and the other containing those with the top 100.

Results According to the results of the above experiments, as shown in Tab. 7 and Tab. 8, it
is evident that there is a significant performance gap between the sample groups with different
smoothness metrics. By selecting the smoother transformation trajectories during generation, the
performance of diffusion-based approaches can be significantly improved. This finding better justifies
the issues of unstable dynamics in traditional diffusion-based methods.

F.3 TOPOLOGY RECOVERY

We conducted a similar analysis as in Jo et al. (2024) on the recovery of graph topology in the
generation process. The results of GraphBFN are shown in Figure. 5. Comparing to Figure.2 of Jo
et al. (2024), we could find that GraphBFN shares with GruM the advantage of more speedy topology
recovery, with GraphBFN recovering the graph topology even faster.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 9: Ablation study on the technique of conditioning GraphBFN’s the training and generation
processes on the extra graph features drawing from the PMA of GraphBFN’s output distribution.
Experiments on SBM and Planar graph datasets show that this technique boosts performance in terms
of both generation quality and diversity.

Planar SBM

Synthetic, |V | = 64 Synthetic, 44 ≤ |V | ≤ 187

Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ V.U.N. ↑ Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ V.U.N. ↑
Training set 0.0002 0.0310 0.0005 0.0052 100.0 0.0008 0.0332 0.0255 0.0063 100.0

None 0.0647 0.3525 1.695 0.0794 0.0 0.0149 0.0748 0.125 0.0116 0.0
Input Dist. 0.0006 0.0288 0.0013 0.0058 87.5 0.0009 0.058 0.054 0.0057 75.0
Output Dist. 0.0005 0.0294 0.0002 0.0046 96.7 0.0005 0.056 0.037 0.0053 87.5

Table 10: Ablation study on different accuracy scheduling of GraphBFN. According to our exper-
iment on SBM, the scheduling with the general accuracy rate function α(t) = a + 2(β(1) − a)t
outperforms that with the quadratic rate in the original paper of Graves et al. (2023).

SBM

Synthetic, |V | = 187

Acc. Sched. Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ V.U.N. ↓
Training Set 0.0008 0.0332 0.0255 0.0063 100.0

α(t) = 2β(1)t 0.046 0.0574 0.069 0.0081 75.0
α(t) = a+ 2(β(1)− a)t 0.0005 0.056 0.037 0.0053 87.5

G ADDITIONAL ABLATION STUDIES

Output Distribution Conditioning We evaluate the role that the spectral features of graphs play
in the generation process. We conduct an ablation study on SBM by training GraphBFN with and
without conditioning on the features. When conditioning on the features, we consider extracting the
spectral features from two sources, either from the PAM of the GraphBFN’s input distribution or the
output distribution. Results in Tab. 9 show that incorporating information on the spectral features
is essential for correctly modeling the internal rules of larger graphs like SBM. Besides, the output
distribution could be a better source to extract the spectral features as shown by the further boost in
performance. This phenomenon is within our expectation because the input distribution models the
distribution of each edge in a graph independently and thus offers less clear spectral information.

Accuracy Scheduling We experimented with how the accuracy scheduling of GraphBFN impacted
its generation results. We set up the experiment on SBM, the abstract graph at scale, and trained
GraphBFN with both the original quadratic scheduling and our generalized scheduling, with β(1) set
to 3.0 and α set to 1.0 for the generalized. Results in Tab. 10 show that the generalized scheduling
could improve the model’s performance.

H DERIVATION OF BFN OVER DISCRETE VARIABLE

To obtain the exact form of the sender distribution, the key is to apply the central limit theorem and
take the condition of mω2 = α and is finite, which implies m → ∞ and ω → 0. Also with the
first-order Taylor extension could obtain the final result. For a detailed derivation of the BFN over
discrete variables, we would like to suggest referring to the Eq.148 to Eq.157 in (Graves et al., 2023).

