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Abstract

We consider the privacy amplification properties of a sampling scheme in which
a user’s data is used in k steps chosen randomly and uniformly from a sequence
(or set) of ¢ steps. This sampling scheme has been recently applied in the context
of differentially private optimization [Chua et al.,2024a, |Choquette-Choo et al.|
2025] and is also motivated by communication-efficient high-dimensional private
aggregation [Asi et al) 2025]]. Existing analyses of this scheme either rely on
privacy amplification by shuffling which leads to overly conservative bounds or
require Monte Carlo simulations that are computationally prohibitive in most
practical scenarios.

We give the first theoretical guarantees and numerical estimation algorithms for
this sampling scheme. In particular, we demonstrate that the privacy guarantees
of random k-out-of-¢ allocation can be upper bounded by the privacy guarantees
of the well-studied independent (or Poisson) subsampling in which each step uses
the user’s data with probability (1 4 o(1))k/t. Further, we provide two additional
analysis techniques that lead to numerical improvements in several parameter
regimes. Altogether, our bounds give efficiently-computable and nearly tight
numerical results for random allocation applied to Gaussian noise addition.

1 Introduction

One of the central tools in the analysis of differentially private algorithms are so-called privacy
amplification guarantees, where amplification results from sampling of the inputs. In these results one
starts with a differentially private algorithms (or a sequence of such algorithms) and a randomized
selection (or sampling) to determine which of the n elements in a dataset to run each of the ¢
algorithms on. Importantly, the random bits of the sampling scheme and the selected data elements
are not revealed. For a variety of sampling schemes this additional uncertainty is known to lead to
improved privacy guarantees of the resulting algorithm, that is, privacy amplification.

In the simpler, single step, case a DP algorithm is run on a randomly chosen subset of the dataset. As
first shown by |[Kasiviswanathan et al.| [2011], if each element of the dataset is included in the subset
with probability A (independently of other elements) then the privacy of the resulting algorithm is
better (roughly) by a factor A. This basic result has found numerous applications, most notably in
the analysis of the differentially private stochastic gradient descent (DP-SGD) algorithm [Bassily
et al., [2014]. In DP-SGD gradients are computed on randomly chosen batches of data points and
then privatized through clipping and Gaussian noise addition. Privacy analysis of this algorithm
is based on the so called Poisson sampling: elements in each batch and across batches are chosen
randomly and independently of each other. The absence of dependence implies that the algorithm
can be analyzed relatively easily as a direct composition of single step amplification results. The
downside of this simplicity is that such sampling is less efficient and harder to implement within the
standard ML pipelines. As a result, in practice some form of shuffling is used to define the batches in
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DP-SGD leading to a well-recognized discrepancy between the implementations of DP-SGD and
their analysis [[Chua et al.| [2024blc, |Annamalai et al.| 2024].
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Figure 1: Upper bounds on privacy parameter € as a function of the noise parameter o for various schemes
and the local algorithm (no amplification), all using the Gaussian mechanism with fixed parameters § = 10719,
t = 10°. In the Poisson scheme A = 1/t. The "flat" part of the RDP based calculation is due to computational
limitations, which was computed for the range « € [2, 60].

Motivated by the shuffle model of federated data analysis [Bittau et al., 2017],/Cheu et al.| [2019]],
Erlingsson et al.|[2019] have studied the privacy amplification of the shuffling scheme. In this scheme
the n elements are randomly and uniformly permuted and ¢-th element in the permuted order is used
in the ¢-th step of the algorithm. This sampling scheme can be used to analyze the implementations
of DP-SGD used in practice [Erlingsson et al., 2019} [Feldman et al.,|2021]]. However, the analysis of
this sampling scheme is more involved and nearly tight results are known only for relatively simple
pure DP (§ = 0) algorithms [Feldman et al.;, 2021} [2023 |Girgis et al., 2021]. In particular, applying
these results to Gaussian noise addition requires using (&, ¢)-guarantees of the Gaussian noise. This

leads to an additional 4/In(1/4) factor in the asymptotic analysis and significantly worse numerical
results (see Fig. [T] for comparison and discussion in Section4.2).

Note that shuffling differs from Poisson subsampling in that participation of elements is dependent
both in each step (or batch) and across the steps. If the participation of elements in each step is
dependent (by fixing the total number of participating elements) but the steps are independent then
the sampling scheme can be tightly analyzed as a direct composition of fixed subset size sampling
steps (e.g., using bound in Balle et al.| [2018]], Zhu et al.|[2022]). However, a more problematic aspect
of Poisson sampling is the stochasticity in the number of times each element is used in all steps. For
example, using Poisson sampling with sampling rate 1/¢ over ¢ batches will result in a roughly 1/e
probability of not using the sample which implies dropping approximately 37% of the data, and the
additional sampling randomness may increase the resulting variance as demonstrated in Appendix
In a distributed setting it is also often necessary to limit the maximum number of times a user
participates in the analysis due to time or communication constraints on the protocol [[Chen et al.|
2024, |Ast et al., 2025]). Poisson sampling does not allow to fully exploit the available limit which
hurts the utility.

Motivated by the privacy analysis of DP-SGD and the problem of communication-efficient high-
dimensional private aggregation with two servers [Asi et al., [2025]], we analyze sampling schemes
where each element participates in exactly k& randomly chosen steps out of the total ¢, independently
of other elements. We refer to this sampling as k-out-of-t random allocation. For k = 1, this scheme
is a special case of the random check-in model of defining batches for DP-SGD in [Balle et al., 2020].
Their analysis of this variant relies on the amplification properties of shuffling and thus does not lead



to better privacy guarantees than those that are known for shuffling. Very recently, Chua et al.|[2024a]
have studied such sampling (referring to it as balls-and-bins sampling) in the context of training
neural networks via DP-SGD. Their main results show that from the point of view of utility (namely,
accuracy of the final model) random allocation with & = 1 is essentially identical to shuffling and is
noticeably better than Poisson sampling. Concurrently, (Choquette-Choo et al.|[2025]] considered the
same sampling scheme for the matrix mechanism in the context of DP-FTRL. The privacy analysis in
these two works reduces the problem to analyzing the divergence of a specific pair of distributions on
R?. They then used Monte Carlo simulations to estimate the privacy parameters of this pair. Their
numerical results suggest that privacy guarantees of 1-out-of-¢ random allocation are similar to those
of the Poisson sampling with rate of 1/¢. While very encouraging, such simulations have several
limitations which we discuss in Appendix most notably, achieving high-confidence estimates for
small 4 and supporting composition appear to be computationally impractical. This approach also
does not lead to provable privacy guarantees and does not lend itself to asymptotic analysis (such as
the scaling of the privacy guarantees with ?).

1.1 Our contribution

We provide three new analyses for the random allocation setting that result in provable guarantees that
nearly match or exceed those of the Poisson subsampling at rate k/¢. The analyses rely on different
techniques and lead to incomparable numerical results. We describe the specific results below and
illustrate the resulting bounds in Fig.

In our main result we show that the privacy of random allocation is upper bounded by that of the
Poisson scheme with sampling probability ~ k/t up to lower order terms which are asymptotically
vanishing in ¢/k. Specifically, we upper bound it by the k-wise composition of Poisson subsampling
with rate (1+-y)k/t applied to a dominating pair of distributions for each step of the original algorithm

(Def. with an additional ¢dg + ¢’ added to the § parameter. Here, v = O (eaf’ \/ kln(tk/él)) and

€0, 0o are the privacy parameters of the original algorithm. The formal statement of this result that
includes all the constants can be found in Thm. @ Additionally, we show in Thm. E]this lower
order term can be recursively bounded using (¢, ") parameters of the same algorithm for some
¢’ > . This leads to significant numerical improvements in our results.

Our analysis relies on several simplification steps. Using a dominating pair of distributions for the
steps of the original algorithm, we first derive an explicit dominating pair of distributions for random
allocation (extending a similar result for Gaussian noise in [[Chua et al.| [2024a, [Choquette-Choo
et al., |2025])). Equivalently, we reduce the allocation for general multi-step adaptive algorithms to
the analysis of random allocation for a single (non-adaptive) randomizer on two inputs. We also
analyze only the case of k¥ = 1 and then use a reduction from general k to £ = 1. Finally, our
analysis of the non-adaptive randomizer for k£ = 1 relies on a decomposition of the allocation scheme
into a sequence of posterior sampling steps for which we then prove a high-probability bound on
subsampling probability in each step.

We note that, in general, the privacy of the composition of subsampling of the dominating pair of
distributions can be worse than the privacy of the sampling scheme of a concrete algorithm, even if
this pair tightly dominates it. This is true for both Poisson and random allocation schemes. However,
all existing analyses of the Poisson sampling are effectively based on composition of subsampling
for a dominating pair of distributions. Moreover, if the algorithm has a pair of neighboring datasets
inducing this dominating pair, then our upper bound can be stated directly in terms of the Poisson
subsampling scheme with respect to this pair. Such dominating input exists for many standard
algorithms including those based on Gaussian and Laplace noise addition.

While our result shows asymptotic equivalence of allocation and Poisson subsampling, it may lead
to suboptimal bounds for small values of ¢/k and large £yg. We address this using two additional
techniques which are also useful as starting points for the recursive version of our main result.

We first show that € of random allocation with k£ = 1 is at most a constant (=~ 1.6) factor times larger
than ¢ of the Poisson sampling with rate 1/¢ for the same 0 (see Theorem . This upper bound
does not asymptotically approach Poisson subsampling but applies in all parameter regimes. To prove
this upper bound we observe that Poisson subsampling is essentially a mixture of random allocation
schemes with various values of k. We then prove a monotonicity property of random allocations



showing that increasing k leads to worse privacy. Combining these results with the advanced joint
convexity property [Balle et al.| [2018]] gives the upper bound.

