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ABSTRACT

Learning to imitate behaviors from a limited set of expert trajectories is a promis-
ing way to acquire a policy. In imitation learning (IL), an expert policy is trained
directly from data in a computationally efficient way, but requires vast amounts of
data. On the other hand, inverse reinforcement learning (IRL) deduces a reward
function from expert data and then learns a policy with reinforcement learning via
this reward function. Although this mitigates the data inefficacy problem of imita-
tion learning, IRL approaches suffer from efficiency issues because of sequential
learning of the reward function and the policy. In this paper, we combine the
strengths of imitation learning and inverse reinforcement learning and introduce
RILe: Reinforced Imitation Learning. Our novel dual-agent framework enables
joint training of a teacher agent and a student agent. The teacher agent learns
the reward function from expert data. It observes the student agent’s behavior and
provides it with a reward signal. At the same time the student agent learns a policy
by using reward signals given by the teacher. Training the student and the teacher
jointly in a single learning process offers scalability and efficiency while learning
the reward function helps to alleviate data-sensitivity. Experimental comparisons
in reinforcement learning benchmarks against imitation learning baselines high-
light the superior performance offered by RILe particularly when the number of
expert trajectories is limited.

1 INTRODUCTION

Learning to achieve human-level performance in complex tasks with artificial agents is a long-
pursued goal in machine learning research. Reinforcement learning (RL) offers a solution to this
problem by maximizing a utility/reward function through diverse interactions with the environment.
However, this reward function must be meticulously tailored to the task to ensure that its maximiza-
tion leads to optimal actions [Sutton & Barto| (2018). This becomes infeasible for complex tasks,
where an agents needs to sequentially perform multiple subtasks. To bypass the need for reward en-
gineering, one can learn task execution from expert demonstrations. Research proposed two primary
approaches for this purpose: Imitation learning and Inverse Reinforcement Learning.

Imitation learning (IL) aims to learn a mapping from the current observation of the environment to
action from given expert demonstrations. Imitation learning algorithms are developed to recover
expert-like policies for tasks with large state-action spaces |Hussein et al.| (2017). While imitation
learning approaches tackle the reward engineering limitation of RL, they struggle in generalizing
beyond the provided expert trajectories. Thus, an extensive collection of high-quality expert demon-
strations is essential for achieving good performance Zheng et al.| (2022).

On the other hand, Inverse Reinforcement Learning (IRL) approaches aim to learn the intrinsic
reward function of the expert. This reward function is used to guide an RL agent, enabling it to
reproduce expert-like behavior. IRL generally suffers from scalability and inefficiency issues|Zheng
et al.[ (2022)), since it relies on sequentially learning the reward function and the policy. These
problems get exaggerated when the task gets complex, due to larger observation and action spaces.

In this work, we aim to bridge the gap between imitation learning and inverse reinforcement learning.
We propose RILe, a novel approach for learning a reward function and a policy simultaneously. Our
framework comprises two interacting agents: a student agent and a teacher agent. The teacher agent
observes the student and provides a reward, which the student aims to maximize simultaneously.
In return, the teacher is rewarded based on the similarity between the behavior of the student agent
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and the behavior observed in a limited set of samples of expert trajectories. This setting enables
the student to replicate expert behaviour without being trained on expert trajectories nor directly
observing the similarity of its policy’s behavior to that of an expert.

This architecture allows our framework to leverage the strengths of both IL and IRL, resulting in
a hybrid approach that effectively compensates their respective limitations. Specifically, introduc-
ing the teacher agent as an intermediary between the policy learning and reward acquisition stages
enables training the student agent in a standard RL setting while ensuring that its policies mimic ex-
pert behavior. This breaks the data-policy connection common to existing IL solutions/Ho & Ermon
(2016) and facilitates a less data-sensitive learning process that retains the generalization capabilities
of standard RL, since RL agent does not try to overfit to data directly or via some similarity metric.
Consequently, it can generalize over the specific state-action pairs of expert trajectories. In addition,
the dual-agent setting enables simultaneous learning of the intrinsic reward function of the expert
and the policy that replicates their behavior. This surpasses the limitation of iterative sequential
learning of reward and policy common to IRL approaches. Our framework is capable of acquiring
the reward function and policy in a single learning process.

To demonstrate efficacy, we compare our method to state-of-the-art of imitation learning and inverse
reinforcement learning on two different benchmarks: Atari games (Bellemare et al., 2013)) and Mu-
JoCo control tasks (Todorov et al.,2012)). Experimental results reveal that our approach outperforms
baselines especially when the available expert data is limited. This indicates a better data-efficacy
of our method compared to baselines.

2 RELATED WORK

We review the literature on learning expert behavior from demonstrations. Commonly, expert
demonstrations are sourced either through direct queries to the expert in any observable state or
by collecting sample trajectories demonstrated by the expert. We present related work that aligns
with the most prevalent approaches of the latter setting, namely Imitation Learning and Inverse
Reinforcement Learning. Both, IL and IRL, form the conceptual foundation of RILe.

Offline reinforcement learning also learns policies from data, which may include expert demonstra-
tions. In contrast to our setting, its main goal is to learn a policy without any online interactions
with the environment. We refer the reader to (Levine et al., [2020) for an overview of offline RL.
Furthermore, hierarchical reinforcement learning (HRL) splits tasks into subtasks at different lev-
els of temporal and functional abstraction (Sutton et al.,|1999} |Dayan & Hinton, |1992).While HRL
has been combined with imitation learning [Le et al.| (2018)), its goal is different to our setting as it
abstracts long-horizon tasks to render them learnable instead of replicating expert behavior.

