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ABSTRACT

In the rapidly evolving landscape of deep learning for computer vision, var-
ious architectures have been proposed to achieve state-of-the-art performance
in tasks such as object recognition, image segmentation, and classification.
While pretrained models on large datasets like ImageNet have been the corner-
stone for transfer learning in many applications, this paper introduces CAReNet
(Convolutional Attention Residual Network), a novel architecture that was trained
from scratch, in the absence of available pretrained weights. CAReNet incorpo-
rates a unique blend of convolutional layers, attention mechanisms, and residual
connections to offer a holistic approach to feature extraction and representation
learning. Notably, CAReNet closely follows the performance of ResNet50 on
the same training set while utilizing fewer parameters. Training CAReNet from
scratch proved to be necessary, particularly due to architectural differences that
render feature representations incompatible with those from pretrained models.
Furthermore, we highlight that training new models on large, general-purpose
databases to obtain pretrained weights requires time, accurate labels, and pow-
erful machines, which causes significant barriers in many domains. Therefore, the
absence of pretrained weights for CAReNet is not only a constraint but also an op-
portunity for architecture-specific optimization. We also emphasize that in certain
domains, such as space and medical fields, the features learned from ImageNet
images are vastly different and can introduce bias during training, given the gap
that exists between the domains of pretraining and the task of transfer learning.
This work focuses on the importance of architecture-specific training strategies
for optimizing performance and also demonstrates the efficacy of CAReNet in
achieving competitive results with a more compact model architecture. Experi-
ments were carried out on several benchmark datasets, including Tiny ImageNet,
for image classification tasks. Signifying a groundbreaking stride in efficiency
and performance, CAReNet not only outpaces ResNet50 by achieving a lead of
2.61% on Tiny-Imagenet and 1.9% on STL10, but it does so with a model that’s
nearly half the size of ResNet50. This impressive balance between compactness
and elevated accuracy highlights the prowess of CAReNet in the realm of deep
learning architectures.

1 INTRODUCTION

In the landscape of machine learning and artificial intelligence, supervised learning techniques have
demonstrated remarkable success in solving a multitude of complex tasks, ranging from computer
vision to natural language processing. Despite their efficiency, these approaches come with a set of
inherent limitations that cause significant challenges for broad adoption. Foremost among these is
the insatiable appetite for labeled data, which not only necessitates considerable human effort but
often requires domain expertise for accurate annotation. The need for vast amounts of training data
creates bottlenecks in data acquisition and preparation, limiting the applicability of supervised meth-
ods in low-resource settings or specialized domains where labeled examples are scarce. Even when
an adequate dataset is assembled, the computational cost of training sophisticated models is another
critical concern. The required hardware for high-quality model training, typically comprising mul-
tiple GPUs or TPUs, presents a substantial financial burden. Furthermore, the time investment for
model training and hyperparameter tuning is significant, making it a resource-intensive endeavor
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that could span days or even weeks for particularly complex models. Thus, while supervised learn-
ing methods continue to push the envelope in predictive performance, the trade-offs in terms of data,
computational resources, and time raise important questions about their practicality and scalability
in real-world applications.

It is within this challenging framework that we propose a novel architecture designed to mitigate
these inherent difficulties. Uniquely, our model is not pre-trained on a large, external dataset but
is instead tailored to perform exceptionally well using only the dataset in focus. By eschewing the
need for expansive labeled datasets and high-computational training environments, our approach
aims to democratize the application of machine learning models. This not only reduces the time and
financial costs associated with training but also enhances the model’s applicability in specialized
or low-resource settings. In doing so, we present a feasible alternative to the traditional paradigms
of supervised learning, emphasizing efficiency and accessibility without compromising on perfor-
mance.

In the domain of image classification, Convolutional Neural Networks (CNNs) have long been con-
sidered the gold standard, achieving state-of-the-art results in a variety of benchmarks|Smith & Topin
(2016); Johnson & Zhang|(2017). Their hierarchical structure naturally lends itself to the progres-
sive abstraction of features, from edges to complex shapes, making them exceptionally well-suited
for tasks that require spatial awareness [Lecun et al.| (1998). However, the recent surge of Vision
Transformers (ViTs) has opened new avenues for exploration |Dosovitskiy et al.| (2020). These ar-
chitectures leverage self-attention mechanisms to capture long-range dependencies and have shown
comparable, if not superior, performance to CNNs on several classification benchmarks [Wang et al.
(2021)). However, ViTs often require large amounts of data and computational resources for effec-
tive training, making them less accessible for low-resource settings [Brown et al.| (2020). Despite
these limitations, the flexibility of Vision Transformers in handling different modalities and their
capability for better interpretability make them an attractive alternative to traditional CNNs Vaswani
et al.[|(2017).