Finally, we give a direct analysis of the divergence for the dominating pair of distributions. Due
to the asymmetric nature of the add/remove privacy our bounds require different techniques for
each of the directions. In the remove direction we derive a closed form expression for the Rényi
DP [Mironovl, 2017] of the dominating pair of distributions for allocation in terms of the RDP
parameters of the original algorithm (Theorem .4). This method has two important advantages.
First, it gives a precise bound on the RDP parameters of integer order (as opposed to just an upper
bound). Secondly, it is particularly easy to use in the typical setting where composition is used in
addition to a sampling scheme (for example, when k > 1 or in multi-epoch DP-SGD). The primary
disadvantage of this technique is that the conversion from RDP bounds to the regular (&, §) bounds
is known to be somewhat lossy (typically within 10-20% range in multi-epoch settings). The same
loss is also incurred when Poisson sampling is analyzed via RDP (referred to as moment accounting
[Abadi et al.,2016[]). Two more limitations of this technique result from the restriction to the range
« > 2, and the computational complexity when « is in the high tens.

For the add direction we give an approximate upper bound in terms of the usual composition of a
different, explicitly defined randomizer over the same domain. While this bound is approximate, the
divergence for the add direction is typically significantly lower than the one for the remove direction
and therefore, in our evaluations, this approximation has either minor or no effect on the maximum.
Overall, in our evaluations of this method for Gaussian distribution in most regimes the resulting
bounds are almost indistinguishable from those obtained via RDP for Poisson distribution (see Fig. [6]
for examples). In fact, in some regimes it is better than Poisson sampling (Figure [5).

Numerical evaluation: In Section [5] we provide numerical evaluation and comparisons of our
bounds to those for Poisson sampling as well as other relevant boundsE] Our evaluations across many
parameter regimes give bounds on the privacy of random allocation that are very close, typically
within 10% of those for the Poisson subsampling with rate k/¢. This means that random allocation
can be used to replace Poisson subsampling with only a minor loss in privacy. At the same time,
in many cases, the use of random allocation can improve utility. In the context of training neural
networks via DP-SGD this was shown in [Chua et al.| 2024a]. Application of our bounds also lead to
improvement over Poisson subsampling in [Asi et al.,2025]]. We demonstrate that even disregarding
some practical disadvantages of Poisson subsampling, random allocation has a better privacy-utility
trade-off for mean estimation in low-dimensional regime. This improvement stems from the fact that
random allocation computes the sum exactly whereas Poisson subsampling introduces additional
variance. At the same time in the high-dimensional regime noise due to privacy dominates the final
error and thus the trade-off boils down to the difference in the privacy bounds.

1.2 Related work

Our work builds heavily on tools and ideas developed for analysis of privacy amplification by
subsampling, composition and shuffling. We have covered the work directly related to ours earlier
and will describe some of the tools and their origins in the preliminaries. A more detailed technical
and historical overview of subsampling and composition for DP can be found in the survey by |Steinke
[2022]. The shuffle model was first proposed by [Bittau et al.| [2017]]. The formal analysis of the
privacy guarantees in this model was initiated in [Erlingsson et al., [2019} |Cheu et al.l2019]. The
sequential shuffling scheme that we discuss here was defined by |[Erlingsson et al.| [2019]] who proved
the first general privacy amplification results for this scheme albeit only for pure DP algorithms.
Improved analyses and extensions to approximate DP were given in [Balle et al.| 2019, [2020, |[Feldman
et al., 2021} 2023| |Girgis et al., 2021} |Koskela et al., 2022].

DP-SGD was first defined and theoretically analyzed in the convex setting by Bassily et al.|[2014].
Its use in machine learning was spearheaded by the landmark work of |Abadi et al.| [2016] who
significantly improved the privacy analysis via the moments accounting technique and demonstrated
the practical utility of the approach. In addition to a wide range of practical applications, this work has
motivated the development of more advanced techniques for analysis of sampling and composition.
At the same time most analyses used in practice still assume Poisson subsampling when selecting
batches whereas some type of shuffling is used in implementation. It was recently shown that it
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results in an actual difference between the reported and true privacy level in some regimes [[Chua
et al.,[2024blc, |/Annamalai et al.,[2024].

In a concurrent and independent work Dong et al.|[2025] considered the same sampling method
(referring to it as Balanced Iteration Subsampling). Their results are closest in spirit to our direct
bounds. Specifically, they provide RDP-based bounds for the same dominating pair of distributions in
the Gaussian case for both add and remove directions. Their bound for general £ is incomparable to
ours as it is based on a potentially loose upper bound for divergences of order o > 2, while using an
exact extension of their approximation to k£ > 1. In contrast, our RDP-based bound uses a reduction
from general k to k = 1 that is potentially loose but our computation for the k = 1 case is exact (for
the remove direction which is typically larger than the add direction). In our numerical comparisons,
the bounds in [Dong et al.| [2025] are comparable or worse than our direct bounds and are often
significantly worse than the bounds from our main result. We discuss these differences in more detail
and provide numerical comparison in Appendix [G.2}

2 Preliminaries

We denote the domain of elements by X’ and the set of possible outputs by ). Given a dataset s € X'*

and an output y € ), we denote by Py (y|s) == P - (Y = y) the probability of observing the
Y~M(s
output y as the output of some randomized algorithm M which was given dataset s as input.

2.1 Sampling schemes

In this work we consider t-step algorithms defined using an algorithm M which takes some subset
of the dataset and a sequence of previous outputs as an input. Formally, let V<! = |J, <t Vi. M
takes a dataset in X'* and a view v € J<! as its inputs and outputs a value in ). A t-step algorithm
defined by M first uses some scheme to define ¢ subsets s', ..., st C s, then sequentially computes
y; = M (s, v""1), where v' := (y1,...,y;) are the intermediate views consisting of the outputs
produced so far, and v° = (). Such algorithms include DP-SGD, where each step consists of a call to
the Gaussian mechanism (A.2), with gradient vectors adaptively defined as a function of previous
outputs.

The assignment of the elements in s to the various subsets can be done in a deterministic manner (e.g.,
st =...=s' = s), or randomly using a sampling scheme. We consider three following sampling
schemes.

1. Poisson scheme parametrized by sampling probability A € [0, 1], where each element is
added to each subset s* with probability A\ independent of the other elements and other
subsets,

2. Shuffling scheme which uniformly samples a permutation 7 over [n] where n is the sample
size, and sets s* = {a:,r(i)} (in this case, the sample size and number of steps must match).

3. Random allocation scheme parametrized by a number of selected steps k € [t], which
uniformly samples £ indices ¢ = (i1,...,i;) C [t] for each element and adds it to the
corresponding subsets s"1, ..., 8.

For a t-step algorithm defined by M, we denote by P; (M) : X* — V" an algorithm using M with
the Poisson sampling scheme, S,, (M) : X™ — Y™ for the shuffling scheme, and A ;, (M) : X* —
V! when M is used with the random allocation scheme. When k = 1 we omit it from the notation
for clarity.

2.2 Privacy notions

We consider the standard add/remove adjacency notion of privacy in which datasets s, s’ € X'* are
neighboring if s can be obtained from s’ via adding or removing one of the elements. To appropriately
define sampling schemes that operate over a fixed number of elements we augment the domain with a
“null” element L, that is, we define X’ :== X U {_L}. When a t-step algorithm assigns | to M we
treat it as an empty set, that is, for any s € X*, v € Y* we have M (s,v) = M((s, L), v). We say



that two datasets s, s’ € X™ are neighbors and denote it by s ~ ', if one of the two can be created
by replacing a single element in the other dataset by L.

We rely on the hockey-stick divergence to quantify the privacy loss.

Definition 2.1. Given x > 0 and two distributions P, () over some domain {2, the hockey-stick
divergence between them is defined to be

H, (P = Pw) - kQW)], dv= E {eé(“;P’Q) — /f] ] = E Hl — /ﬁez(“’:’Q"P)] ] ;
P 1Q) = [ 1) Q) do= E, | |-, .
where ¢ (w; P,@) = In (%); % is the ratio of the probabilities for countable domain or
the Radon Nikodym derivative in the continuous case, and [z] = max{0,z}. When P,Q are

distributions induced by neighboring datasets s ~ s’ and an algorithm M, we refer to the log
probability ratio as the privacy loss random variable and denote it by £,/ (y; s, s'). We omit M from
the notation when it is clear from the context.

Definition 2.2 (|Balle et al, 2018]]). Given an algorithm M : &X* — ), the privacy

profile dpy : R — [0,1] is defined to be the maximal hockey-stick divergence between

the distributions induced by any neighboring datasets and past view. Formally, dp(e) =
sup  (Hee (M(s,v) || M(s',0))).

s~s'eX* veY*

Since the hockey-stick divergence is asymmetric in the general case, we use 5 M and = to denote

the remove direction where 1 € s’ and 5 M, & to denote the add direction when | € s. Notice that

Sar(e) = max{dn(e), 6as(e)}.
Another useful divergence notion is the Rényi divergence.
Definition 2.3. Given v > 1 and two distributions P, ) over some domain €2, the Rényi divergence

between them is defined to be R,, (P||Q) = 1 7ln ( IEQ [ea'f(W;P,Q)])

a—

We can now formally define our privacy notions.

Definition 2.4 ([Dwork et al. [2006]). Given ¢ > 0; 6 € [0, 1], an algorithm M will be called
(e, 0)-differentially private (DP), if dpr(e) < 4.
Definition 2.5 ([Mironov, 2017]]). Given o > 1; p > 0, an algorithm M will be called («, p)-Rényi

differentially private (RDP), if sup (Ro (M(s,v)||M(s',v))) < p.
s~s' e X* veY*

One of the most common algorithms is the Gaussian mechanism N, which simply reports the sum
of (some function of) the elements in the dataset with the addition of Gaussian noise. One of its main
advantages is that we have closed form expressions of its privacy (Lemma|A.2).

2.3 Dominating pair of distributions

A key concept for characterizing the privacy guarantees of an algorithm is that of a dominating pair
of distributions.