Imitation Learning The earliest work on imitation learning introduced Behavioral cloning (BC)
(Bain & Sammut,|1995), which aims to learn a policy congruent with expert demonstrations through
supervised learning. SEARN introduces a classifier to BC that facilities exploring the observation
space in continued training after cloning the expert policy (Daumé et al., |2009). DAgger proposes
the aggregation of expert demonstrations with policy experiences during the training of the policy for
improving generalization over expert demonstrations (Ross et al.,2011)). Ho & Ermon|(2016)) intro-
duced Generative Adversarial Imitation Learning (GAIL) where a discriminator aims to understand
whether queried behavior stems from a policy or from expert demonstrations, while a generator tries
to fool the discriminator by learning a policy that exhibits expert-like behavior. InfoGAIL extends
upon GAIL by extracting latent factors from expert behavior and employing them during imita-
tion learning (L1 et al.,|2017). [Hester et al.| (2018) proposed Deep Q-learning from Demonstrations
(DQfD) where the learning agent is first pre-trained using expert demonstrations, followed by a
subsequent policy optimization through interactions with the environment. Similarly, expert data is
leveraged in|Le et al.| (2018)); |Kostrikov et al.| (2019) to reduce number of environment interactions
and increase learning efficacy. Zero-Shot Visual Imitation first learns a policy without consider-
ing expert demonstrations, and then uses expert data in a goal-conditioned setting to fine-tune the
policy (Pathak et al., 2018). ValueDice proposes an off-policy imitation learning method using a
distribution-matching objective between policy and expert behavior (Kostrikov et al., 2020).

Although the field of imitation learning has seen innovative advancements, the requirement for high-
quality expert data and the need for data efficacy remain open challenges (Zheng et al., [2022).
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Moreover, the limited generalization capability of IL approaches persists (Toyer et al.| [2020). We
address these limitations related to IL’s data sensitivity by introducing an intermediary teacher agent,
thereby breaking the direct connection between the policy and the expert demonstrations.

Inverse Reinforcement Learning In inverse reinforcement learning, Ng & Russell| (2000) intro-
duced three algorithms to learn the intrinsic reward function of an expert and acquire the expert
policy from it. Apprenticeship learning builds on IRL and proposed to represent the reward function
as a linear combination of features (Abbeel & Ngl 2004). Maxium Entropy Inverse Reinforcement
Learning is proposed to deal with the noise in expert demonstrations and recover the expert reward
function better (Ziebart et al.,[2008). Several works extended IRL to include negative examples into
the learning process In (Lee et al., [2016; |Shiarlis et al., 2016} Bogert et al., 2016). Guided Cost
Learning approximates the reward function with a neural network and makes maximum entropy
methods applicable to continuous state-action spaces (Finn et all [2016). An adversarial reward
learning framework is proposed by [Fu et al. (2018) to address the scalability issues of classical
approaches. (Chen et al.|(2021)) introduces a pipeline that makes IRL work with unstructured, real-
world data. Cross-embodiment scenarios are considered in XIRL, opening up a new direction in
IRL (Zakka et al., [2022)).

Despite the advancements in IRL, the efficacy of the learning process and scalability to complex
problems remain open challenges (Arora & Doshil |2021). The main reason for these limitations
is the iterative sequential learning framework employed in IRL. We solve this efficacy problem by
learning the policy and reward function, via training a student agent and a teacher agent, in a single
joint learning process.

3 BACKGROUND

3.1 PRELIMINARIES

Our work considers an imitation learning problem from expert trajectories. Each trajectory com-
prises states s € S and actions a € A, where S and A are state and action spaces respectively. The
set of expert trajectories is defined as 7g = [[(s0, a0), (s1,al),...],[(s0,a0), (s1,al),...],...],
which are sampled from an expert policy mg € II, where II is the set of all possible policies.
P(s'|s,a) is an unknown state transition probability function. The reward function R(s, a) gener-
ates a reward given a state-action pair (s, a). In this work, we consider y-discounted infinite horizon
settings. Following [Ho & Ermon! (2016)), expectation with respect to the policy m € II refers to the
expectation when actions are sampled from 7(s): E;[R(s,a)] £ E;[082 7' R(s¢, at)], where sq is
sampled from an initial state distribution p(s), a; is given by 7 (|s;) and s;11 is determined by the
transition model as P(+|s, at).

3.2 REINFORCEMENT LEARNING (RL)

Reinforcement learning seeks to find an optimal policy that maximizes the discounted cumulative
reward. The reinforcement learning problem is defined as

RL(Rp) =7* —argmaxE [Ro(s,a)] Z’Y Ro(st, ar)] (D

where Ry € R is a reward function parameterized by € and the optimal policy is indicated by 7*.
Regularization can be introduced with the entropy function H (7). In this work ~-discounted casual
entropy function is considered, which defined as H(w) = E,[—logm(a|s)] (Ho & Ermon, 2016
Bloem & Bambos| 2014])). Incorporating entropy regularization into the problem transforms it into

RL(Ry) = m* = argmax H(m) + Ex[Ro(s,a)]. (2)

™
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3.3 INVERSE REINFORCEMENT LEARNING (IRL)

Given sample trajectories 7 of an expert policy 7g, inverse reinforcement learning, IRL(7g),
tries to recover the reward function, R* that would result in expert behavior when optimized in a
reinforcement learning training, RL(R*). In other words, the goal can be defined as

RL(R") = 7% = argmin E,,[L(m, 7g)] (3)

™

where L(w,wg) is a loss function that measures difference between given policies. Inverse rein-
forcement learning seeks to find the reward function in which the expert policy performs better than
any other policy.