I PROOF OF PROPOSITION 3.2

We prove the proposition in the following:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. We first prove the loss in Eq. 11 is permutation invariant. To this end, we first prove that
q
(
Gθt | G,Gθ0

)
= q

(
πGθt | πG, πGθ0

)
(19)

We take the same decomposition as in Eq. 10 of the term q
(
Gθt | G,Gθ0

)
:

q
(
Eθt | E,Eθ0

)
= Π1≤i,j≤nq

(
Eθt

i,j | Ei,j ,E
θ0
i,j

)
, q

(
Vθt | V,Vθ0

)
= Π1≤i≤nq

(
Vθt

i | Vi,V
θ0
i

)
q
(
Gθt | G,Gθ0

)
= q

(
Eθt | E,Eθ0

)
q
(
Vθt | V,Vθ0

)
(20)

We take the q
(
Vθt | V,Vθ0

)
as example:

q
(
πVθt | πV, πVθ0

)
= π(Π1≤i≤nq

(
Vθt

i | Vi,V
θ0
i

)
) = Π1≤i≤nq

(
Vθt

i | Vi,V
θ0
i

)
= q

(
Vθt | V,Vθ0

)
(21)

Similar derivation could be applied to E. And hence we could finish the proof.

Next, we take the L(V, t) as an example to prove L(V, t) = L(πV, t):

L(πV, t) = cv
1

2
αv(t) E

q(πGθt |πG,πGθ0)

∑
1≤i≤n

∥∥πVi −Vi

[
ϕ
(
πGθt , t

)]∥∥2 (22)

For simplicity, we focus on the term related to π, as ϕ is permutation equivariant, we have

E
q(πGθt |πG,πGθ0)

∑
1≤i≤n

∥∥πVi −Vi

[
ϕ
(
πGθt , t

)]∥∥2 = E
q(Gθt |G,Gθ0)

∑
1≤i≤n

∥∥πVi − πVi

[
ϕ
(
Gθt , t

)]∥∥2
= E

q(Gθt |G,Gθ0)
π(
∑

1≤i≤n

∥∥Vi −Vi

[
ϕ
(
Gθt , t

)]∥∥2) = E
q(Gθt |G,Gθ0)

∑
1≤i≤n

∥∥Vi −Vi

[
ϕ
(
Gθt , t

)]∥∥2
(23)

Then we could also apply the same process to E. Then we finish the proof over permutation invariance
of the loss function.

Next, we discuss the invariant density modeling of the pϕ. This could be directly following the
conclusion of Theorem 3.1 of Song et al. (2023). With a permutation invariant prior Gθ0 and a
permutation equivariant interdependency network ϕ, we only need to make sure the Bayesian Update
function h is permutation equivariant. As we could find in Eq. 6,

h(πθt−1, πyt) = π(
eytθt−1∑K

k=1 e
y
(k)
t θ

(k)
t−1

) = πh(θt−1, yt) (24)

And then we could finish the proof.

J DISCUSSION WITH DISCRETE DIFFUSION MODELS

The key intuition held by Bayesian Flow Networks(BFN) (Graves et al., 2023) is that the information
in the generative process should be modeled in a smoothly increasing fashion for superior performance.
Such intuition is shared by the BFN and diffusion in the continuous data and is also identified by
several studies under the literature of diffusion models for image generations (Ho et al., 2020).
GraphBFN is motivated by the compatibility of such "continuous information modeling" intuition
and the special nature of graph data: that is, though generally represented in the discrete modality, the
essential graph topology information could also be represented in the continuous manifold as implied
by graph spectrum. This allows GraphBFN to better harness the inductive bias in modeling discrete
data modality with continuous natures, compared to the previous discrete diffusion models (Vignac
et al., 2022). Furthermore, compared to the methods that directly dequantized the data and applied
continuous diffusion models, the GraphBFN needs no quantize/dequantize procedure and could be
more compatible with the sparse adjacency matrix representation.

