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Abstract001

Humans can quickly learn a new word from a002
few illustrative examples, and then systemati-003
cally and flexibly use it in novel contexts. Yet004
the abilities of current language models for few-005
shot word learning, and methods for improving006
these abilities, are underexplored. In this study,007
we introduce a novel method, Meta IN-context008
learNing Of Words (Minnow). This method009
trains language models to generate new exam-010
ples of a word’s usage given a few in-context011
examples, using a special placeholder token012
to represent the new word. This training is re-013
peated on many new words to develop a gen-014
eral word-learning ability. We find that training015
models from scratch with Minnow on human-016
scale child-directed language enables strong017
few-shot word learning, comparable to a large018
language model (LLM) pre-trained on orders019
of magnitude more data. Furthermore, through020
discriminative and generative evaluations, we021
demonstrate that finetuning pre-trained LLMs022
with Minnow improves their ability to discrim-023
inate between new words, identify syntactic024
categories of new words, and generate reason-025
able new usages and definitions for new words,026
based on one or a few in-context examples.027
These findings highlight the data efficiency of028
Minnow and its potential to improve language029
model performance in word learning tasks.030

1 Introduction031

Children can quickly learn a new word, or at least make032
meaningful inferences about its meaning, given only a033
few examples of its usage (Carey and Bartlett, 1978;034
Bloom, 2000). For example, suppose a child who did035
not know the word ski hears the following mentions of036
the word (without visual examples): “Susie learned to037
ski last winter”, “People ski on tall mountains where038
there’s lots of snow”, and “I saw Susie ski fast down the039
snowy mountain.” From these usage examples, the child040
might infer that ski is a verb for a winter activity involv-041
ing sliding down snowy mountains, and could begin042
understanding and using the word appropriately in new043
contexts. This ability to generalize and use a new word044
in novel contexts from just a few examples reflects chil-045
dren’s remarkable data efficiency in language learning,046

allowing them to quickly acquire vocabulary without 047
requiring tens or hundreds of examples per word. 048

Compared to humans, current pre-trained language 049
models are inefficient word learners, both in the total 050
amount of pre-training data and the number of exam- 051
ples needed for each word. Even though large language 052
models (LLMs) are typically pre-trained on four or five 053
orders of magnitude more language input than any sin- 054
gle human could receive (Linzen, 2020; Frank, 2023), 055
they struggle with systematic generalizations of words 056
that are rare or unseen in their training data (Wei et al., 057
2021; Razeghi et al., 2022; Kim et al., 2022; Batsuren 058
et al., 2024; Land and Bartolo, 2024). 059

This contrast between human learning and language 060
model training raises two long-term research questions: 061
1) Could language models develop a human-like abil- 062
ity for few-shot word learning without astronomical 063
amounts of training data? 2) Could existing LLMs be 064
adapted to improve their few-shot word learning abil- 065
ities, allowing them to systematically and flexibly use 066
new words in new contexts? 067

Here, we introduce a simple method, Meta IN-context 068
learNing Of Words (Minnow), to train or finetune a lan- 069
guage model to develop an in-context few-shot word 070
learning capability (see Figure 1 for an illustration 071
of our method). We adopt Meta In-Context Learning 072
(MetaICL) since it has had successes in endowing neu- 073
ral networks with stronger systematic generalization, 074
closely related to our objective of word learning (Lake 075
and Baroni, 2023; see Russin et al., 2024 for a review). 076
Specifically, we use MetaICL to train from scratch or 077
finetune an auto-regressive language model to generate 078
new usages of a new word given a set of illustrations of 079
the new word in its previous context. In-context learn- 080
ing (ICL) builds and uses contextual representations 081
of the new word on the fly without parameter updates. 082
MetaICL repeats ICL on many different new words and 083
optimizes the model parameters for a general word- 084
learning ability. 085

To demonstrate the data efficiency of our method, 086
we train language models from scratch with Minnow 087
using small datasets: a corpus of child-directed speech 088
(CHILDES; MacWhinney, 1992) and a corpus approx- 089
imating the word count a child encounters during lan- 090
guage acquisition (BabyLM-10M; Warstadt et al., 2023). 091
To foreshadow our results, we find that our method’s 092
performance on few-shot classification of new words 093
from these datasets approaches that of the pre-trained 094
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Word: aardvark 
Study examples: 

Look there’s an aardvark, it’s like an anteater.

See the aardvark has a long snout for eating bugs.

That must be the aardvark’s house.


Generalization example: 
The aardvark is hungry, it wants some snacks.

Word: ski 
Study examples: 

Susie learned to ski last winter. 
People ski on tall mountains where there's lots 
of snow.

I saw Susie ski fast down the snowy mountain.


Generalization example: 
He will ski past the pine trees.

Sentences: 
You can go fast or slow, and there are fun turns.

Some animals hibernate in winter.

Let’s go to grandma’s house!

We warmed up by the fire.

Meta-learning 
{ 
  aardvark: examples, 
  skiing: examples, 
  … 
}

Language modeling 
{ 
  sentence1, 
  sentence2, 
  … 
}

<sep> Look there’s an [new-token], it’s like an anteater.

<sep> See the [new-token] has a long snout for eating bugs.

<sep> That must be the [new-token]’s house.

<sep> The [new-token] is hungry, it wants some snacks.

<sep>

<sep> Susie learned to [new-token] last winter. 

<sep> People [new-token] on tall mountains where there’s 
lots of snow.

<sep> I saw Susie [new-token] fast down the snowy 
mountain. 
<sep> He will [new-token] past the pine trees. 

<sep>

<sep> You can go fast or slow, and there are fun turns.

<sep> Some animals hibernate in winter.

<sep> Let’s go to grandma’s house!

<sep> We warmed up by the fire.

<sep>

Update model 
parameters  
with token 
prediction loss

Episodes (as extracted from corpus) Episodes (as appear to the model)

Figure 1: Illustration of Minnow (top) and language modeling (bottom), which can be mixed together during training such
that both contribute to model updates. Each meta-learning episode aims to learn a new word from a set of study examples
(sentences that use the word) and then generate a generalization example that also uses the word. Each language modeling
episode contains a set of unrelated sentences without meta-learned words. An episode will be converted into a single sequence in
which we replace the word to be learned (if it is a meta-learning episode) with a special placeholder token (e.g., [new-token])
and concatenate/wrap the sentences with another special separator token (e.g., <sep>). We do gradient updates of the model
parameters to optimize the next-token prediction loss on the sequence.

Llama-3 8B (Llama Team, Meta AI, 2024), which was095
trained on vastly more data. This highlights how this096
ability can be developed from human-scale child-input097
data rather than the orders-of-magnitude larger datasets098
typically used to train LLMs.099

We also finetune Llama-3 8B with Minnow to see if100
we can enhance its word-learning ability. In a series101
of discriminative and generative evaluations, we show102
that this improves Llama-3 8B’s ability to discriminate103
between new words, identify syntactic categories of104
new words, and generate reasonable new usages and105
definitions for new words, where each new word is106
learned from one or a few in-context examples. Most107
of these improvements are achieved without specific108
training on these evaluation tasks. We will release our109
code upon publication of our work.110

2 Related Work111

2.1 The Rare Word Problem112

Word frequencies in natural corpora follow a highly113
skewed (Zipfian) distribution (Zipf, 1949), resulting in114
a heavy tail of rare words. Additionally, new words115
are constantly entering the language (Heaps, 1978). To116
represent all possible words, various word-form-based117
methods have been proposed, including subword- and118
character-based tokenizations and using morphological119
information (see Mielke et al., 2021 for a comprehen-120
sive survey). However, representing a word alone does121
not help in learning it from a few contexts in which it122
occurs. Models optimized for conventional language123
modeling still struggle with the usage of unfamiliar or124
completely novel words, tokens, or token sequences,125
where word-forms or token identities alone do not pro-126
vide enough information (Ott et al., 2018; Schick and127
Schütze, 2020; Wei et al., 2021; Razeghi et al., 2022;128

Kim et al., 2022; Batsuren et al., 2024; Land and Bar- 129
tolo, 2024). Instead of representing new words based on 130
word-forms, we discard word-form information and use 131
a dedicated special placeholder token that is the same 132
for every new word. In this way, we aim to develop a 133
general and efficient ability to learn a word from a few 134
contexts of its usage. 135

2.2 Few-Shot Word Learning 136

Another line of previous work targets the problem of 137
learning a new word from a few examples. Most previ- 138
ous work aims to produce a representation for the new 139
word, i.e., an embedding, that fits into the global word 140
embedding space so it can be used in the same way as 141
other learned words (Mikolov et al., 2013; Pennington 142
et al., 2014). The embedding can be produced by aggre- 143
gating the embeddings of the contexts that the new word 144
appears in (Lazaridou et al., 2017; Khodak et al., 2018), 145
finetuning the embedding within the context (Herbelot 146
and Baroni, 2017; Lampinen and McClelland, 2017; 147
Hewitt, 2021; Kim and Smolensky, 2021), or utilizing 148
the word-form information (Luong et al., 2013; Schick 149
and Schütze, 2019). More recent work uses Transformer 150
layers to produce the embedding based on Word2Vec 151
embeddings (Hu et al., 2019, HiCE), or by aggregating 152
similar embeddings of word contexts from a memory 153
system (Sun et al., 2018, Mem2Vec). Also related to 154
our approach, Teehan et al.’s (2024) work uses a meta- 155
learning framework named CoLLEGe to train a Trans- 156
former encoder to produce an embedding for a new 157
word from its examples of usage. Our method also tar- 158
gets few-shot word learning, but is simpler than Teehan 159
et al. (2024) in architecture and training and does not 160
produce a separate embedding for each new word. 161
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2.3 Meta In-Context Learning162

Building on LLMs’ in-context learning abilities (Brown163
et al., 2020), Meta In-Context Learning (MetaICL)164
trains language models on multiple different tasks,165
each learned from a few in-context examples (Chen166
et al., 2022; Min et al., 2022). A class of tasks that167
MetaICL (or similar curriculums) aim to learn and gen-168
eralize requires inferring the context-dependent map-169
ping from the symbols to meanings (Lake and Baroni,170
2023; Huang et al., 2024; Anand et al., 2024; Park et al.,171
2024). We follow this work to use MetaICL for our172
word learning task, in which the mapping from a new173
word to its meaning should be inferred purely from its174
usage in the context.175

3 Method176

The goal of our method, Minnow, is to enable a model177
to infer the meaning of a new word from a few exam-178
ples of its usage so it can understand and generate novel179
usage examples of the word, coherently and systemati-180
cally combining it with other words in new contexts. To181
achieve this, Minnow trains the model to generate an-182
other usage example of the new word—a task that, when183
sufficiently challenging, requires mastery of this abil-184
ity. Minnow is a general framework that can be applied185
to both training a model from scratch and finetuning186
a pre-trained model. After describing the method, we187
introduce the training data we use, a held-out word clas-188
sification task for model evaluation and hyperparameter189
tuning, and how we use the off-the-shelf Llama-3 8B as190
a baseline for our experiments.191

3.1 Method: Minnow192

Following the typical meta-learning approach, we con-193
struct episodes tTiuNi“1, each Ti consists of K examples194

tx
piq
k uKk“1 sampled in accordance with the desired task195

(Figure 1: top). In each episode, the model’s task is to196

learn a new word wi; each example xpiq
k is a sentence il-197

lustrating how wi is used. We concatenate the examples198

tx
piq
k uKk“1 into a single sequence, separated by a special199

separator token (<sep> when training from scratch or200
a reserved special token in the Llama-3 8B vocabulary201
when finetuning Llama-3 8B). The objective is next-202
token prediction on this concatenated sequence: we ex-203
pect the model to predict a new usage example given the204

previous examples, i.e., ppx
piq
k | x

piq
1 , . . . , x

piq
k´1q. We re-205

place (mask) all occurrences of wi in the sequence with206
a special placeholder token ([new-token] when train-207
ing from scratch or a different reserved special token208
when finetuning Llama-3 8B). The same placeholder209
token for the new word is shared across all episodes,210
such that the model does not learn a new embedding211
each time. Using the ski example from Section 1, the212
sequence for training models from scratch would be213

