
Under review as a conference paper at ICLR 2022

TOWARDS FEATURE OVERCORRELATION IN DEEPER
GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have achieved great success in graph representa-
tion learning, which has tremendously facilitated various real-world applications.
Nevertheless, the performance of GNNs significantly deteriorates when the depth
increases. Recent researches have attributed this phenomenon to the oversmooth-
ing issue, which indicates that the learned node representations are highly indis-
tinguishable. In this paper, we observe a new issue in deeper GNNs, i.e., feature
overcorrelation, and perform a thorough study to deepen our understanding on
this issue. In particular, we demonstrate the existence of feature overcorrelation
in deeper GNNs, reveal potential reasons leading to this issue, and validate that
overcorrelation and oversmoothing present different patterns though they are re-
lated. Since feature overcorrelation indicates that GNNs encode less information
and can harm the downstream tasks, it is of great significance to mitigate this is-
sue. Therefore, we propose the DeCorr, a general framework to effectively reduce
feature correlation for deeper GNNs. Experimental results on various datasets
demonstrate that DeCorr can help train deeper GNNs effectively and is comple-
mentary to methods tackling oversmoothing.

1 INTRODUCTION

Graphs describe pairwise relations between entities for real-world data from various domains, which
are playing an increasingly important role in many applications, including node classification (Kipf
& Welling, 2016), recommender systems (Fan et al., 2019; Ying et al., 2018a) and drug discov-
ery (Duvenaud et al., 2015). To facilitate these applications, it is particularly important to extract
effective representations for graphs. In recent years, graph neural networks (GNNs) have achieved
tremendous success in representation learning on graphs (Zhou et al., 2018; Wu et al., 2019). Most
GNNs follow a message-passing mechanism to learn a node representation by propagating and trans-
forming representations of its neighbors (Gilmer et al., 2017b), which significantly helps them in
capturing the complex information of graph data.

Despite the promising results, it has been observed that deeply stacking GNN layers often results
in significant performance deterioration (Li et al., 2018; Zhao & Akoglu, 2020). Hence, to enable
larger receptive filed and larger model capacity, increasing efforts have been made on developing
deeper GNNs (Zhao & Akoglu, 2020; Zhou et al., 2020; Liu et al., 2020; Rong et al., 2019; Chen
et al., 2020b). Most of them attribute the performance deterioration to the oversmoothing issue. In
other words, the learned node representations become highly indistinguishable when stacking many
GNN layers. In this work, we observe a different issue, overcorrelation, which indicates that deeply
stacking GNN layers renders the learned feature dimensions highly correlated. High correlation
indicates high redundancy and less information encoded by the learned dimensions, which can harm
downstream performance.

We first systematically study the overcorrelation issue in deeper GNNs by answering three questions:
(1) does the overcorrelation issue exist? (2) what contributes to the overcorrelation issue? (3) what
is the relationship and difference between overcorrelation and oversmoothing? Through exploring
these questions, we find that when stacking more GNN layers, generally feature dimensions become
more correlated and node representations become more smooth; but they present distinct patterns.
Furthermore, through empirical study and theoretical analysis, we show that overcorrelation can be
attributed to both propagation and transformation and we further demonstrate that in the extreme

1

Under review as a conference paper at ICLR 2022

case of oversmoothing, the feature dimensions are definitely overcorrelated but not vice versa. In
other words, the overcorrelated feature dimensions does not necessarily indicate oversmoothed node
representations. These observations suggest that overcorrelation and oversmoothing are related but
not identical. Thus, handling overcorrelation has the potential to provide a new and complementary
perspective to train deeper GNNs.

After validating the existence of the overcorrelation issue and understanding its relationship with
oversmoothing, we aim to reduce the feature correlation and consequently enrich the encoded in-
formation for the representations, thus enabling deeper GNNs. In particular, we propose a general
framework, DeCorr, to address the overcorrelation issue by introducing an explicit feature decorre-
lation component and a mutual information maximization component. The explicit feature decor-
relation component directly regularizes the correlation on the learned dimensions while the mutual
information maximization component encourages the learned representations to preserve a fraction
of information from the input features.

Our contributions. Our contributions can be summarized as follows: (1) We introduce a new
perspective in deeper GNNs, i.e., feature overcorrelation, and further deepen our understanding on
this issue via empirical experiments and theoretical analysis. (2) We propose a general framework
to effectively reduce the feature correlation and encourage deeper GNNs to encode less redundant
information. (3) Extensive experiments have demonstrated the proposed framework can help enable
deeper GNNs and is complementary to existing techniques tackling the oversmoothing issue.

2 BACKGROUND AND RELATED WORK

We denote a graph as G = (A,X), where A ∈ {0, 1}N×N is the adjacency matrix, and X ∈ RN×d

indicates the node feature matrix with d as the number of features.

Preliminaries of Graph Neural Networks. A graph neural network model usually consists of
several GNN layers, where each layer takes the output of the previous layer as the input. Each GNN
layer updates the representations of all nodes by propagating and transforming representations of
their neighbors. More specifically, the l-th GNN layer can be described as follows:

H
(l)
i,: = Transform

(
Propagate

(
H

(l−1)
j,: | vj ∈ N (vi) ∪ {vi}

))
, (1)

where H
(l)
i,: denotes the representation for node vi after l-th GNN layer and N (vi) is the set of

neighboring nodes of node vi. For an L layer graph neural network model, we adopt H(L) as the
final representation of all nodes, which can be utilized for downstream tasks. For example, for node
classification task, we can calculate the discrete label probability distribution for node vi as follows:

ŷvi = softmax
(
H

(k)
i,:

)
, (2)

where ŷvi [j] corresponds to the probability of predicting node vi as the j-th class.

Related Work. Recent years have witnessed great success achieved by graph neural net-
works (GNNs) in graph representation learning, which has tremendously advanced various graph
tasks (Ying et al., 2018b; Yan et al., 2018; Marcheggiani et al., 2018; Zitnik et al., 2018). In general,
there are two main families of GNN models, i.e. spectral-based methods and spatial-based methods.
The spectral-based GNNs utilize graph convolution based on graph spectral theory (Shuman et al.,
2013) to learn node representations (Bruna et al., 2013; Henaff et al., 2015; Defferrard et al., 2016b;
Kipf & Welling, 2016), while spatial-based GNNs update the node representation by aggregating
and transforming information from its neighbors (Veličković et al., 2017; Hamilton et al., 2017;
Gilmer et al., 2017a). For a thorough review, we please refer the reader to recent surveys (Zhou
et al., 2018; Wu et al., 2019).