There are also some potential empirical advantages of GraphBFN. The input to the neural network of
GraphBFN lies in the continuous manifold, which could enjoy the advantages of numerical stability.
More importantly, the inputs to the continuous distribution hold a considerably small variance
compared to the previous discrete diffusion models (Graves et al., 2023). Also, such properties could
lead to a speed-up in convergence during training.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

K EXPERIMENT DETAILS AND ADDITIONAL RESULTS

K.1 EXPERIMENT DETAILS

The datasets, dataset splits, and evaluation metrics of QM9 with explicit hydrogen and MOSES follow
from Vignac et al. (2022), those of SBM, Planar, QM9 with implicit hydrogen, and ZINC250k follow
from Martinkus et al. (2022), and those of Community-small, Ego-small, and Protein follow from Jo
et al. (2022).

The network architectures and settings directly followed Vignac et al. (2022); Jo et al. (2024). The
models are trained with the AdamW optimizer (Loshchilov & Hutter, 2019) until convergence.
The most sensitive hyperparameters of GraphBFN are βE and βV that control the speed of in-
formation transmission in the generation process. We search them in the discrete linear space
{1.0, 2.0, · · · , 10.0}.
For all of our experiments, we use NVIDIA GeForce RTX 3090 with 24GB memory to train and
evaluate our models. The batch sizes are adjusted to the maximum that can fit within the memory
constraint.

All of our reported results are the average of three random runs. For a cleaner presentation and to
follow the convention of previous work, we only add the error terms to the result of QM9 with
Explicit Hydrogen.

For the results of QM9 with Explicit Hydrogen in Tab. 4, we only compare to one other method
because, to our best knowledge, DiGress (Vignac et al., 2022) is the only previous graph generative
model that has attempted to model QM9 molecules with explicit hydrogen.

Extra Features: We use extra features for the inputs of the GraphTransformer which directly follows
(Vignac et al., 2022). Specifically, we have included cycle counts using pre-determined formulas to
efficiently calculate cycles up to size 6. Node features count participation in up to 5-cycles, while
graph features tally up to 6-cycles, utilizing node degree vectors and the Frobenius norm. Addi-
tionally, we integrate spectral features, which involve an O

(
n3
)

eigendecomposition—manageable
for our graphs with up to 200 nodes. Key graph-level features derived from the graph Laplacian
include the number of connected components and the first five nonzero eigenvalues. Node-level
features estimate the largest connected component and include the first two eigenvectors associated
with nonzero eigenvalues.

Each spectral feature or structural feature could be categorized into node-level features and graph-
level features. Specifically, a node-level feature holds the shape of (batch-of-graphs, node-in-graph),
such as an estimation of the biggest connected component (using the eigenvectors associated with
eigenvalue 0) ; a graph-level feature holds the shape of (batch-of-graphs, 1). After computing the
node-level features F_n and graph-level features F_g based on V θ and Eθ, we concat V θ and all
F_n as new node representations V _feat. and concat all F_g as the finally graph-level feature y.
Then the inputs for the graph transformers in GraphBFN are the triple of (V _feat., Eθ, y) similarly
to Digress (Vignac et al., 2022)

Scheduling Function: In short, our scheduling design in Eq. 13 is an improvement upon the original
design in vanilla BFN (Graves et al., 2023) that is determined empirically based on the intuitive of
linearly increased entropy. Our design attempts to change the non-informative prior to the original
design to be informative.

In Eq. 13, β(t) is the accumulative(integral of α(t) from 0 to t). The key intuition behind the
design is that for informative prior, the initial step 0 already contains information of the ground truth
sample. Then we set α(0) to a positive constant a. Besides, we also follow the heuristic of vanilla
BFN (Graves et al., 2023) to use the square scheduler for accumulated accuracy β to ensure the
entropy of the input distribution approximately changes linearly along the timesteps. Eq. 13 is a very
simple form that satisfies both properties.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

K.2 COMPUTATION EFFICIENCY

Table 11: Comparing GraphBFN with other multi-
step generation methods on the time to Sample
10, 000 QM9 with Explicit Hydrogen Graphs.

Sampling Time (min.)