<sep> Susie learned to [new-token] last win-214
ter <sep> People [new-token] on tall moun-215
tains where there’s lots of snow <sep> I216

saw Susie [new-token] fast down the snowy 217
mountain <sep> 218

Note that our setting differs from previous MetaICL 219
settings (Chen et al., 2022; Min et al., 2022; Lake and 220
Baroni, 2023) in two ways. First, each example is not an 221

input–output pair px
piq
k , y

piq
k q, but just xpiq

k . Second, there 222
is no explicit separation between study examples and a 223

query: our setting effectively uses every example x
piq
k 224

as a query with all previous examples xpiq
1 , . . . , x

piq
k´1 as 225

its study examples. 226
When we train a model from scratch, we also pro- 227

vide episodes of language modeling (without masked 228
new tokens) to further facilitate language learning, as 229
illustrated in Figure 1 (bottom). Each of these episodes 230
consists of the same number of K randomly sampled un- 231
related sentences, without new words. We concatenate 232
them in the same format and train the model to perform 233
next-token prediction on the concatenated sequences. 234
Training batches of language modeling episodes inter- 235
leave with the batches of meta-learning episodes. The 236
model can determine whether an episode is for meta- 237
learning or language modeling from whether the special 238
placeholder token occurs in the first sentence. 239

3.2 Data 240

To demonstrate the data efficiency of our method com- 241
pared to humans, we use data sources that are close 242
to children’s language input in quantity or quality 243
(Warstadt et al., 2023). We construct one dataset from 244
each of two corpora: CHILDES (MacWhinney, 1992) 245
and BabyLM-10M (Warstadt et al., 2023). CHILDES 246
is a corpus of transcriptions of child–caregiver speech 247
interactions. We use input to children (excluding ut- 248
terances produced by children) in the North American 249
English portion of CHILDES. BabyLM is an English 250
dataset including child-directed speech as well as addi- 251
tional data sources, such as children’s books, transcrip- 252
tions of dialogs between adults, and Wikipedia articles. 253
We use the 10M word corpus constructed as part of the 254
first BabyLM Challenge. 255

Each dataset consists of two disjoint components, one 256
for meta-learning (the leftmost set in Figure 1: top) and 257
the other for language modeling (the leftmost set in Fig- 258
ure 1: bottom). We select a set of lower-frequency words 259
in the corpus to be meta-learned in the meta-learning 260
component.1 Each meta-learned word w has a set of nw 261
sentence examples illustrating its usage. We assign each 262
sentence in the corpus to at most one meta-learned word, 263
so the identity of the word masked by the placeholder 264
token is not revealed in other meta-learning episodes. 265
During each training epoch, the nw examples for each 266
word w are split into tnw

K u (non-overlapping) episodes 267
of K examples, such that more frequent words have 268
more episodes. This way of sampling episodes preserves 269

1Different word-forms of the same lexeme, like “ski,”
“skis,” and “skiing,” are treated as different words in the dataset.
See Appendix H for further discussion.
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the original Zipfian distribution of the word frequencies.270
Examples in the episodes are shuffled for each training271
epoch. Other sentences in the corpus that have no meta-272
learned words are used for language modeling (Figure 1273
bottom).274

We split both the meta-learning component (by word)275
and the language modeling component (by sentence)276
into training (80%), validation (10%) and test (10%)277
portions. Each dataset is used for both training models278
from scratch and finetuning pre-trained Llama-3 8B, but279
the text is formatted and tokenized differently (in addi-280
tion to the different special tokens in Section 3.1; see281
Appendix B for the differences). We provide additional282
details about data preprocessing, sentence assignment,283
dataset splitting, and text formatting in Appendix A,284
with statistics of our datasets shown in Table 5. In the285
training portion, our CHILDES dataset contains 7,790286
words to be meta-learned and has a total of 5.8M tokens,287
while our BabyLM-10M dataset contains 15,821 words288
to be meta-learned and has a total of 7.8M tokens. In289
comparison, a child receives roughly 3M to 12M words290
per year (Frank, 2023), and thus our training data is of a291
similar magnitude to a year’s worth of linguistic input292
for a child.293

3.3 Held-out Word Classification294

We introduce a word classification task, in which we295
measure the model’s ability to discriminate the identi-296
ties of new words that were never seen during training297
(i.e., held-out), based on in-context study examples. Val-298
idation accuracy on this task is used to tune training299
hyperparameters (e.g., learning rate; described later).300

Given a query example sentence q that uses a new301
word and a set of C candidate words twpcquCc“1, the302
task for the model is to match the query example to303
the most suitable one among the C candidate words.304
Each wpcq is represented by a context containing a305

set of K ´ 1 study examples tx
pcq

k u
K´1
k“1 illustrating306

its usage. The context of wpcq is a sequence in the307
same format as the first K ´ 1 examples in a train-308
ing episode, ending with a separator token (e.g., <sep>):309

<sep> x
pcq

1 <sep> ¨ ¨ ¨ <sep> x
pcq

K´1 <sep>. The query310
example is formatted as a continuation sequence of311
the context: q <sep>. This formatting ensures that con-312
catenating a context sequence and a query sequence313
results in a sequence with K examples, just like a se-314
quence for a meta-learning training episode. To de-315
termine the best match, we compute the conditional316
likelihood of the query sequence given the context:317

pLMpq | x
pcq

1 , . . . , x
pcq

K´1q. The model predicts the word318
corresponding to the context with the highest likelihood:319

argmaxc pLMpq | x
pcq

1 , . . . , x
pcq

K´1q. The prediction is320
correct if it is the ground-truth word in the query q.321

We evaluate each model (trained from scratch or322
finetuned) by measuring the classification accuracy on323
held-out meta-learned words from the validation or test324
portions of the model’s training or finetuning corpus.325
For each evaluation, we group C distinct meta-learned326

words into a C-way classification task. For each word, 327
we sample K ´ 1 study examples and one query exam- 328
ple to construct the task. See Appendix C for additional 329
details on task construction. 330

3.4 Baseline: Off-the-shelf Llama-3 8B 331

For training models from scratch, we need an LLM 332
that is pre-trained on massive data with conventional 333
language modeling for data-efficiency comparison. To 334
determine the effectiveness of finetuning an LLM, we 335
need to evaluate its baseline word-learning ability. To 336
address both needs, we use the off-the-shelf Llama-3 8B 337
model as a baseline for word-learning tasks. We experi- 338
ment with both the pre-trained and the instruction-tuned 339
variants of the model. We primarily report baseline re- 340
sults from the pre-trained variant, and present results 341
from the instruction-tuned variant only in the generative 342
settings, where its performance may differ significantly 343
from that of the pre-trained one. For evaluation, we 344
present a meta-learning episode to Llama-3 8B in a text 345
format similar to the training or finetuning sequences 346
(Section 3.1), but designed to be more natural and closer 347
to its pre-training data. In particular, we use a pseudo- 348
word (e.g., “dax”) as the placeholder for the new word, 349
with a newline character and a star “\n *” serving as the 350
separator between examples, effectively formatting the 351
examples as a list.2 Using the ski example in Section 1 352
again, the formatted text appears as follows: 353

* Susie learned to dax last winter 354

* People dax on tall mountains where there’s 355
lots of snow 356

* I saw Susie dax fast down the snowy moun- 357
tain 358

* 359

The “\n *” at the end serves as the last separator, like 360
the last <sep> in the example sequence in Section 3.1. 361

4 Training Models From Scratch 362

In this section, we investigate whether models can de- 363
velop the ability of few-shot word learning from human- 364
scale input. We use the GPT-NeoX transformer architec- 365
ture (Andonian et al., 2023) with configurations mod- 366
ified from Pythia-160M (Biderman et al., 2023).3 We 367
use word-level tokenization. We exclude words with a 368
frequency less than five from the vocabulary and replace 369
them with <unk> tokens. We likewise remove the words 370
that are to be meta-learned from this vocabulary and 371
replace all of their occurrences in sentences other than 372

2We choose the pseudo-word to be meaningless. However,
a pre-trained LLM may ascribe a meaning to the pseudo-word
based on its form. We acknowledge that replacing a word in
an example with a pseudo-word could mislead the LLM and
weaken the baseline. See Appendix H for detailed discussion.

3We use an architecture with modern features such as rela-
tive positional encoding which may help in extrapolation to
longer sequences and more examples. See Appendix B for
details of our modifications.
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their meta-learning episodes with <unk>. As mentioned373
in Section 3.1, the vocabulary also includes two spe-374
cial tokens: the placeholder token [new-token] and the375
separator token <sep>.376

On each of the two datasets (CHILDES and BabyLM-377
10M) we train three models from scratch (i.e., the mod-378
els are randomly initialized), each with K “ 5 examples379
per episode and a different random seed. In each of the380
three runs, we choose the checkpoint with the lowest381
validation loss on the meta-learning objective. Using382
one random seed, we fix the batch size and tune other383
training hyperparameters, including the learning rate384
and weight decay, for the best 4-way (C “ 4) held-out385
word classification accuracy on the validation portion386
of the dataset (the task was introduced in Section 3.3).387
We then apply the same training hyperparameters to the388
other seeds. See Appendix B for detailed architecture389
configurations and training hyperparameters including390
batch size, learning rate (with scheduling), and weight391
decay. In the following, we report mean accuracies of392
models across the three runs on the test portion of the393
dataset they were trained on.394
Results Models trained from scratch on K “ 5395
examples per episode sampled from CHILDES and396
BabyLM-10M achieve test accuracies of 72% and 77%,397
respectively, on the 4-way (C “ 4) classification task.398
These results are substantially higher than random399
chance (25%) and close to the 71% and 78% accura-400
cies achieved by Llama-3 8B baseline, which was pre-401
trained on orders of magnitude more data. We provide402
results in additional settings, including experiments with403
K “ 10 examples on CHILDES and 8-way (C “ 8)404
classification, in Appendix C, Table 6. Across all set-405
tings, models trained from scratch consistently achieve406
accuracies well above chance and within a 3% margin of407
the Llama-3 8B baseline. These findings (on CHILDES408
in particular) demonstrate that few-shot word learning409
can be effectively acquired using our method, even with410
human-scale child-input data.411

5 Finetuning Pre-trained LLMs412

In this section, we test if our method can improve pre-413
trained LLMs’ in-context few-shot word learning abili-414
ties. We finetune Llama-3 8B with Minnow three times415
on the meta-learning component of BabyLM-10M, each416
run with K “ 5 examples per episode and a different417
random seed.4 We refer to the models finetuned with418
Minnow as Minnow models. We do not include the lan-419
guage modeling components since the LLM already420
learned a large vocabulary and is capable of language421
modeling. We finetune from both the pre-trained and422
instruction-tuned variants of Llama-3 8B, but we refer423
to the models finetuned from the pre-trained variant424
by default, same as for the baseline (Section 3.4). We425
freeze all of the model’s parameters except the input426

4We focus on finetuning models on BabyLM-10M in this
section, since it is more diversified and usually yields better
results than CHILDES.