Despite their data-intensive nature, ViTs have shown remarkable performance even in low-data
regimes when equipped with appropriate regularization and transfer learning techniques [Parvaiz
et al.| (2023)). Their ability to capture both local and global features makes them a compelling choice
for image classification tasks, often outperforming state-of-the-art CNN's under similar conditions.

The fusion of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) Khan et al.
(2022) presents a groundbreaking approach to image classification, capitalizing on the unique
strengths of each architecture. On the one hand, CNNs excel in parameter efficiency and local
feature extraction, making them well-suited for tasks that require a nuanced understanding of spatial
hierarchies. On the other hand, ViTs are adept at capturing global contextual information through
self-attention mechanisms, providing a more holistic understanding of the image. By integrating
these two architectures, a hybrid model can leverage the local feature recognition of CNNs and the
global contextual awareness of ViTs, creating a more robust and versatile system for image classifi-
cation.

The remainder of this paper is organized as follows: The section [2] provides a comprehensive review
of existing literature and precedents in the domain. In the section[3] we elaborate on our proposed ar-
chitectural design, discussing the datasets employed and elaborating on the specific training param-
eters. Our experiments’ outcomes and findings are showcased in the section[d The paper concludes
with a summary of our contributions, their potential implications, and future perspectives.

2 RELATED WORKS

In the area of computer vision, Convolutional Neural Networks have long been the cornerstone for
tackling a myriad of tasks, ranging from simple image classification to complex object detection.
However, the recent emergence of Vision Transformers has ushered in a new era, challenging the
traditional paradigms and offering fresh perspectives on how vision problems can be approached.
While these Transformer-based models have shown remarkable promise, they are not without their
challenges, particularly when it comes to computational efficiency and the ability to scale. Various
innovative solutions have been proposed to mitigate these issues, such as introducing sparse atten-
tion mechanisms and developing hybrid models that marry the best of both worlds—ConvNets and
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Transformers. In this context, authors in Dai et al.| (2021)), proposed a novel hybrid architecture,
CoAtNet, that combines the strengths of Convolutional Neural Networks (CNNs) and Transform-
ers. While Transformers excel in terms of model capacity, they suffer from poor generalization due
to the absence of the right inductive bias. On the other hand, CNNs possess this inductive bias but
may lack the model capacity for certain tasks.

In|Dagli| (2023)), authors introduced a novel method designed for learning from limited data to clas-
sify galaxy morphologies. The approach employs a hybrid architecture that combines Transformer
and Convolutional Neural Networks (CNNs). To enhance the model’s performance, data augmen-
tation and regularization techniques are also incorporated. They achieves state-of-the-art results in
predicting galaxy morphologies and demonstrates strong performance on other datasets like CIFAR-
100 and Tiny ImageNet. The paper also delves into the challenges of using large models and train-
ing methods in low-data regimes. It explores semi-supervised learning approaches that utilize both
labeled and unlabeled data from different datasets. Despite promising results reported for the Astro-
former architecture, the absence of publicly available code prevented us from conducting our own
experiments to challenge these findings.

Authors in the paper |[Liu et al.[(2023) addressed the computational inefficiencies of Vision Trans-
formers (ViTs) by proposing a new family of models called EfficientViT. They identify memory
access, computation redundancy, and parameter usage as the three main bottlenecks affecting the
speed of ViTs. They introduce a new building block with a ”sandwich layout,” which places a single
memory-bound Multi-Head Self-Attention (MHSA) layer between efficient Feed-Forward Network
(FFN) layers. This design improves memory efficiency and enhances channel communication. The
paper also introduces a Cascaded Group Attention (CGA) module that feeds different splits of the
full feature to different attention heads, reducing computational redundancy and improving atten-
tion diversity. EfficientViT models outperform existing efficient models in terms of both speed and
accuracy. For instance, EfficientViT-M5 surpasses MobileNetV3-Large by 1.9% in accuracy while
achieving higher throughput on both GPU and CPU.

In Tu et al| (2022), authors presented a new type of Transformer module, called multi-axis self-
attention (MaxVit), that capably serves as a basic architecture component which can perform both
local and global spatial interactions in a single block. Compared to full self-attention, Max Vit enjoys
greater flexibility and efficiency, i.e., naturally adaptive to different input lengths with linear com-
plexity; in contrast to (shifted) window/local attention, Max Vit allows for stronger model capacity
by proposing a global receptive field.