However, recent studies have revealed that deeply stacking GNN layers can lead to significant per-
formance deterioration, which is often attributed to the oversmoothing issue (Zhao & Akoglu, 2020;
Chen et al., 2020a), i.e, the learned node representations become highly indistinguishable. To ad-
dress the oversmoothing issue and enable deeper GNNs, various methods have been proposed (Zhao
& Akoglu, 2020; Chen et al., 2020a; Zhou et al., 2020; Rong et al., 2019; Chen et al., 2020b). For
example, PairNorm (Zhao & Akoglu, 2020) is proposed to keep the total pairwise distance of node

2

Under review as a conference paper at ICLR 2022

0 10 20 30 40 50
Number of Layers

0.0

0.2

0.4

0.6

0.8

1.0

Co
rr/

SM
V/

Ac
c

GCN-Corr
GCN-SMV
GCN-Acc

GAT-Corr
GAT-SMV
GAT-Acc

ChebyNet-Corr
ChebyNet-SMV
ChebyNet-Acc

(a) Cora

0 10 20 30 40 50
Number of Layers

0.0

0.2

0.4

0.6

0.8

1.0

Co
rr/

SM
V/

Ac
c

GCN-Corr
GCN-SMV
GCN-Acc

GAT-Corr
GAT-SMV
GAT-Acc

ChebyNet-Corr
ChebyNet-SMV
ChebyNet-Acc

(b) Citeseer

Figure 1: Corr and SMV of learned representa-
tions for three GNNs together with test accuracy.

0 2 4 6 8 10 12 14 16 18 20
Number of Propagation

0.0

0.2

0.4

0.6

0.8

1.0

Co
rr/

SM
V Full-Corr

Full-SMV
LCC-Corr
LCC-SMV

(a) Propagation

0 1 2 3 4 5 6 7 8 9 102030405060708090100
Number of MLP Layers

0.0

0.2

0.4

0.6

0.8

1.0

Co
rr/

SM
V with-ReLU-Corr

with-ReLU-SMV
w/o-ReLU-Corr
w/o-ReLU-SMV

(b) Transformation

Figure 2: Corr and SMV on Cora when stack-
ing more propagation and transformation .

representations constant through a normalization layer. Similarly, DGN (Zhou et al., 2020) also
normalizes the node representation by normalizing each group of similar nodes independently to
maintain the group distance ratio and instance information gain. Different from the normalization
methods, DropEdge (Rong et al., 2019) proposes to randomly drop some edges from the graph,
which has been shown to alleviate both oversmoothing and overfitting. However, most of the works
targets at solving oversmoothing while overlooking the feature overcorrelation. In this paper, we
perform a systematical study on the overcorrelation issue and provide effective solution to tackle it.
We also provide the connections between the previous methods and overcorrelation in Section 3.3.

3 PRELIMINARY STUDY

In this section, we investigate the issues of overcorrelation in deep graph neural networks through
both empirical study and theoretical analysis. We observe that overcorrelation and oversmoothing
are different though they could be related.

3.1 OVERCORRELATION AND OVERSMOOTHING

In this subsection, we demonstrate that stacking multiple graph neural network layers can sharply
increase the correlation among feature dimensions. We choose one popular correlation measure,
pearson correlation coefficient (Benesty et al., 2009), to evaluate the correlation between the learned
dimensions in deep GNNs. Specifically, given two vectors x ∈ RN and y ∈ RN , the pearson
correlation coefficient between them can be formulated as follows:

ρ(x,y) =

∑N
i=1 (xi − x̄) (yi − ȳ)√∑N

i=1 (xi − x̄)
2∑N

i=1 (yi − ȳ)
2
, (3)

where x̄ and ȳ denote the mean value of x and y, respectively. Essentially, pearson correlation coef-
ficient normalizes the covariance between the two variables and measures how much two variables
are linearly related to each other. The value of ρ(x,y) ranges from -1 to 1 – high absolute values
of pearson correlation coefficient indicate that the variables are highly correlated and vice versa.
Furthermore, we propose the metric Corr to measure the correlation among all learned dimension
pairs in the representation X ∈ RN×d as,

Corr(X) =
1

d(d− 1)

∑
i 6=j

|p(X:,i,X:,j)| i, j ∈ [1, 2, . . . , d], (4)

where X:,i denotes the i-th column of X. Since we are also interested in the oversmoothing issue,
we use the metric SMV proposed in (Liu et al., 2020), which uses normalized node representations
to compute their Euclidean distance:

SMV (X) =
1

N(N − 1)

∑
i6=j

D(Xi,:,Xj,:), (5)

where D(·, ·) is the normalized Euclidean distance between two vectors. The smaller SMV is,
the smoother the node representations are. Furthermore, it is worth noting that, (1) both Corr and
SMV are in [0, 1]; and (2) they are different measures from two perspectives – Corr measures
dimension-wise correlation while SMV measures node-wise smoothness.

3

Under review as a conference paper at ICLR 2022

Based on the aforementioned metrics, we investigate the overcorrelation and oversmoothing issues
in three representative GNN models, i.e., GCN (Kipf & Welling, 2016), GAT (Veličković et al.,
2017) and ChebyNet (Defferrard et al., 2016a). Specifically, we vary their depth from 2 to 50 and
calculate the values of correlation (Corr) and smoothness (SMV) of the final representations, as
shown in Figure 1. From the figure, we make following observations:

(1) When the number of layers increases, the correlation among dimensions increases significantly.
For example, for 50-layer GCN and GAT, the Corr values on the two datasets are larger than
0.95, which shows extremely high redundancy in the learned dimensions of deep GNNs.

(2) For the first a few layers (i.e., the number of layers is smaller than 10), the Corr values increase
sharply (roughly from 0.3 to 0.6) together with the drop of test accuracy. However, the SMV
values do not change much (roughly from 0.6 to 0.5). That can explain the observation in
Section 5.2 why methods addressing oversmoothing perform worse than shallow GNNs while
our methods tackling overcorrelation can outperform shallow GNNs.

(3) In general, with the increase of the number of layers, the learned representations becomes more
correlated and more smoothing. However they show very different patterns. This observation
suggests that overcorrelation and oversmoothing are different though related. Thus, addressing
them can help deeper GNNs from different perspectives and can be complementary. This is
validated by our empirical results in Section 5.2.

It is evident from this study that (i) deep GNNs suffer the overcorrelation issue, i.e., the learned
dimensions become more correlated as the number of layers increases; and (ii) overcorrelation and
oversmoothing present different patterns with the increase of the number of layers. Next, we will
analyze possible factors causing overcorrelation and discuss the problems of overcorrelated features.

3.2 ANALYSIS ON OVERCORRELATION

Propagation and transformation are two major components in graph neural networks as discussed in
Section 2. In this subsection, we first show that both propagation and transformation can increase
feature correlation. Then we discuss potential problems caused by overcorrelated features.

3.2.1 PROPAGATION CAN LEAD TO HIGHER CORRELATION

In this subsection, we will show that propagation in GNNs can cause higher feature correlation from
both theoretical analysis and empirical evidence. In essence, the propagation in GNNs will lead
to smoother representation as shown in (Li et al., 2018; Liu et al., 2020; Oono & Suzuki, 2019);
their analysis suggests that applying infinite propagation can make the node representations in a
connected graph to be proportional to each other, which we call extreme oversmoothed features in
this work. Next we show that the dimensions of extreme oversmoothed features are correlated.
Proposition 3.1. Given an extreme oversmoothed matrix X where each row is proportional to each
other, we have Corr(X)=1.
Proof. The detailed proof of this proposition can be found in Appendix B.