DiGress 40
GruM 35
GraphBFN 44

Training time for QM9 takes approximately
3 hours, and for large molecules and abstract
datasets, the longest training takes 4 days.

For the inference efficiency, we conducted an
experiment that compares GraphBFN with two
other multi-step graph generation models – Di-
Gress (Vignac et al., 2022) and GruM (Jo et al.,
2024). We record the time for each model to
sample 10000 graphs of QM9 with explicit hy-
drogen with the same sampling steps of 500.
The results are shown in the Tab. 11.

According to the results, GraphBFN has approximately the same inference speed as the other two
diffusion-based models. This result is expected, as all three methods require only one network
evaluation at each iteration. GruM enjoys the fastest sampling speed. We speculate that this is
because GruM operates in the space of continuous data, so it does not require the relatively costly
procedure of sampling from categorical distributions.

Table 12: Additional results on smaller datasets. Most baseline performances are adapted from Jo
et al. (2022) and Kong et al. (2023). Hyphens(-) denote unobtainable results due to either the reasons
mentioned in Jo et al. (2022) or the lack of official implementation.

Ego-small Community-small Enzymes

Real, 4 ≤ |V | ≤ 18 Synthetic, 12 ≤ |V | ≤ 20 Real, 10 ≤ |V | ≤ 125

Deg.↓ Clus.↓ Orbit↓ Deg.↓ Clus.↓ Orbit↓ Deg.↓ Clus.↓ Orbit↓
Training set 0.002 0.021 0.005 0.02 0.07 0.01 0.0003 0.01079 0.0003

Autoreg.

DeepGMG 0.040 0.100 0.020 0.220 0.950 0.400 - - -
GraphRNN 0.090 0.220 0.003 0.080 0.120 0.040 0.017 0.062 0.046
GraphAF 0.03 0.11 0.001 0.18 0.20 0.02 1.669 1.283 0.266
GraphDF 0.04 0.13 0.01 0.06 0.12 0.03 1.503 1.061 0.202

One-shot

GraphVAE 0.130 0.170 0.050 0.350 0.980 0.540 1.369 0.629 0.191
GNF 0.030 0.100 0.001 0.200 0.200 0.110 - - -
EDP-GNN 0.052 0.093 0.007 0.053 0.144 0.026 0.023 0.268 0.082
GDSS 0.021 0.024 0.007 0.045 0.086 0.007 0.026 0.061 0.009
SPECTRE 0.078 0.078 0.007 0.020 0.210 0.010 0.136 0.195 0.125
DiGress 0.015 0.029 0.005 0.020 0.063 0.010 0.004 0.083 0.002
EDGE - - - 0.008 0.011 0.026 - - -
GraphARM 0.019 0.017 0.010 0.034 0.082 0.004 0.029 0.054 0.015
HiGen - - - - - - 0.012 0.038 7.2e-4
GraphBFN 0.0034 0.0246 0.0057 0.0075 0.0095 0.0043 0.0064 0.0212 0.0051

K.3 ADDITIONAL RESULTS ON NON-ATTRIBUTED GRAPHS

In Tab. 12, we provide results on non-attributed (i.e. graph with only one edge type and node type)
graph datasets, along with comparisons to additional baselines (Chen et al., 2023; Kong et al., 2023;
Karami, 2024). Community-small contains 100 randomly generated clustered graphs; Ego-small
contains 200 small ego graphs; and Enzymes contains 587 chain-like graphs representing protein
structures (Jo et al., 2022).

According to the table, GraphBFN has shown superior performance on Community-small and
competitive performance on Ego-small and Enzymes. It should be noted that for Community-small
and Ego-small, the metrics are very saturated due to the limited complexity of datasets; as we can
see, the SOTA results are very close to the training set’s performance.

K.4 CODE

More specific details about the experiment setting and our implementation of GraphBFN can be
found in our code at https://anonymous.4open.science/r/GraphBFN-5FEE/README.md.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

L FLOWBACK SAMPLING

The visualization of GraphBFN’s generation process with the Flowback technique is in Figure. 6.