In|Barhoumi & Ghulam|(2021)), authors proposed a hybrid architecture that leverages the strengths
of both Convolutional Neural Networks and Vision Transformers. By utilizing multiple CNNs for
feature extraction, they enrich the input that the Vision Transformer attends to, thereby enhancing
its ability to capture relevant features. This approach not only improves the performance of the
Vision Transformer but also introduces a degree of modularity and scalability, making it adaptable
for various medical imaging tasks.

All the previous recent works focused on fusion ViT and CNN. Our approach aligns with the same
paradigm, albeit with an emphasis on more effectively, flexibility and low data dependency integrat-
ing the two components. We will elaborate on our architecture in the subsequent section.

3 METHODOLOGY

3.1 THE PROPOSED ARCHITECTURE

As depicted in Figure[I] our architecture starts with an introductory convolutional block, tailored to
extract elementary feature maps from the input image. Subsequent to this, we introduce a duo of
parallelized, distinct blocks. The first block within this duo integrates a bottleneck block, composed
of multiple convolutional layers, offering enhanced feature extraction capabilities. Simultaneously,
the secondary block introduces a residual unit, explicitly designed to bolster information flow and
empower the model to learn profounder representations. The resultant feature maps from these
parallel constructs are seamlessly merged using an element-wise addition operation, which is then
succeeded by a Max pooling layer to further refine the spatial hierarchy of the feature maps.
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This modular assembly is systematically reiterated thrice, employing varying channel dimensions
to adeptly capture multi-scale feature intricacies. The terminal segment of our architecture encom-
passes a CareNet block, which is structured with a bottleneck block followed by an attention mech-
anism operating in parallel across both grid and window patterns. The outputs from these attention
mechanisms are subsequently averaged to obtain a consolidated feature representation. Running in
tandem with the CareNet block is an additional residual unit, ensuring consistent feature propaga-
tion.

To conclude the architectural design, we employ a Max pooling layer, which is then followed by
a flatten operation to reshape the feature maps into a singular vector. The final component of our
architecture is a linear classification layer, dedicated to producing the predictive outcomes. In the
following sections, we delineate the advantages of the various layers employed in our architecture.
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Figure 1: Illustration of our architecture

Convolutional Layers Convolutional layers serve as the building blocks for many state-of-the-
art computer vision architectures, including VGG presented in [Simonyan & Zisserman| (2015)) and
ResNet in |He et al.[(2015). These layers are particularly effective in capturing local features like
edges, corners, and textures in an image and preserving the spatial relationships between pixels. The
virtues of Convolutional Neural Networks (CNNs) are manifold. Initially, their architecture is inher-
ently well-suited for capturing hierarchical patterns in the data, enabling them to excel particularly
in tasks that necessitate an understanding of spatial hierarchies, such as object recognition and seg-
mentation. Subsequently, their parameter-sharing mechanism enhances computational efficiency,
thereby permitting the training of deeper, more complex models without a commensurate increase
in computational resources.

Max Pooling Max-pooling layers have become an integral component in numerous convolutional
neural network architectures due to their numerous advantages. Primarily, max-pooling reduces the
spatial dimensions of the feature maps, leading to a decrease in the amount of parameters and com-
putations and thus avoid the overfitting in the network. This reduction helps in combating the curse
of dimensionality, enabling the network to focus on the most salient features and thus enhancing
its generalization capability. Notably, max-pooling layers also play a pivotal role in hierarchically
capturing abstract representations in deep CNNs. In sum, the inclusion of max-pooling layers in
CNN architectures offers a systematic approach to achieving computational efficiency, robustness,
and a hierarchical representation of features, making them indispensable in modern deep learning
paradigms.
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Attention Mechanisms Attention mechanisms have gained prominence primarily in the field of
natural language processing with architectures like Transformers presented in|Vaswani et al.[(2017).
However, their application in computer vision, as seen in models like ViT in |Dosovitskiy et al.
(2020), has shown significant promise. Attention layers weigh the importance of different regions
in the image, allowing the model to focus on more relevant parts. They capture long-range depen-
dencies without requiring higher computational costs.

Squeeze-and-Excitation Layers Authors in|{Hu et al.|(2018)) presents the Squeeze-and-Excitation
(SE) layers which offer a mechanism to adaptively recalibrate channel-wise feature responses. SE
layers dynamically adjust the importance of each channel based on the global average pooling.
These layers add minimal computational overhead while offering performance gains. Finally, by
allowing the model to focus on more informative channels, SE layers improve the representational
power of the network.

Residual Connections Introduced by He et al. in ResNet |He et al.| (2015)), residual connections
have revolutionized the training of deep networks. In our architecture, Squeeze-and-Excitation (SE)
layers are incorporated for a variety of reasons, notably to enhance the network’s capacity for feature
recalibration, thereby leading to a more adaptive representation of input data. Additionally, SE
layers contribute to the overall interpretability of the model by providing a mechanism to weigh the
importance of different features.

