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ABSTRACT

With the advent of large datasets, offline reinforcement learning (RL) is a promis-
ing framework for learning good decision-making policies without the need to
interact with the real environment. However, offline RL requires the dataset to be
reward-annotated, which presents practical challenges when reward engineering
is difficult or when obtaining reward annotations is labor-intensive. In this paper,
we introduce Optimal Transport Reward labeling (OTR), an algorithm that assigns
rewards to offline trajectories, with a few high-quality demonstrations. OTR’s key
idea is to use optimal transport to compute an optimal alignment between an un-
labeled trajectory in the dataset and an expert demonstration to obtain a similarity
measure that can be interpreted as a reward, which can then be used by an offline
RL algorithm to learn the policy. OTR is easy to implement and computationally
efficient. On D4RL benchmarks, we show that OTR with a single demonstration
can consistently match the performance of offline RL with ground-truth rewards1.

1 INTRODUCTION

Offline Reinforcement Learning (RL) has made significant progress recently, enabling learning
policies from logged experience without any interaction with the environment. Offline RL is
relevant when online data collection can be expensive or slow, e.g., robotics, financial trading and
autonomous driving. A key feature of offline RL is that it can learn an improved policy that goes
beyond the behavior policy that generated the data. However, offline RL requires the existence
of a reward function for labeling the logged experience, making direct applications of offline RL
methods impractical for applications where rewards are hard to specify with hand-crafted rules.
Even if it is possible to label the trajectories with human preferences, such a procedure to generate
reward signals can be expensive. Therefore, enabling offline RL to leverage unlabeled data is an
open question of significant practical value.

Besides labeling every single trajectory, an alternative way to inform the agent about human prefer-
ence is to provide expert demonstrations. For many applications, providing expert demonstrations is
more natural for practitioners compared to specifying a reward function. In robotics, providing ex-
pert demonstrations is fairly common, and in the absence of natural reward functions, ‘learning from
demonstration’ has been used for decades to find good policies for robotic systems; see, e.g., (Atke-
son & Schaal, 1997; Abbeel & Ng, 2004; Calinon et al., 2007; Englert et al., 2013). One such
framework for learning policies from demonstrations is imitation learning (IL). IL aims at learning
policies that imitate the behavior of expert demonstrations without an explicit reward function.

There are two popular approaches to IL: Behavior Cloning (BC) (Pomerleau, 1988) and Inverse
Reinforcement Learning (IRL) (Ng & Russell, 2000). BC aims to recover the demonstrator’s be-
havior directly by setting up an offline supervised learning problem. If demonstrations are of high
quality and actions of the demonstrations are recorded, BC can work very well as demonstrated by
Pomerleau (1988), but generalization to new situations typically does not work well. IRL learns
an intermediate reward function that aims to capture the demonstrator’s intent. Current algorithms

1Code is available at https://github.com/ethanluoyc/optimal_transport_reward
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Figure 1: Illustration of Optimal Transport Reward Labeling (OTR). Given expert demonstrations
(left) and an offline dataset without reward labels (center), OTR adds reward labels ri to the offline
dataset by means of optimal transport (orange, center). The labeled dataset can then be used by an
offline RL algorithm (right) to learn policies.

have demonstrated very strong empirical performance, requiring only a few expert demonstrations
to obtain good performance (Ho & Ermon, 2016; Dadashi et al., 2022). While these IRL methods do
not require many demonstrations, they typically focus on the online RL setting and require a large
number of environment interactions to learn an imitating policy, i.e., these methods are not suitable
for offline learning.

In this paper, we introduce Optimal Transport Reward labeling (OTR), an algorithm that uses op-
timal transport theory to automatically assign reward labels to unlabeled trajectories in an offline
dataset, given one or more expert demonstrations. This reward-annotated dataset can then be used
by offline RL algorithms to find good policies that imitate demonstrated behavior. Specifically, OTR
uses optimal transport to find optimal alignments between unlabeled trajectories in the dataset and
expert demonstrations. The similarity measure between a state in unlabeled trajectory and that of an
expert trajectory is then treated as a reward label. These rewards can be used by any offline RL algo-
rithm for learning policies from a small number of expert demonstrations and a large offline dataset.
Figure 1 illustrates how OTR uses expert demonstrations to add reward labels to an offline dataset,
which can then be used by an offline RL algorithm to find a good policy that imitates demonstrated
behavior. Empirical evaluations on the D4RL (Fu et al., 2021) datasets demonstrate that OTR recov-
ers the performance of offline RL methods with ground-truth rewards with only a single demonstra-
tion. Compared to previous reward learning and imitation learning approaches, our approach also
achieves consistently better performance across a wide range of offline datasets and tasks.

2 OFFLINE REINFORCEMENT LEARNING AND IMITATION LEARNING

Offline Reinforcement Learning In offline/batch reinforcement learning, we are interested in
learning policies directly from fixed offline datasets (Lange et al., 2012; Levine et al., 2020), i.e., the
agent is not permitted any additional interaction with the environment. Offline RL research typically
assumes access to an offline dataset of observed transitionsD = {(sit, ait, rit, sit+1)}Ni=1. This setting
is particularly attractive for applications where there is previous logged experience available but
online data collection is expensive (e.g., robotics, healthcare). Recently, the field of offline RL has
made significant progress, and many offline RL algorithms have been proposed to learn improved
policies from diverse and sub-optimal offline demonstrations (Levine et al., 2020; Fujimoto & Gu,
2021; Kumar et al., 2020; Kostrikov et al., 2022c; Wang et al., 2020).