Definition 2.6 ([Zhu et al.,2022]]). Given distributions P, ) over some domain 2, and P’, Q' over
Y, we say (P, Q') dominate (P, Q) if forall K > O we have H,, (P || Q) < H,, (P' | Q). If
Orp(e) < He (P || Q) foralle € R, we say (P, Q) is a dominating pair of distributions for M. If
the inequality can be replaced by an equality for all €, we say it is a tightly dominating pair. If there
exist some s ~ s’ € X* such that P = M(s), Q = M(s") we say (s, s’) are the dominating pair of
datasets for M. By definition, a dominating pair of input datasets is tightly dominating.

We use the notion of dominating pair to define a dominating randomizer, which captures the privacy
guarantees of the algorithm independently of its algorithmic adaptive properties.

Definition 2.7. Given a t-step algorithm defined by M, we say that R : { L, x} — ) is a dominating
randomizer for M and set R(x) = P and R(L) = Q, where (P, Q) is the tightly dominating pair of
M (-,-) w.r.t.  over all indexes ¢ € [t] and input partial views v~

3Such a pair always exists [Zhu et al., 2022, Proposition 8]



The definition of the Poisson and random allocation schemes naturally extends to the case where the
internal algorithm is a randomizer. In this case Py \ (R) : {*, L} — Y and A; » (R) : {*, L} — V"

3 General reduction

We first prove two general claims which reduce the bound on arbitrary algorithms, datasets, and
number of allocations, to the case of a single allocation (k = 1) of a simple non-adaptive randomizer
receiving a single element. Missing proofs can be found in Appendix [B]

From the definition of the dominating randomizer, for any € € R we have dps(¢) < dr(g). We now
prove that this is also the case for allocation scheme, that is d 4, , (ar)(€) < 04, ,(r)(€), and that the
supremum over neighboring datasets for A i, (R) is achieved by the pair of datasets containing a
single element, that is s = {*}, s’ = {_L}. This results from the fact that random allocation can be
viewed as a two steps process, where first all elements but one are allocated, then the remaining one
is allocated and the algorithm is ran for ¢ steps. From the convexity of the hockey-stick divergence
we can upper bound the privacy profile of the random allocation scheme by the worst case allocation
of all elements but the removed one. From Lemmal[A_.3] each intermediate call to the mechanism is a
post process of the randomizer, which can be used to recursively define a randomized mapping from
the random allocation over the randomizer to the allocation over the mechanism. Using the same
lemma, this mapping implies that 0 4, , (ar)(€) < 9.4, ,(r)(€)-

Theorem 3.1. Givent € N; k € [t] and a t-step algorithm defined by M dominated by a randomizer
R, we have § 4, , (ar)(€) < 0, ,.(r)(€)-

A special case of this result for Gaussian noise addition and £ = 1 was given by [Chua et al.| [2024a),
Theorem 1], and in the context of the matrix mechanism by |Choquette-Choo et al.|[2025, Lemma
3.2]. The same bound for the Poisson scheme is a direct result from the combination of Claim|C.9
and |[Zhu et al.|[2022, Theorem 11].

Next we show how to translate any bound on the privacy profile of the random allocation with k = 1
to the case of & > 1 by decomposing it to k calls to a 1 out of t/k steps allocation process.

Lemma 3.2. Forany k € N, ¢ > 0 we have 6 4, ,(r)(e) < (5§ﬁ/kj (R) (€), where @k denotes the
composition of k runs of the algorithm or scheme which in our case is A|; /| (R).
Combining these two results, the privacy profile of the random allocation scheme is bounded by the

(composition of the) hockey-stick divergence between A; (R; ) and A; (R; L) = R®*(L) in both
directions, which we bound in three different ways in the following section.

4 Privacy bounds

4.1 Truncated Poisson bound

Roughly speaking, our main theorem states that random allocation is asymptotically identical to the
Poisson scheme with sampling probability /= & /¢ up to lower order terms. Formal proofs and missing
details of this section can be found in Appendix[C]

Theorem 4.1. Given ey > 0; &g € [0, 1] and a (e, d0)-DP randomizer R, for any £,6 > 0 we have
S4,(r)(€) < 6p, , (r)(€)+1td0+6, wheren = t(1£7) and 7y := min {cosh(ao) \/2In(3),1- %}

Furthermore, for any e,&' > 0 and randomizer R we have gAt(R) (e) < 573“](3) (e)+7 -BAt(R) (e

-1
65/ (eel 71) .

’
625

andsAt(R) (e) < Spm(R) (e) 4+ Te2 'SAt(R) (¢'), where n = “— and T ==

Since 7 corresponds to a sampling probability of % up to a lower order term in ¢, this implies that the
privacy of random allocation scheme is asymptotically upper-bounded by the Poisson scheme. While
this holds for sufficiently large value of ¢, in many practical parameter regimes the second part of the
theorem provides tighter bounds.

While the recursive expression might seem to lead to a vacuous loop, it is in fact a useful tool.
Notice that 6 4,(r) (¢") /0 4,(r) (€) quickly diminishes as €’/e grows, so it suffices to set &’ = Ce



for some constant 1 < C for the second term to become negligible. Both parts of this theorem
follow from Lemma [C.T| which bounds the privacy profile of the random allocation scheme by that
of the corresponding Poisson scheme with sampling probability 7, with an additional term roughly
corresponding to a tail bound on the privacy loss of the allocation scheme.

4.2 Asymptotic analysis

Combining Theorem [d.1| with Lemma [3.2]and applying it to the Gaussian mechanism results in the
next corollary.

Corollary 4.2. Given ¢,6 > 0, for any 0 > 8 - max{\/ln(t/(ﬂ, \/Eln(t/é)}, we have

64, (N, (E) 0P, 4, (N,)(€) + 20, where N, is the Gaussian mechanism.

Using this Corollary we can derive asymptotic bounds on the privacy guarantees of the Gaussian
mechanism amplified by random allocation. Since the Gaussian mechanism is dominated by the
one-dimensional Gaussian randomizer (Claim[D.3) where R(x) = N(1,02) and R(L) = N (0, 0?),
this corollary implies that for sufficiently large o, the random allocation scheme with the Gaussian

2
mechanism A i (N, ) is (¢, 0)-DP for any € > C'- max { Py ::;;/6) , k ”tllr,lét/é) for some universal

constant C' (Lemma . We note that the dependence of € on o; §; k; and ¢ matches that of the
Poisson scheme for A = k/t (Lemma up to an additional logarithmic dependence on ¢ (Poisson
scales with In(1/6)), unlike the shuffle scheme which acquires an additional y/In(1/d) by converting
approximate the DP randomizer to pure DP first, resulting in the bound ¢ > C” - %\}{5) [Feldman
et al.l 2021]]. A detailed comparison can be found in Appendix

The recursive bound (second part of Theorem[d.T)) provides similar asymptotic guarantees for arbitrary
mechanisms, when g9 < 1 for the local mechanism M. In this case, the privacy parameter of its
corresponding Poisson scheme ep is approximately linear in the sampling probability. Setting the
sampling probability to 1/¢ and combining amplification by subsampling with advanced composition

implies ep = O (7750 t-ln(l/d)) =0 (eo 1n(1t/5)> Setting ¢’ = Cep for some constant

l« C<1/ep,wegeteg =0 (nsos/t . ln(l/é)) =0 ((1 +ep)eoy/ m(lt/é)> =O(ep +&%).

While Theorem 1| provides a full asymptotic characterization of the random allocation scheme, the
bounds it induces could be suboptimal for small ¢ or large €. In the following section we provide
several bounds that hold in all parameter regimes. We also use these to “bootstrap” the recursive
bound.

4.3 Poisson Decomposition

Theorem 4.3. For any £ > 0 we have gAt(R) (e) <7 gpty/\(R) @) andBAt(R) (e) <% -?SPM(R) (&),
where 7 = ﬁ, Y i=1+4e(7-1),&=In(1+(e€—1)/7), ands == —In (1 — (1 — e~%) /7).

We remark that while this theorem provides separate bounds for the add and remove adjacency
notionﬂ numerical analysis seems to indicate that the bound on the remove direction is always larger
than the one for the add direction.

Setting A = 1/t yields ¥ =~ e/(e — 1) ~ 1.6, which bounds the difference between these two
sampling methods up to this factor in € in the € < 1 regime.

Formal proofs and missing details can be found in Appendix [E]
4.4 Direct analysis

The previous bounds rely on a reduction to Poisson scheme. In this section we bound the privacy
profile of the random allocation scheme directly, which is especially useful in the low privacy regime

*An earlier version of this work has mistakenly stated that an upper bound for the remove direction applies to
both directions.



where the privacy profile of random allocation is lower than that of Poisson. Formal proofs and
missing details of this section can be found in Appendix [F}

Our main result expresses the RDP of the random allocation scheme in the remove direction in
terms of the RDP parameters of the randomizer, and provides an approximate bound in the the add
directiorﬂ While the privacy bounds induced by RDP are typically looser than those relying on
full analysis and composition of the privacy loss distribution (PLD), the gap nearly vanishes as the
number of composed calls to the randomizer grows, as depicted in Figure[6]

Theorem 4.4. Given two integers t,a € N, we denote by I1,(«) the set of integer partitions of

o consisting of < t elements. Given a partition I1 € I1,(c), we denote by (5) = ﬁ, and
pell £°

denote by C(I1) the list of counts of unique values in P (e.g. if « = 9 and 11 = [1,2,3, 3] then
C(M) =[1,1,2]). For any o > 2 and randomizer R we have

1 1 t «
R (A (R: A, (R: _ § : | I (p—1)Ryp(R(*)||R(L))
o (Ar (B3 %) | A (B L)) a—1 In e () (C'(H)) <H> pEHe

For the add direction we use a different bound.
Theorem 4.5. Given «y € [0, 1] and a randomizer R, we define a new randomizer R., which given an

Pr(y|z)7-Pr(y| L)' ™"
Yy

For any € > 0 we have EAt(R) () <H,_ (R®t(L) H R%}

input x samples y , Where Z., is the normalizing factor.

1/t(*) ) where €' == ¢ —t-In(Zy ;).

These two theorems follow from Lemmas [F.1]and[F3|for P = R(x) and Q = R(L).