and output embeddings of these two special tokens. We 427
initialize the embeddings of these two special tokens 428
as the mean of all other input/output embeddings (He- 429
witt, 2021). We select the checkpoint for each run and 430
tune the learning rate in the same way as when training 431
from scratch, except that we do not apply weight decay 432
(Section 4). See Appendix B for more details on text 433
formatting, tokenization, and training hyperparameters 434
including batch size and learning rate (with scheduling). 435
In the following, we evaluate the Minnow models and 436
baselines on a series of tasks. 437

5.1 Held-out Word Classification 438

We first evaluate models on the held-out word classifi- 439
cation task (Section 3.3). Finetuning Llama-3 8B with 440
Minnow boosts the test 4-way (C “ 4) classification 441
accuracy from the baseline level of 78% to 87% on 442
BabyLM-10M (and from 71% to 79% on CHILDES). 443
We provide results for additional values of K and C 444
in Appendix C, Table 6; broadly, across all settings, 445
the Minnow model improves test accuracy by 8–10% 446
over the Llama-3 8B baseline. These findings show that 447
Minnow finetuning effectively improves the pre-trained 448
LLM’s in-context few-shot word learning ability. 449

Despite these strong results, this task does not assess 450
more fine-grained aspects of meaning that may not be 451
apparent from discriminating an arbitrary set of words, 452
and the semantic coherence of the usage contexts could 453
be a shortcut utilized by the model (see Appendix C for 454
further discussion). To address this, we provide the next 455
analysis focusing on the syntactic categories of words. 456

5.2 Syntactic Category Classification 457

In this evaluation, we test if models can differentiate 458
words in different syntactic categories, a crucial feature 459
for systematic generalization. We follow the classifica- 460
tion paradigm introduced in Section 3.3. We use the 461
methodology of Kim and Smolensky (2021) as well 462
as the dataset they constructed from MNLI, a Natural 463
Language Inference dataset (Williams et al., 2017). The 464
dataset focuses on four syntactic categories (noun, verb, 465
adjective, and adverb) and tests the ability to differenti- 466
ate each pair of categories. See Appendix D for details 467
of the dataset. 468

In each instance of the classification task, we learn 469
two new words wp1q and wp2q in different syntactic cat- 470
egories; the syntactic category of each new word wpiq is 471
unambiguously signaled by a study example xpiq (replac- 472
ing the word with the placeholder, e.g., [new-token]). 473
For example, say wp1q is a noun and wp2q is a verb: 474

(1) A [new-token] needs two people. (for wp1q) 475

(2) She [new-token] at the group. (for wp2q) 476

We test our models on query examples that use a word in 477
one of the two categories, as in the following examples: 478

(1) Keep everyone else company by sitting in the 479
[new-token]. (expecting wp1q) 480
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(2) The colonel [new-token] us to a hotel. (expecting481
wp2q)482

Note that, unlike the previous task, query examples are483
semantically unrelated to the study examples in this484
task, thus excluding the shortcut of semantic coherence.485
Below, we report the mean accuracies across the three486
runs.487
Results We first find that the Llama-3 8B baseline488
achieves 64% accuracy on this task, which is higher489
than random chance (50%), suggesting that it can infer490
the syntactic categories of new words in one shot and491
generalize them to novel contexts. The Minnow model492
improves accuracy to 83%, a 19% increase over the base-493
line. Fine-grained results from models finetuned with494
Minnow (and trained from scratch) are provided in Ap-495
pendix D. We find in all settings that the Minnow model496
improves accuracy by 11–26% compared to the baseline497
on all pairs of categories. These improvements show498
that Minnow finetuning effectively helps in learning499
the syntactic categories of new words and generalizing500
accordingly. In addition, note that our models are not501
specifically finetuned on this syntactic category classifi-502
cation task and dataset, demonstrating the generality of503
the acquired word learning ability.504

5.3 New Usage Example Generation505

The two tests we have described so far evaluate models506
in a discriminative setting. Here, we quantitatively and507
qualitatively evaluate if models use the new word ap-508
propriately in a generative setting. For a Minnow model509
finetuned with K examples per episode, we evaluate510
it by showing it K ´ 1 in-context study examples, for-511
matted as a sequence in the classification setting (Sec-512
tion 3.3). We ask the model to do what it was trained513
for: We prompt the model with this sequence of study514
examples, and because the sequence ends with a sep-515
arator token, the model will continue the sequence by516
generating a new usage example, ending with another517
separator token as End-Of-Sequence.518

We sample study examples from two datasets: the519
BabyLM-10M test portion in Section 3.2 and the520
Chimera dataset (Lazaridou et al., 2017). The Chimera521
dataset was specifically constructed for few-shot word522
learning. It has 33 different new words for learning, each523
referring to a “chimera” concept, i.e., a mixture of two524
existing and related concepts (e.g., a cello and a bag-525
pipe). The usage examples of a new word are sentences526
using one of the components of the chimera, randomly527
extracted from a large corpus. See Appendix F for addi-528
tional details of the dataset and our preprocessing.529

For the quantitative evaluation, we compare a pair530
of new usage examples generated from Llama-3 8B531
baseline and a Minnow model finetuned from it. The532
comparison is simulated as a head-to-head competition533
following the methodology in the definition generation534
section of Teehan et al. (2024). Specifically, we provide535
GPT-4o (OpenAI, 2024) the same K´1 study examples536
in a list format with a pseudo-word “dax” as the place-537

New Usage Example Definition
Variant Method BabyLM-

10M test
Chimera CoLLEGe-

DefGen

pre-
trained

baseline 32 42 29
+Minnow 52 55 39

instruction-
tuned

baseline 41 52 33
+Minnow 47 36 37

Table 1: Percentages of wins of each model when compar-
ing the generations from Llama-3 8B baseline (pre-trained
to instruction-tuned) with a Minnow model finetuned from
that baseline, judged by GPT-4o. The left two datasets are
for new usage example generation in Section 5.3, and the
right-most one is for definition generation in Section 5.4. Each
new example or definition is generated by greedy decoding.
(Results of top-p sampled generations are shown in Table 9
in Appendix E.) The percentage of ties is the remaining after
subtracting the win percentages of the two models. GPT-4o
more frequently chooses the Minnow model as the winner
compared to the corresponding baseline in all settings except
for the instruction-tuned variant on Chimera.

holder for the word, as in the baseline (without the last 538
separator; Section 3.4), followed by a question “Which 539
of the following is a better next example for the word 540
‘dax’, or they tie?” with three shuffled options, including 541
the two generations and one “Tie”. (See Appendix E for 542
detailed settings of prompting.) The choice of GPT-4o 543
decides whether and which one model wins the competi- 544
tion, or whether the models were tied in quality. For the 545
qualitative evaluation, we manually pick meta-learned 546
words (shown in Table 2 and Tables 10, 11, and 12 in 547
Appendix F) and examine the syntactic correctness and 548
semantic appropriateness of the generated examples. 549
Results For the quantitative evaluation, Table 1 shows 550
the percentages of wins of each of the baseline and the 551
Minnow model on both the BabyLM-10M test portion 552
and Chimera. Across all settings, the Minnow model 553
wins more often than the corresponding baseline except 554
for the instruction-tuned variant on Chimera, demon- 555
strating the improvement brought by Minnow. For the 556
qualitative evaluation, Table 2 shows a word picked 557
from the BabyLM-10M test portion along with its study 558
and generated examples. See Appendix F for addi- 559
tional examples from the BabyLM-10M test portion 560
(Tables 10 and 12) and Chimera (Table 11) and de- 561
tailed analysis of both the baseline and the Minnow 562
model’s generations. A manual analysis of these gen- 563
erated examples reveals that the Minnow model more 564
often generates syntactically correct and semantically 565
plausible new usage examples compared to the base- 566
line, confirming that Minnow finetuning improves the 567
ability to understand and use a new word. Nevertheless, 568
in several cases, the Minnow model still shows obvi- 569
ous syntactic and factual errors and merely rewords the 570
study examples. 571

5.4 Definition Generation 572

To further probe how well Minnow finetuning helps 573
the model understand a new word, we prompt each 574
model to generate a definition for the word given one 575
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Study Example Sentences Minnow Generated Examples Word

‚ the first blacksmiths were [new-token]. ‚ many civilisations
were in the area that is now turkey, like the [new-token], the
roman empire and the byzantine empire. ‚ spread of hepatoscopy
and astrology to [new-token], etruscans, greeks and romans and
to china ‚ the first major empire in the area was the [new-token]
(from the 18th century to the 13th century bce).

1. the [new-token] were a peo-
ple who lived in the area of turkey.
2. perhaps the most famous and
widely used alchemical symbol,
first popularized by [new-token]
alchemists, is the ouroboros.

hittites

Table 2: New examples generated for a word from the BabyLM-10M test portion by the Minnow model. The first one is generated
by greedy decoding, and the second one by sampling with top-p=0.92. The Minnow model learns that hittites is an ancient
ethnic group. However, the greedy-decoded example copies the information (turkey) from the study example, while the sampled
example makes seemingly plausible but factually incorrect generalizations (the earliest known ouroboros is found in ancient
Egyptian text.)

or a few usage examples. We again use the methodol-576
ogy of Teehan et al. (2024) for definition generation577
and evaluation, as well as the two evaluation datasets578
they used: CoLLEGe-DefGen, which they created, and579
the Oxford dataset (Gadetsky et al., 2018). CoLLEGe-580
DefGen was constructed by selecting 954 words from581
WordNet (Miller, 1995) and prompting GPT-4 (OpenAI,582
2023) to generate one definition and five usage exam-583
ples for each word. The model generates a definition584
from one, two, or three usage examples sampled for585
each word in this dataset (i.e., in 1-, 2-, or 3-shot set-586
tings). The Oxford test set consists of 12,232 words,587
each with a definition and a usage example collected588
from the Oxford Dictionary. The model generates a def-589
inition from the only usage example for each word in590
this dataset (i.e., in a 1-shot setting). To generate a defi-591
nition, we prompt the model with the sequence of the592
usage example(s) (as in Section 5.3) followed by “The593
word [new-token] in the above sentence(s) is defined594
as "”5 ([new-token] is instead the placeholder token595
or pseudoword, as appropriate). For additional compar-596
isons with models expected to do especially well on this597
task, we also evaluate specialized definition-generation598
models: Giulianelli et al.’s (2023) FLAN-T5 models599
(Chung et al., 2024). See Appendix G for details of data600
preprocessing and the specialized models.601

For the quantitative evaluation, we perform two types602
of comparison. The first type compares the model-603
generated and ground-truth definitions for each word604
by computing BERTScore F1 (Zhang et al., 2020) and605
ROUGE-L (Lin, 2004). The second type compares a606
pair of definitions generated from Llama-3 8B baseline607
and a Minnow model finetuned from it. Similarly to608
what we did in Section 5.3, we ask GPT-4o a question609
(without usage examples): “Which of the following is a610
better definition for the word ‘Word’, or they tie?” where611
Word is the ground-truth word form, followed by three612
shuffled options including the two generated definitions613
and one “Tie” (see Appendix E for detailed prompting614
settings).6 For the qualitative evaluation, we manually615

5The prompt ends with a double quotation mark ("), so that
the model will continue with a definition ending at another
double quotation mark. This makes extracting definitions easy.