3.2 EXPERIMENTATIONS

Methodology In the methodology adopted for this study, we utilize several benchmark datasets,
each of which is elaborated upon in the Data section. To ensure a fair and unbiased comparison, we
commit to training a variety of models from scratch, or ’from zero”, without the influence of any pre-
existing weights or pre-trained parameters. This approach ensures that each model’s performance
is a direct result of its architecture and training regime, devoid of any external influences. All
experiments conducted herein are grounded in our original efforts, employing the bare codebases of
the models without any pre-loaded weights, ensuring the purity and repeatability of our results.

Data In this study, we leverage a diverse set of benchmark datasets to rigorously evaluate the per-
formance and robustness of our proposed models. The Tiny-ImageNet dataset Le & Yang|(2015), a
downscaled variant of the much larger ImageNet|Deng et al.{(2009), comprises 200 classes with each
class having 500 training and 50 validation images of 64x64 resolution. It provides a challenging
yet computationally accessible platform for fine-grained classification tasks. For the Tiny-ImageNet
dataset, we opted for a reduced set of 450 training images per class, rather than the full 500, in an
effort to investigate the model’s performance under a more constrained training scenario. Addition-
ally, we used 50 images from each class for validation to evaluate the generalization capabilities of
our approach.

We also utilize the Fashion-MNIST dataset | Xiao et al.|(2017), an alternative to the original MNIST
dataset |[LeCun & Cortes| (2005) of handwritten digits. Fashion-MNIST contains grayscale images
of 10 different clothing types, such as shirts, trousers, and footwear, each normalized to a 28x28
pixel resolution. This offers a more intricate classification landscape compared to MNIST, which
features single-channel, 28x28 grayscale images of numerals 0-9 and serves as a cornerstone for
basic machine learning algorithms.

Finally, we incorporate the STL-10 dataset |Coates et al.| (2011)), designed for unsupervised and
transfer learning. STL-10 contains 10 classes of 96x96 color images, with 500 labeled training
instances and 800 test instances per class, in addition to an unlabeled set of 100,000 images. The
selection of these datasets provides a broad testing ground to validate the versatility and scalability
of our methods across different domains and levels of complexity.

Training parameters During the training phase, we used an RTX 3090 graphics card and opted
for a maximum of 100 epochs to ensure comprehensive model training. Nevertheless, understanding
the risk of overfitting and to capitalize on computational efficiency, we employed an early stopping
mechanism. This mechanism monitors the validation loss during training. If the validation loss fails
to improve over a span of 10 consecutive epochs, referred to as ’patience’, the early stopping pro-
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Top1 Validation Accuracy (%)
STL10 Fashion Mnist Mnist 1" Imagenet

Architecture Nbr of params (Million) Model size (MB)

(ours)
ResNet50 23.53 91 78.36 95.15 99.35 51.79
ResNet34 21.28 82 76.72 95.11  99.43 56.19
ResNet18 11.18 44 75.33 94.37  99.35 54.35
CoatNet_0 17.02 67 74.75 9499  99.17 54.56
Max Vit 24.67 95 76.95 9348 99.42 58.28
VGGI16 134.30 513 10.00 9491 99.33 52.57
CAReNet (ours) 12.74 50 80.26 94.94 99.4 54.4

Table 1: Top-1 accuracy and model size comparison of neural network architectures trained from
scratch across multiple datasets

cedure is triggered, and the training is halted. This approach not only aids in preventing overfitting
but also ensures that the model training is efficient, by eliminating the redundancy of epochs that do
not contribute to model improvement. In our experimentation phase, meticulous attention was given
to the selection of hyperparameters to optimize model performance across various image datasets.
A learning rate of 1 x 10~* was universally applied to all datasets, with the notable exception of
STL10, for which a learning rate of 5 x 10~* was chosen. These parameters were not arbitrarily set;
instead, they emerged as optimal from a series of rigorous experiments. Similarly, the optimizer’s
selection was grounded in empirical evaluations. After juxtaposing several candidates, the AdamW
optimizer was identified as the most efficacious for our task and subsequently adopted.

4 RESULTS

In this section, we present a comprehensive evaluation of our proposed architecture, CAReNet,
across multiple benchmark datasets. The primary focus of this evaluation is on the Top-1 validation
accuracy and the model size, as detailed in Table [I] This comparison is crucial for illustrating the
efficiency and effectiveness of CAReNet, particularly when trained from scratch.