As is the case in Theorem[#.3] numerical analysis seems to indicate the bound on the remove direction
always dominates the one for the add direction.

Since we have an exact expression for the hockey-stick and Rényi divergences of the Gaussian
mechanism, these two theorems immediately imply the following corollary.

Corollary 4.6. Given o > 0, and a Gaussian mechanism N, we have for any integer o > 2

R, (A, (Ny; 1) [N24(0)) = ﬁ m( (O(tH)) (g)e% L (2; +ln(t)> :

1€, (o)

andBAt(Na)(s) < 0N, (¢') where o' = \/to and e’ == ¢ — 12—012/t foralle € R.

Corollary 4.6|gives a simple way to exactly compute integer RDP parameters of random allocation
with Gaussian noise in the remove direction. Interestingly, they closely match RDP parameters of
the Poisson scheme with rate 1/¢ in most regimes (e.g. Fig. @) In fact, in some (primarily large ¢)
parameter regimes the bounds based on RDP of allocation are lower than the PLD-based bounds for
Poisson subsampling (Fig.[3)). The restriction to integer values has negligible effect, which can be
further mitigated using [Wang et al, 2019, Corollary 10], which upper bounds the fractional Rényi
divergence by a linear combination of the Rényi divergence of its rounded integer values. We also
note that |II; (/)| is sub-exponential in o which leads to performance issues in the very high privacy
(¢ < 1) regime (Large o values in Fig[T)). Since the typical value of c used for accounting is in the
low tens, this quantity can be efficiently computed using several technical improvements which we
discuss in Appendix [F.I] On the other hand, in the very low privacy regime (¢ >> 1), the « that leads
to the best bound on ¢ is typically in the range [1, 2] which cannot be computed exactly using our
method. Finally, we remark that while this result is stated only for £ = 1, it can be extended to k > 1
using the same argument as in Lemma 3.2} In fact, RDP based bounds are particularly convenient
for subsequent composition which is necessary to obtain bounds for k£ > 1 or multi-epoch training
algorithms.
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Figure 2: Bounds on privacy parameter ¢ as a function of the noise parameter o for various values of ¢, all using
the Gaussian mechanism with § = 10™'%, We compare the minimum over all our methods to the independent
results in|Dong et al.[[2025]], lower bound by Chua et al.| [2024a], and to the Poisson scheme with A = 1/¢.

5 Numerical evaluation

In this section we demonstrate that numerical implementations of our results give the first nearly-tight
and provable bounds on privacy amplification of random allocation with Gaussian noise, notably
showing (Fig.[I] 2) that they nearly match bounds known for Poisson subsampling. Compared to the
Monte Carlo-based technique by [Chua et al] [20244] (G.I), we show in many regimes our results
match these bounds up to constants in ¢ (logarithmic in €), and the computational limitation of the
MC technique in the low  and high confidence level regime. We additionally compare our results to
the RDP-based approximation by [Dong et al.| [2025]] (G.2), and demonstrate the advantage of our
tight RDP analysis in the regime where k£ < t. Their bound is tighter than our direct analysis in the
k ~ t regime, where the effect of amplification is small and ¢ is prohibitively large.

We demonstrate the utility degradation induced by Poisson subsampling relative to random allocation
using the simple setting of estimating the mean of a Bernoulli distribution from a sampled dataset
(App.[H). We derive theoretical approximations for the mean square error of the two schemes and
match them with numerical simulations, that demonstrate random allocation always has lower error
for sufficiently large sample size. Together with the results of |(Chua et al.|[2024a], our results imply
that random allocation (or balls-and-bins sampling) has the utility benefits of shuffling while having
the privacy benefits of Poisson subsampling. This provides a (reasonably) practical way to reconcile
a long-standing and concerning discrepancy between the practical implementations of DP-SGD and
its commonly-used privacy analyses.

6 Discussion

This work provides the first theoretical guarantees and numerical estimation algorithms for the random
allocation sampling scheme. Its main analysis shows that its privacy guarantees are asymptotically
identical to those of the Poisson scheme. We provide two additional analyses which lead to tighter
bounds in some setting (Fig. [T). The resulting combined bound of the random allocation remains
close to that of the Poisson scheme in many practical regimes (Fig. 2} 0), and even exceeds it in some.
Unlike the Poisson scheme, our bounds are analytical and do not rely on numerical PLD analysis,
which results in some remaining slackness. Further, unlike PLD-based bounds, our (g, ) bounds
do not lend themselves for tight privacy accounting of composition. Both of these limitations are
addressed in our subsequent work [Feldman and Shenfeld, 2025]] where we show that PLD of random
allocation can be approximated efficiently, leading to tighter and more general numerical bounds.

3An earlier version of this work has mistakenly stated that an upper bound for the remove direction applies to
both directions.
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A Missing definitions and claims

Since Rényi divergence is effectively a bound on the moment generating function, it can be used to
bound the hockey-stick divergence which is effectively a tail bound.

Lemma A.1 (Rényi bounds Hockey-stick, Prop. 12 in/Canonne et al.|[2020])). Given two distributions
P,Q,ifRo (P||Q) < pthen He- (P || Q) < AyelaDl=e) (1 — L)%,

Lemma A.2 (Gaussian mechanism DP guarantees, [Balle and Wang| 2018, Mironov, 2017]).
Givend € N; 0 > 0, let X = Y = R* The Gaussian mechanism N, is defined as
Ny(8) = N(X,eq 2 0%1y).

If the domain of N, is the unit ball in RY, we have n,(¢) = ® (55 —e0) — e @ (—5 —€0),
where ® is the CDF of the standard Normal distribution, and for any « > 1 N, is («, a/(20 )-RDP.

An important property of domination is its equivalence to existence of postprocessing.

Lemma A.3 (Post processing, Thm. IL.5 [Kairouz et al.,[2015])). Given distributions P, Q) over some
domain Q, and P', Q" over ¥, (P, Q) dominate (P, Q") if and only if there exists a randomized
Sunction ¢ : Q@ — Q' such that P’ = ¢(P) and Q' = ¢(Q

B Missing proofs from Section 3]

Proof of Lemma @ Given n € N, a dataset s € X"~ ! and element x € X, the random allocation
scheme Ay 1, (M; (s, )) can be decomposed into two steps. First all elements in s are allocated, then
x is allocated and the outputs are sampled based on the allocations. We denote by a®**(n — 1) the set
of all possible allocations of n — 1 elements into k out of ¢ steps, and for any a € a**(n — 1) denote
by A¢ . (M; (s, z)) the allocation scheme conditioned on the allocation of s according to a. Given
the neighboring datasets (s, z) and (s, L) we have,

H . (Ay 1 (M; (s, 7)) Ak (M; (s, 1))

1 1
_HN m eatkzn 1A ( ( )) maeatkzn 1A ( ( ))

<  max (H,{( te(M;(s,7)) HAt,k 5(37J-))))7

T a€atk(n—1)

and similarly,

Hy (A (M (s, 1) || Ari (M3 (s,2))) < max  (H, (A7 (M; (s, 1)) || AL (M;(s,2)))) .

a€atF(n—1)
where the inequality results from the quasi-convexity of the hockey-stick divergence.

Fixing a to be the allocation that maximizes the right-hand side of the inequality, we denote by
s1, ..., St the subsets defined by aﬂ From the definition of the randomizer, for any index j € [¢] and
input prefix view v/~ we have (R(x), R(L)) dominates (M ((s?,z),v'=1), M((s/, L),v7~1)),
so from Lemma there exists a randomized mapping ¢,;-1 such that M ((s’,z),v'~!) =
pri-1(R(x)) and M((s/, L),v77") = gpi-1(R(L)){] Using these mapplngs we will recursively
define another randomized mapping ¢. Given an output view v € V¢, we define v/ ~ ga( ) by
sequentially sampling y; ~ @1 (y;) for j = 1,... ¢, where v’ = (y1,...,y;) and v"°

We will now prove that A, (M; (s, 7)) = p( Ak (R;*)) and Ag, (M; (s, L)) = o(Apk (15 L)),
which by invoking Lemmaagain, implies A; ;, (M) is dominated by A, ;, (R) and completes the
proof.

8Conceptually, this is equivalent to considering the random allocation scheme over a single element z, with a
sequence of mechanisms M; defined by the various subsets.

"We note that o depends on s’ and z as well. We omit them from notations for simplicity, since they are
fixed at this point of the argument.
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From the law of total probability we have,

Pz, (Mi(s,2)) (v ( ) Z Pag, (Mi(s,2)) (v ( ) Z H Pag  (Mi(s,)) (V7|07 71, 4)

iC[t],|i|=Fk iC[t] =k je(t]
and
1 .
P.Afls(R*) B (t Z P-Afk(R*) 'U| _(T Z HPAfkR* UJ|UJ 1’ )7
k t],li|=k k Cltl,li|=k je[t]

where ¢ C [t] denots the allocation of the single element x.

Using these identities, it suffices to prove that for any subset of indexes 4, index j € [t], and
input prefix view v/, we have Pua (a1(s.0)) (V7|07 71,4) = Py, (riw)) (v?|v/ 71, 4) and

Pz (s, 1)) (07 [0771,4) = Pya, (ri (07071 9).
From the definition,
P, (Mi(o,2)) (07|07 71 8) = Pag (urys,an) (05 | 077 1,4)
_ {PM«sj,z),vj—l)(yj) =
Prr((si, 1) wi-1)(y;) 7 ¢4
_ {P%,»_l(R(*»(yj) je
Py irn(ys) J ¢
= Py, (rpey (W5 | v/ 71,4)
= Py(a, o(rpy (V7 | 07 710).