6We only perform this comparison on the CoLLEGe-
DefGen dataset due to the large scale of the Oxford dataset.

inspect 1-shot generated definitions for words from each 616
dataset (presented in Table 4 and Tables 15 and 16 in 617
Appendix G). 618
Results For the quantitative evaluation, we first 619
present the 1-shot scores of comparing the model- 620
generated and ground-truth definitions for Llama-3 8B 621
baselines and the Minnow models in Table 3. In Ap- 622
pendix G, we present 1-shot scores for all models (in- 623
cluding the specialized FLAN-T5 models and the origi- 624
nal CoLLEGe model) in Table 13 and averaged 1-, 2-, 625
and 3-shot results on CoLLEGe-DefGen in Table 14. In 626
all of these settings, Minnow finetuning improves the 627
baseline scores by 0.3–1.5 on BERTScore F1 and 3.1– 628
5.3 on ROUGE-L. On CoLLEGe-DefGen, the Minnow 629
model finetuned from the instruction-tuned Llama-3 8B 630
outperforms all other models across all settings. On 631
Oxford, the Minnow models finetuned from both vari- 632
ants perform comparably well, but they are inferior to 633
the largest specialized FLAN-T5 by 2.9 on ROUGE-L. 634
However, note that our Minnow finetuning is neither 635
tailored for generating definitions nor using these spe- 636
cific definition datasets. In Table 1, when comparing the 637
definitions generated from each baseline and a Minnow 638
model finetuned from that baseline, the latter is more 639
often favored over the corresponding baselines for both 640
Llama-3 8B variants. 641

For the qualitative evaluation, Table 4 shows Minnow- 642
model-generated and ground-truth definitions for words 643
from CoLLEGe-DefGen (see Tables 15 and 16 in Ap- 644
pendix G for additional examples from CoLLEGe- 645
DefGen and Oxford). To summarize our manual anal- 646
ysis, we find that definitions generated by the Minnow 647
model often capture most of the word meanings, form 648
reasonable inferences from the contexts, and outper- 649
form the baseline. However, they are not always precise 650
compared to the ground-truth definitions. 651

6 Conclusion 652

In this work, we present Minnow, a new method to im- 653
prove language models’ capability to learn a new word 654
from a few in-context usage examples. Minnow success- 655
fully induced this ability in models trained from scratch 656
with human-scale linguistic data, as indicated by their 657
performances in differentiating new words (Section 4). 658
Minnow finetuning further improved the word learning 659
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Model CoLLEGe-DefGen Oxford
Variant Method BERTScore F1 ROUGE-L BERTScore F1 ROUGE-L

pre-
trained

baseline 85.1 14.9 83.2 11.0
+Minnow 85.4 18.7 84.7 16.3

instruction-
tuned

baseline 85.3 17.6 83.6 12.5
+Minnow 85.8 20.7 84.7 16.5

Table 3: Quantitative evaluation of generated definitions by comparing them with ground-truth definitions. See Table 13 in
Appendix G for results from all models. We generate a definition from only one example (1-shot). All definitions are generated
with greedy decoding. Scores of Minnow models are averaged across three runs. Finetuning with Minnow improves the baseline
models on both datasets and both metrics, and the Minnow model finetuned from the instruction-tuned variant of Llama-3 8B
performs the best.

Example Sentence Minnow Definition True Definition Word

After his thorough inspection of the
antique pocket watch, the bespecta-
cled collector sighed, claiming it was a
[new-token], much to the seller’s dis-
appointment.

a thing that is not gen-
uine or authentic

a deception or trick swiz

Despite his greed, the businessman felt
bound by a [new-token] to maintain
ethical practices.

a promise or agreement
to do something

a moral obligation or command
that is unconditionally and uni-
versally binding

categorical
imperative

Table 4: Definitions for two words from CoLLEGe-DefGen generated by the Minnow model finetuned from instruction-tuned
Llama-3 8B with greedy decoding. Each definition is generated using the single example sentence shown and provided in context.
The generated definitions managed to infer the core semantic features from the examples, though they are not precise enough
compared to the true definitions. In this first example, the Minnow definition for the word “swiz” captures the word’s core
meaning of fakeness, which is a reasonable inference from the example, but misses the intentional aspect, a nuance of the true
definition. In the second example, the Minnow definition for “categorical imperative” captures the core meaning of obligation,
which is a reasonable contrast to the businessman’s greed, but misses the “unconditionally and universally binding” aspect in the
true definition.

performance of a pre-trained LLM (Llama-3 8B), as660
demonstrated in their improvements in differentiating661
new words (Section 5.1 and 5.2) as well as in generat-662
ing new usage examples (Section 5.3) and definitions663
(Section 5.4) for the learned new words. In summary,664
this word-learning capability enables models to system-665
atically and flexibly understand and use a new word in666
novel contexts, and can be immediately transferred to667
other words and tasks without additional training.668

The efficacy of Minnow, or meta-learning in general,669
suggests that human-level efficiency in linguistic gen-670
eralizations may be acquired through practicing over671
many instances of learning tasks, without presuming672
strict, explicit inductive biases (Irie and Lake, 2024).673
Whether models achieve the generalizations in this work674
through human-like mechanisms, such as systematicity675
and categorical abstraction, remains for future analysis.676

7 Limitations677

Learning Settings In this work, we consider word678
learning only in the text modality, in which the lan-679
guage model learns the meaning from the distribution680
of words. However, many words have real-world ref-681
erences, which usually accompany human word learn-682
ing. We also use aggregated data from multiple sources,683
not from single-human/child input. Thus, a multimodal,684
grounded setting of word learning using a single agent’s685
input would be more realistic.686

In addition, we only consider learning a single new 687
word on the fly. However, in real-world learning, both 688
humans and models need to continually learn multi- 689
ple words, usages, and even abstract rules (Mueller 690
et al., 2024). Implementing this continual learning set- 691
ting would be another future direction. 692
Novelty of New Words When Testing LLMs When 693
testing LLMs (Section 5), the words and example sen- 694
tences we use may already exist in the pre-training 695
data, potentially allowing LLMs to recall known word 696
meanings rather than learn genuinely new ones (note, 697
however, the Chimera dataset introduces new concepts 698
which are unusual and not lexicalized). The performance 699
of the baseline LLMs shows that, even with this poten- 700
tial worry, there is room for improvement, which the 701
Minnow-finetuned LLMs are able to achieve. 702

Models trained from scratch with Minnow do not 703
have this limitation. Their training data explicitly ex- 704
cludes held-out test words (Section 4). Therefore, their 705
test performance reflects their genuine ability to learn 706
novel words, and this ability can be developed by 707
Minnow. 708
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A Word Usage Dataset Creation975

As we mentioned in Section 3.2, we construct one976
dataset from each of two corpora: CHILDES (MacWhin-977
ney, 1992) and BabyLM-10M (Warstadt et al., 2023).978
The CHILDES dataset is licensed for use under a CC979
BY-NC-SA 3.0 license.7 Our scientific use is under the980
terms of the license.8 We did not find the license of981
the BabyLM dataset, which aggregated multiple public982
datasets. Since there is plenty of published work using983
this public dataset, we believe our scientific use does984
not violate any terms or conditions. In the following,985
we describe how we preprocess these two corpora and986
create a word usage dataset from each corpus.987
Preprocessing Since the basic units of our focus are988
words (as opposed to word pieces in other tokeniza-989
tion schemes), we need to identify words in the text. To990
achieve this, we apply the same word-level tokeniza-991
tion to all datasets (for consistency) and mark word992
boundaries by whitespace during preprocessing. Mod-993
els trained from scratch use this word-level tokenization.994
When the text is used in finetuning Llama-3, which995
comes with its pre-trained subword tokenizer, we re-996
move the unnatural spaces introduced by the word-997
level tokenization and tokenize the text again with998
Llama-3 tokenizer, so the text format becomes closer999
to its pre-training data (See the Finetuning paragraph1000
in Appendix B for further details of this process). For1001
CHILDES data, we preprocess the data in the same1002
way as Yedetore et al. (2023) did, which uses chil-1003
dren’s input in the North American English portion,1004
but we do not split and unk the data at the preprocessing1005
stage. For BabyLM data, we use the data in the 10M1006
track of the BabyLM Challenge 2023, which mixes 101007
portions, each from a different data source (child- or1008
adult-oriented, speech transcription or written text like1009
Wikipedia). We exclude the QED portion for its poor1010
quality (also mentioned in the 2nd BabyLM Challenge).1011
We apply word-level tokenization on untokenized por-1012
tions, and then split the text into sentences using heuris-1013
tics. We use spaCy for all word-level tokenization along1014
with Part-Of-Speech tagging. We lowercase all text be-1015
fore preprocessing to unify the capitalization of words1016
in different places. We deduplicate sentences and re-1017
move sentences having less than 1 word (not counting1018
punctuation).1019
Assigning sentences and splitting To create a dataset1020
from a corpus, we first get the token frequencies of all1021
words. (Here, a word means a word-form. We discuss1022
its implications in Appendix H.) Then we select the1023
set of words to be meta-learned. We will only consider1024
nouns, verbs, adjectives, and adverbs to be meta-learned1025
(a word’s syntactic category is based on the word’s most1026
frequent Part-Of-Speech tag). We choose two thresholds1027
for meta-learned words: the maximum frequency of a1028
meta-learned word and the minimum number of exam-1029

7https://talkbank.org/share/rules.html
8https://creativecommons.org/licenses/

by-nc-sa/3.0/

ples per meta-learned word. We use a greedy algorithm 1030
to assign each sentence in the corpus to the example 1031
set of at most one potential meta-learned word that oc- 1032
curs in the sentence, so each meta-learned word has at 1033
least the minimum number of examples. This ensures 1034
that the model cannot infer the identity of the word 1035
masked by the placeholder token from other sentences. 1036
These words and their example sets constitute the meta- 1037
learning component of the dataset. We include the re- 1038
maining sentences not assigned to any meta-learned 1039
word in the language-modeling component. Finally, we 1040
split both the meta-learning component (by word) and 1041
the language-modeling component (by sentence) into 1042
training (80%), validation (10%), and test (10%) por- 1043
tions. 1044

When training models from scratch, we build the vo- 1045
cabulary from the words occurring with a minimum 1046
frequency in the training portion (same as the minimum 1047
number of examples per meta-learned word) while ex- 1048
cluding all meta-learned words. This ensures that meta- 1049
learned words, like the lowest-frequency words, are out- 1050
of-vocabulary and will be replaced by <unk> tokens, so 1051
they will never be learned in-weights. 1052

Statistics of our created datasets are shown in Table 5. 1053
Read our code for full details. 1054
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CHILDES BabyLM-10M

max. freq. of meta-learned words 200 15
min. #uses of meta-learned words 5 5

vocabulary size 2179 22,696

portion training valid. test training valid. test

meta-
learning

#meta-learned words 7790 973 975 15,821 1977 1979
total #uses 201,957 26,449 26,234 108,466 13,552 13,563
mean #uses 25.93 27.18 26.91 6.86 6.85 6.85
total #tokens 1,899,159 245,509 243,387 2,072,560 260,701 257,933

mean sentence length 9.40 9.28 9.28 19.11 19.24 19.02
unk rate 3.32% 3.28% 3.28% 3.61% 3.78% 3.91%

language
modeling

#sentences 508,630 63,578 63,580 521,911 65,238 65,240
total #tokens 3,927,120 492,280 490,990 5,721,893 715,553 715,111

mean sentence length 7.72 7.74 7.72 10.96 10.97 10.96
unk rate 1.00% 1.03% 1.00% 1.44% 1.49% 1.47%

total #tokens 5,826,279 737,789 734,377 7,794,453 976,254 973,044

Table 5: Dataset statistics. All statistics are based on tokens, which mostly correspond to words except punctuations due to our
word-level tokenization. “unk rate” is the percentage of out-of-vocabulary tokens, which are replaced by <unk>, in all tokens.
Unk rate is slightly higher in the validation and test portions than the training portion because we build the vocabulary from the
training portion. As shown by the mean sentence lengths, the meta-learning sentences are longer on average than the language
modeling sentences, since meta-learned words are of lower frequency and thus are usually in more complex sentences. We
manually tune the two thresholds of meta-learned words so we have enough number of meta-learned words while the unk rate is
not too high.
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B Model and Training Configurations1055

