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Abstract

Research on causal effects often relies on synthetic data due001
to the scarcity of real-world datasets with ground-truth ef-002
fects. Since current data-generating tools do not always003
meet all requirements for state-of-the-art research, ad-hoc004
methods are often employed. This leads to heterogeneity005
among datasets and delays research progress. We address006
the shortcomings of current data-generating libraries by in-007
troducing CausalPlayground, a Python library that provides008
a standardized platform for generating, sampling, and shar-009
ing structural causal models (SCMs). CausalPlayground010
offers fine-grained control over SCMs, interventions, and011
the generation of datasets of SCMs for learning and quan-012
titative research. Furthermore, by integrating with Gym-013
nasium, the standard framework for reinforcement learning014
(RL) environments, we enable online interaction with the015
SCMs. Overall, by introducing CausalPlayground we aim016
to foster more efficient and comparable research in the field.017
All code is available at https://anonymous.4open.018
science/r/CausalPlayground-D1B2/. The API019
documentation will be released after de-anonymization.020

1. Introduction021

Ever since the formalization of causality [18] the field has022
gained significant attention for improving inference from023
data, scientific discovery, and others. Progress in causal-024
ity research relies heavily on data collection about the sce-025
nario that is being investigated. However, a major challenge026
is the lack of real-world data with known causal ground027
truth [6]. As an example, even after decades of research,028
only a few strong real-world benchmark datasets are avail-029
able for causal structure discovery [6, 32]. Consequently,030
many state-of-the-art methods use synthetically generated031
data, such as in causal representation learning [16], causal032
discovery [9], among others.033

Naturally, each research comes with its specific require-034
ments for the data-generating process that is being inves-035

tigated. In causality particularly though, some require- 036
ments can be observed that are common among many in- 037
stances. We identify them as requirements for a causal 038
data-generating library to be useful for a broad variety of 039
research questions as follows: 040

R1 Interventional data generation: Intuitively, interven- 041
tions are experiments in an environment that are crucial 042
for identifying causal effects [4]. Therefore, a general 043
causal data-generation framework must facilitate the sam- 044
pling of interventional data. 045

R2 Interaction with the causal model: It is becoming in- 046
creasingly clear, that interacting with the causal model is 047
beneficial for many tasks. For example, intervening after 048
every sample can improve sample efficiency for causal 049
discovery methods [22, 23] and causal inference [29]. 050
This requirement is further highlighted by the popularity 051
of interactive frameworks like Causal World [1] and var- 052
ious interactive causal models created ad-hoc for specific 053
research questions [15, 29, 35]. 054

R3 Fine-grained control over the causal model: As causal 055
inference and discovery often investigate settings with 056
clearly defined assumptions on the data, like the popu- 057
lar linear functions with additive with non-Gaussian noise 058
[19] assumption, a general data-generation library must 059
provide detailed control over the functional relations of 060
the causal model. 061

R4 Causal model generation for quantitative results: Re- 062
cent research in causal methods, such as [9, 17, 22, 23], 063
emphasize the need for training and evaluation not merely 064
on a single causal model, but rather on data-sets of mod- 065
els. This results in the requirement for a general causal 066
data-generating library to be able to easily create many 067
causal models. 068

As our comparison in Sec. 2 shows existing tools fall 069
short of addressing all current requirements within one 070
framework. This leads to many researchers having to rely 071
on ad-hoc data generation processes, introducing undesir- 072
able heterogeneity of datasets amongst methods, more dif- 073
ficult comparisons of results, and generally obstructing the 074
research progress of the field. 075
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interventional data

DAG-Generation

SCM-Generation

interactive

SCM-controlled

API-D
ocumentation

Language

Do-Why [25] ✓ X X X X ✓ P
TETRAD [21, 24] X ✓ X X X ✓ J/P/R
cause2e [8] ✓ ✓ X X X ✓ P
Lawrence et al. [14] X ✓ X X ∼ X P
MANM-CS [11] ✓ ✓ X X ∼ X P
BNlearn [27] ∼ X X X X ✓ P
causaldag [5] ∼ ✓ X X X ✓ P
gCastle [33] X ✓ X X ∼ ✓ P
CDT [12] X ✓ X X ∼ ✓ P
SCModels [2] ✓ X X X ✓ X P
R6causal [13] ✓ X X X ✓ ✓ R
CausalWorld [1] ✓ X X ✓ X ✓ P
SynTReN [31] X ✓ X X X X J
pcalg [3] X ✓ X X X ✓ R
JustCause [10] X X X X ✓ ✓ P
CausalPlayground ✓ ✓ ✓ ✓ ✓ ✓ P