In the case of the null element, the allocation doesn’t have any effect so we have,
P (s, 1)) (07 107 71) = Par(ss, 1),0-1)(U7) = Po s (r(1) ¥) = Po(aw(riy (@ [ v77)

which completes the proof. O

Proof. [Proof of Lemma[3.2]] Notice that the random allocation of k indexes out of ¢ can be described
as a two steps process, first randomly splitting ¢ into k subsets of size t/k, E]then running Ay /. 1 (R)
on each of the k copies of the scheme. Using the same convexity argument as in the proof of
Lemma [3.1} the privacy profile of A; i (R) is upper bounded by the composition of &k copies of
A (R). O

We remark that this lemma holds for arbitrary ¢-step algorithms (and not just non-adaptive random-
izers) but in the adaptive case the usual sequential composition should be replaced by concurrent
composition [Vadhan and Wang|, 2021]], which was recently proven to provide the same privacy
guarantees [Lyul 2022, |Vadhan and Zhang 2023]].

C Missing proofs from Section 4.1

Lemma C.1 (Analytic bound). Forany e > 0 andn € [1/t,1] we have gAt(R)( ) < 6p, (R (&) +
Ba,ry(n) and 6 4,r)(€) < Op, ,(r)(E) + Ba,r)(n), where Ba,ry(n) = Pa,(r)(B0))

B ) = Py (B0, and B(a) = {o € 370 | s (¢ (0'51.) ) > o) |.

Theorem [.T| follows from this lemma by identifying the total loss with a sum of the independent
losses per step and using maximal Azuma-Hoeffding inequality. Theoremfd.T|follows from this lemma
by using a simple relationship between the privacy loss tail bound and the privacy profile.

The proof of this lemma consists of a sequences of reductions.

8For simplicity we assume that ¢ is divisible by k.
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Proof. Following [Erlingsson et al.l 2019]], we introduce the posterior sampling scheme (Definition
[C.3), where the sampling probability depends on the previous outputs. Rather than selecting in
advance a single step, at each step the scheme chooses to include the element with posterior probability
induced by the previously released outputs Ayi == Py, (Rr;«) (z +1lel \v’) where I is the subset of
chosen steps.

Though this scheme seems like a variation of the Poisson scheme, we prove (Lemma[C.4)) that in
fact its output is distributed like the output of random allocation, which implies they share the same
privacy guarantees. The crucial difference between these two schemes is the fact that unlike random
allocation, the distribution over the outputs of any step of the posterior scheme is independent of the
distribution over output of previous steps given the view and the dataset, since there is no shared
randomness (such as the chosen allocation).

We then define a truncated variant of the posterior distribution (Definition [C.5)), where the sampling
probability is capped by some threshold, and bound the difference between the privacy profile of the
truncated and original posterior distributions, by the probability that the posterior sampling probability
will exceed the truncation threshold (Lemma [C.6).

Finally, we bound the privacy profile of the truncated posterior scheme by the privacy profile of
the Poisson scheme with sampling probability corresponding to the truncation threshold, using the
fact the privacy loss is monotonically increasing in the sampling probability (Lemma [C.8)), which
completes the proof. Part of these last two lemmas is a special case of the tail bound that recently
proved in [Choquette-Choo et al., 2023, Theorem 3.1].

Formally,

o 1) = 2 . - 3) o o
04,(r)(€) = dr(ry(e) < 07, (r)(E) + Bar)(n) < Op,,(r)(E) + Ba,(r) (M),
where (1) results from Lemmal[C.4} (2) from Lemma[C.6] and (3) from Lemma|C.8

The same proof can be repeated as is for the add direction. O

Remark C.2. Repeating the previous lemmas while changing the direction of the inequalities and
the sign of the lower order terms, we can similarly prove that the random allocation scheme upper
bounds the Poisson scheme up to lower order terms, which implies they are asymptotically identical.

Throughout the rest of the section, claims will be stated in terms of R and * for simplicity, but can be
generalized to M and z. We note that A, j, (R; L) = R®*(L) where R®*(_L) denotes ¢ sequential
calls to R(.L), an identity which will be used several times throughout the next section

C.1 Posterior scheme

We start by introducing the posterior sampling scheme, where the sampling probability depends on
the previous outputs.

Definition C.3 (Posterior probability and scheme). Given a subset size k € [t], an index i € [t — 1],
a view v' € Y, and a randomizer R, the i + 1 posterior probability of the k allocation out of
t given v’ is the probability that the index i + 1 was one of the k steps chosen by the random
allocation scheme, given that the view v* was produced by the first i rounds of A; (R; *). Formally,
Avi ke = Pa, (R (Z +1e I|vi), where I is the subset of chosen steps.

The posterior scheme is a function Ty i, (R) : {*, L} — V' parametrized by a randomizer R, number
of steps ¢, and number of selected steps &k, which given *, sequentially samples

Yig1 ~ ()\vi’k . R(*) + (1 — )\,U'i’k) . R(J_)) ,
where Ao, = k/t, and Ty, (R; L) = Ay i (R; L). As before, we omit k from the notations where
k=1
Though this scheme seems like a variation of the Poisson scheme, the following lemma shows that in
fact its output is distributed like the output of random allocation.
Lemma C.4. For any subset size k € [t] and randomized R, Ay, (R; *) and Ty, (R;*) are iden-

tically distributed, which implies gAt,k(R)(E) = g’]}yk(R) (€) and BAt,k(R) (e) = BTM(R) (¢) for any
randomizer and all € > 0. '

16



Proof. We notice that for all j € [t — 1] and v/ € )7,
iy < P
Pa, () (v7)

Z PAt.k(R§*)(vj+17 I= 7’)
(1) iC[t],|é|=k

B P A, o (Riw) (V)

@ 'C[t]z‘:.likPAt.k(R;*) (vjv I= 7’) : PAt,k(R;*)(yj+1|I = ’I:,’Uj)

P,y (Rew) (V7

P,y (rx) (V7)

®) Py, o(row) (07, I = 1)
= > ]';( i ) Pr(1)(yj+1)
iC[t],|d|=k.j+1¢é Ak (Rix)
P.A R;* (vj7I:’L')
+ Z () PR (Yj+1)

iC[t],|i|=k,j+1€% Pasi(riny (07)
=Pu, o (ro)(J+ 1 & I[v7) - Preiy(yj41lv7) + Py, vriw)(d+16€ I|v7) - Py (1)
= (1= Aoi k) " Preu) (Y1) + Aoi k- Pres) (Yj+1)

(3) . .
= PTz,k(R;*)('v]Jrll'vj)v

where (1) denotes the subset of steps selected by the allocation scheme by I so I = 7 denotes the

selected subset was 1, (2) results from the definition v/t = (v7, yj+1) and Bayes law, (3) from the

fact that if j + 1 € I then y;41 depends only on a * and if j + 1 ¢ I then y;41 depends only on L,
and (4) is a direct result of the posterior scheme definition.

Since P(v[*) = [[;c;;_1y P(v"[*,v7) for any scheme, this completes the proof. O
C.2 Truncated scheme

Next we define a truncated variant of the posterior distribution and use it to bound its privacy profile.

Definition C.5 (Truncated scheme). The truncated posterior scheme is a function 7y, (R) :
{*, L} — V! parametrized by a randomized R, number of steps ¢, number of selected steps k, and
threshold 7 € [0, 1], which given *, sequentially samples

pirr ~ (Nl RO+ (1= A0 ) R(L))

where ), = min{A,: , 0}, and Te gy (R L) = Te o (R; L).

Next we relate the privacy profiles of the posterior and truncated schemes.

Lemma C.6. Given a randomizer R, for any n € [k/t,1]; € > 0 we have
57 n(m)(€) < 07, 4 (m) (&) + B,y () and S, (my(€) < 077, () (&) + Bty ()

where EAt(R) (n) and BAt(R) (n) were defined in Lemma

The proof of this lemma relies on the relation between \,: and the privacy loss of the random
allocation scheme, stated in the next claim.

Claim C.7. Giveni € [t — 1], a randomizer R, and a view v* we have \,i = %GZAHR)(” §l7*).
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Proof. From the definition,
Aoi = Pa,(r) (I =1+ 10")
) Payroy ([T =i4+1)-P(I=i+1)
B P, (rix) (V%)
Pay(rsr) (v')
P4, (R (V%)

_ %ezv‘\t(R) (vi;J_,*)7

@1
t

where (1) results from Bayes law and (2) from the fact P(I=i+1) = and
P.At(R;*) (’Ul|I=i+1) :PAt(R;J_) (’Ul). O

o+ =

Proof of Lemma|[C.6] Denoting B}, := {v € V'] max (Ayi) > 77}, for any C C V! we have

1€[t—1]
P (VeQ
VT (Rsx)

= P (VecC/B P (Vecns

V~Ti(Rix) ( /Ba) + V~Ti(Rix) ( n)
) . )
= P Vec/B P VelnB

VT (Rix) ( / TI) + V~Te(R;*) ( 77)
(2)
< ef P VvV ecC/Bt H.. R: R L P Ve B
e, B (VECB) + Hor (T (Ri) | Ty (RL) + B (V €B)
< ef P H .- . - L P t
<€y (V€O Hee (T () || Ton (B L))+ P (Vven)),

which after reordering the terms implies

Hee (T (Ri) | T3 (B5 1)) € He (T (Re) | Ty (R D)+ B (V€ B,
and similarly,

Hoe (T (R ) | T (Ri) £ Hoe (T (R ) | To (Ri)) 4 B (VEB),
where (1) results from the definition of the truncated posterior scheme and the set 3¢, (2) from the

fact that for any couple of distributions P, ) over some domain )

H. (P = P (YeC)—e P (Ye()),
(P1Q) = s (B, 0 e0) = F (v e0))

and (3) from the definition of 5 A.(r) (1)
Combining this with Claim [C.7] we get

P VeBt) = P i) >
VNTr,(R;*)( 77) V~Te(Ri%) (ién[ta‘_xl]( vi) 77)
= vt 4 L1 Int
VTi(Rix) (z'em[ta_xl] (Cacry (05 Lo%)) > In( 7]))
= B,y (),
and similarly
P VeB). =5 _
VA (R L) ( € 77) ’ BAt(R) (77)

We now relate the truncated scheme’s privacy profile to Poisson.
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Lemma C.8. Given n € [0,1] and a randomizer R, we have 5'7;117(3) (e) < g’ptm(R) (€) and
57*“7(13) (6) < 57315,”(3) (E)fOF all e > 0.