The above proposition indicates that multiple propagation can lead to higher correlation. Though
the analysis is only for connected graph, if the training nodes are in the same component, their rep-
resentations would still be overcorrelated and harm the performance of downstream tasks. More
importantly, we empirically find that propagation can increase the feature correlation in both con-
nected and disconnected graph. Specifically, we use the full graph (Full) and largest connected com-
ponent (LCC) of Cora dataset, which originally consists of 78 connected components, to compute
the propagation matrix Â = D̃−1/2ÃD̃−1/2. Then we apply multiple propagation on randomly
generated node features of dimension 100 whose correlation is very close to 0. We vary the number
of propagation (K) and illustrate the average values of Corr(ÂKX) for 100 runs in Figure 2a. Note
that we include results on other datasets in Appendix A.1 due to page limit. As we can see from the
figure, there is a clear trend that performing multiple propagation can cause uncorrelated features to
eventually overcorrelated, no matter whether the graph is connected or not.

Despite that in the extreme case oversmoothing indicates overcorrelation, we show that the opposite
of this statement could not hold. Specifically, we have the following proposition:
Proposition 3.2. Given an extreme overcorrelated representation X, i.e., Corr(X) = 1, the rows
of X are not necessarily proportional to each other.

4

Under review as a conference paper at ICLR 2022

Proof. The detailed proof of this proposition can be found in Appendix B.

To demonstrate it more clearly, consider a 2 × 2 matrix with row vectors v1 = [1, 0] and v2 =
[−0.1, 1.1]. The pearson correlation coefficient between the column vectors is 1. But the normalized
euclidean distance between the row vectors is 0.738 (the cosine similarity is −0.09).

3.2.2 TRANSFORMATION CAN LEAD TO HIGHER CORRELATION

In addition to propagation, we also find that transformation can make transformed features more
correlated through empirical study. Specifically, we randomly generate uncorrelated node features
of dimension 100 and applyK-layer multi layer perceptron (MLP) with hidden units of 16. We vary
the value of K and plot the Corr values for final representations in Figure 2b. Due to page limit,
we include results on other datasets in Appendix A.1. Note we do not train the MLP but only focus
on the forward pass of the neural network, i.e., the weights of MLP are randomly initialized. From
the figure we can see that repeatedly applying (linear or non-linear) transformation will increase
the correlation of feature dimensions. Intuitively, this is because transformation linearly combines
the feature dimensions and increases the interaction between feature dimensions. As a result, re-
peated transformation could make each dimension of final representation contain similar amount of
information from previous layers and become overcorrelated. On the other hand, backpropagation
can to some extent alleviate the overcorrelation issue as the objective downstream task will guide
the training process of parameters. However, training very deep neural networks can face other
challenges like gradient vanishing/exploding and overfitting, thus failing to effectively reduce the
representation correlation. That could also be the reason why trained deep GNNs still exhibit the
overcorrelation issue as shown in Figure 1.

3.3 FURTHER DISCUSSIONS

Overcorrelation vs. Oversmoothing. The previous study suggests that overcorrelation and over-
smoothing are neither identical nor independent. Their difference can be summarized as: over-
smoothing is measured by node-wise smoothness while overcorrelation is measured by dimension-
wise correlation. These two measures are essentially different. Correlated feature dimensions do
not indicate similar node-wise features. As shown in Figure 2b, we can observe that SMV does not
change much while Corr goes up very quickly in the MLP without ReLU. On the other hand, their
relations can be summarized as follows: (1) both overcorrelation and oversmoothing can make the
learned representation encode less information and harm the downstream performance; and (2) both
of them can be caused by multiple propagation since the extreme case of oversmoothing also suffers
overcorrelation as demonstrated in Section 3.2.1 and Figure 2a.

Revisiting Previous Methods Tackling Oversmoothing. Since we have introduced the overcorre-
lation issue, next we revisit the previous methods tackling oversmoothing that have the potential to
help alleviate the overcorrelation issue:

(1) DropEdge (Rong et al., 2019). DropEdge tackles the oversmoothing problem by randomly
dropping edges in the graph. This can be beneficial to correlation reduction: (1) it can weaken
the propagation process, thus alleviating overcorrelation; and (2) dropping edges can make the
graph more disconnected and further reduce the feature correlation as we showed in Figure 2a.

(2) Residual based methods (Kipf & Welling, 2016; Chen et al., 2020b; Li et al., 2019). Res-
GCN (Kipf & Welling, 2016) equips GCN with residual connection and GCNII (Chen et al.,
2020b) employs initial residual and identity mapping. Such residual connection bring in addi-
tional information from previous layers that can help the final representation encode more useful
information and thus alleviate the overcorrelation issue.

(3) Normalization and other methods (Zhao & Akoglu, 2020; Zhou et al., 2020). These methods
target at pushing GNNs to learn distinct representations. They also can implicitly reduce the
feature correlation.

4 THE PROPOSED FRAMEWORK

In this section, we introduce the proposed framework, DeCorr, to tackle the overcorrelation issue.
Specifically, the framework consists of two components: (1) explicit feature decorrelation which
directly reduces the correlation among feature dimensions; and (2) mutual information maximization
which maximizes the mutual information between the input and the representations to enrich the
information, thus implicitly making features more independent.

5

Under review as a conference paper at ICLR 2022

4.1 EXPLICIT FEATURE DIMENSION DECORRELATION

In order to decorrelate the learned feature dimensions, we propose to minimize the correlation among
the dimensions of the learned representations. There are many metrics to measure the correlation
for variables including linear metrics and non-linear metrics. As discussed in Section 3.1, though
measured by linear correlation metric, deep GNNs are shown to have high correlation among di-
mensions of the learned representations. For simplicity, we propose to use the covariance, as a
proxy for pearson correlation coefficient, to minimize the correlation among representation dimen-
sions. Specifically, given a set of feature dimensions {x1,x2, . . . ,xd} with xi ∈ RN×1, we aim to
minimize the following loss function,

1
N−1

(∑
i,j,i 6=j

(
(xi − x̄i)

>(xj − x̄j)
)2

+
∑

i

(
(xi − x̄i)

>(xi − x̄i)− 1
)2)

, (6)

where x̄i is the vector with all elements as the mean value of xi. In Eq. (6), minimizing the first
term reduces the covariance among different feature dimensions and when the first term is zero, the
dimensions will become uncorrelated. By minimizing the second term, we are pushing the norm of
each dimension (after subtracting the mean) to be 1. We then rewrite Eq. (6) as the matrix form,

1

N − 1

∥∥(X− X̄)>(X− X̄)− Id
∥∥2
F
, (7)

where X̄ = [x̄1, x̄2, . . . , x̄d] ∈ RN×d and ‖ · ‖F indicates the Frobenius norm. It is worth noting
that the gradient of

∥∥X>X− I
∥∥2
F

is calculated as 4X(X>X − I). Thus, the gradient calculation
has a complexity of O(N2d2), which is not scalable when the graph size is extremely large in the
real world applications (e.g., millions of nodes). To deal with this issue, instead of using all nodes to
calculate the covariance, we propose to apply Monte Carlo sampling to sample

√
N nodes with equal

probability to estimate the covariance in Eq. (6). Then the complexity for calculating the gradient
reduces to O(Nd2), which linearly increase with the graph size. In addition, the sampling strategy
injects randomness in the model training process and thus can help achieve better generalization.