Offline RL research typically assumes that the offline dataset is reward-annotated. That is, each
transition (sit, a

i
t, r

i
t, s

i
t+1) in the dataset is labeled with reward rit. One common approach to offline

RL is to leverage the reward signals in the offline dataset and learn a policy with an actor-critic
algorithm purely from offline transitions (Levine et al., 2020). However, in practice, having per-
transition reward annotations for the offline dataset may be difficult due to the challenges in design-
ing a good reward function. Zolna et al. (2020) propose ORIL which learns a reward function based
on positive-unlabeled (PU) learning (Elkan & Noto, 2008) that can be used to add reward labels to
offline datasets, allowing for unlabeled datasets to be used by offline RL algorithms.
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Imitation Learning Imitation Learning (IL) aims at learning policies that can mimic the behavior
of an expert demonstrator. Unlike the typical RL setting, a reward function is not required. Instead,
IL methods assume access to an expert that can provide demonstrations of desired behavior.

There are two commonly used approaches to imitation learning. Behavior Cloning (BC) (Pomerleau,
1988) learns a policy by learning a mapping from states to actions in the trajectory demonstrated by
an expert. By formulating policy learning as a supervised learning problem, BC can suffer from
classical problems of supervised regression: generalizing the policy to unseen states may not be
successful due to overfitting; multiple expert trajectories that follow different paths (bifurcation) will
cause challenges. Inverse Reinforcement Learning (IRL) considers first learning a reward function
based on expert demonstrations. The learned reward function can then be used to train a policy
using an RL algorithm. Previous work shows that IRL-based methods can learn good policies with a
small number of expert demonstrations. However, popular recent IRL methods, such as GAIL (Ho &
Ermon, 2016), require a potentially large number of online samples during training, resulting in poor
sample efficiency. Moreover, algorithms, such as GAIL, follow a training paradigm that is similar
to Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), by formulating the problem
of IRL as a minimax optimization problem to learn a discriminator that implicitly minimizes an f-
divergence. It was found, however, that Adversarial imitation learning (AIL) methods such as GAIL
can be very difficult to optimize, requiring careful tuning of hyperparameters (Orsini et al., 2021).
Another popular approach is to perform distribution matching between the policy and the expert
demonstrations (Englert et al., 2013; Kostrikov et al., 2022b).

More recently, IRL methods based on Optimal Transport (OT) have demonstrated success as an
alternative method for IRL compared to AIL approaches. Unlike AIL approaches, OT methods
minimize the Wasserstein distance between the expert’s and the agent’s state-action distributions.
Building on this formulation, Xiao et al. (2019) propose to minimize the Wasserstein distance via
its dual formulation, which may lead to potential optimization issues. More recently, Dadashi et al.
(2022) introduce PWIL, which instead minimizes the Wasserstein distance via its primal formula-
tion, avoiding the potential optimization issues in the dual formulation. Along this line of work, Co-
hen et al. (2021) propose a series of improvements to the primal Wasserstein formulation used in
PWIL and demonstrate strong empirical results in terms of both sample efficiency and asymptotic
performance. Still, these approaches require a large number of online samples to learn good poli-
cies. While progress has been made to improve the sample efficiency of these approaches (Kostrikov
et al., 2022a), imitation learning without any online interaction remains an active research area. In
this paper, we provide a constructive algorithm to address the issue of offline imitation learning by
using optimal transport to annotate offline datasets with suitable rewards.

3 OFFLINE IMITATION LEARNING WITH OPTIMAL TRANSPORT

We consider learning in an episodic, finite-horizon Markov Decision Process (MDP)
(S,A, p, r, γ, p0, T ) where S is the state space, A is the action space, p is the transition function, r
is the reward function, γ is the discount factor, p0 is the initial state distribution and T is the episode
horizon. A policy π is a function from state to a distribution over actions. The goal of RL is to
find policies that maximize episodic return. Running a policy π in the MDP generates a state-action
episode/trajectory (s1, a1, s2, a2, . . . , sT ) =: τ .

We consider the problem of imitation learning purely from offline datasets. Unlike in the stan-
dard RL setting, no explicit reward function is available. Let τ = (s1, a1, s2, a2, . . . , sT ) de-
note an episode of interaction with the MDP using a policy that selects actions at at time steps
t = 1, . . . , T − 1. Instead of a reward function, we have access to a dataset of expert demonstra-
tions De = {τ (n)e }Nn=1 generated by an expert policy πe and a large dataset of unlabeled trajectories
Du = {τ (m)

β }Mm=1 generated by an arbitrary behavior policy πβ . We are interested in learning an
offline policy π combining information from the expert demonstrations and unlabeled experience,
without any interaction with the environment. We will address this problem by using optimal trans-
port, which will provide a way to efficiently annotate large offline RL datasets with rewards.
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Figure 2: Illustration of the computations performed by OTR. In this example, we consider an MDP
with a two-dimensional state-space (|S| = 2). We have two empirical state distributions from an
expert p̂e with samples {set′}T

′

t′=1 (◦) and policy p̂π with samples {sπt }Tt=1 (•) as denoted by points in
the leftmost figure. OTR assigns rewards rot (blue) to each sample in the policy’s empirical state dis-
tribution as follows: (i) Compute the pairwise cost matrix C (purple) between expert trajectories and
trajectories generated by behavior policy; (ii) Solve for the optimal coupling matrix µ (green) be-
tween p̂π and p̂e; (iii) Compute the reward for sπt as rot(s

π
t ) = −CT

t µ
∗
t . Consider for example a state

sπt ∈ p̂π; the row Ct in the cost matrix corresponds to the costs between sπt and {set′}T
′

t′=1. µ∗
t repre-

sents the optimal coupling between sπt and the expert samples. The optimal coupling moves most of
the probability mass to se3 and a small fraction of the mass to se4 (green lines in the leftmost figure).