4.1 PERFORMANCE ACROSS DATASETS

The datasets used for this evaluation include STL10, Tiny ImageNet, Fashion-MNIST, and MNIST.
These datasets were chosen to demonstrate the architecture’s versatility and performance in diverse
scenarios.

4.1.1 STL10 DATASET

For the STL10 dataset, CAReNet achieved a Top-1 accuracy of 80.26%, outperforming ResNet50,
which had an accuracy of 78.36%. This was accomplished with nearly half the number of parameters
used in ResNet50, demonstrating CAReNet’s efficiency in parameter utilization and its effectiveness
in balancing accuracy with model compactness.

4.1.2 TINY IMAGENET

On the Tiny ImageNet dataset, CAReNet recorded a Top-1 accuracy of 54.4%. While this is slightly
lower than MaxVit’s 58.28% accuracy, it is important to note that CAReNet achieved this with
a significantly smaller model size, highlighting its capability to handle complex, high-resolution
image data effectively.

4.1.3 FASHION-MNIST AND MNIST

CAReNet demonstrates robust performance on Fashion-MNIST and MNIST, with accuracies near-
ing 95% and over 99%, respectively. These results are indicative of the model’s adaptability to
different types of image data and complexities, further emphasizing its practical utility.
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4.2 MODEL SIZE AND EFFICIENCY

One of the key strengths of CAReNet is its compactness combined with high performance. The
architecture’s ability to maintain high accuracy with a reduced parameter count and smaller model
size makes it a promising candidate for applications where computational resources are limited, such
as mobile and edge computing.

4.3 COMPARATIVE ANALYSIS

The evaluation also included a comparative analysis with other well-established models like
ResNet50, ResNet18, VGG16, and emerging architectures like MaxVit and CoatNet. The results
show that CAReNet is either equivalent or superior in terms of Top-1 accuracy across the evaluated
datasets, while maintaining a smaller model size and fewer parameters.

4.4 IMPLICATIONS

The findings from our experiments suggest that CAReNet is not only an efficient and effective archi-
tecture for image classification tasks but also a viable solution in scenarios demanding computational
frugality. Its ability to deliver high accuracy with a compact model size is pivotal for extending the
applicability of deep learning models to a broader range of real-world scenarios, particularly where
computational and data resources are scarce.

The presented results furnish an in-depth comparison among several cutting-edge neural network
architectures, focusing on their Top-1 validation accuracy across diverse datasets while highlighting
their model sizes and parameter counts of the architectures evaluated, ResNet50, with its 23,528,522
parameters, led the pack in the Mnist dataset with an accuracy of 99.35%. However, its perfor-
mance on STL10, at 78.36%, though commendable, is surpassed by our proposed CAReNet, which
achieves an impressive 80.26% while only utilizing 12,745,930 parameters. This is a testament to
CAReNet’s optimization, effectively leveraging a reduced parameter set to outperform a renowned
architecture like ResNet50 on the STL10 dataset.

In summary, the deep learning landscape often poses the challenge of balancing model size, com-
putational efficiency, and performance. However, CAReNet emerges as a sterling example, demon-
strating that with judicious architecture design and parameter optimization, it’s possible to craft
models that are compact yet rival, if not surpass, the performance of their larger counterparts. Our
findings model CAReNet’s potential as a frontrunner for scenarios demanding computational fru-
gality without compromising on performance.

5 CONCLUSION

In conclusion, the proposed CAReNet architecture shows promise in achieving competitive, if not
superior, performance with a relatively lower parameter count, making it an efficient and robust
model choice. On the one hand, our CAReNet model showed an improvement in top-1 accuracy,
being up to 5.51% higher compared to other architectures. On the other hand, in terms of model
complexity, our model requires fewer parameters with a factor ranging from 12.3% more to 46.04%
less compared to other architectures. Its consistent performance across various datasets indicates its
potential for broad applications in diverse computer vision tasks. Further studies and refinements on
this approach could lead to even more efficient and high-performing models suitable for real-world
deployment.

As we look toward the future of this research avenue, one of the most compelling next steps involves
adapting our CAReNet architecture for semi-supervised and self-supervised learning paradigms.
The ultimate goal is to push the envelope further in terms of achieving state-of-the-art performance
with minimal labeled data. By leveraging unlabeled data, which is abundantly available but signifi-
cantly underutilized, we aim to explore the efficacy of CAReNet in settings where acquiring labeled
data is either too expensive or impractical. The challenge lies in fine-tuning the architecture and loss
functions in a way that maximizes the utility of both labeled and unlabeled data, thereby mitigating
the data scarcity issue that is often a bottleneck in deploying machine learning models in real-world
applications.
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