IRL(Tg) = arlg%g;%ax (E,,E [R(s,a)] — max E.[R(s, a)]) 4)

With entropy regularization H (), maximum casual entropy inverse reinforcement learning (Ziebart
et al.l [2008)) can be defined as

IRL(Tg) = ar%é%ax (EWE [R(s,a)] — max (Ex|R(s,a)] + H(ﬂ'))) (5)

3.4 ADVERSARIAL IMITATION LEARNING (AIL)

In contrast to inverse reinforcement learning, imitation learning aims to directly acquire the expert
policy from given expert trajectory samples. It can be formulated as

IL(tg) = arg;ninETE [L(n(s),mr(s))]. (6)

GAIL (Ho & Ermon, 2016) extends imitation learning to an adversarial setting by quantifying the
similarity between policies of the agent and the expert with a discriminator Dy (s, a), parameterized
by ¢. Its goal is to find the optimal policy that minimizes this difference metric while maximizing
an entropy constraint by training the discriminator and the policy at the same time. The optimization
problem can be formulated as a zero-sum game between the discriminator Dy (s, a) and the policy
w, represented by

min max E[logDg(s,a)] + E-,[log(1 — Dy(s,a))] — NH(). (7)

In other words, the reward function that is maximized by the policy is defined as a similarity function,
expressed as R(s,a) = —log(Dy(s,a)).

3.5 PROBLEM FORMULATION

An Standard MDP is defined as M DPs : (S, A, R, T, K,~) where S is state-space, consist of
all possible environment states, and A is action space consists of all possible environment actions.
R = R(s,a) : StA — R is the reward function. T = {Ps,} is transition dynamics where Pk,
is defined as the state distribution upon taking action a in state s. K is initial state distribution,
ie. 8o ~ K and v is the discount factor. Another MDP is also defined, which can be stated
as MDPyp : (Sp,Ar, Rp,Tr, K,~y), where St is state space defined as Sz A, so consisting all
possible state action pairs from M DPs. Ar is action space, a mapping from St = (SzA) — R,
so the action is a scalar value. Ry : S7 — R is only state-based reward. T = {Ps,,, } is transition
dynamics where Ps,,, is defined as the state distribution upon taking action a; in state s;. Ky is
initial state distribution, i.e. s; o ~ K. We assume that we have an access to m expert trajectories,
Ei Ei E,iym

all of which have n time-steps, ¢ = {sy"", 577", ..., 5" 112y
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4 RILE: REINFORCED IMITATION LEARNING

We propose Reinforced Imitation Learning (RILe) to combine the strengths of adversarial imitation
learning and inverse reinforcement learning. The goal of the hierarchical framework is to learn the
reward function of an expert and recover a policy that emulates expert-like behavior simultaneously
in one learning process, without directly assessing the similarity between the behavior of the trained
agent and the expert. Our framework consists of three key components: a discriminator, a student
agent, and a teacher agent (Figure/[I)).

Discriminator The discriminator aims to understand whether a given state-action pair comes from
an expert trajectory or not. It is defined as a feed-forward deep neural network, parameterized by ¢.
Given expert state-action pairs (s, a) ~ ¢ and other state-action pairs whose source is different than
the expert data, (s,a) ¢ ¢, the discriminator aims to discriminate expert pairs from others. Thus,
the optimization problem is defined as

max Es,a)~c[log(Dg(s,a))] + Es a)gcllog(1 — Dy (s, a))]. (8)

Student Agent The student agent aims to learn a policy mg by interacting with an environment
in a standard RL setting within M D Pg, where for each of its actions a® the environment returns a
new state sZ. However, rather than from a hand-crafted reward function, the student agent receives
its reward from the policy of the teacher agent wp. Therefore, in M D Pg, the reward function
is represented by the teacher policy R = mr. The student agent is guided by the actions of the
teacher agent, i.e., the action of the teacher is the reward of the student: ¥ = 77 ((s¥,a®)). The
optimization problem of the student agent is defined as

min_E(sE,as)N‘n's [ﬂ—T ((SEaaS))}' 9

s

The student agent aims to recover the optimal policy 75 defined as

mg = argmax F(p 45)rg lz ylrr ((sf,af))} . (10)
t=0

s

Teacher Agent The teacher agent aims to guide the student to mimic expert behavior by operating
as its reward mechanism. Therefore, the teacher agent learns a policy 7 that produces adequate
reward signals to guide the student agent, by interacting with an environment in a standard RL setting
within M D Pr. Since the state space of M D Pr is defined over state-action pairs of M D Pg, the
state of the teacher comprises the state-action pair of the student s” = (s, a). It generates a scalar
action a” which is given to the student agent as reward r°. The teacher agent’s reward function,
which depends only on its state, is defined as R = Y, where Y is a reward approximating network.
Therefore, the optimization problem of the teacher can be defined as

min Egr
T

[Y]. (11)

~TS

The teacher agent aims to recover the optimal policy 77 by maximizing the cumulative reward
yielded through function Y":

= E(s2,45)nmg [th[Y ((sﬁaf))] . (12)

t=0

Ty = arg max B ) rg lz fyt[Y ((stT, ))
T

t=0

RILe RILe combines the three key components defined previously in order to converge to a stu-
dent policy, which mimics expert behaviors presented in . To achieve this goal, the discriminator
optimization problem is tweaked as
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max Es,a)~c[log(Dg(s,a))] + Es a)uns [log(1 — Dy(s, a))]. (13)

In other words, the discriminator aims to discriminate state-action pairs from expert and student
agent. This reformulated discriminator is employed as the reward function of the teacher Y =
log(Dy), which translates the teacher’s optimization problem to

rSTliTn E(s,a)rs[log(Dg(s,a))]. (14)

In RILe, the student policy 7g is trained with soft actor-critic (SAC) |Haarnoja et al.| (2018)), with
the aim of maximizing the cumulative rewards obtained from the teacher agent. Concurrently, the
teacher agent 7 is trained with proximal policy optimization (PPO) Schulman et al.|(2017) to max-
imize the cumulative reward derived from the discriminator. Consequently, to increase its rewards,
the teacher agent must encourage the student to generate state-action pairs that deceive the discrimi-
nator into perceiving them as originating from an expert. SAC is chosen to train the student policy to
leverage past experiences and guidance from the teacher. PPO is utilized to train the teacher to en-
able fast adaptations to the changing feedback of the learning discriminator. The training algorithm
is given in Appendix [F

To prove that the student agent can learn expert-like behavior, we need to show that the teacher
agent learns to give higher rewards to student experiences that match with the expert state-action
pair distribution, as this would enable a student policy to eventually mimic expert behavior.