3.1 REWARD LABELING VIA WASSERSTEIN DISTANCE

Optimal Transport (OT) (Cuturi, 2013; Peyré & Cuturi, 2020) is a principled approach for comparing
probability measures. The (squared) Wasserstein distance between two discrete measures µx =
1
T

∑T
t=1 δxt

and µy = 1
T ′

∑T ′

t=1 δyt
is

W2(µx, µy) = min
µ∈M

T∑
t=1

T ′∑
t′=1

c(xt, yt′)µt,t′ , (1)

where M = {µ ∈ RT×T ′
: µ1 = 1

T 1, µ
T1 = 1

T ′1} is the set of coupling matrices, c is a cost
function, and δx refers to the Dirac measure for x. The optimal coupling µ∗ provides an alignment
between the samples in µx and µy . Unlike other divergence measures (e.g., KL-divergence), the
Wasserstein distance is a metric and it incorporates the geometry of the space.

Let p̂e = 1
T ′

∑T ′

t=1 δset and p̂π = 1
T

∑T
t=1 δsπt denote the empirical state distribution of an expert

policy πe and behavior policy π respectively. Then the (squared) Wasserstein distance

W2(p̂π, p̂e) = min
µ∈M

T∑
t=1

T ′∑
t′=1

c(sπt , s
e
t′)µt,t′ (2)

can be used to measure the distance between expert policy and behavior policy. Let µ∗ denote the
optimal coupling for the optimization problem above, then eq. (2) provides a reward signal

rot(s
π
t ) = −

T ′∑
t′=1

c(sπt , s
e
t′)µ

∗
t,t′ , (3)

which can be used for learning policy π in an imitation learning setting.

3.2 IMITATION LEARNING USING REWARD LABELS FROM OPTIMAL TRANSPORT

We leverage the reward function from eq. (3) to annotate the unlabeled dataset with reward sig-
nals. Computing the optimal alignment between the expert demonstration with trajectories in the
unlabeled dataset allows us to assign a reward for each step in the unlabeled trajectory. Figure 2
illustrates the computation performed by OTR to annotate an unlabeled dataset with rewards using
demonstrations from an expert.

The pseudo-code for our approach is given in algorithm 1. OTR takes the unlabeled dataset Du and
expert demonstrationDe as input. For each unlabeled trajectory τ (m) ∈ Du, OTR solves the optimal
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Algorithm 1: Pseudo-code for Optimal Transport Reward labeling (OTR)
Input: unlabeled dataset Du, expert dataset De

Output: labeled dataset Dlabel

1 Dlabel ← ∅
2 foreach τ (m) in Du do // Label each episode in the unlabeled dataset
3 C(m), µ∗(m) ← SolveOT(De, τ (m)) // Compute the optimal alignment with eq. (2)
4 for t = 1 to T do
5 rOT(s

(m)
t )← −

∑T ′

t′=1 C
(m)
t,t′ µ

∗(m)
t,t′ // Compute the per-step rewards with eq. (3)

6 end
7 Dlabel ← Dlabel ∪ (s

(m)
1 , a

(m)
1 , rOT

1 , . . . , s
(m)
T ) // Append labeled episode

8 end
9 return Dlabel

transport problem for each, obtaining the cost matrix C(m) and optimal alignment µ∗(m) (line 3).
OTR then computes the per-step reward label following eq. (3) (line 5). The reward-annotated
trajectories are then combined, forming a reward-labeled dataset Dlabel.

Solving eq. (2) requires solving the OT problem to obtain the optimal coupling matrix µ∗. This
amounts to solving a linear program (LP), which may be prohibitively expensive with a standard LP
solver. In practice, we solve the entropy-regularized OT problem with Sinkhorn’s algorithm (Cuturi,
2013). We leverage the Sinkhorn solver in OTT-JAX (Cuturi et al., 2022) for this computation.
Once OTR has annotated the unlabeled offline dataset with intrinsic rewards, we can use an offline
RL algorithm for learning a policy. Since we are working in the pure offline setting, it is important
to use an offline RL algorithm that can minimize the distribution shifts typically encountered in the
offline setting.

Unlike prior works that compute rewards using online samples (Dadashi et al., 2022; Cohen et al.,
2021), we compute the rewards entirely offline, prior to running offline RL training, avoiding the
need to modify any part of the downstream offline RL pipeline. Therefore, our approach can be
combined with any offline RL algorithms, providing dense reward annotations that are required by
the downstream algorithms. Figure 1 illustrates the entire pipeline of using OTR for relabeling and
running an offline RL algorithm using the reward annotated datasets.

Compared to previous work that aims at solving offline imitation learning with a single algorithm,
OTR focuses on generating high-quality reward annotations for downstream offline RL algorithms.
In addition, our approach enjoys several advantages:

• Our approach does not require training separate reward models or discriminators, which may
incur higher runtime overhead. By not having to train a separate parametric model, we avoid
hyper-parameter tuning on the discriminator network architectures.

• Unlike other approaches, such as GAIL or DemoDICE, our approach does not require solving
a minimax optimization problem, which can suffer from training instability (Orsini et al., 2021).

• Our approach is agnostic to the offline RL methods for learning the policy since OTR computes
reward signals independently of the offline RL algorithm.

4 EXPERIMENTS

In this section, we evaluate OTR on D4RL Locomotion, Antmaze, and Adroit benchmark tasks (see
also Figure 3) with the goal of answering the following research questions:

1. Can OTR recover the performance of offline RL algorithms that has access to a well-engineered
reward function (i.e., ground-truth rewards provided by the environment)?