Minimizing the loss function in Eq. (7) is analogous to minimizing the following decorrelation loss
`D where we normalize the two terms by diving their Frobenius norm in Eq. (7) to make 0 ≤ `D ≤ 2:

`D(X) =

∥∥∥∥∥ (X− X̄)>(X− X̄)∥∥(X− X̄)T(X− X̄)
∥∥
F

− Id√
d

∥∥∥∥∥
F

, (8)

where X can be the output representation matrix for the current GNN layer. Since we hope the
representation after each layer can be less correlated, the final decorrelation loss for the explicit
representation decorrelation component is formulated as:

LD =

K−1∑
i=1

`D

(
H(i)

)
, (9)

where H(i) denotes the hidden representation at the i-th layer and K stands for the total number
of layers. By minimizing LD, we explicitly force the representation after each layer to be less
correlated, thus mitigating the overcorrelation issue when developing deep GNNs.

4.2 MUTUAL INFORMATION MAXIMIZATION

In Section 3.1, we have demonstrated that the final learned features can be of high redundancy and
encode little useful information. To address this issue, in addition to directly constraining on the
correlation of features, we propose to further enrich the encoded information by maximizing the
mutual information (MI) between the input and the learned features. The motivation comes from
independent component analysis (ICA) (Bell & Sejnowski, 1995). The ICA principle aims to learn
representations with low correlation among dimensions while maximizing the MI between the input
and the representation. Since deeper GNNs encode less information in the representations, the MI
maximization process can ensure that the learned representations retain a fraction of information
from the input even if we stack many layers. Specifically, given two random variables A and B, we
formulate the MI maximization process as follows:

max MI(A,B) = H(A)−H(A|B) = H(B)−H(B|A) (10)

6

Under review as a conference paper at ICLR 2022

where H(·) denotes the entropy function and MI(A,B) measures dependencies between A and
B. However, maximizing mutual information directly is generally intractable when A or B is ob-
tained through neural networks (Paninski, 2003), thus we resort to maximizing a lower bound on
MI(A,B). Specifically, we follow MINE (Belghazi et al., 2018) to estimate a lower bound of the
mutual information by training a classifier to distinguish between sample pairs from the joint distri-
bution P (A,B) and those from P (A)P (B). Formally, this lower bound of mutual information can
be described as follows:

MI(A,B) ≥ EP (A,B) [D(A,B)]− logEP (A)P (B)

[
eD(A,B)

]
, (11)

where D(A,B) is a binary discriminator. Hence, to maximize the mutual information between k-th
layer hidden representation H(k) and input feature X, denoted as MI(H(k),X), we minimize the
following objective:

`M (H(k),X) = −E
P (h

(k)
i ,xi)

[
D(h

(k)
i ,xi)

]
+ logEP (h(k))P (x)

[
eD(h

(k)
i ,xi)

]
, (12)

where h
(k)
i and xi are the hidden representation and input feature for node vi, respectively; the

discriminator D(·, ·) is modeled as a bilinear layer. In practice, in each batch, we sample a set of
{(h(k)

i ,xi)}Bi=1 from the joint distribution P (h
(k)
i ,xi) to estimate the first term in Eq. (12) and then

shuffle xi in the batch to generate “negative pairs” for estimating the second term.

Although we can apply the above loss function for each layer of deep GNNs as we did in Section 4.1,
we only apply `M every t layers to accelerate the training process as:

LM =
∑

i∈[t,2t,3t,...,K−1
t t]

`M

(
H(i)

)
. (13)

We empirically observe that a small value of 5 for t is sufficient to achieve satisfying performance.

Overall Optimization Objective. We jointly optimize the classification loss along with decorrela-
tion loss and MI maximization loss. The overall objective function can be stated as:

L = Lclass + αLD + βLM (14)

where Lclass is classification loss; α and β are the hyper-parameters that control the contribution of
LD andLM , respectively. We provide complexity analysis of the proposed algorithm in Appendix C.

5 EXPERIMENT

In this section, we evaluate the effectiveness of the proposed framework under various settings
and aim to answer the following research questions: RQ1. Can DeCorr help train deeper GNNs?
RQ2. By enabling deeper GNNs, is DeCorr able to help GNNs achieve better performance? RQ3.
Can DeCorr be equipped with methods that tackle oversmoothing and serve as a complementary
technique? RQ4. How do different components affect the performance of the proposed DeCorr?

5.1 EXPERIMENTAL SETTINGS

To validate the proposed framework, we conduct experiments on 9 benchmark datasets, including
Cora, Citeseer, Pubmed (Sen et al., 2008), CoauthorCS (Shchur et al., 2018), Chameleon, Texas,
Cornell, Wisconsin and Actor (Pei et al., 2020). Following (Zhao & Akoglu, 2020; Zhou et al.,
2020), we also create graphs by removing features in validation and test sets for Cora, Citeseer,
Pubmed and CoauthorCS. The statistics of these datasets and data splits can be found in Appendix D.
Furthermore, we consider three basic GNN models, GCN (Kipf & Welling, 2016), GAT (Veličković
et al., 2017) and ChebyNet (Defferrard et al., 2016a), and equip them with the following methods
tackling the oversmoothing issue: PairNorm (Zhao & Akoglu, 2020), BatchNorm (Ioffe & Szegedy,
2015), DGN (Zhou et al., 2020), and DropEdge (Rong et al., 2019). We implemented our proposed
framework based on the code provided by DGN (Zhou et al., 2020), which uses Pytorch (Paszke
et al., 2017) and PyTorch Geometric (Fey & Lenssen, 2019). Without specific mention, we follow
previous settings in (Zhao & Akoglu, 2020; Zhou et al., 2020): train with a maximum of 1000
epochs using the Adam optimizer (Kingma & Ba, 2014), run each experiment 5 times and report the
average. Detailed parameter settings can be found in Appendix E.