Lemma 1: Given the discriminator Dy, the teacher agent optimizes its policy 797 via policy gradi-
ents to provide rewards that guide the student agent to match expert’s state-action distributions.

However, since the teacher is guided by a discriminator, we also need to show that the discriminator
successfully learns to discriminate expert state-action pairs, i.e., understand whether the given state-
action pair is generated by the expert or not.

Lemma 2: The discriminator D, parameterized by ¢ will converge to a function that estimates
the probability of a state-action pair being generated by the expert policy, when trained on samples
generated by both a student policy 7S and an expert policy 7.

The proofs of these lemmas are presented in Appendix [6]

4.1 INTUITION BEHIND RILE

In AIL, the learning agent, is guided by a discriminator that follows the definition presented in Eq.
[I3] However, in AIL, the student tries to satisfy the discriminator directly. Since the discriminator
just aims to minimize a step-based cross entropy loss, it cannot consider the long-term effects of
generated rewards. This myopic discriminator consequently leads to an agent that can mimic expert
state-action pairs but cannot consider if its choices are optimal for long-horizon tasks. Moreover,
such myopic strategies may also lead to failure in understanding connections between different
possible states. In contrast, IRL incrementally updates the reward function and, at each iteration,
re-trains a policy from scratch. Through this approach, IRL can learn the effect of reward signals on
the behavior of a policy. However, iterative reward and policy training are inefficient, rendering IRL
computationally infeasible for most real-world problems.

In RILe, we synergize advantages of IRL and AIL. Specifically, similar to IRL, we are learning the
reward function via the teacher agent, and train a policy via the student agent that reflects updates
in the reward function. However, we guide the teacher learning via an adversarial discriminator,
inspired from AIL, and learn the reward function via RL to consider long-horizon effects of pro-
duced rewards. By introducing the adversarial discriminator, we can simultaneously learn a reward
function and a policy simultaneously, rendering RILe computationally feasible, in contrast to IRL.
Furthermore, the teacher agent learns to act based on long term effects of the produced reward sig-
nals and relations between different states by minimizing long-horizon costs within the the standard
RL setting.
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Figure 1: Framework overview. The framework consists of three key components: a student
agent, a teacher agent, and a discriminator. The student agent learns a policy 7g by interacting with
an environment where for each of its actions a® the environment returns a new state s”. It receives
its reward from the teacher’s policy w7, which evaluates the state action pair of the student agent
sT = (s¥,a%) and chooses an action a” that then becomes the reward of the student agent a” = r°.
The teacher agent is rewarded 77 by a discriminator D that tries to distinguish if a state stems from
an agent (sT) or from expert demonstrations (sP). Ina single learning process, our framework can

learn policies that exhibit expert behavior without having direct access to expert demonstrations.

5 EXPERIMENTAL EVALUATION

5.1 EXPERIMENTAL SETUP

We evaluate RILe against baselines on different tasks from two different reinforcement learning
benchmarks: (1) Atari games (Bellemare et al.,[2013) and (2) MuJoCo control tasks
[2012). For the MuJoCo benchmark, we purposely evaluated on control tasks of varying complexity,
encompassing both low- and high-dimensional state spaces. For all experiments, OpenAl Gym is
used as the simulation framework (Brockman et all,[2016). All the tasks are described in detail in
supp. material.

To obtain expert trajectories, we utilize the experts from RL-Zoo3 2020). Their policies
were trained on the true cost function of each task, which are defined by |Brockman et al.| (2016).
Different numbers of trajectories are sampled (e.g., 1 or 100 for Atari) from these trained experts to
assess performance across a range of available expert demonstrations.

To ensure the visitation of states that are not present in expert demonstrations, all experiments are
initialized randomly. This is further reinforced by the stochastic nature of the actions taken by the
learning agents.

RILe is tested against an imitation learning-, an adversarial imitation learning- and an inverse rein-
forcement learning baseline, which are:
* Behavioral cloning (BC): Employed as the supervised imitation learning baseline.

* Generative Adversarial Imitation Learning (GAIL): GAIL is utilized as the adversarial im-
itation learning baseline.

* Adversarial Inverse Reinforcement Learning (AIRL): Utilized as the inverse reinforcement
learning baseline.

For all baselines, we use their respective implementation of stable-baselines3 (Gleave et al.}, [2022).

Networks are randomly initialized at the start. In all tasks of both benchmarks, the policy of BC is
trained for a 1000 epochs via supervised learning. All baselines are trained for 2 million time-steps,
and RILe is trained for 1 million time-steps.
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Figure 2: Mean = std. error of the reward achieved on evaluation by RILe and baselines in MuJoCo
control tasks.

5.2 ATARI

For the Atari benchmark, all methods are evaluated using two sets of expert demonstrations, com-
prising one expert trajectory and 100 expert trajectories, respectively. Instead of using an image-
based observation state, all approaches use a vector representation of the RAM of the Atari emulator
as state space. Moreover, frame-stacking is avoided and single frame observations are used, which
changed the hardness of games.

In the case of discrete Atari tasks, we employ PPO (Schulman et al.| 2017) as the learning agent
for baselines and as the teacher and student agents in RILe. Hyperparameter sweeps and selected
hyperparameters can be found in|[D| The hyperparameters for PPO agents follow the default settings
of stable-baselines3.

Table 1: Mean =+ std. err. of the attained reward on test trajectories of RILe and baselines in Atari
environments. Traj. stands for the number of available expert trajectories during training.