Figure 6: Visualization of GraphBFN’s generation process with the Flowback technique. The sample
graphs in the first row are sampled from the output distribution ϕ(Gθt , t) at different time steps,
while those on the second line are representations of the probabilistic adjacency matrix of the input
distribution Gθt . The solid lines denote the network prediction, while the solid line denotes the
flowback Bayesian update.

M DERIVATION FROM EQ. 6 TO EQ. 9

Here we provide a formal derivation of the Bayesian Flow Distribution (Eq. 9) which is essentially
the Eq. 172 to Eq. 185 in BFN (Graves et al., 2023). Firstly, we consider marginalizing the y from
the sender distribution with the Bayesian update function in Eq. 6 which results in a distribution over
θ, we term it as Bayesian update distribution:

pU (θ | θi−1,x;α) = E
N (y|α(Kex−1),αKI)

δ

(
θ − eyθi−1∑K

k=1 e
yk (θi−1)k

)
. (25)

Then we derive the additive accuracy property with two consecutive Bayesian updates of noisy
samples ya ∼ N (αa (Kex − 1) , αaKI) and yb ∼ N (αb (Kex − 1) , αbKI) as:

h (yb, h (ya, θi−2)) =
exp (yb)

exp(ya)θi−2∑K
k′=1

exp((ya)k′)(θi−2)k′∑K
k=1 exp ((yb)k)

exp((ya)kk)(θi−2)k∑K
k′=1

exp((ya)k′)(θi−2)k′

=
exp (yb) exp (ya) θi−2∑K

k=1 exp ((yb)k) exp ((ya)k) (θi−2)k

=
exp (ya + yb) θi−2∑K

k=1 exp ((ya + yb)k) (θi−2)k
= h (ya + yb, θi−2) .

(26)

With the property of Gaussian distribution, we have that:

ya + yb ∼ N ((αa + αb) (Kex − 1) , (αa + αb)KI) . (27)

Then the two-step update could be actually merged into a one-step update of added accuracies, i.e.:

E
pU (θi−1|θi−2,x;αa)

pU (θi | θi−1,x;αb) = pU (θi | θi−2,x;αa + αb) (28)

The the Bayesian flow distribution in Eq. 9:

pF (θ | x; t) =

E
pU (θ1|θ0,x;α1)pU (θ2|θ1,x;α2)

. . . E
pU (θn−1|θn−2,x;αn−1)

pU (θn | θn−1,x;αn) = pU

(
θn | θ0,x;

n∑
i=1

αi

)
(29)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Note
∑n

i=1 αi could be substituted as β(t) as the integral of the α(t) from 0 to t in the continuous
setting. Substituting Eq. 25 into Eq. 29, we could obtain that:

pF (θ | x; t) = E
N (y|β(t)(Kex−1),β(t)KI)

δ

(
θ − eyθ0∑K

k=1 e
yk (θ0)k

)
. (30)

Changing the notation from y, θ to Ey
i,j and Eθ

i,j we could finish the derivation.

N FURTHER DISCUSSION OVER ADAPTIVE FLOWBACK

The generative process of BFN all start with the same initial points, e.g., vector [1k , · · · ,
1
k] for

k-class discrete variable, and ends with various generated samples. Hence, the variance of the input
distribution first grows and then decreases [2], which could be intuitively understood as first exploring
the endpoint of the generative process and then finetuning towards that endpoint. Motivated by this
fact, we suggest that when the generative endpoints are approximately determined, it could be more
favorable to eliminate the extra variance in θ from sequential Bayesian Update and only focus on
finetuning θ based on the Bayesian flow of the current step output prediction. The condition of∥∥ϕ (Gθt , t

)
− ϕ

(
Gθt−1 , t− 1

)∥∥2 ≥ ϵ is to test whether the predicted outputs of two consecutive
steps are close enough, i.e. whether the steps t and steps t− 1 are generated towards the same targets.
We use this as an indicator for whether the generation process is in a variance increase (exploration)
or a variance decrease(finetuning) state.