2. Can OTR handle unlabeled datasets with behaviors of unknown and mixed quality?

3. How does OTR perform with a varying number of expert demonstrations?
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Figure 3: Benchmark tasks: D4RL Locomotion, Antmaze, and Adroit.

4. How does OTR compare with previous work on offline imitation learning in terms of perfor-
mance and runtime complexity?

We demonstrate that OTR can be effectively combined with an offline RL algorithm to learn policies
from a large dataset of unlabeled episodes and a small number of high-quality demonstrations. Since
OTR is only a method for reward learning, it can be combined with any offline RL algorithm that
requires reward-annotated data for offline learning. In this paper, we combine OTR with the Implicit
Q-Learning (IQL) algorithm (Kostrikov et al., 2022c).

4.1 SETUP

We evaluate the performance of OTR+IQL on the D4RL locomotion benchmark (Fu et al.,
2021). We start by evaluating OTR on three environments (HalfCheetah-v2, Walker-v2,
Hopper-v2) from the OpenAI Gym MuJoCo locomotion tasks. For each environment, we use
the medium-v2, medium-replay-v2 and medium-expert-v2 datasets to construct the
expert demonstrations and the unlabeled dataset. For the expert demonstrations, we choose the best
episodes from the D4RL dataset based on the episodic return.2 To obtain the unlabeled dataset, we
discard the original reward information in the dataset. We then run OTR to label the dataset based
on the optimal coupling between the unlabeled episodes and the chosen expert demonstrations.
Afterward, we proceed with running the offline RL algorithm.

For OTR, we follow the recommendation by Cohen et al. (2021) and use the cosine distance as the
cost function. When there are more than one episode of expert demonstrations, we compute the
optimal transport with respect to each episode independently and use the rewards from the expert
trajectory that gives the best episodic return. Similar to (Dadashi et al., 2022; Cohen et al., 2021), we
squash the rewards computed by line 5 with an exponential function s(r) = α exp(βr). This has the
advantage of ensuring that the rewards consumed by the offline RL algorithm have an appropriate
range since many offline RL algorithms can be sensitive to the scale of the reward values. We refer
to appendix A.1 for additional experimental details and hyperparameters.

Implementation We implement OTR in JAX (Bradbury et al., 2018). For computing the optimal
coupling, we use OTT-JAX (Cuturi et al., 2022), a library for optimal transport that includes a
scalable and efficient implementation of the Sinkhorn algorithm that can leverage accelerators, such
as GPU or TPU, for speeding up computations. Our IQL implementation is adapted from (Kostrikov
et al., 2022c)3, and we set all hyperparameters to the ones recommended in the original paper. All
of our algorithms and baselines are implemented in Acme (Hoffman et al., 2022).

2In practice, the expert demonstrations can be provided separately; we only select the expert demonstration
in this way for ease of evaluation.

3https://github.com/ikostrikov/implicit_q_learning
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Our implementation is computationally efficient4, requiring only about 1 minute to label a dataset
with 1 million transitions (or 1000 episodes of length 1000)5. For larger-scale problems, OTR can
be scaled up further by processing the episodes in the dataset in parallel. Our implementation of
OTR and re-implementation of baselines are computationally efficient. Even so, the training time
for IQL is about 20 minutes, so that OTR adds a relatively small amount of overhead for reward
annotation to an existing offline RL algorithm.

Baselines We compare OTR+IQL with the following baselines:

• IQL (oracle): this is the original Implicit Q-learning (Kostrikov et al., 2022c) algorithm using
the ground-truth rewards provided by the D4RL datasets.

• DemoDICE: an offline imitation learning algorithm proposed by Kim et al. (2022). De-
moDICE was found to perform better than previous imitation learning algorithms (e.g., Val-
ueDICE (Kostrikov et al., 2022b)) that can also (in principle) work in the pure offline setting.
We ran the original implementation6 under the same experimental setting as we used for the
other algorithms in the paper.

• ORIL: a reward function learning algorithm from (Zolna et al., 2020). ORIL learns a reward
function by contrasting the expert demonstrations with the unlabeled episodes. The learned
reward function is then used for labeling the unlabeled dataset. We implement ORIL in a com-
parable setting to the other baselines.

• UDS: we keep the rewards from the expert demonstrations and relabel all rewards from the unla-
beled datasets with the minimum rewards from the environment. This was found to perform well
in (Yu et al., 2022). This also resembles online imitation learning methods such as SQIL (Reddy
et al., 2022) or offline RL algorithms, such as COG (Singh et al., 2021).

Since UDS and ORIL are also agnostic about the underlying offline RL algorithm used, we combined
these algorithms with IQL so that we can focus on comparing the performance difference due to
different approaches used in generating reward labels.

For all algorithms, we repeat experiments with 10 random seeds and report the mean and standard
deviation of the normalized performance of the last 10 episodes of evaluation. We compare all
algorithms by using either K = 1 or K = 10 expert demonstrations. Obtaining the results on the
locomotion datasets took approximately 500 GPU hours.

4.2 RESULTS

MuJoCo Locomotion Table 1 compares the performance between OTR+IQL with the other base-
lines. Overall, OTR+IQL performs best compared with the other baselines in terms of aggregate
score over all of the datasets we used, recovering the performance of IQL with ground-truth rewards
provided by the dataset. While we found that other baselines can perform well on some datasets,
the performance is not consistent across the entire dataset and can deteriorate significantly on some
datasets. In contrast, OTR+IQL is the only method that consistently performs well for all datasets
of different compositions.

