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Abstract

Intent classification is a fundamental task in natural language processing that aims to deter-
mine the intention or purpose behind a given text utterance. The goal is to classify the text into
one or more predefined categories, each representing a specific intent. This task is essential for de-
veloping conversational agents, chatbots, and virtual assistants that can understand and respond
appropriately to user queries. Various techniques have been proposed for intent classification, in-
cluding rule-based methods, machine learning-based models, and deep learning-based approaches.
In this paper, we explore transformer based technics for intent classificaiton.

1 Introduction

In recent years, natural language processing (NLP) has made significant strides in enabling machines
to understand and generate human language. One of the essential tasks when working with spoken
text [14, 17] is intent classification, which involves identifying the underlying intention or purpose
behind a given text utterance. Intent classification plays a vital role in developing intelligent conver-
sational agents [2, 4], chatbots, and virtual assistants that can understand and respond to user queries
accurately [7, 9, 20, 10].

Early methods for intent classification relied on rule-based systems, which were limited by their in-
ability to handle the complexity and variability of natural language [3]. Later, machine learning-based
approaches, such as support vector machines (SVMs), decision trees, and random forests, emerged as
popular alternatives. These methods require carefully designed feature engineering and hyperparame-
ter tuning and suffer from the curse of dimensionality when working with large vocabularies [6].

Recently, deep learning-based approaches, such as convolutional neural networks [18] (CNNs) and
recurrent neural networks (RNNs) [22], have shown significant improvements in various NLP tasks,
including intent classification. However, these models still face several challenges, such as handling
variable-length input sequences, dealing with long-term dependencies, and capturing contextual infor-
mation [32].

Transformers, a recent breakthrough in deep learning, have shown remarkable success in NLP tasks,
including language modeling, text generation, and machine translation. The transformer architecture,
introduced in the landmark paper ”Attention Us All You Need”[31], eliminates the need for recur-
rence and convolutional operations and replaces them with self-attention mechanisms. This design
allows transformers to capture long-term dependencies and contextual information more effectively
than RNNs and CNNs and enables parallel computation, making training faster.

Several studies have investigated the effectiveness of transformers in intent classification and achieved
state-of-the-art performance on various benchmark datasets. For example, [13] introduced BERT (Bidi-
rectional Encoder Representations from Transformers [31]), a pretraining-based transformer architec-
ture that achieved unprecedented performance on several NLP tasks, including intent classification.
Similarly, [28] introduced GPT (Generative Pre-trained Transformer), a transformer architecture pre-
trained on massive amounts of text data, and showed remarkable results on several downstream NLP
tasks [5, 7], including intent classification.

Despite these impressive results, several challenges remain in intent classification using transform-
ers. For instance, the performance of these models heavily depends on the quality and size of the
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training data, the choice of hyperparameters, and the fine-tuning strategy [26]. Moreover, domain
adaptation, data scarcity, and model interpretability still remain open research questions in this field.

In this paper, we present a study of intent classification using transformers, focusing on the effec-
tiveness of BERT and GPT architectures. We compare their performance with traditional machine
learning-based methods and deep learning-based models, such as RNNs and CNNs, on several bench-
mark datasets [19, 23, 21, 1, 25, 30, 27, 29, 24]. Additionally, we investigate the impact of various
hyperparameters, fine-tuning strategies, and transfer learning techniques on the performance of the
models. Finally, we discuss the limitations and future directions of intent classification using trans-
formers and highlight the potential of this approach in enabling more advanced conversational agents
and virtual assistants.

Dataset The data set used for classification is SILICONE, which includes several labelling tasks
with both DA and E/S annotations. Specifically, the data is in multiple levels: we have a set
of conversations D = (C1, C2, . . . , C|D|), where each conversations is composed of utterance Ci =
(u1, u2, . . . , u|Ci|) and each utterance is a sequence of words. The following table gives us an example
of one conversation with DA labels on utterances.

Table 1: Example of conversation with labelled utterances

Utterances Dialogue Act(DA)

”what do you mean ? it will help us to relax .” ”question”
”good.let ’ s go now .” ”directive”

”all right .” ”commissive”

2 Model Description

The basic structure of our model can be described as follows, where basically we first use transformer
decoder layers to transform data, then we pass them to the MLP classifier to get the results.

Figure 1: Structure of Model

2.1 Transformer Decoder

The process of using transformer decoder can be divided into 4 steps.
Firstly, we tokenize each utterance. Notice that each utterance is composed of a sequence of words

ui = (wi1, wi2, ..., wik), but the length of words in each utterance is different. In this case, we set the
length of words is equal to 20: for the sequence with length more than 20, we delete the words that
exceed the length; for the sequence with length less than 20, we fill the blanck with 1. Here, we use
FastText (English) from torchtext.vocab.