Training from scratch We slightly modify the config-1056
uration of Pythia-160M (Biderman et al., 2023), which1057
uses the Transformer architecture GPT-NeoX (Ando-1058
nian et al., 2023). The configuration has 12 layers and1059
a hidden dimension size of 768. We change the vocab-1060
ulary size according to the corresponding dataset, as1061
shown in Table 5. We also include three special tokens1062
in the vocabulary: the placeholder token [new-token],1063
the separator token <sep>, and <unk>, as mentioned1064
in Section 4. We change the Pythia configuration to1065
tie the input and output embeddings. This makes the1066
model parameter counts smaller, 86.7M and 102.5M1067
for the model trained on CHILDES and BabyLM-10M,1068
respectively. For both models, we use batch size (i.e.,1069
number of episodes/sequences per batch) 8 and AdamW1070
optimizer (Loshchilov and Hutter, 2019) with initial1071
learning rate 3 ˆ 10´4, and reduce the learning rate by1072
multiplying 0.1 when the validation loss has stopped1073
improving for 2 epochs. We apply weight decay 0.071074
and 0.15 when training on the CHILDES and BabyLM-1075
10M datasets, respectively. Other configurations, such1076
as no dropout, are kept the same as Pythia-160M. For1077
each setting, we run 3 times with random seed t0, 1, 2u.1078
Each run is performed on a single V100 GPU for 301079
epochs (9–18 hours).1080

Finetuning We finetune Llama-3 8B (Llama Team,1081
Meta AI, 2024) with Minnow on each of the CHILDES1082
and BabyLM-10M datasets, but we refer to the models1083
finetuned on BabyLM-10M by default, as we mentioned1084
in Section 5. We finetune from both the pre-trained and1085
instruction-tuned variants of Llama-3 8B, but we refer1086
to the models finetuned from the pre-trained variant1087
by default, presenting results of finetuning from the1088
instruction-tuned variant only in the generative settings,1089
where their performance may differ significantly due1090
to their different capabilities to follow the prompt. We1091
use two reserved special tokens in Llama-3 tokenizer1092
vocabulary as the placeholder token and the separator1093
token. To make the tokenization more natural to the1094
model’s pre-training data, we clean up tokenization1095
spaces in the text (e.g., the space before “,”, “.”, or1096
“’s”) introduced by the word-level tokenization during1097
preprocessing and make the placeholder token absorbs1098
any preceding spaces of the word. Finetuning is mini-1099
mally parameter-efficient: We finetune only the input1100
and output embeddings of the two special tokens, while1101
freezing all other parameters. Before finetuning, the in-1102
put/output embedding of either token is initialized to1103
the mean of all input/output embeddings (Hewitt, 2021).1104
When finetuning the model on CHILDES with 5 ex-1105
amples per episode, we use batch size (i.e., number of1106
episodes/sequences per batch) 32 and initial learning1107
rate 3 ˆ 10´3 and truncate the sequence to the max1108
length of 80 tokens to control the memory usage. When1109
finetuning the model on CHILDES with 10 examples1110
per episode, we use batch size 8 and initial learning rate1111
3 ˆ 10´4 and truncate the sequence to the max length1112

of 180 tokens. When finetuning the model on BabyLM- 1113
10M with 5 examples per episode, we use batch size 1114
16 and initial learning rate 1 ˆ 10´3 and truncate the 1115
sequence to the max length of 160 tokens. Other settings 1116
are the same as when training from scratch except that 1117
we do not apply weight decay. Each run is performed 1118
on a single A100 GPU for 15 epochs on CHILDES (33 1119
hours) or 12 epochs on BabyLM-10M (48 hours). 1120
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C Held-out Word Classification1121

As we mentioned in Section 3.3, we need different meta-1122
learned words in the same group. Therefore, different1123
from training, we sample only one episode of K exam-1124
ples per word from the validation/test portions so we do1125
not repeat the same word in a classification group. We1126
also fix the shuffle order so all models are evaluated on1127
the same classification task instances. We experimented1128
with training models with K P t5, 10u examples per1129
episode on CHILDES and BabyLM-10M and evaluated1130
each of them on the corresponding dataset with the same1131
K and C P t4, 8u. Training models with K “ 10 ex-1132
amples per episode on BabyLM-10M was unsuccessful1133
because the concatenated sequence was too long, ex-1134
ceeding the GPU memory, so we do not have results in1135
this setting.1136

We are aware of the weaknesses of this task. Dis-1137
criminating a new word from an arbitrary set of other1138
new words is a relatively weak test of word meaning1139
learning. The task could be easy simply because dif-1140
ferent words are used in very different contexts, so the1141
conditional likelihood may reflect just the coherence of1142
the usage contexts between study and query examples,1143
not the meaning of the new word (we demonstrate this1144
point by an additional baseline below where we present1145
the model only the usage contexts without new words).1146
In addition, results from the task do not tell us what1147
features of word meanings the model is learning. Our1148
syntactic category classification task addresses these1149
concerns by focusing on the syntactic aspect and break-1150
ing the semantic coherence between study and query1151
examples (Section 5.2).1152

Below, we describe two baselines we run on this task.1153
Baseline: Llama-3 8B learning a pseudo-word in con-1154
text (Llama-3 8B with ‘dax’) This is the baseline1155
model introduced in Section 3.4. We follow the format1156
described there and additionally prepend a prompt to1157
make the performance better: “The following lines are1158
lowercased example sentences using a new word ‘dax’1159
in random order, one per line:”. (We discuss the conse-1160
quence of using a same pseudo-word in Appendix H.)1161
Additional Baseline: Llama-3 8B modeling the coher-1162
ence of usage contexts (Llama-3 8B with ‘’) This1163
is the additional baseline to evaluate the effectiveness1164
of utilizing just the coherence of the contexts, as we1165
discussed above. We remove the new word from each1166
example (equivalent to replacing the new word with an1167
empty string), so only the usage context of each example1168
is retained.1169

For these baselines, we also experimented with the1170
instruction-tuned variant of Llama-3 8B but it performs1171
worse on this task.1172

Table 6 shows all models’ held-out word classifi-1173
cation results on the test portions of CHILDES and1174
BabyLM-10M datasets.1175
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dataset K C Minnow from scratch Llama-3 8B
with ‘’

Llama-3 8B
with ‘dax’

Llama-3 8B
+Minnow

CHILDES
5

4 72.3(1.6) 58.33 71.09 79.1(0.5)
8 59.8(0.4) 46.49 60.02 70.4(0.2)

10
4 75.1(0.7) 66.56 76.53 84.9(0.2)
8 63.4(1.5) 56.17 66.05 75.9(0.6)

BabyLM-10M 5
4 77.4(0.5) 70.45 78.39 86.5(0.6)
8 67.5(0.7) 60.12 69.74 80.5(1.0)

Table 6: Accuracy (%) of held-out word classification on the CHILDES and BabyLM-10M test sets. We show the mean and the
standard deviation (in the bracket) of 3 runs. “Minnow from scratch” means models trained from scratch on the corresponding
dataset. “Llama-3 8B with ‘”’ means the baseline model without prompt and remove the new word (i.e., replace the new word
with an empty string). “Llama-3 8B with ‘dax”’ means the baseline model with prompt learning the new word ‘dax’. We use
K ´ 1 study examples in this classification task, and models except the baselines are trained/finetuned on K examples per
training episode so they see the same number of examples during training and evaluation. C is the number of words in each group,
so we will have t

nepisodes
C

u groups. Note that we discard the last batch of less than C episodes, so the used numbers of episodes are
slightly smaller. Results of “Llama-3 8B with ‘”’ show that the coherence of the context already provides better-than-chance
accuracy on this classification task. Results of “Llama-3 8B with ‘dax”’ show that the pre-trained LLM already performs well.
However, “Llama-3 8B +Minnow” outperforms the baselines by a large margin, showing the effectiveness of our method. Models
finetuned with Minnow from the instruction-tuned variant of Llama-3 8B perform worse than or close to the pre-trained variant
here (the instruction-tuned variant finetuned with Minnow has 86.3% (4-way) and 80.1% (8-way) mean classification accuracies;
the instruction-tuned variant with ‘dax’ has 75.2% (4-way) and 66.0% (8-way) classification accuracies), so we do not include
their results here.
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D Syntactic Category Classification1176

As we mentioned in Section 5.2, we use the methodol-1177
ogy of Kim and Smolensky (2021) and the dataset they1178
constructed. The dataset was constructed from MNLI,1179
a Natural Language Inference dataset (Williams et al.,1180
2017). The task is to discriminate between a pair of1181
words in two different syntactic categories. They con-1182
sider 4 syntactic categories: noun, verb, adjective, and1183
adverb. Therefore, they have 6 pairs of categories for1184
discrimination. For each category pair, the dataset con-1185
tains two signal contexts (one for each category; we1186
use them as the study examples) and 200 test sentences1187
using a word unambiguously in either category (100 for1188
each category; we use them as the query examples). The1189
main difference between our approach and that of Kim1190
and Smolensky (2021) is that, instead of finetuning a1191
new word embedding on each signal context, we apply1192
in-context learning, using each signal context as an in-1193
context study example of the new word. Read Kim and1194
Smolensky (2021) for further details.1195

Results from models trained from scratch,1196
Llama-3 8B baseline and models finetuned from1197
Llama-3 8B on the 6 category pairs and their mean are1198
visualized in Figure 2. Table 7 shows detailed results1199
from Llama-3 8B baseline and Llama-3 8B finetuned1200
with Minnow on BabyLM-10M. Table 8 shows detailed1201
results from models trained from scratch on both1202
datasets.1203

17



Mean N vs. V N vs. Adj N vs. Adv V vs. Adj V vs. Adv Adj vs. Adv
Category Pair

0

20

40

60

80

100
Ac

cu
ra

cy

Minnow from scratch on CHILDES
Minnow from scratch on BabyLM-10M
Llama-3 8B baseline
Llama-3 8B +Minnow on BabyLM-10M

Figure 2: Syntactic classification accuracy. Error bar shows the 95% confidence interval given 3 runs. “Minnow from scratch on
CHILDES” (blue) and “Minnow from scratch on BabyLM-10M” (orange) mean the models trained from scratch with Minnow
on CHILDES and BabyLM-10M, respectively. (These models have a closed vocabulary, so many words in the dataset will
be Out-Of-Vocabulary and be presented as <unk>, which could make the task easier.) “Llama-3 8B baseline” (green) means
Llama-3 8B baseline with pseudo-word “dax”. “Llama-3 8B +Minnow on BabyLM-10M” (red) means Llama-3 8B finetuned
with Minnow on BabyLM-10M. “N”, “V”, “Adj”, and “Adv” are short for noun, verb, adjective, and adverb, respectively.
“Mean” is the mean across all category pairs. The black dashed line marks the chance level (50%). “Llama-3 8B +Minnow on
BabyLM-10M” (red) shows improvement over “Llama-3 8B baseline” (green) in all category pairs, with mean accuracy risen
from 64% to 83%. Note that “Minnow from scratch on BabyLM-10M” (orange) has a 77% mean accuracy, much better than
the baseline accuracy and even comparable to the Minnow models finetuned from Llama-3 8B on many category pairs, again
demonstrating its data efficiency.