Table 1. Overview of software libraries that can be used for data-generation for causality research. Symbols ✓, X, and ∼ indicate whether
a requirement is met, not met, or partially met, respectively. J, P, R refer to Java, Python, and R, respectively. We evaluate the methods on
the ability to sample interventional data, generate directed acyclic graphs (DAG), generate SCMs, interact with the SCM, the availability
of a detailed API documentation, and the programming language that it is written in.

To offer a solution to this problem we created076
CausalPlayground, a Python library for generating syn-077
thetic data and providing generation processes for causal078
models. Our library enables fine-grained control over the079
models, integrates processes within the popular RL frame-080
work Gymnasium [30] to accommodate the requirement for081
interacting with the causal model, and implements the gen-082
eration of many causal models at once to enable learn-083
ing and quantitative research. It thereby constitutes a084
framework for causal data generation that allows for more085
standardized and easy-to-share causal data-generation pro-086
cesses.087

In the remainder of the paper we will compare current088
causal data-generating libraries in Sec. 2, introduce funda-089
mental notions of causality more formally in Sec. 3, pro-090
vide an overview of CausalPlayground in Sec. 4, outline091
a simple use-case in Sec. 5, and give an outlook on future092
versions of this library in Sec. 6.093

2. Related Work094

Based on the requirements we identified in Sec. 1, we in-095
vestigate the current landscape of general purpose causal096
data-generation tools. We restrict our comparison to pack-097
ages specifically designed for causality-related research, ac-098
knowledging that other general-purpose tools have been099
used, such as common RL environments like MuJoCo [28].100

The comparison is summarized in Tab. 1. 101
Regarding interventional data-generation (R1), many 102

available packages, including Do-Why [25], cause2e [8], 103
MANM-CS [11], SCModels [2], R6causal [13], and 104
CausalWorld [1], allow for sampling from interventional 105
distributions for specifiable functional interventions. BN- 106
learn [27] and causaldag [5] offer less versatile methods for 107
intervening, and facilitating interventions by changing the 108
node conditional distributions or the graphical structure, re- 109
spectively. 110

Considering interaction with causal models (R2), only 111
CausalWorld [1] provides out-of-the-box functionality for 112
actively interacting with the model, highlighting an oppor- 113
tunity for useful new tools to meet this requirement. 114

With respect to generating causal models with specific 115
assumptions on the causal functions (R3) SCModels [2], 116
R6causal [13], and JustCause [10] give full control over 117
functional relations and noise distributions, while Lawrence 118
et al. [14], MANM-CS [11], gCastle [33], and CDT [12] 119
provide coarse-grained control that simultaneously applies 120
to all functions and distributions. 121

Lastly, to the best of our knowledge, no general-purpose 122
framework for causal data-generation provides methods to 123
generate sets of causal models with specific functional rela- 124
tions and noise distributions (R4). 125

Overall, this comparison shows a gap in libraries that si- 126
multaneously address some of the most important require- 127
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ments for causal data-generation. This opens the opportu-128
nity to develop a tool that is relevant to a broader set of129
research questions.130

3. Fundamental Concepts of Causality131

In this section, we provide an overview of the necessary for-132
mal concepts for our approach. Let an SCM M be a tuple133
M = (X ,U ,F ,P), where X and U are sets of endoge-134
nous and exogenous random variables, respectively, F is a135
set of functions fi that map the direct causes of Xi ∈ X136
to Xi, and P is a set of pairwise independent probability137
distributions Pi s.t. Ui follows distribution Pi with Ui ∈ U .138
Furthermore, we denote interventions as do(Xi = g(...)),139
where g is an arbitrary function that takes as input a sub-140
set of X ∪ U . Such an intervention replaces function fi141
with function g. Applying a set of N arbitrary interventions142
at = {do0(. . .), . . . , doN (. . .)} to an SCM, means replac-143
ing all corresponding functions simultaneously. Further-144
more, each SCM M induces a distribution PM (X ,U | at)145
that we can sample via ancestral sampling.146