The proof makes use of the following result.
Claim C.9 (Theorem 10 in [Zhu et al., 2022]). If a pair of distributions (P, Q) dominates a ran-

domizer R and (P', Q") dominate R, then (P x P’,Q x Q') dominate the composition of R and
R.

Proof of Lemma[C.8] We first notice that the the hockey-stick divergence between a mixture dis-
tribution AP + (1 — )@ and its second component () is monotonically increasing in its mixture
parameter A\. For any 0 < A < )\ < 1 and two distributions Py, P; over some domain, denoting
Qx = (1 = MNPy + AP, we have, Q) = %Q,\ + %Pl. From the quasi-convexity of the
hockey-stick divergence, for any x > 0 we have

1-N A —
H, (Qx ||P1)_HH<1 L

and similarly, H,. (Py || Qx) < H, (Py || Q).

Using this fact we get that the privacy profile of a single call to a Poisson subsampling algorithm is
monotonically increasing in its sampling probability w.r.t. both ~ and @, so the privacy profile of every
step of T, (R) is upper bounded by that of P; ,, (R), and from Claim [C.9]its ¢ times composition is
the dominating pair of P ,, (R), which completes the proof. O

PP S HAQ R,

C.3 Proof of LemmalC.1]

Proof. The proof directly results from combining the previous lemmas.

o 1) = (2) o o 3) o o
04,(r)(€) = d1(ry(e) < 07, ,(r)(E) + Ba,r)(n) < Op,,(r)(€) + Ba,(r) (M),
where (1) results from Lemmal[C.4} (2) from Lemma[C.6] and (3) from Lemmal[C.8]

The same proof can be repeated as is for the add direction. O

C.4 Proof of the first part of Theorem

We first reduce the analysis of general approximate-DP algorithms to that of pure-DP ones, paying an
additional 0y term in the probability.

Claim C.10. Given ey > 0; 50 € [0,1] and a (g, 8 )-DP randomizer R, there exists a randomized
R which is £y-DP, such thatﬁAt (R (M) < BAM( )( 1) +tdo andBAt L(m) (M) < ﬁAt W(R )( n) + tdo,
where 4, , (r)(1) was defined in Lemma

Proof of Claim[C.10, From Lemma 3.7 in [Feldman et al., 2021], there exists a randomizer R which
is €9-DP, such that R(_L) = R(L) and Dy (R(x)|| R(x)) < dp.
For any i € [t] consider the posterior scheme 7T 1, ;) (f%) which Vj < i returns

Yit1 ~ (Api g - R(x) + (1= s i) - R(L)),
and Vj > i returns

gisr ~ (Ao RO+ (1= M) - R(D)).
Notice that T 1 (o) (R) = Tix(R) and T;p 1) (R) = Tik (R) From the definition,
for any ¢ € [t] we have Dry (7} ke, (i—1) ( ) 7%, (R ) < g, which implies
Dty (7?,1@ (R; ) | Ttk (R; *)) < tdo.

Combining this inequality with the fact that for any two distributions P, () over domain {2 and a
subset C C Q we have P(C) < Q(C) + Drv (P||Q) completes the proof. O
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Next we provide a closed form expression for the privacy loss of the random allocation scheme.
Claim C.11. Given an index i € [t] and a view v € )" we have,

i 1 . Cr(y;*,L
Cayry (V%% 1) =1n il s Ze R (5% L)
J€li]
Proof. From the definition,

(Hfﬁ:lo PR(L)(?JJ')) Prq (y:) (Hﬁ-:m Pr(1) (yj)) j<i

P, oy (0' [T = j) = { o
e Pre)(m) j>i

which implies,

_ Pr(1y(yi)
Pariny (v7)

PAt(R;*)(’Ui‘I :]) _ P’R(*7>(y71) J <
1 J>i

Using this identity we get,
P.A (R; *)( ’L) )
L vk, 1) =1In | =222
A | ) (PAf(R 1(?
2 j—it) Pau (s (v ilf—j)>

P, (r;1y (v L)

t— it Z elryi L)
JEld]

1 . Proy(yjlvi=1)
(t D B )

We are now ready to prove the corollary.

Proof of Theorem Using Claim [C.I0] we can limit our analysis to a o-pure DP randomizer. We
have,

a0 =, Fo (s (V5 L02)) > o))

1

= P >
v~Awa>(ﬁ?§<t—w—%ZLemehznwA»> ”)

1
fE >77]:l>

Lr(Y %, L
le[]VNA‘R*)< t] <t+zﬂe (R )= 1)>

1

- 1—erm) ) s (1- =) | T=1
ZMR*) max | 3 ( ) )

left] JEli]
where (1) results from Claim [C.TT] and similarly,

1

P 1 _ fr(Yis, L) tl1- =

By () < vodin | max %:]( e )| > o
JE[E

—~
N

We can now define the following martingale; Dy := 0,Vj € [t —1] : D; :== 1 — etr(Yii% L) and
S = Z;:o D;. Notice that this is a sub-martingale since for any j € [t — 1]

B [1-etntmb] =1 [Pma@3}20
Y~R(L) Y~R(L) | Pre1y(Y)
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and

Yeoe) [1 — eZR(Y;*,L)} =1—exp(Ra(R(x)||R(L))) <0,

where R, is the a-Rényi divergence (Definition [2.3)).

From the fact R is 50 -DP we have 1 —e™°° < D; < 1 — e°° almost surely, so the range of D; is
bounded by e — e¢~%0 = 2 cosh(gg), and we can 1nv0ke the Maximal Azuma-Hoeffding 1nequahty
and get for any [ € [t],

1
Z(l ‘RU»)) >t(1—>1:l
VNAt(R *) ze[t] tn

JE

: 1
<_ P max [ Y (1= efn 0 b) >t<1—>
VA (RiL) | ielt] ! tn

= P (max (Ci) >t (1 - 1)>
VA (R; L) \ i€[t] tn

t( tn—1 \°
< ——— ).
=P < 2 (tn cosh(eo)> )

2

¢ gl
< ——— ).
=P < 2 (cosh(z—:o)> >

<4

b

where the last two steps result from the definition of 7 and ~. O

C.5 Proof of the second part of Theorem 4.1]

The proof makes use of the following result.

Claim C.12 (Part 2 of lemma 3.3 in Kasiviswanathan and Smith|[2014]]). Givene > 0; § € [0,1]
and a (e, 9)-DP algorithm M, for any neighboring datasets s ~ s’ we have,

P (E(Y;s,s’)>25)§126 H

Y ~M(s) —e ¢

Proof. Consider the following algorithm based on the randomizer R,, : {*, L} x Y* — Y which is
R(x)  La,(r) (v';L,*) < In(tn)
defined by R, (L;v) = R(L),and R, (*;v) = S .
y 77( ) ( ) 77( ) {R(J_) E.At(R) ('l) ,J_7>k) Z ln(tn)

Given a view v, denote

argmin (€4,(gy (v L,*) > In(tn))  max_(L4,(r) (v';L,*)) > In(tn)

i i€t—1] i€t—1] .
0 Zér[ltaﬁ] (EAf(R) ( N *)) < In(tn) ’

the first index where the privacy loss exceeds In(¢7) if such index exists and 0 otherwise, and notice
that,

. €y 1 ©) t
Ca,(r) (v; L, %) = In <% S elR(yi;*,L)‘> = In (t T S efR(yqa;*,L)) )

where (1) results from Claim@ and (2) from the definition of ,, which implies the distribution of
R, (x;v7) = R, (L;0v7) forall j > i,.

“We note the journal version has a typo in the § part of the statement, which does not match the proof. We
use the corrected version which appears in the Arxiv version.
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Using this fact we get,

BAt(R) ( ) VN.At(R *) <z€[t 1]

/
VNAt Rj*) Ai(R

1

(Ca,(r) (v L,%)) > 1n(tn)>

r) (v L, %) > In(tn))

]P) <
VA (Rix) \ T

— iy + Zje[iv] elr(y;i*,L)

)

P (
VA (Ry*) \ T —
® p

V~A (Rysx)
(5) 1

tn VA (Ry; L)
(2) 2 -
T tn—+n

(2 2 5
= m Ai(R)

®) =
= 7'-(5_,4‘(3) (6/),

and repeating all steps but (5) we similarly get,

BAt(R) (n) < 7e**

where (1) results from the definition of i, (2) from Claim[C.TT}

1
p >
1y + Z]E[iv] ezR(yj;*vl) 77)

(Cay(r,) (VL %) > In(tn))

(KAt(R,,) (V;L,%) > 1n(t77))

6At(R) ( )

(3) from the definition of R, (4)

from the previous identity, (5) from the definition of the privacy loss, (6) from Claim[C.12} (7) from
the fact R,; is dominated by R, and (8) from the definition of 7 and 7. O

C.6 Separate directions

For completeness we present the results of figure [T for the add and remove directions separately for a

single and multiple allocations.

- Local

- Poisson (PLD)

£, - Allocation (Our - Direct)

- Allocation (Our - Recursive)

i - Decomposition)

10.00

020 023 025 029 032 037 041 047 053 0.60 067 076 0.86 097 109 123 139 157 177 200
o

(a) Add direction

10.00

- Local
Poisson (PLD)
Allocation (Our - Direct) \
Allocation (Our - Recursive) \\ Bow .

