
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Leveraging Hybrid Embeddings and Data Augmentation
for Identifying Significant References

Kenji Shinoda
Toyota Motor Corporation

Tokyo, Japan
kenji_shinoda@mail.toyota.co.jp

Abstract
In this technical report, we describe the solution that achieved
5th place in the Paper Source Tracing task of the KDD Cup OAG-
Challenge. This task involves estimating the most significant refer-
ences for each academic paper. We extracted information from the
provided XML files and academic databases, and performed named
entity resolution using natural language processing to acquire data.
We generated features using text embedding and graph embed-
ding techniques. Due to the small data volume, we augmented
the dataset through oversampling and trained multiple Gradient
Boosted Decision Tree (GBDT) models on hyperparameter tuning.
By ensembling the trained models, we produced the prediction re-
sults. Finally we achieved a score of 0.44278 on the final submission
leaderboard for the Mean Average Precision (MAP) metric, securing
5th place in this task. The sample source code is publicly available
at https://github.com/ToyotaInfoTech/kddcup2024-oagpst-solution.

CCS Concepts
• Applied computing → Document analysis; • Computing
methodologies→ Classification and regression trees.

Keywords
data mining, academic citation network, text embedding, graph
embedding, imbalanced data learning, KDD Cup
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1 Introduction
Academic papers are published daily on a large scale. According
to the DBLP database, the number of published academic papers
each year has increased dramatically, from about 14,000 in 1995 to
over 550,000 in 2023 [1]. Accordingly, academic data mining, which
refers to extracting necessary information from large datasets of
academic papers based on scientific methods, has become increas-
ingly important. For example, the ArnetMiner system analyzes the
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results of automatically extracting researcher profiles from the web
and provides academic network search services [13].

The KDDCupOpenAcademic GraphChallenge (OAG-Challenge)
was a competition on academic data mining held at the KDD Cup
2024 [2]. This competition was based on the extensive benchmark-
ing of academic data mining conducted by Zhang et al. [15, 16]. This
competition included the following three tasks. In these tasks, the
“Paper Source Tracing" (PST) task aims to trace the most significant
references in the full texts of given papers.

This competition was held on the data analysis competition plat-
form, biendata, from March 20th to June 7th, 2024. The period until
May 31st served as a preliminary validation phase, followed by the
final submission period. A total of 236 participants from 203 teams
participated, and 20 teams competed in the final submission period.
We participated in the PST task and achieved the 5th place result in
the final submission phase. Notably, we had the best performance
among those who participated solo without forming a team. The
main techniques to achieve this result are summarized as follows:

• Information extraction through text mining and querying
academic databases for missing information.

• Generation of features using text and graph embedding
techniques.

• Data augmentation through oversampling and learning
with GBDT models, as well as their ensemble.

In the following chapters, firstly we describe the datasets that
were available for PST task. Next, we sequentially explain the meth-
ods used for feature processing on the data, and describe the learn-
ing methods for the generated feature set. Finally, in the discussion
section, we also refer to implementations that did not prove effec-
tive during the competition period, such as fine-tuning with LoRA
for a local Large Language Model (LLM), and other methods that
seem effective for enhancing the result.

2 Dataset
For this task, two types of data were available: datasets prepared
by the organizers and academic paper databases that were allowed
for external use. Table 1 describes the summary of the data files.

DBLP and OAG are both academic databases that typically con-
tain similar types of data; however, there are instances where
records may exist in OAG but not in DBLP. Therefore, I extracted
unique paper IDs from OAG and DBLP datasets, and then merged
these two datasets. We refer to this merged dataset simply as the
"academic database" in this report.
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Table 1: Description of data files

Name Prepared or External Description
paper_source_trace_train_ans.json prepared Including paper IDs, their references, and IDs of significant

papers for training
paper_source_trace_valid_wo_ans.json prepared Including paper IDs for validation
paper_source_trace_test_wo_ans.json prepared Including paper IDs for test
paper-xml prepared containing XML files of paper
DBLP and OAG external open-source academic paper databases

Text Embeddings
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Figure 1: Overview of the processing

3 Feature Engineering
In this section, we explain how to create features for supervised
learning. All of the features are listed Table 2, and Figure 1 shows
the overall data processing.

3.1 Data Extraction from XML Files
Each XML file not only contains the title and abstract but also the
full text, allowing for the extraction of various pieces of information.
To create features, we extracted paper ID, title, authors and abstract.
In addition, we extracted reference titles, authors, sections, place of
citation, citation count and text surrounding the reference citation
in the paper.

Since the references in the XML files do not contain abstracts, it
was necessary to retrieve them from the academic database. How-
ever, since references in the XML files do not have IDs, it was
necessary to perform entity resolution based on titles and authors.
The entity resolution was conducted as follows:

• Normalize the titles and authors in both the XML file refer-
ences and the academic database.