Secondly, we generate the embedding h0 on U = (u1, u2, . . . , un): h0 = UW ∗We + Wp, where We

is the token embedding matrix, Wp is the position embedding matrix and wi stands for the words.
Thirdly, we transformer the output by using 12 transformer decoder blocks. In mathematical terms,

it can be written as hl = transformer block(hl−1), l = 1, . . . , 12. In general, this pre-training can be
viewed as the maximization of the function L1(C) =

∑
i logP (ui|ui−k, . . . , ui−1; Θ), where Θ refers to

the parameters of the language model, and k refers to the length of window.
However, there is a need to notice that the transformer block here is not the usual encoder-decoder

one ([16]), but the transformer decoder: masked multi-head self attention + multi-head self attention
(the number of heads in our model is equal to 10) + feed forward. In other words, it is a model with
single direction (left-to-right transformer), i.e., we can only infer one word from the past words. The
Figure 2 shows the structure of this transformer.
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In fact, the masked multi-head self-attention is the key for our transformer. The attention of each

head without mask is computed as Attention(Q,K, V ) = softmax(QKT

√
dk

)V ([15]), where Q is the

query, K is the key, V is the value and dk is the key dimension. Hence, the attention of each head

with mask is computed as Masked Attention(Q,K, V,M) = softmax(QKT+M√
dk

)V , where M stands

for the mask and anything else is the same.

Figure 2: Structure of Transformer Decoder

Finally, we pass the outputs of pre-training for the softmax function with linear combination.
This step can be viewed as the maximization of the function L2(C) =

∑
logP (Y |x1, . . . , xm), where

P (y|x1, . . . , xm) = softmax(h12Wy) and h12 is the output after 12 transformer decoders.
In this case, the current total function that we want to maximize is L3(C) = L2(C) + λL1(C).

2.2 Classifier : Multi-layer Perceptron

Now we can use classification model. The classifier we used is a 3-layer MLP, where neurons in the
last layer refer to all intent classes. In this case, we adopted cross entropy loss as loss function, whose
equation can be written as follows, where n stands for the number of classes, yji stands for the actual
value of the probability of class i and ŷji stands for the real value. In fact, the cross entropy measures
the degree of different information between two distributions.

Loss =
1

batch size

batch size∑
j=1

n∑
i=1

−yji log ˆyji − (1 − yji)log(1 − ˆ )yji

The Figure 3 shows the basic structure of our Multi-layer Perceptron, where the first layer is the
input layer (the utterance from the output of pre-training model), the last layer is the output layer
(the probability of one class), and the second layer is the hidden layer (we have two hidden layers in
our case). During our training, we do the random initialization of weights in the MLP to avoid that
the coefficients of fitting function don’t change at all during the training. The activation function is
ReLU() function.

To sum up, the structure of model’s layer can be summarized as follows:.(1) Transformer decoder
layers: embedding layer, transformer decoder layer*12, linear layer, linear layer, SoftMax layer; (2)
Classifier Layers: linear layer, ReLU layer, linear layer, ReLU Layer, linear layer, SoftMax layer.

3 Results

Due to time limit, we only consider the subset ’dyda da’ of SILICONE for our training example.
Besides, as a simple example, we only collect the first 1000 training data in this subset to construct
all of our data.

As usual, we split the collected data set into training set (670 observations), validation set (165
observations) and testing set (165 observations). In this data set, the utterances are with four types
of labels: 0 (commissive), 1 (directive), 2 (inform), 3 (question). After data checking, we find that the
data set in terms of label is not balanced. In this case, we consider weighted cross entropy loss when
do the optimization of the model. The optimizer we use is Adam algorithm.
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Figure 3: Structure of Multi-layer Perceptron

Figure 4 show us if the training process goes well. We can see that in general, the weighted cross
entropy loss decreases when we run the epoch one by one (in our examples, we have ran 5 epochs).

Figure 4: Loss with epoch running

Figure 5 instead shows us the situation of accuracy rate when we run the epoch one by one. As
we can see in the picture, the accuracy rate doesn’t not always increase, but is under fluctuation. The
value on the whole is around 52% .

When we test the training model on the testing data, the weighted cross-entropy loss is equal to
1.3822, and the accuracy rate is 55.47%. And we also notice that the classification model is not good
enough, since our training model tends to classify the the utterances into 2 of the 4 categories (label
2 and label 3). The weighted cross-entropy loss on validation data is 1.3817, and the corresponding
accuracy rate is 60.16%.

Several reasons cause for this. On one hand, we only run very few of the data (subset ’dyda da’
has around 80000 training data). On the other hand, the transformer layers here may need to be
ameliorated and we may consider introducing pooling layers or convolutional layers to extract more
prominent features in the tensors.

Other tables can be summarized using the same code in our Github. For instance, we can change
the learning rate (in this example, learning rate is equal to 0.01), optimization (SDG for example)
, loss function (NLL loss for example )and percentage of training set split (67% in this example) to
see how the loss and accuracy rate will change. We need also to train this model on other subsets in
SILICONE. Due to time limit, the content here is passed.

Finally, for our training model, we have 760310743 parameters in the whole training structure.
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Figure 5: Accuracy rate with epoch running

4 Conclusion

In this paper, we presented a comprehensive study of intent classification using transformers, focus-
ing on the effectiveness of Transformer based architectures. However, while transformers have shown
remarkable results in intent classification, there are still open research questions in this field, particu-
larly regarding the robustness of these models to data distribution shifts [11, 12], and domain shifts [8].
These issues are critical in real-world scenarios, where the training and testing data may come from
different distributions, and malicious actors may intentionally modify the input to fool the model.
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