Traj.  Asteroids BeamRider  Qbert Spacelnv.
RILe 1960+33.4 458+18.7 270+34.8 279.8+6.5
GAIL 1 1402.8+£19.8 330+34 125+3.4 222.1£10.9
AIRL 14042.5 0+0 0+£0 270£13.5
BC 1550+ 20.3  264+6.8 150+ 5.9 180+1.2
RILe 1904+45.9 498.4+15.8 315+17.3 295.59+12.7
GAIL 100 1729438.5 409.24+22.3  125+£2.6 23543.1
AIRL 140+0.5 0£0 0£0 270+£2.9
BC 1440+56.3 616+45.3 820.75+11.8 180+4.4

Table [T] presents the performance of RILe alongside the baselines. RILe performs better than base-
lines in all of the tasks as presented. An exception is Qbert, where behavioral cloning outperforms
all other approaches when trained on 100 expert trajectories.

5.3 MuloCo

In the case of the MuJoCo benchmark, methods are evaluated with five different sets of expert
demonstrations: 1, 5, 10, 15, 20 expert trajectories. SAC (Haarnoja et al.,|2018)) is used as learning
agent for baselines and for the student agent in RILe. RILe’s teacher agent employs a PPO policy
(Schulman et al., 2017). Hyperparameter sweeps and selected hyperparameters can be found in

Appendix

The performance of RILe and the baselines in MuJoCo-based control tasks is presented in Figure
] RILe outperforms baselines in all three tasks. This holds true even in the case of the Humanoid
task, which involves a larger state-action space and greater complexity.The consistently superior
performance of RILe across all three sets of expert demonstrations demonstrates that our method
performs effectively even with a limited amount of data.
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Figure 3: Mean rewards in repetitive evaluations during the training, that are basically obtained via
allowing agents to take deterministic actions on their own training environments.

In order to compare the sample efficacy between methods, at the end of each 10000th time-step
during training, methods are evaluated on their own environment, and results are presented in Figure
[3] for Humanoid-v3 environment with different sizes of expert data. RILe is significantly more
sample efficient when compared to AIRL and GAIL. Behavioral cloning also demonstrated superior
sample efficacy, however, as presented in Figure 2} this doesn’t translate into a better performance
in tests, because of over-fitting.

6 DISCUSSION

We have demonstrated in the experiments that our method beats the baselines in different settings
with different data availability and can perform well even with just one expert demonstration. This
shows the data-efficacy of our method when compared to imitation learning and inverse reinforce-
ment learning baselines. The experiments are conducted in ten different tasks, and all experiments
are initialized randomly. RILe generalizes better than the baselines in states which are not included
in the expert demonstrations. Since the policies of all approaches, including the student agent and
the teacher agent are stochastic, the training eventually covers states which are not included in expert
demonstrations, especially when the number of trajectories are small. Hence, the reported results
indicate how robust policies are towards deviations from the expert demonstrations.

Although combining imitation learning and inverse reinforcement learning in RILE offers advan-
tages, it also suffers from limitations. The main challenge is learning the reward function along with
a policy, which means training the policy with a changing reward function. This inherently unstable
setting can make the student agent get stuck in local minima, which results in sub-optimal behavior.
To overcome this, we update the teacher agent less frequently by using a higher batch size compared
to the student agent. Moreover, balancing the learning rates of the discriminator and the policies is
difficult. For example, we have observed that for some training runs on the more challenging tasks
of the MuJoCo benchmark, the teacher agent fails to satisfy the discriminator, since the latter con-
verges exceptionally fast. This in turn makes it difficult for the teacher agent to find a reward for the
student agent that tricks the discriminator. In such cases, the problem can be tackled by adjusting
the learning rate of the discriminator or updating the discriminator less frequently. However, a more
fundamental solution is required to optimally balance the different components of the architecture.

Future work should focus on improving the stability and unbalanced learning issues in RILe. One
promising approach could consider using a learning curriculum or to learn an adaptable update
frequency or learning rate for the discriminator.
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REPRODUCIBILITY STATEMENT

For the reproducibility of the results presented in this paper, all trained models along with scripts to
generate results are provided as supplementary material. For the details of the experiments and used
expert policies, refer to Appendix [C| Detailed experimental results are presented in Appendix [D]
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A JUSTIFICATION OF RILE

A.1 ASSUMPTIONS:

* The discriminator loss curve is complex and the discriminator function, Dqg(s7 a), is suffi-
ciently expressive since it is parameterized by a neural network with adequate capacity.

* For the teacher’s and student’s policy functions (7%7) and (7%s), and the Q-functions
(Q%), each is Lipschitz continuous with respect to its parameters with constants
(Loy ), (Log), and(Lq), respectively. This means for all (s,a) and for any pair of pa-
rameter settings (6, 6') : [|7%(s,a) — 7% (s,a)| < Lgl0 — 0'],][|Q%(s,a) — Q% (s,a)| <
Lolo 0]

A.2 PROOF FOR LEMMA 1

The expert’s state-action distribution is denoted by pexpert (s,a). The role of the teacher is to provide a
reward signal to the student that encourages the approximation of Peypert(s, @) as closely as possible.

We have Dy : S x A — [0,1] as the discriminator, parameterized by ¢, which outputs the likeli-
hood that a given state-action pair (s, a) originates from the expert, as opposed to the student. The
teacher’s policy 797, parameterized by 7, aims to maximize the likelihood under the discrimina-
tor’s assessment, thus encouraging the student agent to generate state-action pairs drawn from a
distribution resembling pexpert (S, @).