7

Under review as a conference paper at ICLR 2022

Dataset Method GCN GAT ChebyNet
L2 L15 L30 L2 L15 L30 L2 L15 L30

Cora

None 82.2 18.1 13.1 80.9 16.8 13.0 81.7 43.0 33.4
BatchNorm 73.9 70.3 67.2 77.8 33.1 25.0 70.3 66.0 61.7
PairNorm 71.0 67.2 64.3 74.4 49.6 30.2 67.6 58.2 49.7
DropEdge 82.8 70.5 45.4 81.5 66.3 51.0 81.5 67.1 55.7

DGN 82.0 75.2 73.2 81.1 71.8 51.3 81.5 76.3 59.4
DeCorr (Ours) 82.2 77.0 73.4 81.6 76.0 54.3 81.8 73.9 65.4

Citeseer

None 70.6 15.2 9.4 70.2 22.6 7.7 67.3 38.0 28.3
BatchNorm 51.3 46.9 47.9 61.5 28.0 21.4 51.3 38.2 37.4
PairNorm 60.5 46.7 47.1 62.0 41.4 33.3 53.2 37.6 34.6
DropEdge 71.7 43.3 31.6 69.8 52.6 36.1 69.8 45.8 40.7

DGN 69.5 53.1 52.6 69.3 52.6 45.6 67.3 49.3 47.0
DeCorr (Ours) 72.1 67.7 67.3 70.6 63.2 46.9 72.6 56.0 53.2

Pubmed

None 79.3 22.5 18.0 77.8 37.5 18.0 78.4 49.5 43.5
BatchNorm 74.9 73.7 70.4 76.2 56.2 46.6 73.6 68.0 69.1
PairNorm 71.1 70.6 70.4 72.4 68.8 58.2 73.4 67.6 62.3
DropEdge 78.8 74.0 62.1 77.4 72.3 64.7 78.7 73.3 68.4

DGN 79.5 76.1 76.9 77.5 75.9 73.3 78.6 71.0 70.5
DeCorr (Ours) 79.6 78.1 77.3 78.1 77.5 74.1 78.7 77.0 72.9

CoauthorCS

None 92.3 72.2 3.3 91.5 6.0 3.3 92.9 71.7 35.2
BatchNorm 86.0 78.5 84.7 89.4 77.7 16.7 84.1 77.2 80.7
PairNorm 77.8 69.5 64.5 85.9 53.1 48.1 79.1 51.5 57.9
DropEdge 92.2 76.7 31.9 91.2 75.0 52.1 92.9 76.5 68.1

DGN 92.3 83.7 84.4 91.8 84.5 75.5 92.7 84.0 80.4
DeCorr (Ours) 92.4 86.4 84.5 91.3 83.5 77.3 93.0 86.1 81.3

Table 1: Node classification accuracy (%) on different number of layers. (Bold: best)

5.2 EXPERIMENTAL RESULTS

Alleviating the Performance Drop in Deeper GNNs. We aim to study the performance of deeper
GNNs when equipped with DeCorr and answer RQ 1. Following the previous settings in (Zhou
et al., 2020), we perform experiments on Cora, Citeseer, Pubmed and CoauthorCS datasets. Note
that “None” indicates vanilla GNNs without equipping any methods. We report the performance
of GNNs with 2/15/30 layers in Table 1 due to space limit while similar patterns are observed in
other numbers of layers. Table 1 show that the proposed DeCorr can greatly improve deeper GNNs.
Furthermore, given the same layers, DeCorr consistently achieves the best performance for most
cases and significantly slows down the performance drop. For example, on Cora dataset, DeCorr
improves 15-layer GCN and 30-layer GCN by a margin of 58.9% and 60.3%, respectively. Given the
improvement of the performance, the node representations become much more distinguishable than
that in vanilla GNNs, thus alleviating the oversmoothing issue just as what the baseline methods do.
The above observations indicate that dealing with feature overcorrelation can allow deeper GNNs
and even achieves better performance than these only focusing on tackling oversmoothing.

It is worth noting that in most cases the propose framework can also boost the performance of 2-
layer GNNs while the strongest baseline, DGN, fail to achieve that and sometimes deteriorate the
performance. For instance, on Citeseer dataset, DeCorr improves GCN, GAT and ChebyNet by a
margin of 1.5%, 0.4% and 5.3%, respectively. This suggests that decorrelating the learned features is
generally helpful for improving the generalization of various models instead of only deeper models.
In addition, we also provide result on missing feature setting in Appendix A.3 to answer RQ 2.

Combining DeCorr with DGN. To verify if DeCorr can serve as a complementary technique
for methods tackling oversmoothing, we choose the strongest baseline, DGN, to be combined with
DeCorr. Specifically, we vary the values of K in {2, 4, . . . , 20, 25, . . . , 40} and report the test
accuracy and Corr values of DGN+DeCorr, DGN and DeCorr on the Cora dataset in Figure 3.
From the figure, we make the following observations:

(1) When combining DGN with DeCorr, we can achieve even better performance than each in-
dividual method, which indicates that overcorrelation and oversmoothing are not identical. It
provides new insights for developing deeper GNNs as we can combine the strategies tackling
overcorrleation with ones solving oversmoothing to enable stronger deeper models.

(2) In Figure 3b, we can observe that DGN is not as effective as DeCorr in reducing feature correla-
tion Corr. However, combining DGN with DeCorr can achieve even lower Corr than DeCorr
with the larger number of layers. It could be the reason that the training process of DeCorr be-

8

Under review as a conference paper at ICLR 2022

2 4 6 8 10 12 14 16 18 20 25 30 35 40
Number of Layers

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Te
st

 A
cc

ur
ac

y

DGN
DeCorr
DGN+DeCorr

(a) Test Accuracy

2 4 6 8 10 12 14 16 18 20 25 30 35 40
Number of Layers

0.2

0.3

0.4

0.5

0.6

0.7

Co
rr

Va
lu

e

DGN
DeCorr
DGN+DeCorr

(b) Correlation

Figure 3: Test accuracy and Corr on Cora.

Cite. Pubm. Corn. Wisc. Cham. Actor

GCN 71.1 79.0 28.2 52.2 45.9 26.9
GAT 70.8 78.5 42.9 58.4 49.4 28.5

APPNP 71.8 80.1 54.3 65.4 54.3 34.5

GCNII 73.5 79.9 70.8 76.7 52.8 34.5
+DeCorr 73.8 80.3 75.4 80.8 54.1 35.3

GCNII* 73.1 80.0 73.8 79.2 54.3 35.1
+DeCorr 73.7 80.4 79.2 82.5 59.0 35.3

Table 2: Node classification accuracy (%).

18.1 13.1

75.8 70.070.8

29.6

76.9 73.4

0

20

40

60

80

100

Layer 15 Layer 30

None DeCorr-𝛼 DeCorr-𝛽 Decorr

(a) Cora

18.1
13.1

57.1 52.453.8

37.3

67.7 67.3

0

20

40

60

80

Layer 15 Layer 30

None DeCorr-𝛼 DeCorr-𝛽 Decorr

(b) Citeseer

22.5 18.0

75.2 75.8
64.5

24.9

78.1 77.3

0

20

40

60

80

100

Layer 15 Layer 30

None DeCorr-𝛼 DeCorr-𝛽 Decorr

(c) Pubmed

72.2

3.3

85.7 83.781.6

28.1

86.4 84.5

0

20

40

60

80

100

Layer 15 Layer 30

None DeCorr-𝛼 DeCorr-𝛽 Decorr

(d) CoauthorCS
Figure 4: Test accuracy and Corr values on Cora dataset.

comes more stable when combined with DGN, which leads to a better minimization on feature
correlation.