4. CausalPlayground147

In this section we provide an overview of the CausalPlay-148
ground library. By implementing the functionalities that ad-149
dress the requirements R1 - R4, we provide an off-the-shelf150
causal data-generation platform that can be used for state-151
of-the-art causality research.152

4.1. Fine-grained control over the SCM153

For each endogenous variable Xi, the structural equation fi154
can be arbitrarily defined. Similarly, the distribution of the155
exogenous variables Pj can be arbitrarily defined. Notably,156
this entails the possibility of defining pixel-based environ-157
ments. An example for creating the SCM with F = {A ←158
U + 5, Effect ← 2A} and U ∼ Uniform(3, 8) is pro-159
vided below:160

scm = S t r u c t u r a l C a u s a l M o d e l ( )161
scm . a d d e n d o g e n o u s v a r ( ’A’ ,162

lambda n o i s e : n o i s e +5 ,163
{ ’ n o i s e ’ : ’U’ } )164

scm . a d d e x o g e n o u s v a r ( ’U’ ,165
random . r a n d i n t ,166
{ ’ a ’ : 3 , ’ b ’ : 8} )167

scm . a d d e n d o g e n o u s v a r ( ’ E f f e c t ’ ,168
lambda x : x *2 ,169
{ ’ x ’ : ’A’ } )170

This level of control over the SCM is a significant im-171
provement compared to other libraries, which often provide172
more coarse-grained control.173

4.2. Arbitrary interventions 174

Interventions can be applied to existing SCMs using arbi- 175
trary functions g. The only restriction is that the new func- 176
tion does not induce cyclic causal relations. In the example 177
code snippet: 178

scm . d o i n t e r v e n t i o n s ( [ ( ” E f f e c t ” , 179
( lambda a : a +1 , 180
{ ’ a ’ : ’A’ } ) ) ] ) 181

the intervention sets the value of the variable Effect to 182
the value of A + 1, using a lambda function that takes a as 183
an argument and a dictionary that maps a to the variable 184
name A. This, effectively, applies do(Effect = A + 1) to 185
the SCM. 186

4.3. Interaction with the SCM 187

Users can intervene actively in existing SCMs. At each step, 188
a set of interventions at can be applied, after which a sample 189
of the endogenous and exogenous variables is drawn from 190
the induced distribution. The interventions are undone be- 191
fore the next step. The interaction is enabled by wrapping 192
the SCMs in the popular Gymnasium environment, facilitat- 193
ing standardized integration with (deep) RL methods [20]. 194
In the example code snippet: 195

env = SCMEnvironment ( scm , 196
p o s s i b l e i n t e r v e n t i o n s = 197

[ ( ”A” , ( lambda : 5 , { } ) ) , 198
( ” E f f e c t ” , ( lambda a : a +1 , 199

{ ’ a ’ : ’A’ } ) ) ] ) 200

An SCMEnvironment object is created by passing the 201
scm object and a list of two possible interventions with the 202
same syntax as described before. The resulting env object 203
can be used to interact with the SCM using the standard 204
Gymnasium environment interface, allowing for interactive 205
exploration and experimentation with the causal model. 206

More specifically, calling env.step(action) ap- 207
plies the interventions defined in the action via their index, 208
samples the intervened SCM, determines the new observa- 209
tion, termination flag, truncated flag, and reward, and, fi- 210
nally undoes the interventions. Importantly, the precise ob- 211
servation, termination, truncated, and reward functions can 212
be specified by the user. 213