The Value and Q functions of the teacher, conditioned on the rewards provided by the discrimina-
tor, are defined in terms of expected cumulative discriminator rewards. The value function for the
teacher’s policy parameters p at state s, is given by:

VGT (St) = ]EWGT lz /Ykrt+k | St‘| ; (15)

k=0
where 1y = Dy (St4k)-

Similarly, the Q-function for taking action a in state s; and then following policy 7T can be written
as:

Q7 (st,a:) = Dg(st) + B 07 [VQT(stH) ERE (16)

The teacher’s policy optimization is done by maximizing the following clipped surrogate objective
function:

707 (ay|s¢)

LCLIP(QT) :]E(St7at)N7rgT [min ( APTora (st,at),

7T9Told (at|st)

7T9T (at|5t)

’]TGTnld (at|st)

(17)
clip( 16,14 €)A%Toa(sy, at))],

where A%oia (s, a,) is the advantage function computed as Q%%ota (s,, a;) — V97o1a(s;), defined
with respect to the teacher’s old policy parameters 07, ,,.

By expressing the advantage using the reward from the discriminator, we explicitly tie the policy
gradient updates to the discriminator’s output, emphasizing the shaping of 7% to match Pexpert (S, @):
AbTowa (54, a1) = Dy(s, ar) + yEn¥s [VGTO""(St_H)} — VOoa (s,). (18)

During each policy update, the objective in Equation [17|is maximized, driving parameter updates
to favor actions that elicit higher rewards from the discriminator — effectively the actions that better
align with expert behavior:

O < 07 + ay Ve, LELIP (07). (19)

The update rule in Equation[T9] driven by cumulative rewards from the discriminator, incrementally
adapts the teacher’s policy to reinforce student behaviors that are indistinguishable from those of the
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expert according to Dg. The clipped surrogate objective and the trust-region policy optimization of
PPO ensure that updates are conservative, preventing extreme shifts in the policy that could destabi-
lize learning. Through these updates, the teacher’s policy is mathematically guided to facilitate the
student’s approximation of pexper (S, @), thereby fulfilling its role in the imitation learning process.

A.3 PROOF FOR LEMMA 2

The training objective for the discriminator is framed as a binary classification problem over mini-
batches from expert demonstrations and student-generated trajectories. The discriminator’s loss
function £p(¢) is the binary cross-entropy loss, which for a mini-batch of size n is defined as:

n

Lp(¢) = *% > [yz log(Dy(si,a:)) + (1 — yi)log(1 — Dy(si, ai))}, (20)

i=1

where (s;,a;) are sampled state-action pairs from the combined replay buffer D = Dg U Dp,
with corresponding labels y; indicating whether the pair is from the expert (y; = 1) or the student
(y; = 0). The stochastic gradient descent update rule for optimizing £ (¢) is then given by:

¢ < ¢ —npVsLp(d), 2D
where 7)p is the learning rate for the discriminator.

Through iterative updates, Dy(s,a) will converge to P(mgl|s,a), provided the minimization of
Lp(¢) progresses according to the theoretical foundations of stochastic gradient descent. The con-
vergence relies on the assumption that the student’s policy 7S and the expert policy 7 induce
stationary distributions of state-action pairs, such that the discriminator’s data source is consistently
representing both policies over time.

By minimizing £p(¢), we seek ¢* such that:
¢* = arg m¢in Lp(e). (22)

Under typical conditions for convergence in stochastic gradient descent, the convergence to a local
minimum or saddle point can be guaranteed. The discriminator’s ability to distinguish between
student and expert pairs improves as £p(¢) is minimized, implying that lim,,, , ., 00 D¢*(s,a) =
P(7g|s, a), where npatcn is the number of batches.

B TRAINING TRICKS

An overview of the training process is described in Algorithm [T} Training policies in a changing
reward setting is challenging. However, we found that employing the following techniques is suf-
ficient to train our three concurrently operating networks to convergence. To let the teacher agent
learn well against a fast-learning discriminator, we maximize E[log (Dy(s,a))] instead of mini-
mizing E [1 — log (Dy(s,a))] when training its policy, as original proposed by Goodfellow et al.
(2014). To facilitate learning of the student agent, we reduce the update frequency of the teacher
agent by utilizing a larger batch size compared to the student agent. This allows the student agent to
gather experiences over a longer period of time with a consistent, non-updated reward function. In
other words, the student agent is more-frequently trained when compared to reward agent, to have
a more stable training for the student, and to let the teacher understand results of it’s own actions
better.

C TASKS AND EXPERTS

For the experimental tasks, Atari Bellemare et al.[(2013)) games and MuJoCo [Todorov et al.| (2012)
based control tasks from OpenAl Gym Brockman et al|(2016) are used. The version numbers,
observation and action space dimensions are presented in table[2] In Atari games, instead of images,
128 Bytes of RAM of the emulator is used as states, which can be considered as the extracted
features. No frame-skipping is utilized, which means stochastically skipping some number of frames
during the game by repeating the last action continuously.
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Table 2: Tasks

Task Observation Space ~ Action Space
Asteroids-ramNoFrameskip-v4 128 (continuous) 14 (discrete)
BeamRider-ramNoFrameskip-v4 128 (continuous) 9 (discrete)

Atari Breakout-ramNoFrameskip-v4 128 (continuous) 4 (discrete)
Pong-ramNoFrameskip-v4 128 (continuous) 6 (discrete)
Qbert-ramNoFrameskip-v4 128 (continuous) 6 (discrete)
Spacelnvaders-ramNoFrameskip-v4 128 (continuous) 6 (discrete)
Hopper-v3 11 (continuous) 3 (continuous)

MuJoCo Humanoid-v3 376 (continuous) 17 (continuous)
Walker2d-v3 17 (continuous) 6 (continuous)

As the expert agents, RL-Zoo3 (Raffin, 2020) experts are utilized which are trained with stable-
baselines3 policies on the true cost function of tasks, defined by OpenAl Gym Brockman et al.
(2016). For Atari tasks, since the action space is discrete, PPO experts are utilized while for control
tasks with continuous state-action spaces, SAC agents are used. The performance of expert policies
are presented in Table[3] For Atari games, sessions are finished after 10000 time-steps, even the final
state is not terminal. For control tasks, the maximum session length is defined as 1000 by Brockman
et al.| (2016)), therefore sessions are naturally terminated after 1000 time-steps. Normalizations of
state-vectors are done in control tasks for baselines, since it affected the performance drastically in
a positive way.