O CONTINUOUS-STATE APPROACHES OR DISCRETE-STATE APPROACHES FOR
GRAPH GENERATION

There have been several works making notable progress in continuous state-based methods, specifi-
cally spectrum-based approaches such as (Martinkus et al., 2022; Luo et al., 2023). More recently,
several discrete state-based approaches that directly model the discrete variable of edges/nodes, e.g.
(Vignac et al., 2022; Jo et al., 2024), have shown that combining the continuous state (e.g., spectrum)
as an extra feature, the discrete state approaches could further achieve better results.

There is the particularity of graph data, whose form is discrete and important property enjoys
continuity. And current empirical evidence (Vignac et al., 2022; Jo et al., 2024) suggests it could be
favorable to take both into consideration. The motivation for choosing BFN lies in the fact that it
could actually model the discrete variable in continuous categorical parameter space, which perfectly
fits the discrete form and continuous property of graph data.

Additionally, though GraphBFN lies in the category of discrete state approaches, we would like to
clarify that there is still a lot of research in the field to be conducted to finally answer the discrete or
continuous question.

P RELATIONSHIP TO SPECTRAL GRAPH THEORY

Here we hope to provide a more detailed discussion of the relationship of proposed methods to
spectral graph theory. The framework aims to introduce a new generative method that forms in the
discrete state space and takes the intrinsic continuity of the topological information into consideration.
The spectral graph theory provides an effective tool for us to implement and analyze the proposed
approach.

From the implementation perspective, we use the spectral features of the input to enhance the network
prediction following (Vignac et al., 2022). During both training and sampling, the spectral features of
the parameters of the graphs are computed and directly appended to the network as additional inputs.

Additionally, we use spectral theory to help us analyze one key reason behind our method’s perfor-
mance improvement compared to previous approaches: the smooth transformation of graph topology
leads to enhanced sample quality. As demonstrated in the ablation study in Appendix F, we use
clustered graphs as an example to show that, for both diffusion-based methods and GraphBFN, a
smoother transition of the sample’s spectral features—such as the spectral gap in the case of clustered
graphs—during the generation process significantly improves sample quality.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Q VISUALIZATION OF GENERATED SAMPLES

Figure 7: Explicit Hydrogens

Figure 8: Implicit Hydrogens

Figure 9: Unfiltered samples generated by GraphBFN, trained on QM9

Figure 10: Planar

Figure 11: SBM

Figure 12: Unfiltered samples generated by GraphBFN, trained on abstract graph datasets

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 13: Unfiltered samples generated by GraphBFN, trained on ZINC250k with implicit hydrogens

Figure 14: Unfiltered samples generated by GraphBFN, trained on MOSES graphs

27

	Introduction
	Preliminary
	Notations and Background
	Bayesian Flow Networks

	Methodology
	Smoothing Topological Transformation via Infinite Noisy Discrete Graphs
	Graph Bayesian Flow Networks
	Improved Techniques for GraphBFN

	Related Works
	Experiments
	Abstract Graph Generation
	2D Molecule Generations
	Ablation Studies

	Conclusions
	Detailed Introduction to Bayesian Flow Networks
	Spectral Graph Theory
	Spectral Features in the Space of Probabilistic Adjacency Matrices
	Beyond Simple Undirected Graph
	Algorithms
	Analysis of the Generation Process
	Transformation of Graph Topology
	Advantages of ``Smooth'' Transformation
	Topology Recovery

	Additional Ablation Studies
	Derivation of BFN over Discrete Variable
	Proof of Proposition 3.2
	Discussion with Discrete Diffusion Models
	Experiment Details and Additional Results
	Experiment Details
	Computation Efficiency
	Additional Results on Non-attributed Graphs
	Code

	Flowback Sampling
	Derivation from Eq. 6 to Eq. 9
	Further Discussion over Adaptive Flowback
	Continuous-state Approaches or Discrete-state Approaches for Graph Generation
	Relationship to Spectral Graph Theory
	Visualization of Generated Samples