• Retrieve records from the academic database that exactly
match the reference title.

• In cases where multiple records were linked, calculate the
Levenshtein Distance for the authors and link to the record
with the shortest distance. The Levenshtein Distance is a
metric for measuring two different strings.

This process enabled the retrieval of the reference IDs and ab-
stracts, as well as publication years, page information and publica-
tion venues. Since papers can be identified by their IDs, it is also
possible to index the academic database by paper ID to similarly
retrieve publication years, etc. Based on the information obtained
through these processes, simple feature engineering was performed
to generate features that are described in the subsequent subsec-
tions.

In Table 2,the rows where the Section column is 3.1 correspond
to features created in this section.

3.2 Generation of Textual Features
Papers can be influenced by the academic keywords and topics
of their references. Text embedding is used to embed texts in a
vector space, enabling numerical comparisons and similarity cal-
culations between texts. The multilingual E5 text embedding mod-
els are designed to handle text in multiple languages, with the
multilingual-e5-large model being the largest, embedding text into
1024 dimensions [14]. It was assumed that the titles and abstracts
of the target papers and the significant papers have a high degree
of similarity. These texts were embedded using the multilingual-
e5-large model, and their similarities were calculated. Additionally,
the embedding vectors were dimensionally reduced and used as
features. We chose UMAP for dimension reduction, which com-
presses a high-dimensional vector to a lower-dimensional space
while preserving topological structures and has advantages over
similar compression techniques like t-SNE in terms of speed [11].
The specific steps are as follows:

• Normalize the extracted text (titles, abstracts).
• Embed the normalized text into 1024 dimensions using the

multilingual-e5-large model.
• Calculate the following two distances for the embedded

results, the cosine similarity and Mahalanobis distance.
• Use UMAP to reduce the embedding vectors to two dimen-

sions.
In Table 2, rows where the Section column is 3.2 correspond to

features created in this section.

3.3 Generation of Network Features
The academic database forms a large network based on citation
relationships. While the citation count is a primary feature, it is
believed that the citation counts of more significant nodes may
increase due to network effects. We considered how to incorporate
the effects by quantifying the influence of each node. The academic

2
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Table 2: Main features for machine learning

Section Name Dimension Description
3.1 citation count 2 Number of citations in the academic database for each paper

and its references
3.1 citation count in the paper 1 Number of citations within the paper for references
3.1 appearance order in the paper 1 Order in which cited within the paper for references
3.1 appearance order ratio in the paper 1 Ratio of citation’s rank to the number of citations
3.1 year difference 1 difference between the paper’s published year and its references
3.1 flag of appearance in {e.g. Introduction} 7 Flag of section of the references where cited
3.1 flag of context containing {e.g. important} 5 Flag indicating presence of target phrases in context of the

references
3.1 flag of the acceptance by {e.g. CVPR} 12 Flag of accepted conference of the paper and its references
3.2 UMAP components of text embedding vectors 12 Components reduced via UMAP from embedding vector of title,

abstract, context
3.3 authors’ citation count 1 Number of citations of the authors in the academic database
3.3 UMAP conponents of node2vec vectors 4 Components reduced via UMAP from node2vec embedding

vectors
3.2,3.3 cosine similarity and mahalanobis distance 6 between text embedding vectors of the paper and its references

database provides the number of times each paper is cited, based on
which the citation counts of the references and the authors’ citation
counts were calculated. Additionally, a citation network was cre-
ated from the database, and as a feature representing higher-order
relationships, node embeddings were generated using node2vec
[6]. Node2vec is an algorithm that explores complex paths between
nodes using random walks. This algorithm generates node embed-
dings based on these paths. After generating the features of each
node in a 64 dimensinal space, they were dimensionally reduced to
a two dimensional space using UMAP, in a similar way to the text
features.

In Table 2, rows where the Section column is 3.3 correspond to
features created in this section.

4 Model Training and Inference
We trained machine learning models for supervised binary classi-
fication using the generated features, where papers with a strong
influence were labeled as positive examples. The models, trained
using LightGBM and CatBoost with hyperparameter tuning via Op-
tuna, were used for inference to generate submission files [4, 9, 12].
An average ensemble of the inference results was taken as the final
prediction.