Combining DGN with Other Deep Models. In addition to those general frameworks which alle-
viate the oversmoothing issue, we further combine deep models GCNII and GCNII* (Chen et al.,
2020b) (the depth is in {16, 32, 64}) with DeCorr. We perform experiments on eight benchmark
datasets and report the average accuracy for 10 random seeds in Table 4. It shows that DeCorr can
further improve both GCNII and GCNII* in most datasets. For example, DeCorr improves GC-
NII* by 0.6%, 0.4%, 5.4%, 1.9%, 3.3% and 4.7% on Citeseer, Pubmed, Cornell, Texas, Wisconsin
and Chameleon, respectively. Such observation further supports that decorrelating features can help
boost the model performance. Due to page limit, we include more results in Appendix A.

Ablation Study. We take a deeper look at the proposed framework to understand how each com-
ponent affects its performance and answer the fourth question. Due to space limit, we focus on
studying GCN while similar observations can be made for GAT and ChebyNet. We choose 15-layer
and 30-layer GCN to perform the ablation study on four datasets. Specifically, we create the fol-
lowing ablations: None, vanilla GCN without other components; DeCorr-α, which removes the
LM loss but keeps LD; DeCorr-β, which removes the LD loss but keeps LM . The results shown
in Figure 4 domonstrate that both DeCorr-α and DeCorr-β can greatly improve the performance of
15-layer GCN, indicating that optimizing LD and LM can both help reduce feature correlation and
boost the performance. Note that DeCorr-α and DeCorr-β can achieve comparable performance
on 15-layer GCN. However, on 30-layer GCN, DeCorr-β does not bring as much improvement as
DeCorr-α does on the four datasets. This observation suggests that when GNNs are very deep,
explicit feature decorrelation (LD) is of more significance than the implicit method (LM).

6 CONCLUSION

Graph neural networks suffer severe performance deterioration when deeply stacking layers. Recent
studies have shown that the oversmoothing issue is the major cause of this phenomenon. In this pa-
per, we introduce a new perspective in deeper GNNs, i.e., feature overcorrelation, and perform both
theoretical and empirical studies to deepen our understanding on this issue. We find that overcorrela-
tion and oversmothing present different patterns while they are also related to each other. To address
the overcorrelation issue, we propose a general framework, DeCorr, which aims to directly reduce
the correlation among feature dimensions while maximizing the mutual in-formation between input
and the representations. Extensive experiments have demonstrated that the proposed DeCorr can
help deeper GNNs encode more useful information and achieve better performance under the set-
tings of normal graphs and graphs with missing features. As one future work, we plan to explore the
potential of applying DeCorr on various real-world applications such as recommender systems.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and R Devon Hjelm. Mine: mutual information neural estimation. arXiv preprint
arXiv:1801.04062, 2018.

Anthony J Bell and Terrence J Sejnowski. An information-maximization approach to blind separa-
tion and blind deconvolution. Neural computation, 1995.

Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. In
Noise reduction in speech processing, pp. 1–4. Springer, 2009.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2020a.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. arXiv preprint arXiv:2007.02133, 2020b.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016a.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016b.

David K Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs
for learning molecular fingerprints. In NIPS, 2015.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The World Wide Web Conference, pp. 417–426, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017a.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017b.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, 2017.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163, 2015.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as
cnns? In CVPR, 2019.

10

Under review as a conference paper at ICLR 2022

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. arXiv preprint arXiv:1801.07606, 2018.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. arXiv preprint
arXiv:2007.09296, 2020.

Diego Marcheggiani, Joost Bastings, and Ivan Titov. Exploiting semantics in neural machine trans-
lation with graph convolutional networks. arXiv preprint arXiv:1804.08313, 2018.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In ICLR, 2019.

Liam Paninski. Estimation of entropy and mutual information. Neural computation, 15(6):1191–
1253, 2003.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Al Mamunur Rashid, George Karypis, and John Riedl. Learning preferences of new users in recom-
mender systems: an information theoretic approach. Acm Sigkdd Explorations Newsletter, 10(2):
90–100, 2008.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2019.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. The
emerging field of signal processing on graphs: Extending high-dimensional data analysis to net-
works and other irregular domains. IEEE signal processing magazine, 30(3):83–98, 2013.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. arXiv preprint arXiv:1801.07455, 2018.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In KDD. ACM, 2018a.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–
983, 2018b.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in {gnn}s. In International
Conference on Learning Representations, 2020.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural
networks: A review of methods and applications. arXiv preprint arXiv:1812.08434, 2018.

11

Under review as a conference paper at ICLR 2022

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper
graph neural networks with differentiable group normalization. In Advances in neural information
processing systems, 2020.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

12

Under review as a conference paper at ICLR 2022

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 PRELIMINARY STUDY

Correlation and Smoothness w.r.t. GCN Layers. We further plot the changes of Corr and SMV
w.r.t. number of GCN layers on Pubmed and CoauthorCS in Figure 5. From the figure, we make two
observations. (1) With the increase of number of layers, the Corr value tends to increase while the
SMV does not change much on these two datasets. (2) The test accuracy drops with the increase of
number of layers. Based on the two observations, we can conjecture that it is not oversmoothing but
overcorrelation that causes the performance degradation in Pubmed and CoauthorCS.

0 10 20 30 40 50
Number of Layers

0.0

0.2

0.4

0.6

0.8

1.0

Co
rr/

SM
V/

Ac
c

Corr
SMV
Acc

(a) Pubmed

0 10 20 30 40 50
Number of Layers

0.0

0.2

0.4

0.6

0.8

1.0

Co
rr/

SM
V/

Ac
c

Corr
SMV
Acc

(b) CoauthorCS

Figure 5: Corr, SMV and test accuracy w.r.t number of GCN layers.

Correlation and Smoothness w.r.t. Propagation/Transformation. We provide Corr, SMV w.r.t.
number of propagation on Citeseer dataset in Figure 7a. We can make similar observations as
we made in Section 3.2.1: propagation can lead to higher correlation. We further investigate the
relationship between correlation and transformation. Different from Section 3.2.2, here we use AX
as the input feature instead of random feature and we also train the MLP model for 200 epochs. The
results are summarized in Figure 6. It is very clear that stacking more transformation layers tends
to cause higher correlation and worse test accuracy. But SMV values are not always small, which
indicates that oversmoothing is not a major concern in this case.