Llama-3 8B baseline Llama-3 8B +Minnow
Cat. 1 Cat. 2 Acc. Acc. (1ą2) Acc. (2ą1) Acc. Acc. (1ą2) Acc. (2ą1)

Noun Verb 71.0 43 99 86.3(1.5) 74.7(1.7) 98.0(1.6)
Noun Adjective 66.0 79 53 84.0(2.2) 71.3(4.6) 96.7(0.5)
Noun Adverb 64.0 55 73 81.3(2.2) 75.7(1.7) 87.0(2.9)
Verb Adjective 70.5 49 92 92.7(0.5) 90.0(2.2) 95.3(1.2)
Verb Adverb 53.0 85 21 78.8(5.2) 90.0(2.4) 67.7(12.5)
Adjective Adverb 61.5 42 81 72.8(0.2) 57.3(2.6) 88.3(3.1)

Table 7: LLMs’ accuracies (%) of distinguishing two syntactic categories in novel contexts. We show the mean and the standard
deviation (in the bracket) of 3 runs. ‘Acc. (1ą2)’ denotes the accuracy on the set of sentences where Category 1 should be
preferred over Category 2 (e.g., assigning a higher probability to a noun in a noun-expecting context for row 1), and vice
versa. Column ‘Acc.’ lists the aggregate accuracy. “Llama-3 8B +Minnow” have accuracies significantly better than chance
except distinguishing adjective from verb (row 5). Additionally, “Llama-3 8B +Minnow” improves over Llama-3 8B baseline in
differentiating most category pairs except discriminating nouns from adjectives (row 2), showing the effectiveness of finetuning
with Minnow.

Minnow from scratch on CHILDES Minnow from scratch on BabyLM-10M
Cat. 1 Cat. 2 Acc. Acc. (1ą2) Acc. (2ą1) Acc. Acc. (1ą2) Acc. (2ą1)

Noun Verb 84.5(2.3) 79.7(3.7) 89.3(4.5) 93.5(1.8) 90.0(2.2) 97.0(1.4)
Noun Adjective 73.5(0.4) 50.7(2.9) 96.3(2.1) 86.2(2.5) 79.7(5.4) 92.7(1.9)
Noun Adverb 62.2(1.8) 90.3(4.1) 34.0(6.4) 67.8(3.7) 86.3(3.1) 49.3(5.8)
Verb Adjective 92.3(1.4) 90.0(2.8) 94.7(1.2) 95.7(1.2) 93.0(2.4) 98.3(0.5)
Verb Adverb 38.5(6.5) 57.3(14.7) 19.7(1.7) 56.7(5.3) 68.7(5.8) 44.7(11.4)
Adjective Adverb 53.8(5.3) 44.0(5.4) 63.7(10.1) 62.3(1.9) 59.0(6.5) 65.7(4.1)

Table 8: Accuracies (%) of distinguishing two syntactic categories in novel contexts for models trained from scratch with
Minnow. We show the mean and the standard deviation (in the bracket) of 3 runs. ‘Acc. (1ą2)’ denotes the accuracy on the set of
sentences where Category 1 should be preferred over Category 2 (e.g., assigning higher probability to a noun in a noun-expecting
context for row 1), and vice versa. Column ‘Acc.’ lists the aggregate accuracy. Both models perform better than chance on
many category pairs, suggesting that models can develop some ability to one-shot learn the syntactic category of a word from
human-scale data with Minnow.
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E Comparing Generations1204

For new usage example generation (Section 5.3), we1205
show GPT-4o the following text format:1206

The following lines are shuffled lowercased1207
example sentences using a new word ‘dax’,1208
one per line:1209

* EXAMPLE-11210

* EXAMPLE-21211

* EXAMPLE-31212

* EXAMPLE-41213

Please answer in a single uppercase letter:1214
Which of the following is a better next ex-1215
ample for the word ‘dax’, or they tie?1216

A) OPTION-A1217

B) OPTION-B1218

C) OPTION-C1219

where OPTION-A, OPTION-B, OPTION-C are shuffled1220
generation-1, generation-2, and “Tie”.1221

For definition generation (Section 5.4), we do not1222
have the examples (and the prompt before them) and in-1223
stead have the direct prompt before the options: “Please1224
answer in a single uppercase letter: Which of the fol-1225
lowing is a better definition for the word ‘Word’, or they1226
tie?” where Word is the ground-truth word form.1227

We always get the first letter (A, B, or C) of the1228
GPT-4o response as the choice.1229

Tables 1 and 9 show the results of comparing1230
Llama-3 8B baseline (pre-trained to instruction-tuned)1231
to the Minnow model finetuned from that baseline (with1232
random seed 0) on new examples and definitions gener-1233
ated by greedy decoding and top-p=0.92, respectively.1234

New Example Definition
Variant Method BabyLM-

10M test
Chimera CoLLEGe-

DefGen

Pre-
trained

baseline 39 39 25
+Minnow 53 42 31

Instruction-
tuned

baseline 46 52 33
+Minnow 47 36 28

Table 9: Percentages of wins of each model when compar-
ing the generations from Llama-3 8B baseline (pre-trained to
instruction-tuned) with the Minnow model finetuned from that
baseline, judged by GPT-4o. The left two datasets are for new
usage example generation in Section 5.3, and the right-most
one is for definition generation in Section 5.4. Each new exam-
ple or definition is generated by top-p=0.92. The percentage
of ties is the remaining after subtracting the win percentages of
the two models. GPT-4o more frequently chooses the Minnow
model as the winner compared to the corresponding base-
line, except for the instruction-tuned model on Chimera and
CoLLEGe-DefGen.
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F Evaluation of Generated New Usage1235

Examples1236

As we mentioned in Section 5.3, we sample study ex-1237
amples from two datasets: the BabyLM-10M test por-1238
tion and the Chimera dataset (Lazaridou et al., 2017).1239
Statistics of the BabyLM-10M test portion is in Table 5,1240
Appendix A. The Chimera dataset contains 33 chimeras.1241
For each chimera, we merge all examples in its 10 “pas-1242
sages” (each with a different pseudo-word in place of1243
the word) in the original dataset, so we only have 33 dif-1244
ferent words to learn. We do not use the pseudo-words1245
in the original dataset.1246

Tables 10 and 11 show samples of example sentences1247
from the BabyLM-10M test portion and the Chimera1248
dataset along with the new usage examples generated by1249
both the Llama-3 8B baseline and the Minnow model1250
finetuned from that baseline. Table 12 contains error1251
analysis of new examples generated from the BabyLM-1252
10M test portion, extending Table 2 in Section 5.3.1253
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Study Example Sentences Minnow Baseline Judgment and Reason Word

‚ tales similar to " bluebeard " include
" the fitcher’s bird " by the brothers
[new-token] and the english tale " mr. fox
". ‚ these types of tales include royalty
and fantastical magic, many of which are
published by brothers [new-token] and
hans christian anderson. ‚ previously on
[new-token]... ‚ the house in the wood
from the german of [new-token].

previously in
[new-token]

the story is ac-
tually entitled
" the bridal of
trier " as men-
tioned on brothers
[new-token]
site.

Baseline wins. Minnow
finetuned output sim-
ply changes the prepo-
sition of an example,
which is likely incor-
rect. The baseline out-
put copies “brothers
[new-token]”, which
is likely correct.

grimm

‚ men were sent to search the
[new-token], and there, on the very
night before the deed was to be done, guy
fawkes was found waiting till the time
should come to set fire to the powder. ‚ the
actual [new-token] they’ve got some of
the old er writings that the, the monks and
you’re not allowed to take photographs. ‚

searched all the tunnels and [new-token].
‚ he puts them in [new-token], anderson
shelters, confined spaces, things like that.

because they
can light it in a
[new-token] and
blow it with the
minimum amount
of people.

when a young
teacher of history
at the university
of the common-
wealth in london,
[new-token]
began the revolu-
tionary research
into indian philos-
ophy of patanjali
that was later to
prove so fruitful.

Minnow model wins.
The word likely refers to
a place or space. Only
the Minnow finetuned
output uses the word as
a place.

cellars

‚ the sorcerer wotan is using the
[new-token] of aten to blot out the sun. ‚

unless it involves some kind of enchanted
[new-token], ‚ i’ll give her the lucky
[new-token] you gave m ‚ this can be
a long ritual, or it can take the form of
simply wearing an [new-token] or other
token, " against bad luck ".

first, she goes
with colm and
feels a little guilty
for keeping his
[new-token].

the narrative
treatment of
[new-token]
in the media
exemplifies this
process.

Minnow model wins.
The word refers to a rit-
ual token. The Minnow
finetuned output sug-
gests it is an object,
which could agree with
the inference, while the
baseline output does not
convey a lot of informa-
tion.

amulet

‚ they are blind, their eyes having be-
come reduced to [new-token] lenses un-
der the skin, and they have no external
ears, just a pair of tiny holes hidden un-
der thick hair. ‚ it is a [new-token] re-
flex, a remnant of the past when pre - hu-
man babies clung to their mothers ’ hair
as the mothers swung through the trees.
‚ however, [new-token] structures may
have their original function replaced with
another. ‚ strong evidence for common
descent comes from [new-token] struc-
tures.p397 the useless wings of flightless
beetles are sealed under fused wing covers.

the [new-token]
structures of the
human body are
the appendix, the
coccyx, the ear-
lobes, the tailbone,
and the wisdom
teeth.

the [new-token]
structures of the
human body are
the same as those
of other mammals.

Tie. The word should be
an adjective meaning an
inherited biological fea-
ture that lost its origi-
nal function. Both gen-
erations fit this interpre-
tation. GPT-4o decides
the Minnow model as
the winner.

vestigial

‚ upon the very margin of the ditch, not
thirty feet from where they crouched, an
iron caldron [new-token] and steamed
above a glowing fire ; ‚ all round the
hull, in the blackness, the rippling current
[new-token] and chattered like a little
mountain stream. ‚ there hung another ket-
tle that [new-token] and boiled ; but there
was no fire beneath it, either. ‚ and when he
lifted it up and looked down, there stood a
great copper cauldron which [new-token]
up and boiled away down there ;

the boy looked
down into the pot
and saw that it
[new-token] and
boiled away.

he turned his
back upon them,
and went in at
the door in the
[new-token],
which was a
pleasant door to
look upon.

Minnow model wins.
The word should be a
past-tense verb mean-
ing a physical move-
ment of an object, likely
caused by steam or cur-
rent. The Minnow fine-
tuned output is consis-
tent with this meaning,
but the baseline incor-
rectly uses the word as
a noun.

bubbled

Table 10: New examples generated on study examples from the BabyLM-10M test portion by the Minnow model and the
Llama-3 8B baseline it is finetuned from, with greedy decoding. In addition to GPT-4o’s judgment, the first author manually
compared each pair of generations and gave the judgment and reason (Judgment and Reason). When the author and GPT-4o
compare the generations, they cannot see the ground-truth word but have to infer the possible meaning of the word. When
GPT-4o’s judgment disagrees with the author’s, it is mentioned at the end of Judgment and Reason.
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Study Example Sentences Minnow Baseline Judgment and Reason Word

‚ Animals such as capybara, jaguars, jacare
([new-token]s) and hyacinth macaws are
particularly vulnerable. ‚ Nadirpur stared
at it as though it were a [new-token], his
face quite drained. ‚ The owner will be
summonsed to court for illegal possession
of a [new-token] without a permit. ‚ I
went to the cavern to get some, and found a
[new-token] in there.

‚ The
[new-token]
was a little
more than a
metre long, and
had a thick,
black coat.

‚ The
[new-token]
was a large,
black, furry
creature with a
long, pointed
snout.

Minnow model wins.
An alligator (inferred
from the first example)
is not furry.

alligator +
rattlesnake

‚ He is principal [new-token] of the En-
glish Baroque soloists, with whom he has
recorded for Erato and Deutsche Gram-
mophon. ‚ Banners point to the military as-
pect of [new-token] music: a Jacobite flag
and the first Union flag. ‚ " Alexander Bail-
lie said that he was impressed by her play-
ing and even tried out her [new-token]! ‚

Where did the [new-token] idea at the end
of Rubina’s Blue Sky Happiness come from?