The dataset was highly imbalanced for binary classification, with
746 positive and 3583 negative examples. Various strategies exist
for handling imbalanced data, such as under-sampling the majority
class or over-sampling the minority class. In our solution, negative
cases were under-sampled to a fixed amount, and then positive
examples were over-sampled to match this number. SMOTE, es-
pecially Borderline-SMOTE, was used for over-sampling, which
synthesizes new data points near decision boundaries to enhance
the model’s discriminative power [5, 7]. However, SMOTE can fail
to create synthetic data if no neighboring positive samples are
available, or if the base sample size is too small to ensure qual-
ity. A random seed value was chosen to run over-sampling with
Borderline-SMOTE, and if successful, GBDT models were trained.
If it failed, a new seed value was selected, and over-sampling was

Algorithm 1 Significant References Classification Method

1: Input: Training dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1, where 𝑥𝑖 ∈ R
𝐹 is a

set of features and𝑦𝑖 ∈ {0, 1} is a class label. Test dataset �̂� is as
set of features with no class label. A constant value determining
the size of negative samples is 𝑎. The number of trials using
different seed is 𝐿. The number of trials for hyperparameter
tuning is 𝑁 .

2: 𝐷′ ← {𝑥𝑖 ∈ 𝐷 | 𝑥𝑖 ≠ NULL}
3: 𝐷′1 ← {𝑥𝑖 ∈ 𝐷

′ | 𝑦𝑖 = 1}
4: 𝐷′0 ← Sample(𝐷′ | 𝑦𝑖 = 0, size = 𝑎 × |𝐷′1 |)
5: 𝐷′′ ← 𝐷′0 ∪ 𝐷

′
1

6: 𝐷′′train, 𝐷
′′
test ← TrainTestSplit(𝐷′′)

7: for 𝑙 = 1 to 𝐿 do
8: try: 𝐷† ← Borderline-SMOTE(𝐷′′train, random_state = ℓ)
9: catch: AUCℓ ← 0, continue
10: 𝑚LG

ℓ
← HyperparameterTuning(LightGBM(𝐷†), 𝑁 trial)

11: 𝑚CB
ℓ
← HyperparameterTuning(CatBoost(𝐷†), 𝑁 trial)

12: AUCℓ ← Evaluate((𝑚LG
ℓ
(𝐷′′test) +𝑚CB

ℓ
(𝐷′′test))/2)

13: end for
14: ℓbest ← argmax({AUCℓ }𝐿ℓ=1)
15: 𝑦 ← (𝑚LG

ℓbest
(�̂�) +𝑚CB

ℓbest
(�̂�))/2

performed again. The performance of the GBDT models, including
LightGBM and CatBoost, was optimized by tuning the seed value
of Borderline-SMOTE, testing on a prepared dataset to achieve the
best AUC. The best performing ensemble model was then used
for final predictions, with results averaged for the GBDT models’
outputs. Algorithm 1 describes the overall process for training the
model.

5 Experiments
We created submission file based on the methods described above.
The computation environment for data processing, learning, and

3
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Table 3: Experimental results

Method MAP
Random Forest (Baseline) 0.21420

ProNE (Baseline) 0.21668
SciBERT (Baseline) 0.29489

Our model 0.44278

0.0 0.2 0.4 0.6 0.8 1.0
Mean SHAP Value (Impact on Model Output)

context UMAP component 2

context's cosine similarity

context UMAP component 2 (ref)

node2vec UMAP component 1 (ref)

node2vec UMAP component 2

appearance order in the paper

abstract's cosine similarity

title's cosine similarity

appearance order ratio in the paper

citation count in the paper

Figure 2: Mean SHAP value

inference was as follows : Linux, Python 3.10, CUDA 12.0, NVIDIA
A100 80G.

Using the trained model to predict scores resulted in achieving a
score of 0.44278 in the MAP evaluation on the validation and test
sets. Table 3 shows that our model significantly improved over the
baseline models, Random Forest, ProNE and SciBERT. With SHAP,
it is possible to understand which features the trained model places
importance on [10]. We show an example of SHAP mean value in
Figure 2. This Figure indicates that ‘citation count in the paper’ of
the references was the most important feature in the classification,
and the feature sets created through embeddings were among the
top performers.

6 Discussion
Due to time constraints during the competition, the following meth-
ods, which were not implemented and evaluated, could be effective
in further improving the results presented in this report.

• Application of ranking algorithms: In this report, we treated
the references that had a strong influence as positive ex-
amples in a binary classification problem. However, consid-
ering that the evaluation metric is MAP, it is also possible
to design the problem using ranking algorithms. Specifi-
cally, treating each paper’s references as queries, the goal
would be to train models such that significant references
are ranked higher.

• Finetuning of the local LLM: During the competition, we
attempted LoRA training with Microsoft’s phi3-medium
local LLM [3, 8]. LoRA is a finetuning technique for the
local LLM. The training involved inputting paper context

information and performing binary classification to deter-
mine if a cited reference was influential. Although this did
not result in improved the evaluation metric, further im-
provements could potentially enhance performance.
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