4An efficient implementation of OTR is facilitated by JAX, which includes useful functionality that allows
us to easily parallelize computations. Concretely, we JIT-compile the computation of rewards for one episode
and further leverage the vmap function to compute the optimal coupling between an unlabeled episode with all
of the expert episodes in parallel. Efficiently parallelizing the computation of the optimal coupling requires that
all the episodes share the same length. This is necessary both for parallelizing the computation across multiple
expert demonstrations as well as for avoiding recompilation by XLA due to changes in the shape of the input
arrays. To achieve high throughput for datasets with varying episodic length, we pad all observations to the
maximum episode length allowed by the environment (which is 1000 for the OpenAI Gym environments) but
set the weights of the observations to zero. Padding the episodes this way does not change the solution to the
optimal coupling problem. Note that padding means that a 1M transition dataset may create more than 1000
episodes of experience, in this case, the runtime for our OTR implementation may be higher effectively due to
having to process a larger number of padded episodes.

5Runtime measured on halfcheetah-medium-v2 with an NVIDIA GeForce RTX 3080 GPU.
6https://github.com/geon-hyeong/imitation-dice
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Dataset BC 10%BC IQL (oracle) DemoDICE IQL+ORIL IQL+UDS OTR+IQL (ours)

halfcheetah-medium-v2 42.6 42.5 47.4 ± 0.2 42.5 ± 1.7 49.0 ± 0.2 42.4 ± 0.3 43.3 ± 0.2
hopper-medium-v2 52.9 56.9 66.2 ± 5.7 55.1 ± 3.3 47.0 ± 4.0 54.5 ± 3.0 78.7 ± 5.5
walker2d-medium-v2 75.3 75.0 78.3 ± 8.7 73.4 ± 2.6 61.9 ± 6.6 68.9 ± 6.2 79.4 ± 1.4
halfcheetah-medium-replay-v2 36.6 40.6 44.2 ± 1.2 38.1 ± 2.7 44.1 ± 0.6 37.9 ± 2.4 41.3 ± 0.6
hopper-medium-replay-v2 18.1 75.9 94.7 ± 8.6 39.0 ± 15.4 82.4 ± 1.7 49.3 ± 22.7 84.8 ± 2.6
walker2d-medium-replay-v2 26.0 62.5 73.8 ± 7.1 52.2 ± 13.1 76.3 ± 4.9 17.7 ± 9.6 66.0 ± 6.7
halfcheetah-medium-expert-v2 55.2 92.9 86.7 ± 5.3 85.8 ± 5.7 87.5 ± 3.9 63.0 ± 5.7 89.6 ± 3.0
hopper-medium-expert-v2 52.5 110.9 91.5 ± 14.3 92.3 ± 14.2 29.7 ± 22.2 53.9 ± 2.5 93.2 ± 20.6
walker2d-medium-expert-v2 107.5 109.0 109.6 ± 1.0 106.9 ± 1.9 110.6 ± 0.6 107.5 ± 1.7 109.3 ± 0.8

locomotion-v2-total 466.7 666.2 692.4 585.3 588.5 494.9 685.5

runtime 10m 10m 20m 100m* 30m 20m 22m
* The runtime is measured with the original PyTorch implementation.

Table 1: D4RL performance comparison between IQL with ground-truth rewards and OTR+IQL
with a single expert demonstration (K = 1). We report mean ± standard deviation per task and ag-
gregate performance and highlight near-optimal performance in bold and extreme negative outliers
in red. OTR+IQL is the only algorithm that performs consistently well across all domains.

Runtime Despite applying optimal transport, we found that with a GPU-accelerated Sinkhorn
solver (Cuturi et al., 2022), combined with our efficient implementation in JAX, OTR achieves
a faster runtime compared to algorithms that learn additional neural networks as discriminators
(DemoDICE (Kim et al., 2022)) or reward models (ORIL (Zolna et al., 2020)). For methods that
learn a neural network reward function, an overhead of at least 10 minutes is incurred, whereas
OTR only incurs approximately 2 minutes of overheads when compared with the same amount of
expert demonstrations.

locomotion-v2-total K = 1 K = 10

DemoDICE 585.3 589.3
IQL+ORIL 588.5 618.3
IQL+UDS 494.9 575.8
OTR+IQL 685.5 694.3
IQL (oracle) 692.4

Table 2: Aggregate performances of dif-
ferent reward labeling algorithms with
different numbers of expert demonstra-
tions. OTR is the only algorithm that
leads to an offline RL performance close
to using ground-truth rewards.

Effect of the number of demonstrations We investi-
gate if the performance of the baselines can be improved
by increasing the number of expert demonstrations used.
Table 2 compares the aggregate performance on the lo-
comotion datasets between OTR and the baselines when
we increase the number of demonstrations from K = 1
to K = 10. DemoDICE’s performance improves little
with the additional amount of expert demonstrates. While
ORIL and UDS enjoy a relatively larger improvement,
they are still unable to match the performance of IQL (or-
acle) or OTR in terms of aggregate performance despite
using the same offline RL backbone. OTR’s performance
is close to IQL (oracle) even when K = 1 and matches
the performance of IQL (oracle) with K = 10.

Antmaze & Adroit We additionally evaluate OTR+IQL on the antmaze-v0 and adroit-v0
datasets. Table 3 shows that OTR+IQL again recovers the performance of IQL with ground-truth
rewards. This suggests that OTR+IQL can learn from datasets with diverse behavior and human
demonstrations even without ground-truth reward annotation; additional results in appendix A.2.