AW "

—— &
g
A gy -

o gy-

# &, - Allocation (Our - Decomposition) =

020 023 025 029 032 0.37 0.41 047 053 0,60 0.67 076 086 097 1.09 123 139 157 177 2.00
o

(b) Remove direction

Figure 3: Upper bounds on privacy parameter € or the add and remove directions as a function of the noise

parameter o for various schemes, all using the Gaussian mechanism with fixed parameters 6 = 10~

the same setting as FigureEl
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10.00
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<~ & - Poisson (PLD)
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<~ &p - Poisson (PLD)
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10.00

050 056 062 069 077 0.86 095 108 120 134 149 167 186 207 231 258 288 321 359 4.00 050 056 062 069 077 086 096 108 120 134 149 167 186 207 231 258 288 321 359 4.00
o 4

(a) Add direction (b) Remove direction

Figure 4: Upper bounds on privacy parameter ¢ or the add and remove directions as a function of the noise
parameter o for various schemes, all using the Gaussian mechanism with fixed parameters § = 1071, ¢ = 105,
k = 10, the same setting as Figurem

D Asymptotic analysis

We start by recalling the asymptotic bounds for the Poisson scheme due to|Abadi et al. [2016]@
Lemma D.1 ([Abadi et all 2016]). There exists constants c1,co > 0 such that for any t € N;

A €[0,1/16]; 6 € [0,1], ift > In(1/0) and o > max {1, 1 Vl/il(\/lz/é)} then the Poisson scheme with

the Gaussian mechanism Py » (N, ) is (€,0)-DP for any € > ¢, max {Avt'l:(l/é), N2/t ln(l/é)}.

This is a direct result of the fact the Gaussian mechanism is dominated by the one-dimensional
Gaussian randomizer (Claim where R(x) = N(1,0?) and R(L) = N(0,0?). Combining this
Lemma with Corollary [4.2]implies a similar result for the random allocation scheme.

Lemma D.2. There exist constants c1, co such that for any t € N; k € [t/16]; 6 € [0,1]; if

o= max{\/ma \/fln(t/tsﬁ \/t . ln(l/]j) UL } )

then the random allocation scheme with the Gaussian mechanism Ay i, (N, ) is (€, 6)-DP for any

2
£ > oy ma { ky/In(1/8) k*y/In(1/9) }

1
o_\/g I t1.5

The second term in the bound on € is due to the privacy profile of the Poisson scheme, and applies only
in the uncommon regime when o > ¢/k. One important difference between the privacy guarantees
of the Poisson and random allocation schemes is in the bounds on o, which are stricter for random
allocation in the k > v/t regime (Remark .

The proof of this Lemma is based on the identity of the dominating pair of the Gaussian mechanism.

Claim D.3 (Gaussian randomizer [[Abadi et al., 2016|])). Given o > 0, the Gaussian mechanism N,
is tightly dominated by the pair of distributions (N'(1,02%), N'(0,0?)), which induce a Gaussian
randomizer where x == 1 and 1. := 0. This pair can be realized by datasets of arbitrary size n of

n—1 times n times

vectors in dimension d by the pair ((0,...,0,¢e1),(0,...,0)).

We note that the dominating pair of the Gaussian is one dimensional, regardless of the dimension of
the original algorithm.

1This is a variant of|Abadi et al.|[2016, Theorem 1] that is better suited for comparison. We prove this version
in Appendix[C.3}
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Proof of Lemma[D.2] From Theorem each of the schemes has a privacy profile J 4, 1(R) (e) <
6P, ). (R)(€) +t/kdo + d/k. Applying the union bound to the ¢/kdy and §/k terms, and using the
fact that the composition of Poisson schemes is a longer Poisson scheme completes the proof of the
first part.

From Lernmae have g = V2 ln(l 25/80) \/2 In(1-25¢/9) (see e.g.,[Dwork and Roth|[2014] for

exact derivation). From the first bound on o we get gg < 1 and therefore cosh(gg) = (e*° —e®?)/2 <
3e0/2. Combining this with the second bound on o we get,

< 350 /2 ( ) w/21111251t/5 / 3f1n125t/5) <12,

which implies < 2 and 0P, ,(N.)(€) < 0P, 4,1 (I,) (€), since the Poisson scheme’s privacy profile
is monotonic in the sampling probability as proven in Lemma[C.8] O

Remark D.4. While the asymptotic bound on ¢ for the Poisson and random allocation schemes
is identical up to the additional logarithmic dependence on ¢, only the third bound on o stated for
random allocation is required for Poisson. Notice that if v/# > k the third term upper bounds the first
one, and if additionally In(1/§) < ,’i—i the second term is bounded by the third one as well. While the
first condition might not hold when each element is allocated to many steps, the latter does not hold
only when ¢ < In?(1/8) which is an uncommon regime of parameters.

E Missing proofs from Section 4.3

Lemma E.1. Given 1 < k < k' < t and a randomizer R dominated by a randomizer R we
have gAt,k(R) (e) < gAt,k/(R) (¢) and EAt,k(R) (e) < EAt.k/(R) (€). Furthermore, for any sequence of
integers k < ki < ... < k; <t, and non-negative \1,...,\; s.t. A\ + ...+ X\j = 1, the privacy
profile of Ay 1. (R) is upper-bounded by the privacy profile of A\ Az g, (R)+...+X;jAi x; (R), where
we use convex combinations of algorithms to denote an algorithm that randomly chooses one of the
algorithms with probability given in the coefficient.

Proof. To prove this claim, we recall the technique used in the proof of Lemma [C.I] We proved
in Lemma [C.4|that A ;. (R; *) and Ty  (R; ) are identically distributed. From the non-adaptivity
assumption, this is just a sequence of repeated calls to the mixture algorithm A j . - R(*) 4+ (1 —
Avi k) - R(L).

Next we recall the fact proven in Lemma[C.8]that the hockey-stick divergence between this mixture
algorithm and R(_L) is monotonically increasing in A. Since Ay j . > Ayi ., for any &’ > £, this
means the pair of distributions (Ayi g . - R(*) 4+ (1 — Ayi g ) - R(L), R(L)) dominates the pair
(Api v - B(%) + (1 = Ayi g7 ) - R(L), R(L)) for any iteration ¢ and view v (this domination holds
in both directions). Using Claim [C.9|this implies we can iteratively apply this for all step and get
04, x(r)(€) <04, ,,(r)(€) forany € > 0, thus completing the proof of the first part.

The proof of the second part is identical, since the posterior sampling probability induced by any
mixture of Az, (R), ..., Ay, (R) is greater than the one induced by A; 1, (R) the same reasoning
follows. O

Lemma E.2. Forany A € [0,1], element x € X, and randomizer R we have,
Pt,\ R:L‘ ZB,;)\ Atk(Rac)

where By  is the PDF of the binomial distribution with parameters t, X and A; o (R; z) = R®'(L).

Proof. This results from the fact that flipping ¢ coins with bias A can be modeled as first sampling
an integer k£ € {0,1,...,t} from a binomial distribution with parameters (¢, A), then uniformly
sampling i1, ..., i € [t], and setting the coins to 1 for those indexes. O
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The proof of the next claim is a generalization of the advance joint convexity property [Balle et al.,
2018, Theorem 2].
Claim E.3. Given \ € [0,1]; k > 1 and two distribution P, Q over some domain, we have

H,(1-MNQ+AP Q)= Hy (P || Q)
_JBHw (P Q) < i
H (P A>P+AQ>—{O "=
where/i’::1+”T_1,n”::1+m,andﬂ—1—/$+/$)\

Proof. The identity for H,, (1 — \)P + AQ || P) is a direct result of the advanced joint convexity
property [Balle et al., 2018, Theorem 2]. For the second part notice that,

H, (P [(1-MP+AQ)= / [P(w) = £ ((1 = AN P(w) + AQ(w))] dw

Q

_ /Q (1= ki + KA Pw) — Q)] dw
_ {B Jo [P@) = K"Qw)], dw a < 1
0

’-‘l‘»—t
>

K >

-
|
>

—_
=] =
>

0 K >

—
|
>

:{BHH”(P HQ) K <

Lemma E4. Forany A € [0,1]; € > 0 and randomizer R we have
He (PH(B#) | PO 1)) = TH e (Pos (B ) || P (85 1))

Hee (PR L) || PAR ) = 5H 2 (P (B 1) || P (R5))

where

t)\Rx ZB“\ ) - Av g (R; )

is the Poisson scheme conditioned on allocattng the element at least once, and 7, %, €, and € were
defined in Theoremd-3)

Proof. First notice that,
(1
Py (R;2) ZBM - Aix (R )
k=0

=BiA(0) - Ao (Riz) + Y Bia(k) - Ay (Ri)

ke(t]

DN A (Rsx)+ Y Bualk) - A (Ri)

ke(t]

D (1-1/9)- RE(L) +1/7 - P, (Rs ),

where (1) results from Lemma (2) from the definition of the binomial distribution, \’ and
’Ptt\ (R), and (3) from the definition of \" and the fact A; o (R; z) = R®(L).

Taking the converse of Claim[E.3]we have,

Hee (PA(R:) || PR 1)) = THe (P (Ri#) || Pox (R 1)),
Similarly, from the previous claim we get,

Hee (PR L) || PR %)) = 5H 2 (P (B 1) || P (R5)).

which completes the proof. O



We can now prove the main theorem.

Proof. [Proof of Theorem[.3]] The proof of this theorem consists of several key steps. First, we show
(Lemma [E.T)) that increasing the number of allocations can only harm the privacy, that is, for any
sequence of integers k < k; < ... < k; <t, and non-negative Aq,...,Ajs.t. Ay +...+A; =1, the
privacy profile of Ay . (R) is upper-bounded by the privacy profile of Ay Az r, (R)+...+XjAix; (R),
where we use convex combinations of algorithms to denote an algorithm that randomly chooses one
of the algorithms with probability given in the coefficient.

Next, we notice (Lemma[E.2) that the Poisson scheme can be decomposed into a sequence of random
allocation schemes, by first sampling the number of steps in which the element will participate from
the Binomial distribution and then running the random allocation scheme for the corresponding
number of steps,

Pex (R x) ZBM Ak (R @),

where B ) is the PDF of the binomial distribution with parameters ¢, A and A o (R; z) :== R®*(L).

We then define the Poisson scheme conditioned on allocating the element at least once

“\Rw ’yZB“\ Ak (R ),

and use a generalized version of the advanced joint convexity (Claim to relate its privacy profile
that of the Poisson scheme (Lemma [E-4).