Table 3: Expert scores and standard errors in experiment tasks

Task Mean Score  Std. Error Mean Length ~ Std. Error
Asteroids-ramNoFrameskip-v4 1902.8 134.5 795.9 41.7
BeamRider-ramNoFrameskip-v4 5001.9 331.6 4222.4 1994
Breakout-ramNoFrameskip-v4 73.2 27.5 9383.8 4179
Pong-ramNoFrameskip-v4 21.0 0 1655.8 1.77
Qbert-ramNoFrameskip-v4 17739 328.1 2019.7 63
Spacelnvaders-ramNoFrameskip-v4 1213.4 26.2 1461.4 57.6
Hopper-v3 3598.9 211.4 522.8 59.7
Humanoid-v3 6251.3 6 1000 0
Walker2d-v3 3876.1 13.9 1000 0

D EXTENDED RESULTS

For all experiments, extended scores are provided in this section. Results for Atari environments are
presented in Table ] and results for control tasks are shown in Table [5} [6] and[7] For Atari tasks,
sessions are finished after 10000 time-steps, even the final state is not terminal. For control tasks,
the maximum time-steps is defined as 1000 as OpenAl Gym Brockman et al.| (2016).

Note that GAIL performed better than RILe in both Hopper and Walker tasks when TRPO is being
utilized as the learning agent. However, this is related to the inductive bias of GAIL, which is
explained in [Kostrikov et al.| (2018). For instance, GAIL perform better than %20 the expert in
Hopper and Walker with only one trajectory, which is unreasonable and most probably the result of
the inductive bias.
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Table 4: Experiment results for Atari environments

Environment Model Num. Traj. Mean Score Std. Score Mean Length  Std. Len.

Al i 1960 334 16510 1164

100 1904 19.8 55237 203.5

] 1402.8 45.9 3837.2 83.4

Asteroids GAIL 100 1729 38.5 3048.6 64.1

AIRL ! 140 25 4144 55

100 140 0.5 4144 22

Be | 1550 203 3026 58.1

100 1440 56.3 4144 110.6

— i 458 18.7 5173 5.6

100 498.4 15.8 5861 89.6

] 330 34 61472 69.0

BeamRider GAIL 100 409.2 223 6276.0 56.3

AIRL ] 0 0 10000 0

100 0 0 10000 0

Be 1 264 6.8 3612.8 102.3

100 616 453 9138 3421

— I 270 348 14577 735

100 315 173 1680.3 273

] 125 3.4 1456 102

GAIL 100 125 2.6 1456 7.4

Qbert 1 0 0 1160 0
AIRL

100 0 0 1160 0

Be 1 150 5.9 1319.7 30.2

100 820.6 118 3746 105.3

— T 7793 65 26674 533

100 205.6 12.7 28918 96.8

] 011 10.9 21652 71.4

Spacelnvaders GAIL 100 235 3.1 2402.1 34.6

AIRL ] 270 135 2151 85.2

100 270 2.9 2151 20.8

BC 1 180 12 1565 55

100 180 44 1565 107
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Table 5: Experiment results for Hopper-v3

Environment Model ,11,\1 umber 0 f Mean Score Std. Error Mean Length Std. Error
rajectories Score Length
1 3354.8 17.18 1000 0
5 3219.2 13.1 1000 0
RILe 10 3154.5 3.7 1000 0
15 2815.9 10.4 1000 0
20 3294.84 11.34 1000 0
1 1597.7 274 928 14.9
5 3253.92 6.91 1000 0
GAIL-SAC 10 1938.6 14.2 585.5 4.2
15 2183.1 57.8 679.5 17.4
20 31152 38.9 959.3 12.2
1 3620.9 4.7 1000 0
5 3672.8 3.1 1000 0
GAIL-TRPO 10 3630.2 3.7 1000 0
15 3594.4 17 1000 0
Hopper 20 12.2 0.1 14.1 0.1
1 366.4 12.1 138.3 3.6
5 590.2 76.1 198 2.8
BC 10 731.1 25.5 230.1 7
15 540.6 17.5 181.6 4.5
20 625.1 61.8 200.8 16.1
1 23 0.5 21.1 0.3
5 15.42 0.5 18.2 0.4
AIRL-SAC 10 12.5 04 14.2 04
15 29.8 1 25.9 0.5
20 47.4 4.9 39.8 2.1
1 3.67 0.3 6.6 0.5
5 34 0 6 0
AIRL-TRPO 10 3.8 0.3 6.3 0.4
15 4.2 0.5 7 0
20 4.3 04 6.6 0.5

17



Under review as a conference paper at ICLR 2024

Table 6: Experiment results for Humanoid-v3

Environment Model ,11,\1 umber 0 f Mean Score Std. Error Mean Length Std. Error
rajectories Score Length
1 1575.4 127.8 307.1 24.7
5 2853.9 92.3 585.6 18.9
RILe 10 1334.3 124 263.9 24.4
15 2578.3 14.9 520.3 30.3
20 4338.1 12.9 848.7 253
1 66.3 0.1 14 0
5 73.1 5.1 15.1 0.7
GAIL-SAC 10 77.6 2.4 16.4 0.5
15 68.3 2.3 144 0.5
20 66.3 0.1 14 0
1 116.5 4.9 254 0.8
5 546.6 14.3 115.6 3
GAIL-TRPO 10 103.6 4.6 20.4 0.9
15 209.3 5.5 41.2 1.1
Humanoid 20 198.2 6.4 3.6 04
1 138.3 4.9 254 0.8
5 129.1 1.7 26.3 04
BC 10 311.6 19.7 59.7 3.6
15 141.1 6.2 26.2 0.9
20 239.1 23.6 24.3 04
1 338.3 38.2 67.6 8.4
5 120.8 7 26.3 3.2
AIRL-SAC 10 71.5 0.1 15.0 0
15 290.2 10.2 54.9 2.1
20 112.2 2.3 24.3 0.5
1 68.1 2.3 144 0.5
5 75.2 1.5 15.9 0.3
AIRL-TRPO 10 144.9 3.8 28.2 0.7
15 149.4 4.2 34.9 2.1
20 141.6 7 30.6 1.6
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Table 7: Experiment results for Walker2d-v3