Qualitative comparison of the reward predictions Figure 4a provides a qualitative comparison
of the reward predicted by OTR, ORIL, and UDS. UDS annotates all transitions in the unlabeled
dataset with the minimum reward from the environment. Thus, the episodes with non-zero rewards
are expert demonstrations. This means that UDS is unable to distinguish between episodes in the
unlabeled datasets. Compared to reward learning algorithms, such as ORIL, OTR’s reward predic-
tion more strongly correlates with the ground-truth rewards from the environment, which is a good
precondition for successful policy learning by downstream offline RL algorithm. We also evaluate
OTR’s reward prediction on more diverse datasets, such as those in antmaze. Figure 4b shows the
expert demonstrations we used in antmaze-medium-play-v0 (left) and the trajectories that
received the best OTR reward labels in the unlabeled dataset (right). OTR correctly assigns more
rewards to trajectories that are closer to the expert demonstrations.

8
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Dataset IQL (oracle) OTR+IQL

antmaze-large-diverse-v0 47.5 ± 9.5 45.5 ± 6.2
antmaze-large-play-v0 39.6 ± 5.8 45.3 ± 6.9
antmaze-medium-diverse-v0 70.0 ± 10.9 70.4 ± 4.8
antmaze-medium-play-v0 71.2 ± 7.3 70.5 ± 6.6
antmaze-umaze-diverse-v0 62.2 ± 13.8 68.9 ± 13.6
antmaze-umaze-v0 87.5 ± 2.6 83.4 ± 3.3

antmaze-v0-total 378.0 384.0

Dataset IQL (oracle) OTR+IQL

door-cloned-v0 1.60 0.01 ± 0.01
door-human-v0 4.30 5.92 ± 2.72
hammer-cloned-v0 2.10 0.88 ± 0.30
hammer-human-v0 1.40 1.79 ± 1.43
pen-cloned-v0 37.30 46.87 ± 20.85
pen-human-v0 71.50 66.82 ± 21.18
relocate-cloned-v0 -0.20 -0.24 ± 0.03
relocate-human-v0 0.10 0.11 ± 0.10

adroit-v0-total 118.1 122.16

Table 3: Performance of OTR+IQL on antmaze and adroit with a single expert demonstration.
Similar to the results on locomotion, OTR+IQL recovers the performance of offline RL with
ground-truth rewards. We report mean ± standard deviation per task and aggregate performance.

100020003000
0

2500

5000

La
be

le
d 

Re
tu

rn

OTR

100020003000
Environment Return

0

500

1000
ORIL

100020003000
0

1500

3000

UDS

(a) Ground-truth return vs labeled return. (b) Top trajectories selected by OTR.

Figure 4: Visualization of rewards predicted by OTR and baselines. (a) Qualitative differences be-
tween the rewards predicted by OTR, ORIL and UDS on hopper-medium-v2. (b) Visualization
of top trajectories selected by OTR on antmaze-medium-play-v0. Left: Expert demonstra-
tions. Right: ranking of trajectories according to rewards per step computed by OTR. Trajectories
with lighter colors have higher rewards per step.

Summary Our empirical evaluation demonstrates that OTR+IQL can recover the performance of
offline RL with ground-truth rewards given only a single episode of expert demonstration. Compared
to previous work, it achieves better performance even with a larger number of demonstrations. Our
qualitative comparison shows that OTR assigns better reward estimates that correlate strongly with
a hand-crafted reward function.

5 DISCUSSION

OTR can be effective in augmenting unlabeled datasets with rewards for use by downstream offline
RL algorithms (see section 4). Compared to prior imitation learning and reward learning approaches,
OTR enjoys better and more robust performance on the benchmarks we have considered in this
paper. Furthermore, our approach is easy to implement. Most of the complexity of our approach
arises from solving the optimal transport problem. However, there are libraries for solving OT
efficiently in different frameworks or programming languages7.

Unlike prior works, such as ValueDICE or DemoDICE, we split offline imitation learning into the
two distinct phases of reward modeling via OTR and a subsequent offline RL. This improves mod-
ularity, allows for improvements in the two phases to be made independently, and adds flexibility.
However, this modularity means that a practitioner needs to make a separate choice for the down-
stream offline RL algorithm.

We believe that OTR is most useful in situations where providing ground-truth rewards is difficult
but providing good demonstrations and unlabeled data is feasible. However, it will not be feasible
in cases where collecting expert demonstrations is difficult.

7For example, see Python Optimal Transport (POT) (Flamary et al., 2021), which supports PyTorch, JAX,
or TensorFlow.
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The Wasserstein distance formulation we used can be extended to perform cross-domain imitation
learning by using the Gromov–Wasserstein distance to align expert demonstrations and offline tra-
jectories from different spaces (Fickinger et al., 2022).

6 CONCLUSION

We introduced Optimal Transport Reward labeling (OTR), a method for adding reward labels to
an offline dataset, given one or more expert demonstrations. OTR computes Wasserstein distances
between expert demonstrations and trajectories in a dataset without reward labels, which then are
turned into a reward signal. The reward-annotated offline dataset can then be used by an(y) of-
fline RL algorithm to determine good policies. OTR adds minimal overhead to existing offline RL
algorithms while providing the same performance as learning with a pre-specified reward function.
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A APPENDIX

A.1 HYPERPARAMETERS

Table 4 lists the hyperparameters used by OTR and IQL on the locomotion datasets. For Antmaze
and Adroit, unless otherwise specified by table 5 or table 6, the hyperparameters follows from those
used in the locomotion datasets.