‚ The first
movement is a
[new-token],
the second a
minuet, and the
third a rondo.

‚ The
[new-token]
is a small, furry,
four-legged
creature with a
long tail.

Tie. Both generations
are not for an instru-
ment.

cello +
bagpipe

‚ 4. Allow the stock to settle then skim
off the fat using [new-token] or fat sep-
arator. ‚ Add the pasta, cook it for about
12 minutes until just soft, then drain it in a
[new-token]. ‚ Imagine you’ve got a buck-
etful of praise in every room of the house
with a big [new-token]. ‚ Plants can be
grown in tyres, old metal pots such as buck-
ets, watering cans or even a [new-token]!

‚ 2. Put the
chicken in a
[new-token]
and cover with
cold water.

‚ The
[new-token]
is a very useful
tool for the
gardener.

Minnow model wins.
The word refers to a
kitchen utensil, likely a
container. The baseline
may be misled by the
last example but do not
notice the word “even”
indicating the surprise
of the usage.

ladle +
colander

‚ At about the same age I was in a cafe
and I spilt some pop on my [new-token]s.
‚ It’s also the first International home
[new-token] in history that is reversible as
well. ‚ Such as how if you have sufficiently-
stretchy pants you could take them off with-
out first removing your [new-token]s. ‚ It
was in a cinema on 86th Street where he sat
in the balcony, wearing an old sports jacket
and open-necked [new-token].

‚ The
[new-token]
is a bit tight.

‚ I was in a
cafe and I spilt
some pop on my
[new-token]s.

Tie. A word for clothes
can be used in both ex-
ample. GPT-4o decides
the baseline as the win-
ner.

trouser +
shirt

Table 11: New examples generated on study examples from the Chimera dataset (Lazaridou et al., 2017) by the Minnow model
and the Llama-3 8B baseline it is finetuned from, with greedy decoding. Like in Table 10, the first author provides the judgment
and reason (Judgment and Reason). The first example is a reasonable guess of the appearance of an animal. The second example
is related to music, but incorrectly infers the word to be a dance or musical form. The last example correctly infers that the word
is a kitchen utensil.
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Study Example Sentences Minnow Baseline Word Analysis

‚ the first blacksmiths were
[new-token]. ‚ many civilisa-
tions were in the area that is now
turkey, like the [new-token],
the roman empire and the
byzantine empire. ‚ spread of
hepatoscopy and astrology to
[new-token], etruscans, greeks
and romans and to china ‚ the
first major empire in the area
was the [new-token] (from the
18th century to the 13th century
bce).

1. the [new-token]
were a people who
lived in the area of
turkey. 2. perhaps
the most famous
and widely used
alchemical symbol,
first popularized
by [new-token]
alchemists, is the
ouroboros.

1. the [new-token]
was a major power
in the region, and
its influence spread
to the surrounding
areas. 2. epistemol-
ogy will suffer the
[new-token] syn-
drome.

hittites The Minnow model learns that
hitties is an ancient ethnic group.
However, the greedy-decoded
example copies the information
(turkey) from the study exam-
ple, while the sampled exam-
ple makes seemingly plausible
but factually incorrect gener-
alizations (the earliest known
ouroboros is found in ancient
Egyptian text.) The baseline also
generates factual errors (Hittite
plague exists but no “hitties syn-
drome”).

‚ but, i know from his child-
hood, he says that his father
always buys and [new-token]
cars just as entertainment, i
guess. ‚ in the end, yuji ac-
cepts shana’s feelings and the
two kiss, which activates a spell
left to yuji by crimson lord lamia
that [new-token] his existence,
so yuji is no longer a torch. ‚ –
a medicine which [new-token]
health and energy, as extract
of malt, cod liver oil, etc. ‚

that diversifies energy supply,
[new-token] ecosystems, pro-
tects biodiversity, and sequesters
carbon.

1. the [new-token]
of the [new-token]
of the [new-token]
of [Infinite Repe-
tition] 2. he is a
former prime min-
ister, who is then
[new-token] of his
duties.

1. the [new-token]
is a 3.5 mm jack,
which is the stan-
dard for most
headphones. 2. he
[new-token] up to
an incredible 2,620
sales per store in
2009, compared
with the 60 to
80 that had been
typical just a few
years earlier.

restores For the Minnow model, the
greedy-decoded example is non-
sense repetition (a common fail-
ure of LMs), while the sampled
example uses the verb with in-
correct syntax (“be restored to”)
but pertinent semantics. For the
baseline, the greedy-decoded ex-
ample also has incorrect syntax
(use the word as a noun), and
the use in the sampled exam-
ple is semantically incorrect (the
sales must have reached a simi-
lar level in the past).

‚ when i was a student
[new-token], i went to
the prado in Madrid. ‚

[new-token] is hiking in the
outdoors with a backpack full
of all your food, clothing, water,
and shelter. ‚ [new-token]
may be done on short or long
trips. ‚ [new-token] (wilder-
ness)

1. [new-token] is
a form of wilder-
ness travel. 2. a
small [new-token]
campsite is usually
composed of a place
to sleep, food, tools
and water.

1. [new-token]
is a type of
backpacking. 2.
[new-token] is
something all peo-
ple can do.

back-
packing

The Minnow model seems to in-
fer the meaning of the word, but
is rewording the study examples.
The baseline also seems to infer
the meaning, but its sampled ex-
ample is not very informative.

Table 12: Error analysis of new examples generated from the BabyLM-10M test portion by the Minnow model and the baseline.
In each column of generated examples, the first one is generated by greedy decoding, and the second one by sampling with
top-p=0.92.
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G Evaluation of Generated Definitions1254

As we mentioned in Section 5.4, we use two definition1255
generation datasets: CoLLEGe-DefGen (Teehan et al.,1256
2024) and the Oxford test set (Gadetsky et al., 2018).1257
The original datasets contain 954 and 12,232 words,1258
from which we removed 4 and 2 duplicated words, re-1259
spectively. For CoLLEGe-DefGen, we keep the inflec-1260
tional suffixes, such as “-s”, “-ed”, and “-ly”, after the1261
placeholder so that the placeholder only corresponds1262
to the word stem. This is to remove the influence of1263
morphological inflections. Note that we use our place-1264
holders instead of the <nonce> in the original text of1265
CoLLEGe-DefGen. In addition, we fixed several incor-1266
rect word/phrase replacements in the original dataset1267
(for example, the phrase “capital gains tax”). For the1268
Oxford dataset, for simplicity and consistency with pre-1269
vious work, we do not keep the inflectional suffixes1270
but rather replace the whole word with the placeholder.1271
There are 12% examples in the Oxford test set in which1272
we find no occurrences of any form of the word to be1273
learned, but we keep them for consistency with previous1274
work.1275

Additionally, as we also mentioned in Section 5.4,1276
we have additional references of what can be achieved1277
by specialized definition-generation models: the series1278
of FLAN-T5 (Chung et al., 2024) models finetuned1279
by Giulianelli et al. (2023) specifically on generating1280
definitions. This also follows what Teehan et al. (2024)1281
did. These models were finetuned on three corpora,1282
including the Oxford training set (Gadetsky et al.,1283
2018). The series of finetuned FLAN-T5 are listed on1284
their GitHub page (https://github.com/ltgoslo/1285
definition_modeling?tab=readme-ov-file#1286
definition-generation-models-for-english)1287
and can be accessed through Hugging Face model hub.1288
When evaluating the FLAN-T5 models, a pseudo-word1289
‘wug’ is used as the placeholder for the new word, like1290
in other baselines (Section 3.4) for a fair comparison.1291
Each FLAN-T5 model is prompted with an example1292
sentence followed by a question, “What is the definition1293
of wug?”, as what Giulianelli et al. (2023) did.1294

Table 13 shows the results of comparing the model-1295
generated and ground-truth definitions from all models,1296
supplementing the brief results in Table 3 with those1297
from the additional specialized FLAN-T5 baselines and1298
the CoLLEGe model. Table 14 shows the average of 1-,1299
2-, and 3-shot results on the CoLLEGe-DefGen dataset.1300
Tables 15 and 16 show additional definitions generated1301
from the CoLLEGe-DefGen and Oxford test set by the1302
baselines and the Minnow models (in addition to Table 41303
in Section 5.4).1304

Results of CoLLEGe (Teehan et al., 2024), which1305
generates new embeddings to be used in an LLM, are ap-1306
pended to Table 13 and 14 and are directly copied from1307
the original paper. Those numbers should be compared1308
with other models with caution because they have dif-1309
ferent settings: They are based on Llama-2 7B (Touvron1310
et al., 2023) and new embeddings, their data processing1311

is not as fine as ours (they did not remove duplicated 1312
words from both datasets, did not keep the inflectional 1313
suffixes in CoLLEGe-DefGen, and did not find more 1314
forms in the Oxford dataset as we do (15% examples 1315
without replacing any word form)), and the usage exam- 1316
ples they randomly selected from CoLLEGe-DefGen 1317
are different from ours. 1318

24

https://github.com/ltgoslo/definition_modeling?tab=readme-ov-file#definition-generation-models-for-english
https://github.com/ltgoslo/definition_modeling?tab=readme-ov-file#definition-generation-models-for-english
https://github.com/ltgoslo/definition_modeling?tab=readme-ov-file#definition-generation-models-for-english
https://github.com/ltgoslo/definition_modeling?tab=readme-ov-file#definition-generation-models-for-english
https://github.com/ltgoslo/definition_modeling?tab=readme-ov-file#definition-generation-models-for-english


Model CoLLEGe-DefGen Oxford
Variant Method BERTScore F1 ROUGE-L BERTScore F1 ROUGE-L

FLAN-T5 Base +DefInstr baseline 83.1 13.1 84.4 16.5
FLAN-T5 Large +DefInstr baseline 83.8 15.5 84.7 17.4
FLAN-T5 XL +DefInstr baseline 83.1 12.4 84.9 19.4

Llama-3 8B baseline 85.1 14.9 83.2 11.0
+Minnow 85.4 18.7 84.7 16.3

Llama-3 8B Instruct baseline 85.3 17.6 83.6 12.5
+Minnow 85.8 20.7 84.7 16.5

Llama-2 7B CoLLEGe* 84.1 18.0 83.6 17.1

Table 13: Quantitative evaluation of generated definitions by comparing them with ground-truth definitions. This table extends
Table 3 by presenting results from all models we evaluate, including the additional specialized FLAN-T5 baselines from
Giulianelli et al. (2023) and the CoLLEGe model from Teehan et al. (2024). We generate a definition from only one example
(1-shot). We sample an example per word from CoLLEGe-DefGen, while Oxford has exactly one example per word. All
definitions are generated with greedy decoding. “+DefInstr” means the definition generation finetuning by Giulianelli et al.
(2023). “baseline” means using a pseudo-word ‘wug’ as the placeholder word. For Minnow models (“+Minnow”), scores are
averaged across 3 runs. The instruction-tuned variant of Llama-3 8B (“Llama-3 8B Instruct”) is better than the pre-trained
variant (“Llama-3 8B”) on definition generation likely due to its better instruction-following ability. *: CoLLEGe results are
from “Prompting + CoLLEGe” in the Table 4 of Teehan et al. (2024), which provides Llama-2 7B (Touvron et al., 2023) with
embeddings generated by CoLLEGe and prompt it to generate definitions with in-context usage examples. Teehan et al. (2024)
has slightly different data processing, so CoLLEGe results are not strictly comparable (see Appendix G).