4.4. SCM generation 214

CausalPlayground’s SCM generation procedure provides a 215
flexible approach to creating datasets of SCMs. Users can 216
specify the number of endogenous variables and exogenous 217
variables, the presence of confounders, and define the class 218
of possible causal relations. This is exemplified by the fol- 219
lowing code: 220

gen = SCMGenerator ( a l l f u n c t i o n s = 221
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{ ’ l i n e a r ’ : f l i n e a r } )222
scm unconfounded = gen . c r e a t e r a n d o m (223

p o s s i b l e f u n c t i o n s =[” l i n e a r ” ] ,224
n endo =5 , n exo =4 ,225
e x o d i s t r i b u t i o n =random . gauss ,226
e x o d i s t r i b u t i o n k w a r g s =227
{mu=0 , s igma =1} ,228

a l l o w e x o c o n f o u n d e r s =229
F a l s e ) [ 0 ]230

that creates a random SCM with the causal relations follow-231
ing a predefined f linear function, 5 endogenous vari-232
ables, 4 exogenous variables, a Gaussian exogenous distri-233
bution with µ = 0, σ = 1 for each exogenous variable, and234
no confounders. Similarly, an SCM can also be generated235
from a given causal structure.236

This comprehensive control over the SCM generation237
process facilitates the systematic evaluation and compari-238
son of causal models.239

4.5. Further Implementation Details240

CausalPlayground is implemented in Python with241
five main classes. The StructuralCausalModel242
class represents an SCM and provides methods for243
manipulation and sampling. The SCMGenerator244
creates random SCMs based on specified param-245
eters, while the CausalGraphGenerator and246
CausalGraphSetGenerator generate random causal247
graphs and sets of unique causal graphs, respectively. The248
SCMEnvironment class, allows interaction with an SCM.249
Furthermore, CausalPlayground relies on external classes250
such as networkx.DiGraph, pandas.DataFrame,251
Gymnasium.Box, and Gymnasium.Sequence for252
various functionalities. All code is published under253
the open-source MIT license and we highly welcome254
contributions.255

5. Use-Case: Comparison of Causal Discovery256

Algorithms257

As one of many use-cases, we outline how to use the258
CausalPlayground library to compare different causal dis-259
covery algorithms. We generate synthetic data using the260
library’s functions and evaluate the performance of the al-261
gorithms on both confounded and unconfounded, automat-262
ically generated SCMs. We use the causal discovery algo-263
rithms provided by the gCastle [33] library. The detailed264
implementation can be found in the repository examples.265

First, we generate distinct confounded266
and unconfounded causal graphs using the267
CausalGraphSetGenerator class from CausalPlay-268
ground. Each of the sets has 4 endogenous variables and269
4 exogenous variables. Based on these graphs we generate270
the SCMs for evaluation using the SCMGenerator class.271

Figure 1. Experimental results of the causal discovery algorithm
comparison use-case.

The functional relations are determined by specifiable 272
functional relations. For our experiment we use linear 273
additive functions and functions that add all causes and 274
multiply the value of two randomly selected causes of a 275
variable. More specifically, for every endogenous variable, 276
the function is drawn from either of the two classes. 277

We then iterate over the 30 generated SCMs and draw 278
100 samples per SCM. We evaluate the performance of each 279
causal discovery algorithm on both confounded and uncon- 280
founded datasets. More specifically, we compare PC [26], 281
GES [7], and NOTEARS [34] and measure F1 score and the 282
true-positive rate with gCastle [33]. The results can be seen 283
in Fig. 1. 284

This use-case provides a glimpse into the usefulness of 285
CausalPlayground for causality research, not the least be- 286
cause the data-generating processes could now be shared 287
among experiments and researchers. 288

6. Conclusion and Outlook 289

In this work, we identified the core requirements for data- 290
generation in causal research and found that they are unsat- 291
isfactorily met by the current landscape of data-generation 292
tools. To offer a solution, we introduced CausalPlayground, 293
a Python library that allows for sampling of, generation of, 294
and online interaction with SCMs. By providing functional- 295
ity to address some of the main requirements of causality re- 296
search, this library can enable a broad research community 297
to easily share their SCMs and more rigorously compare its 298
methods. 299

For future versions of this library, we are anticipating the 300
integration of more diverse causal models such as Bayesian 301
networks, and optimizations regarding parallelization for 302
fast deployment on GPUs. Ultimately, we envision that our 303
proposed library contributes to faster scientific progress in 304
fields that rely on causality. 305
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