The IQL hyperparameters are kept the same as those used in (Kostrikov et al., 2022c). Note that IQL
rescales the rewards in the dataset so that the same set of hyperparameters can be used for datasets
of different qualities. Since OTR computes rewards offline, we also apply reward scaling as in IQL.
For the locomotion datasets, the rewards are rescaled by 1000

max return−min return while for antmaze we
subtract 2 to the rewards computed by OTR. The reward processing in antmaze is different from the
one used by the original IQL paper (which subtracts 1) since the rewards computed by OTR have a
different range.

The squashing function used by OTR is based on the one used in (Dadashi et al., 2022). The
antmaze squashing differs slightly from the one used in locomotion and adroit due to use of an
earlier configuration. In practice, this should have minimal effect on the performance.

Hyperparameter Value

Discount 0.99

Network Architectures Hidden layers (256, 256)
Dropout none
Network initialization orthogonal

IQL Optimizer Adam
Policy learning rate 3e−4, cosine decay to 0
Critic learning rate 3e−4

Value learning rate 3e−4

Target network update rate 5e−3

Temperature 3.0
Expectile 0.7

OTR
Episode length T 1000
Cost function cosine
Squashing function s(r) = 5.0 · exp(5.0 · T · r/|A|)

Table 4: OTR hyperparameters for D4RL Locomotion.

Hyperparameter Value

IQL Temperature 10.0
Expectile 0.9

OTR Squashing function s(r) = 5.0 · exp(T · r)

Table 5: OTR hyperparameters for D4RL Antmaze.

Hyperparameter Value

Network Architectures Dropout 0.1

IQL Temperature 0.5
Expectile 0.7

Table 6: OTR hyperparameters for D4RL Adroit.
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A.2 ADDITIONAL EXPERIMENTAL RESULTS ON ADROIT AND ANTMAZE

We evaluate OTR on additional datasets from the antmaze and adroit domains with varying number
of expert demonstrations. The results are presented in table 7 and table 8. OTR consistently recovers
the performance of IQL with ground-truth rewards on these datasets, largely independent of the
number K of expert demonstrations provided.

K = 1 K = 10
Dataset IQL (oracle) OTR+IQL OTR+IQL

door-cloned-v0 1.60 0.01±0.01 0.01±0.01
door-human-v0 4.30 5.92±2.72 4.15±2.08
hammer-cloned-v0 2.10 0.88±0.30 1.31±0.70
hammer-human-v0 1.40 1.79±1.43 1.36±0.22
pen-cloned-v0 37.30 46.87±20.85 42.68±24.98
pen-human-v0 71.50 66.82±21.18 69.41±21.50
relocate-cloned-v0 -0.20 -0.24±0.03 -0.24±0.03
relocate-human-v0 0.10 0.11±0.10 0.10±0.07

adroit-v0-total 118.1 122.16 118.78

Table 7: OTR+IQL Results on Adroit. The standard deviations for IQL (oracle) are not available
from (Kostrikov et al., 2022c).

Dataset IQL (oracle) OTR+IQL (K = 1) OTR+IQL (K = 10)

antmaze-large-diverse-v0 47.5±9.5 45.5±6.2 50.7±6.9
antmaze-large-play-v0 39.6±5.8 45.3±6.9 51.2±7.1
antmaze-medium-diverse-v0 70.0±10.9 70.4±4.8 70.5±6.9
antmaze-medium-play-v0 71.2±7.3 70.5±6.6 72.7±6.2
antmaze-umaze-diverse-v0 62.2±13.8 68.9±13.6 64.4±18.2
antmaze-umaze-v0 87.5±2.6 83.4±3.3 88.7±3.5

antmaze-v0-total 378.0 384.0 398.2

Table 8: OTR+IQL Results on Antmaze.
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A.3 COMBINING OTR WITH DIFFERENT OFFLINE RL ALGORITHMS

In the main experiments, we evaluated OTR by pairing it with the IQL algorithm. In this sec-
tion, we investigate if OTR can recover the performance of a different offline RL algorithm (TD3-
BC) (Fujimoto & Gu, 2021) using ground-truth rewards. We observe that (i) the performance from
OTR+TD3-BC mostly matches those using the ground-truth rewards; (ii) the performance is fairly
robust to the choice of the number of expert trajectories (K = 1 and K = 10 many expert demon-
strations provide comparable performance). However, There are more variances on some datasets
(e.g., halfcheetah-medium-expert-v2). Nevertheless, the differences are smaller com-
pared to the baselines and OTR+TD3-BC still performs better than the baselines presented in sec-
tion 4 in terms of the aggregate performance.

Dataset TD3-BC (oracle) OTR+TD3-BC (K=1) OTR+TD3-BC (K=10)

halfcheetah-medium-expert-v2 93.5±2.0 74.8±20.1 71.6±23.1
halfcheetah-medium-replay-v2 44.4±0.8 39.4±1.3 38.9±1.5
halfcheetah-medium-v2 48.0±0.7 42.6±1.0 42.7±1.1
hopper-medium-expert-v2 100.2±20.0 103.2±13.9 98.9±19.7
hopper-medium-replay-v2 64.8±25.5 74.9±28.8 80.2±23.1
hopper-medium-v2 60.7±12.5 66.4±10.3 69.8±13.9
walker2d-medium-expert-v2 109.5±0.5 109.0±0.6 108.8±0.8
walker2d-medium-replay-v2 87.4±8.4 69.7±16.4 67.4±20.6
walker2d-medium-v2 83.7±5.3 76.9±5.4 78.0±2.6

locomotion-v2-total 692.3 656.9 656.4

Table 9: OTR+TD3-BC Results on MuJoCo.
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A.4 IMPORTANCE OF USING THE OPTIMAL TRANSPORT PLAN

In the main experiments, we compute the rewards based on the optimal coupling computed by the
Sinkhorn solver. The optimal transport plan is sparse and transports most of the probability masses
to only a few expert samples. In this section, we investigate what happens if we use a suboptimal
transport plan where each sample from the policy’s trajectory is transported equally to each sample
in the expert’s trajectory. In this case, the reward function essentially boils down to computing the
average costs with respect to all of the states in the expert’s trajectory.