0 2 4 6 8 10 12 14 16 18 20
Number of Propagation

0.0

0.2

0.4

0.6

0.8

1.0

Co
rr/

SM
V Full-Corr

Full-SMV
LCC-Corr
LCC-SMV

(a) Propagation: Citeseer

2 3 4 5 6 7 8 9 10
Number of MLP layers

0.0

0.2

0.4

0.6

0.8

1.0

Co
rr/

SM
V/

Ac
c

Corr
SMV
Acc

(b) Transformation: Cora

2 3 4 5 6 7 8 9 10
Number of MLP layers

0.0

0.2

0.4

0.6

0.8

1.0

Co
rr/

SM
V/

Ac
c

Corr
SMV
Acc

(c) Transformation:Citeseer

Figure 6: (a): Corr, SMV w.r.t. number of propagation on Citeseer dataset. (b)(c): Corr, SMV
and test accuracy w.r.t number of MLP layers (trained model) when the input feature is AX.

A.2 CORRELATION AND SMOOTHNESS OVER TRAINING EPOCHS

As shown in Table 1, DeCorr achieves significant improvement over other baselines in GAT on
Citeseer dataset. Hence, we further investigate the reason behind it. Concretely, we plot the Corr,
SMV , train/val/test accuracy for PairNorm, DGN and DeCorr when they are equipped to 15-layer
GAT. The results are shown in Figure 7. From the figure, we can see that although PairNorm and
DGN can maintain a high SMV value (around 0.6), their performance is still not very satisfying.
Moreover, their Corr values are much higher than DeCorr: around 0.6 in PairNorm and DGN, and
around 0.35 in DeCorr. Based on this observation, we believe that overcorrelation is an important
issue when enabling deeper GNN that researchers should pay attention to.

13

Under review as a conference paper at ICLR 2022

0 200 400 600 800 1000
Epochs

0.2

0.4

0.6

0.8

Train Acc
Val Acc
Test Acc
Corr
SMV

(a) PairNorm

0 200 400 600 800 1000
Epochs

0.0

0.2

0.4

0.6

0.8

Train Acc
Val Acc
Test Acc
Corr
SMV

(b) DGN

0 200 400 600 800 1000
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Train Acc
Val Acc
Test Acc
Corr
SMV

(c) DeCorr

Figure 7: The change of Corr, SMV and accuracy over training epochs for PairNorm, DGN and
DeCorr.

A.3 ENABLING DEEPER AND BETTER GNNS UNDER THE MISSING FEATURE SETTING.

In Section 5.2, we have demonstrated the superiority of reducing feature overcorrelation in helping
train deeper GNNs. However, the performance achieved by deeper GNNs are not as good as shallow
ones (2-layer GNNs) as shown in Table 1. Then a natural question is: when deeper GNNs are
beneficial? To answer this question, we remove the node features in validation and test set following
the idea in Zhao & Akoglu (2020); Zhou et al. (2020). This scenario often happens in real world. For
instance, new users in social networks are often lack of profile information while connecting with a
few other users Rashid et al. (2008). To learn effective representations for those new users, we would
need a larger number of propagation steps to propagate the attribute information from existing users.
Hence, under this circumstance, deeper GNNs can behave much better than shallow ones. We vary
the number of layers K in {1, 2, . . . , 10, 15, . . . , 30} and report the performance in Table 3. Note
that “None” indicates vanilla GNNs without equipping any methods and #K indicates the number
of layers when the model achieves the best performance. Since we empirically find that BatchNorm
is necessary in ChebyNet under this setting, we also include the variant of our model which equips
with BatchNorm (DGN is also based on BatchNorm). From the table, we make the following two
observations:

(1) Under the missing feature setting, the best performance is always achieved by the deeper models,
i.e., the values of #K are always relatively larger. This suggests that more propagation steps is
necessary to learn the good representation for nodes with missing features.

(2) DeCorr achieves the best performance in 8 out of the 12 cases and significantly outperforms
shallow GNNs. For example, on Pubmed dataset, DeCorr achieves improvements of 36.9%,
33.9% and 19.5% on GCN, GAT and ChebyNet, respectively. It further demonstrates the im-
portance of alleviating overcorrelation in developing deeper GNNs.

A.4 COMBINING WITH GCNII

In this subsection, we provide the full version of Table 4. Specifically, we report the mean values
and variances of test accuracy over 10 random seeds. As shown in the table, we find that DeCorr can
further improve both GCNII and GCNII* in most datasets. For example, DeCorr improves GCNII*
by 0.6%, 0.4%, 5.4%, 1.9%, 3.3% and 4.7% on Citeseer, Pubmed, Cornell, Texas, Wisconsin and
Chameleon, respectively. It supports that decorrelating features can improve model performance.

A.5 COMPARISON WITH DEEPGCNS

B PROOF

Proposition 1. Given an extreme over-smoothed matrix X where each row is proportional to each
other, we have Corr(X)=1.

14

Under review as a conference paper at ICLR 2022

Model Method Cora Citeseer Pubmed Coauth.
Acc #K Acc #K Acc #K Acc #K

GCN

None 57.3 3 44.0 6 36.4 4 67.3 3
BatchNorm 71.8 20 45.1 25 70.4 30 82.7 30
PairNorm 65.6 20 43.6 25 63.1 30 63.5 4
DropEdge 67.0 6 44.2 8 69.3 6 68.6 4

DGN 76.3 20 50.2 30 72.0 30 83.7 25
DeCorr 73.8 20 49.1 30 73.3 15 84.3 20

GAT

None 50.1 2 40.8 4 38.5 4 63.7 3
BatchNorm 72.7 5 48.7 5 60.7 4 80.5 6
PairNorm 68.8 8 50.3 6 63.2 20 66.6 3
DropEdge 67.2 6 48.2 6 67.2 6 75.1 4

DGN 75.8 8 54.5 5 72.3 20 83.6 15
DeCorr 72.8 15 46.5 6 72.4 15 83.7 15

Cheby.

None 50.3 8 31.7 4 43.7 6 34.4 10
BatchNorm 61.3 30 35.5 6 61.6 30 74.8 30
PairNorm 53.7 15 35.8 30 53.7 25 41.5 20
DropEdge 60.6 8 35.1 4 49.3 15 38.2 8

DGN 61.0 30 35.0 30 56.3 25 75.1 30
DeCorr 56.0 8 35.9 6 49.1 30 48.3 10

DeCorr+BN* 62.5 30 35.4 6 63.2 30 76.5 30
* DeCorr+BN is the variant when BatchNorm (BN) is equipped with ours.

Table 3: Test accuracy (%) on missing feature setting.