Model CoLLEGe-DefGen
Variant Method BERTScore F1 ROUGE-L

Llama-3 8B baseline 85.8 17.8
+Minnow 85.9 21.1

Llama-3 8B Instruct baseline 85.9 19.5
+Minnow 86.2 22.6

Llama-2 7B CoLLEGe* 84.8 17.8

Table 14: Quantitative evaluation of generated definitions by comparing them with ground-truth definitions in the CoLLEGe-
DefGen dataset. Definitions are generated 1-, 2-, and 3-shot and scores are averaged. All definitions are generated with greedy
decoding. For models finetuned with Minnow, scores are averaged across 3 runs. *: CoLLEGe results are from Teehan et al.
(2024), which is based on Llama-2 7B and slightly different data processing (see Appendix G). We do not have FLAN-T5 models
here since Giulianelli et al. (2023) finetuned them to use only one usage example.
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Example Sentence True Definition Minnow Baseline Word

As the hurricane neared,
the residents began to
[new-token] their
windows to protect their
homes from the
impending storm.

to cover or seal
windows, doors, or
other openings of a
building with boards,
typically to protect it
from damage or
unauthorized entry.

to protect from harm or
danger

to prepare for a hur-
ricane by boarding up
windows

board up

to make something more
secure or safe by cover-
ing it with a layer of ma-
terial

to secure or fasten some-
thing, especially a win-
dow, to prevent it from
being damaged or de-
stroyed

The gentle hum of the air
conditioner provided a
[new-token]
soundtrack for her
midday nap.

having a calming or
relieving effect,
especially in terms of
reducing pain or
discomfort.

a sound that is not loud
enough to be heard

a small, furry, brown
creature that lives in
trees.

soothing

a soothing, calming, or
quiet sound

a wug is a word that is not
yet known to the speaker,
but is assumed to be a
real word.

In their groundbreaking
research, the team of
geneticists successfully
deactivated the
[new-token], resulting
in the unexpected bloom
of dormant traits within
the lab mice.

a type of gene that
codes for a protein,
known as a repressor,
which inhibits the
expression of one or
more genes by binding
to the operator or
associated silencers.

a gene that is turned off
in a cell

a hypothetical new word
that does not yet exist in
the English language.

repressor
gene

a gene or set of genes
that controls the devel-
opment of a particular
trait or characteristic

a hypothetical word used
in linguistic research to
test the ability to form
and use new words.

She preferred the
[new-token] wilderness
to the stifling orderliness
of city life.

not restricted or limited;
free; unconfined.

not having a definite
shape or form

a small, furry animal untrammeled

a place where there are
many trees, especially in
a forest or a park

a mythical creature that
is half-wolf and half-
bear

In the heart of her rustic
kitchen, Grandma
carefully seasoned the
[new-token], her secret
ingredient for the
family’s cherished
Sunday stew.

The chest portion of a
young cow, typically
used in cooking for its
tender meat.

a mixture of herbs and
spices used to flavor
food

a mythical creature that
resembles a cross be-
tween a dog and a frog.

breast of
veal

a small, usually round,
piece of food, especially
a piece of meat or a veg-
etable, cut off from a
larger piece and cooked
separately

a type of meat

The contractor
recommended
[new-token] for
insulation due to its
excellent thermal
resistance and
fireproofing properties.

a type of insulation
material made from
melted rock or
industrial waste that is
spun into a fibrous
structure. It is used for
thermal insulation, fire
protection, and
soundproofing in both
residential and
commercial buildings.

a material used to insu-
late a building

a unit of insulation used
in construction

mineral
wool

a material used to pre-
vent heat transfer, espe-
cially in buildings

a type of insulation mate-
rial

Table 15: Definitions generated by both the pre-trained and instruction-tuned variant of Llama-3 8B (baselines) and the models
finetuned from them with Minnow on BabyLM-10M with greedy decoding, using the prompt “The word [new-token] in the
above sentence(s) is defined as "” (so we can extract continuations before the closing quote as the generated definitions). Each
definition is generated using the single example sentence shown and provided in context. The pre-trained/instruction-tuned
variant is shown at the top/bottom of each row of example. We boldface the winner judged by GPT-4o. You may observe the
quality of instruction-tuned variant is better than the pre-trained variant by manually comparing their definition in each example.
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Example Sentence True Definition Minnow Baseline FLAN-XL-DefInstr Word

many people in
the world have to
[new-token] on $ 1
a day

support oneself to live on something,
especially food, in a
way that is not very
good or healthy

to struggle to
make ends meet

live on subsist

this food
[new-token]
the patient

restore strength to make something
more intense or
strong

a type of food to give strength revitalizes

he is always well-
[new-token]

care for one’s
external appear-
ance

well - dressed a type of wug in good health groomed

the lawyers tried to
[new-token] the
credibility of the
witnesses

challenge the
honesty or verac-
ity of

to make something
more convincing or
believable

to question the
credibility of a
witness

to challenge the hon-
esty or veracity of

impeach

the car squeaks to a
halt and she glares at
him because of his
[new-token] stop.

characterized by
abrupt stops and
starts

a sudden, sharp, high
- pitched sound, espe-
cially one made by
a car’s brakes or a
bird’s call

a made-up word a jerk that causes
an object to move
abruptly

jerky

try the full plate
pork [new-token] :
tender pork, oregano-
spiked greek salad,
warm puffy pita,
rice, and aromatic
tzatziki-topped
lemon potatoes.

a greek dish of
pieces of meat
grilled on a
skewer

a dish of meat,
usually pork, served
with a sweet and
sour sauce, and often
served with rice and
vegetables

a type of dish
that is a combi-
nation of pork,
rice, and pota-
toes, typically
served with a
side of salad and
pita bread.

a greek dish of grilled
meat served in a pita .

souvlaki

extend the tv antenna
(word is absent)

extend or stretch
out to a greater
or the full length

a small, usually
round, piece of
metal or plastic used
to connect two wires
together

a type of bird raise or extend verti-
cally

stretch

the red light gave
the central figure
increased emphasis
(word is absent)

special im-
portance or
significance

a red light a wug is a wug special importance or
significance

accent

Table 16: Definitions generated by the instruction-tuned variant of Llama-3 8B (baseline), the Minnow model finetuned
from it with greedy decoding, and FLAN-XL-DefInstr (i.e., FLAN-T5 XL +DefInstr baseline), using the prompt “The word
[new-token] in the above sentence(s) is defined as "” ([new-token] can be replaced by other placeholders, as we mentioned in
Section 5.4). Each definition is generated using the single example sentence shown and provided in context. The Minnow model
generates reasonable definitions given the context, but is often much longer than the ground-truth definitions, likely because it
is not fitted to this dataset. The baseline model is often generating low-quality or repetitive definitions, and sometimes sticks
to its prior knowledge of the pseudo-word “wug.” FLAN-XL-DefInstr generates definitions pretty close to the ground-truth,
but is sometimes suspicious of overfitting to or memorizing the data, as its definition for ‘impeach’ and ‘accent’ (absent in the
example) may suggest.
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H Concepts of “Word”1319

The term “word” can refer to linguistic units with nu-1320
anced variations. Here, we describe the concepts of1321
“word” in different contexts of the paper and their impli-1322
cations. Surprisingly, our models are somehow robust1323
to these variations of “word,” though future work may1324
further improve the processing of words.1325

Word usage datasets In the two datasets we con-1326
structed for training and finetuning (Section 3.2 and1327
Appendix A), a “word” means a word-form, which is1328
instantiated as an individual token extracted from the1329
word-level tokenization (using spaces and punctuations1330
as boundaries). Therefore, for the same lexeme, a sen-1331
tence using one of its word-form is not considered an1332
example of another word-form. For instance, a sentence1333
using other inflected forms of “ski” like “Susie likes1334
skiing fast down the snowy mountain on her new skis”1335
is not included in the example set of “ski.” Meanwhile,1336
when two word-forms of the same lexeme occur in one1337
sentence, meta-learning one of the word-form could be1338
easier since the other word-form may not be masked.1339
For instance, “skis” in the sentence “I saw Susie ski1340
fast down the snowy mountain on her new skis” could1341
make it easier to guess the word “ski.” In our work, we1342
focus on learning word-forms, but if we aim to learn a1343
lexeme, this case will reveal the identity of the lexeme1344
we try to mask, undermining our effort on the novelty1345
of the learned word. On the other hand, a word-form1346
in different syntactic categories is considered the same1347
word, and the usage examples will be mixed together1348
regardless of the syntactic categories. Such words are1349
rare, but they introduce syntactic uncertainties in word1350
learning. Syntactic uncertainties are natural, but may1351
increase the difficulty of learning.1352

Pseudo-words In our baselines (Section 3.4 and the1353
FLAN-T5 models in Section 5.4) and comparison of1354
generations (Appendix E), we replace the word to learn1355
by a pseudo-word, like “dax” or “wug”, regardless of1356
the word’s syntactic category and other aspects of mean-1357
ing. The pseudo-word is then tokenized, usually by a1358
subword tokenizer for LLMs (thus may have multiple1359
tokens). We choose the pseudo-word to be meaningless1360
and commonly used in linguistic tests. However, a pre-1361
trained LLM like Llama-3 may have priors of certain1362
aspects of the pseudo-word’s meaning based on its form.1363
One aspect of the meaning is syntax. For example, from1364
the sentence “Susie goes skiing in the winter”, we re-1365
place “skiing” with “dax” and have the sentence “Susie1366
goes dax in the winter.” The sentence has a problem: the1367
part of speech of “skiing” is gerund, but “dax” does not1368
look like a gerund (since it does not end in “-ing”). So1369
the sentence could mislead an LLM like Llama-3, which1370
can use morphological information from its subword to-1371
kenization. Another aspect of the meaning is semantics.1372
For example, in Table 16, the baseline model sometimes1373
sticks to its prior knowledge of the pseudo-word “wug,”1374
as reflected in its generated definitions like “a made-up1375
word” and “a type of bird” (“wug” referred to a bird-like1376

creature in the Wug Test of Berko, 1958). We admit that 1377
this problem may weaken our baselines and comparison 1378
of generations. Future work should use more suitable 1379
pseudo-words, preserving the morphological inflections 1380
while removing the semantic information. 1381
Evaluation datasets Words to be learned in the 1382
Chimera, CoLLEGe-DefGen, and Oxford datasets are 1383
lexemes, so examples of each word use (different) in- 1384
flected word-forms. To ensure the placeholder consis- 1385
tently represents the same text, we replace only the word 1386
stem with the placeholder and retain the inflectional 1387
suffixes in the original word-forms on the Chimera 1388
and CoLLEGe-DefGen datasets. (We still replace word- 1389
forms in Oxford to make our practice consistent with 1390
previous ones.) In addition, words to be learned in the 1391
CoLLEGe-DefGen dataset also include multiwords or 1392
phrases, like the “categorical imperative” example in Ta- 1393
ble 4. See Appendix G for further details of preprocess- 1394
ing. Surprisingly, although our placeholder token repre- 1395
sents a word-form in the BabyLM-10M dataset we con- 1396
structed, Minnow models finetuned on BabyLM-10M 1397
still perform well when using the token to represent a 1398
word stem in these datasets. 1399

28


	Introduction
	Related Work
	The Rare Word Problem
	Few-Shot Word Learning
	Meta In-Context Learning

	Method
	Method: metaicl-w
	Data
	Held-out Word Classification
	Baseline: Off-the-shelf Llama-3 8B

	Training Models From Scratch
	Finetuning Pre-trained LLMs
	Held-out Word Classification
	Syntactic Category Classification
	New Usage Example Generation
	Definition Generation

	Conclusion
	Limitations
	Word Usage Dataset Creation
	Model and Training Configurations
	Held-out Word Classification
	Syntactic Category Classification
	Comparing Generations
	Evaluation of Generated New Usage Examples
	Evaluation of Generated Definitions
	Concepts of ``Word''