Environment Model ,11,\1 umber ° f Mean Score Std. Error Mean Length Std. Error
rajectories Score Length
1 2348.7 54.5 1000 0
5 2808.4 27.2 957.6 8.8
RILe 10 2892.1 25.3 930 18.9
15 2892.1 25.5 976.8 6.9
20 2960.2 8.5 1000 0
1 1040.8 28.9 998.9 3
5 2446.5 68.7 1000 0
GAIL-SAC 10 1986.5 43.6 929.7 21.1
15 2083.4 15.3 972.3 6.8
20 1319.1 59.7 640.7 26.6
1 42543 28.9 998.9 3.3
5 3048.8 70.9 841.5 19.9
GAIL-TRPO 10 3372.5 99.4 825.5 23.1
15 27433 83.6 747.9 21.1
20 2947.1 8.3 1000 0
Walker2d i 3179 853 1405 5973
5 365.4 23.5 165.2 6.9
BC 10 1230.4 77.1 368.4 18.8
15 1614.1 61 441.1 13.5
20 349.2 12.2 149 3.2
1 12.6 0.5 224 0.5
5 278.9 6.7 162.2 6.9
AIRL-SAC 10 45.7 0.8 43.4 0.5
15 304.9 9.6 181.9 94
20 31.6 0.9 40.6 0.5
1 2.8 0.1 7 0
5 -5 0.1 7 0
AIRL-TRPO 10 -2.5 0.2 10 2.3
15 -4.6 0.2 8 3.5
20 -4 0.1 6 1.1
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E HYPERPARAMETERS AND HYPERPARAMETER SWEEPS FOR MUJOCO

Table 8: Hyperparameter Sweep and Best Hyperparameters for RILe in MuJoCo experiments

Hyperparameters Value

Number of discriminator updates per round 2,8

The number of samples in each batch of expert data 128

Generator replay buffer size for discriminator updates 100000
Normalization False
Discriminator Network Architecture [256FC, 256FC]
Discriminator Optimizer Adam

SAC Buffer Size le5

SAC Batch Size 32 256

SAC Network Architecture [256FC, 256FC]
SAC Activator Function ReLU

SAC Discount Factor () 0.99

SAC Learning Rate 0.0003

SAC Tau (1) 0.005

SAC Targer Entropy 0.2

Table 9: Hyperparameter Sweep and Best Hyperparameters for GAIL in MuJoCo Experiments

Hyperparameters Value

Number of discriminator updates per round 2,8

The number of samples in each batch of expert data 128, 256
Generator replay buffer size for discriminator updates 64, 4096, 8192
Normalization False, True
Discriminator Network Architecture [32FC, 32FC]
Discriminator Optimizer Adam

SAC Buffer Size 1e5, 1e6

SAC Batch Size 32,256

SAC Network Architecture [256FC, 256FC]
SAC Activator Function ReLU

SAC Discount Factor () 0.99

SAC Learning Rate 0.0003

SAC Tau (1) 0.005

SAC Targer Entropy Automatic
TRPO Number of steps per update 1000

TRPO Batch Size 256

TRPO Network Architecture [256FC, 256FC]
TRPO Discount Factor (v) 0.99

TRPO Learning Rate 0.0001

TRPO Lambda () 0.95

TRPO Number of critic updates per policy update 10

TRPO Target Kullback-Leibler divergence 0.01
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Table 10: Hyperparameter Sweep and Best Hyperparameters for AIRL in MuJoCo experiments

Hyperparameters Value

Number of discriminator updates per round 2,8, 16
The number of samples in each batch of expert data 128, 256, 512
Generator replay buffer size for discriminator updates 64, 4096, 8192, 16384

Normalization False, True
Discriminator Network Architecture [32FC, 32FC]
Discriminator Optimizer Adam

SAC Buffer Size 1e5, 1e6

SAC Batch Size 32, 256

SAC Network Architecture [256FC, 256FC]
SAC Activator Function ReLU

SAC Discount Factor () 0.99

SAC Learning Rate 0.0003

SAC Tau (1) 0.005

SAC Targer Entropy Automatic

PPO Number of steps per update 1000

PPO Batch Size 64, 256, 8192, 16384
PPO Network Architecture [256FC, 256FC], [64FC, 64FC]
PPO Discount Factor () 0.99

PPO Learning Rate 0.0003

PPO Lambda () 0.95

PPO Number of critic updates per policy update 10

PPO Entropy coefficient 0.0

PPO Value function coefficient 0.5

PPO Clipping parameter 0.2
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F ALGORITHM

Algorithm 1 RILe Training Process

1: Initialize student policy mg and teacher policy w7 with random weights, and the discriminator
D with random weights.

2: Initialize an empty replay buffer B

3: for each iteration do

4: Sample trajectory 75 using current student policy 7g

5: Store Tg in replay buffer B
6: for each transition (s, a) in 75 do
7: Calculate student reward R® using teacher policy:
R% « 77 (23)
8: Update 5 using policy gradient with reward R
9: end for
10: Sample a batch of transitions from B
11: Train discriminator D to classify student and expert transitions
max E:.log(D(s,a))] + Erg[log(l — D(s,a))] (24)
12: for each transition (s, a) in 75 do
13: Calculate teacher reward R” using discriminator:
RT « log(D(s,a)) (25)
14: Update 77 using policy gradient with reward RT
15: end for
16: end for
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