Cora Cite. Pubm. Corn. Texas Wisc. Cham. Actor

GCN 81.5 71.1 79.0 28.2 52.7 52.2 45.9 26.9
GAT 83.1 70.8 78.5 42.9 54.3 58.4 49.4 28.5

APPNP 83.3 71.8 80.1 54.3 73.5 65.4 54.3 34.5

GCNII 85.5±0.5 73.5±0.7 79.9±0.5 70.8±7.8 75.7±5.0 76.7±5.0 52.8±5.4 34.5± 0.9
GCNII+DeCorr 85.6±0.5 73.8±0.4 80.3±0.6 75.4±6.1 76.5±5.8 80.8±4.7 54.1±6.4 35.3±0.7

GCNII* 85.4±0.3 73.1±0.5 80.0±0.5 73.8±4.5 78.4±6.5 79.2±4.5 54.3±4.1 35.1±0.8
GCNII*+DeCorr 85.3±0.3 73.7±0.7 80.4±0.5 79.2±5.3 80.3±7.7 82.5±4.8 59.0±4.1 35.3±0.7

Table 4: Node classification accuracy (%) for eight datasets.

Proof. Since each row is proportional to each other, each column will also be proportional to each
other. We take two arbitrary dimensions (columns) of X, and denote them as [x, wx]. The pearson
coefficient ρ(x, wx) = w

|w| ·
(x−x̄)>(x−x̄)
‖x−x̄‖‖x−x̄‖ is either 1 or -1. Since the correlation between any two

arbitrary dimensions is 1 or -1, we have Corr(X) = 1.1

Proposition 2. Given an extreme overcorrelated representation X, the rows of X are not necessarily
proportional to each other.

Proof. We take two arbitrary dimensions of X and denote them as [x, wx+b] since they are linearly
dependent on each other. We further take two rows from the two dimensions, denoted as [[x1, wx1+
b], [x2, wx2 + b]]. If the two rows are proportional to each other, they need to satisfy x1(wx2 + b) =
x2(wx1 + b), which can be written as bx1 = bx2. When bx1 = bx2 does not hold, X will not be an
extreme over-smoothed matrix.

1Note that we exclude the case where ‖x − x̄‖ = 0, i.e., x is a constant vector, the pearson correlation is
undefined.

15

Under review as a conference paper at ICLR 2022

C COMPLEXITY ANALYSIS

We compare the proposed method with vanilla GNNs by analyzing the additional complexity in
terms of model parameters and time. For simplicity, we assume that all hidden dimension is d and
the input dimension is d0.

Model Complexity. In comparison to vanilla GNNs, the only additional parameters we introduce
are the weight matrix W in the bilinear layer of the discriminator D(·, ·) in Eq. (12) when scoring
the agreement for positive/negative samples. Its complexity is O(d0d), which does not depend on
the graph size. Since the hidden dimension is usually much smaller than the number of nodes in the
graph, the additional model complexity is negligible.

Time Complexity. As shown in Section 4.1 and 4.2, the additional computational cost comes from
the calculation and backpropagation of the LD and LM losses. Since we perform Monte Carlo
sampling to sample

√
N nodes, the complexity of calculating LD becomes O(K

√
Nd2) and the

complexity of backpropagation for it becomes O(KNd2); the complexity of calculating LM and its
gradient is O(KNd0d). Considering d and K are usually much smaller than the number of nodes
N , the total additional time complexity becomes O(KNd2 + KNd0d), which increases linearly
with the number of nodes.

D DATASET STATISTICS

The dataset statics is shown in Table 5. For the experiments on Cora/Citeer/Pubmed, we follow the
widely used semi-supervised setting in Kipf & Welling (2016); Zhou et al. (2020) with 20 nodes per
class for training, 500 nodes for validation and 1000 nodes for test. For CoauthorCS, we follow Zhou
et al. (2020) and use 40 nodes per class for training, 150 nodes per class for validation and the rest
for test. For other datasets, we follow Pei et al. (2020); Chen et al. (2020b) to randomly split nodes
of each class into 60%, 20%, and 20% for training, validation and test.

Datasets #Nodes #Edges #Features #Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
CoauthorCS 18,333 81894 6805 15
Chameleon 2,277 36,101 2,325 5
Actor 7,600 33,544 931 5
Cornell 183 295 1,703 5
Texas 183 309 1,703 5
Wisconsin 251 499 1,703 5

Table 5: Dataset Statistics.

The datasets are publicly available at:

Cora/Citeseer/Pubmed: https://github.com/tkipf/gcn/tree/master/gcn/data

CoauthorCS: https://github.com/shchur/gnn-benchmark/tree/master/data/npz

Others: https://github.com/graphdml-uiuc-jlu/geom-gcn/tree/master/new data

E PARAMETER SETTINGS

Experiments for Table 1. For BN, PairNorm and DGN, we reuse the performance reported in Zhou
et al. (2020) for GCN and GAT. For ChebyNet, we use their best configuration to run the experi-
ments. For DropEdge, we tune the sampling percent from {0.1, 0.3, 0.5, 0.7}, weight decay from
{0, 5e-4}, dropout rate from {0, 0.6} and fix the learning rate to be 0.005. For the proposed DeCorr,
following Zhou et al. (2020) we use 5e-4 weight decay on Cora, 5e-5 weight decay on Citeseer and

16

Under review as a conference paper at ICLR 2022

CoauthorCS, 1e-3 weight decay on Pubmed. We further search α from {0.1, 1}, β from {1, 10},
learning rate from {0.005, 0.01, 0.02} and dropout rate from {0, 0.6}.
Experiments in Table 3. For all methods, we tune the learning rate from {0.005, 0.01, 0.02},
dropout rate from {0, 0.6}. For DeCorr, we tune α from {0.1, 1}, β from {1, 10} while for DGN+
DeCorr we tune α from {0.05, 0.1, 0.5} and β from {0.1, 1}.
Experiments in Table 4. For GCNII and GCNII*, we use their best configuration as reported
in Chen et al. (2020b). Based on these configurations, we further equip them with DeCorr and tune
α from {0.01, 0.05, 0.1} and β from {0.1, 1, 10}.
Implementation of Baselines. We use the following publicly available implementations of baseline
methods and deep models:

(a) DGN: https://github.com/Kaixiong-Zhou/DGN/
(b) PairNorm: https://github.com/Kaixiong-Zhou/DGN/
(c) BatchNorm: https://github.com/Kaixiong-Zhou/DGN/
(d) DropEdge: https://github.com/DropEdge/DropEdge
(e) GCNII: https://github.com/chennnM/GCNII/tree/master/PyG
(f) APPNP: https://github.com/rusty1s/pytorch geometric

17

	Introduction
	Background and Related Work
	Preliminary Study
	Overcorrelation and Oversmoothing
	Analysis on Overcorrelation
	Propagation Can Lead to Higher Correlation
	Transformation Can Lead to Higher Correlation

	Further Discussions

	The Proposed Framework
	Explicit Feature Dimension Decorrelation
	Mutual Information Maximization

	Experiment
	Experimental Settings
	Experimental Results

	Conclusion
	Additional Experimental Results
	Preliminary Study
	Correlation and Smoothness over Training Epochs
	Enabling Deeper and Better GNNs Under the Missing Feature Setting.
	Combining with GCNII
	Comparison with DeepGCNs

	Proof
	Complexity Analysis
	Dataset Statistics
	Parameter Settings