Dataset OTR+IQL OTR+IQL (Uniform Plan)

halfcheetah-medium-v2 43.3±0.2 43.5±0.3
hopper-medium-v2 78.7±5.5 80.5±2.3
walker2d-medium-v2 79.4±1.4 77.6±1.5
halfcheetah-medium-replay-v2 41.3±0.6 41.6±0.8
hopper-medium-replay-v2 84.8±2.6 69.8±10.1
walker2d-medium-replay-v2 66.0±6.7 62.2±14.4
halfcheetah-medium-expert-v2 89.6±3.0 90.6±2.9
hopper-medium-expert-v2 93.2±20.6 89.2±14.0
walker2d-medium-expert-v2 109.3±0.8 106.0±5.9

Table 10: OTR with Uniform Transport Plan

Table 10 compares the performance of OTR+IQL using the optimal transport plan and uniform trans-
port plan. We find that for many datasets, using the suboptimal uniform transport plan is sufficient
for reaching good performance. This indicates that using a reward function based on the similarity
of states from the policy and the expert can be a simple and effective method for reward labeling.
However, note that the uniform transport plan can still underperform compared to using the opti-
mal transport plan (e.g., hopper-medium-replay-v2). This shows that the optimal transport
formulation enables better and more consistent performance.

A.5 COMPARISON TO PWIL

In this section, we investigate if the online imitation learning algorithm PWIL (Dadashi et al., 2022)
can be used in the offline setting with a change from using an online RL algorithm to an offline RL
algorithm. We ran PWIL with IQL similar to what we did for OTR in the main paper. We use the
PWIL implementation from Acme (Hoffman et al., 2022)8.

Note that although OTR is similar to PWIL in using the Wasserstein distance to construct RL reward
signals, OTR differs from PWIL in the choices of OT solver, the cost function as well as the approach
used for aggregating results multiple expert demonstrations. Also note that for all experiments in the
paper we consider learning only from expert state instead of state-action pairs. This is both a more
general and challenging setting. It was found in (Dadashi et al., 2022) that PWIL sometimes perform
badly without expert actions. We ran OTR and PWIL using only expert observations (denoted as
OTR-state and PWIL-state) and OTR and PWIL using state-action pairs (denoted as OTR-action
and PWIL-action). The results are illustrated in table 11. We found that we are unable to get good
results when running PWIL using only expert state sequences. This is possibly due to difference
choices of OT solver and cost functions. PWIL can perform well when combined with IQL to learn
in the offline setting although sometimes performance is significantly worse compared to IQL oracle
or OTR (e.g., hopper-medium-expert-v2).

In addition, Dadashi et al. (2022) found that PWIL’s performance may deteriorate when learning
from demonstrations consisting of only expert observations (i.e., no actions are present in the expert
demonstrations).

8https://github.com/deepmind/acme/tree/master/acme/agents/jax/pwil
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K 10
method OTR-state PWIL-state OTR-action PWIL-action

halfcheetah-medium-v2 43.1±0.3 1.6±1.2 43.4±0.3 47.5±0.2
hopper-medium-v2 80.0±5.2 2.1±1.3 75.4±4.6 70.4±4.2
walker2d-medium-v2 79.2±1.3 0.9±1.3 79.7±1.2 81.9±1.0
halfcheetah-medium-replay-v2 41.6±0.3 -2.3±0.5 41.9±0.3 44.6±1.1
hopper-medium-replay-v2 84.4±1.8 1.4±1.2 85.3±1.1 89.7±4.9
walker2d-medium-replay-v2 71.8±3.8 -0.1±0.2 69.1±4.6 72.2±10.6
halfcheetah-medium-expert-v2 87.9±3.4 -0.3±1.5 88.3±5.1 88.6±4.3
hopper-medium-expert-v2 96.6±21.5 1.5±0.6 86.6±22.9 32.9±25.0
walker2d-medium-expert-v2 109.6±0.5 1.0±1.9 109.2±0.5 110.2±0.2

Table 11: Comparison between OTR and PWIL with IQL as offline RL backbone.

A.6 HYPER-PARAMETER SENSITIVITY

K 10
method OTR (α = β = 5) OTR (α = β = 1)

halfcheetah-medium-expert-v2 87.9±3.4 86.9±4.0
halfcheetah-medium-replay-v2 41.6±0.3 40.4±1.3
halfcheetah-medium-v2 43.1±0.3 42.7±0.4
hopper-medium-expert-v2 96.6±21.5 82.6±9.9
hopper-medium-replay-v2 84.4±1.8 71.2±15.2
hopper-medium-v2 80.0±5.2 75.7±6.4
walker2d-medium-expert-v2 109.6±0.5 106.3±8.2
walker2d-medium-replay-v2 71.8±3.8 63.2±5.7
walker2d-medium-v2 79.2±1.3 77.4±1.5

Table 12: Effect of α and β in the squashing function.

For the main results, the hyper-parameters for the squashing function (α and β) was chosen to be
consistent with those used in (Dadashi et al., 2022). In this section we compare the differences in
the choices of these hyper-parameters by running OTR with α = β = 1. This reduces to simply
applying an exponential transformation to the optimal transport costs. The results are illustrated
in table 12. We find that OTR still performs well, demonstrating that it is not sensitive to the choices
of these hyper-parameters.
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