Formally,
O, (my(€) = Hee (App (Rs#) || Av (R; L))

CH. T3 Balk) - Aur (By#) || Av (R; L)

kelt]

(2)
< H,- WZBt/\ A (R *) || Avk (R; L)

ke(t]

D |- (PR | PR 1)

—~
N7

YH e (P (R %) || Pex (R; L))
=79 0p, \(r)(E),

where (1) results from the fact 3-, y Bia(k) = 1/7, (2) from Lemma (3) from the definition
of Py and the fact that P, » (R; L) = R®'(L) = A;  (R; L), and (4) from the first part of Lemma

Repeating the same proof using the second part of Lemmaproves the bound on & A.(R)- O

Combining the Poisson decomposition perspective shown in Lemma [E.2 with the monotonicity in
number of allocations shown in Lemma [E.T] additionally implies the following corollary.

Corollary E.5. Forany \ € [0,1]; k € [t], we have dp, | , (r)(€) < 0p, ,(r)(€), where Pi x 1 (R)
denotes the Poisson scheme where the number of allocations is upper bounded by k.

26



Proof Theorem The proof directly results from combining the previous lemmas,

0, () = Hee (Ar (Ri %) || Avr (R; L))

= H, ’VZBt)‘( ) At1(R *) || At’k(R;J_)

< Hee | 9> Bia(k)- Ak (R #) || Ak (R; L)

@ SH

= (Peo (Bi*) || Pea (Rs L))
:7~57>t,x<R>(5),

where (1) results from the fact > kel By a(k) =1/7, (2) from Lemma (3) from the definition
of P;f, and the fact that P; y (R; 1) = R¥*(L) = A x (R; L), and (4) from the first part of Lemma

Repeating the same proof using the second part of Lemmaproves the bound on & A(R)- O

Proof. Notice that,

(1)
Op, \n(R)(E) < 0p, o (r)(€)

=He (Peg (Bs*) || Peag (R L))

2

2. ((ZBM (i) Avi (R: % ) (ZBM )At,k (Ri#) || Po (B l))

=0
(3)
< H.,- ZBM VA (Ry%) || Pex (R; L)
=0

= 673t>)\(R)(6)5
where (1) results from Lemma 3.1} (2) from Lemma[E.2|and the definition of Py x x (R), and (3)
from Lemma [E.1l O

F Missing proofs from Section 4.4

Lemma F.1. Given t,«a € N and two distributions P, Q) over some domain ), we have

_ 1 1 t «
oty _ 1 (0—1) R, (P|Q)
R, (P”Q ) a—1 In to Z (C(H)) (H) pl;!_[e

1€, (o)

where P := § e (®¢-Y.p. Q®(t_i)), Q®U=1) . P. Q' denotes the distribution induced
by sampling all elements from Q, except for the ith one which is sampled from P.

We start by proving a supporting claim.

Claim F.2. Given a,t € N and a list of integers i1, ... ,1; > 0 such that i1 + . .. + i = «, denote by
P(i1,...,1i) the integer partition of « associated with this list, e.g. if i1 = 1,12 = 0,i3 = 2,44 = 1,
then P = [1,1,2]. Given an integer partition P of o, we have |Bp| = (C(tH)) where,

BP:{Z'h...,Z't ZOlP(Zl,7Zt) :P},
and C(I1) was defined in Theorem 4.4}
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Proof. Given a partition P with unique counts C'(II) = (¢y,...,¢;), and an assignments iy, . . . , i

such that 41,...,4; > 0 and P(iy,...,i;) = P, there are (Ctl) ways to assign the first value to ¢;
indexes of the possible £, (t:;l) ways to assign the second value to ¢, indexes of of the remaining
t — c; indexes, and so on. Multiplying these terms completes the proof. O
Proof of Lemmal[F1] Given a set of integers 41, . .., 4, > O such that iy + ...+ i, = a we have,
P ik P p
5 (o) |- 1Lz [(55)])
oo Ve | \Qw) S Y~ L\ QW)

where P is the integer partition of « defined by 1, ...,4, e.g. if i1 = 1,40 = 0,43 = 2,44 = 1, then
P = 1,1, 2]. This is a result of the fact Y}, are all identically distributed. Notice that the same partition
corresponds to many assignments, e.g. P = [1, 1, 2] corresponds to 41 = 0,i2 = 1,43 = 1,14 = 2 as
well. The number of assignments that correspond to a partition P is ( c (tn)). Using this fact we get,

eonra(Plee) 0 g [ (1 e (QFV - PQE) (V)T
= ,E. QFH(V)
1 P(w;) i
- E :
V~Qot t 16[1‘,] Q(wz)

2 1 a
= — E

il,...,ite[a]; c
i1 i >0
1 Pluw; ix
2 2 (0 omel]
11,0, 205 RN ke[t]vNQ Q(Wz)
i1+ Fir=a

25 3 (em) () L2 | (555)
_ tia 3 (C(tH)) (g) I] cle-vmrio),

IIell; (o) p€ell

where (1) results from the definition of P, (2) is the multinomial theorem, (3) results from the fact
w; and w; are independent for any i # j, (4) from the fact wy, are all identically and independently

distributed with P (i1, ..., ;) defined in Claim[F.2] and (5) results from Claim|F.2] O
Lemma F.3. Given )\ € [0, 1] and two distributions P, Q) over some domain S, denote Py := L A%FA

where Z )y is the normalizing factor.

Given't € N, for any e € R we have H.- (Q®' | P) < H,.. (Q®t PS;), where P =
3 Zie[t] (Q®(i71) -P. Q®(t’i)), Q®U=1) . P. Q! denotes the distribution induced by sampling

all elements from Q, except for the ith one which is sampled from P.

Proof. By definition,

0(w; Py,Q) =In (P*(‘”)> =In (IWH(“)) =Aln <P(°")> —In(Zy) = M (w; P, Q)—1In(Zy).

Qw) Q(w)Zx Qw)
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Givene € Rdenote ¢’ := ¢ —t - In(Z; 1)

H,.(Q% | P)= /Q (@7 w) — e P()], o

- [ |ew- 612(@% VP ) o

+

+
5+ Zze[t] E(WMPQ):| dv
+

<1> /
©) /

- [ @@ - (1%

Q®t [1 — e - Z Rl N
) [1-
[

&€ "+ e (wi?Pl/taQ):| dv
+

P;
l/t dv

1€[t]

:/Qt [Q@( ) — PS@( )Ldv
—H.. (| P3)

where (1) results from Jensen’s inequality and (2) from the definition of P ; and the previous
claim. O

+

Proof of Corollary[.6] From the definition of the Rényi divergence for the Gaussian mechanism,
R, (At (Na? 1) ||~At (Na; O)) = R, (-At (No? 1) ||N§)t(0))

:ailln ti 2 (C(tH)>
)

« R, (N, (1)||N,(0))
(w) I
pell

p(p—1)
[

pell

eIl (o)
o 1 1 t o p?
-2 (=t 1 2pen 557
25 (g rm0) s 5| 2 (o) (1)
eIl («)
For the add direction we notice that from the definition, for any x € R
1 (z—1)2 22 1 (z=2n2 _ AQ-=X)
PMzl#)PLr Mz|l) = ——e 2 U Nom =~ om0 T
r(@|*) Py " (x| L) o N
so Ry(x) = N(\,0%)and Z) = e e
Setting A\ = 1/t we get,
- (1)
5.4, (N (€) < H oo (N®H0,07) || N¥'(1/t,0%))

D H,. (N®(0,£202) | N (1,£207))
= H,.. (N(0, to?) H./\/ 1,to ))
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where (1) results from Theorem [4.5] (2) from the fact that the hockey-stick divergence between
two Gaussians with the same scale depends only on the ratio of the difference between their means
and their scale, and (3) from the fact that the {-composition hockey-stick divergence between two
Gaussians with the same scale amounts to dividing their scale by v/%. O

We remark that the expression in Corollary .6] for the remove direction was previously computed in
Liew and Takahashil [2022]], up to the improvement of using integer partitions. In this (unpublished)
work the authors give an incorrect proof that datasets (0,...,0,1) and (0, ..., 0) are a dominating
pair of datasets for the shuffle scheme applied to Gaussian mechanism. Their analysis of the RDP
bound for this pair of distributions is correct (even if significantly longer) and the final expression is
identical to ours.

Figure 5| provides a clear example of the advantage of direct analysis, in regimes where the privacy
guarantees of the random allocation scheme are better than those of the Poisson scheme. Even though
RDP-based bounds on Poisson are not as tight, the RDP-based of allocation is superior to other
methods that rely on reduction to Poisson. On the other hand, figure [6]indicates that the gap between
our RDP-based bound and Poisson’s PLD-based one in other regimes, is mainly due to the fact it
relies on RDP, and not a property of random allocation. It additionally reflects the fact that the gap
between PLD and RDP based analysis vanishes as the number of epochs grows.

33 ¥— &, - Poisson (RDP)
X <«— &p - Poisson (PLD)
—A— &4 - Allocation (Our - Direct)
30 —#— &, - Allocation (Our - Decomposition)

25

20

15

25 75 125 175 225 275 325 375 425 475 525

Figure 5: Upper bounds on privacy e as a function of the number of steps ¢ for the Poisson and random
allocation schemes, for fixed parameters o = 0.3, § = 1074,

F.1 Implementation details

Computation time of the naive implementation of our RDP calculation ranges between second and
minutes on a typical personal computer, depending on the « value and other parameters, but can be
improved by several orders of magnitude using several programming and analytic steps which we
briefly discuss here.

On the programming side, we used vectorization and hashing to reduce runtime. To avoid overflow
we computed most quantities in log form, and used and the LSE trick. While significantly reducing
the runtime, programming improvements cannot escape the inevitable exponential (in ) nature of
this method. Luckily, in most settings, a™* - the o value which induces the tightest bound on ¢ is
typically in the low 10s. Unfortunately, finding a* requires computing R, so reducing the range of
« values for which R, is crucial.

We do so by proving an upper bound on «* in terms of a known bound on €.
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>3 &p - Poisson (PLD)
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—A— &4 - Allocation (Our - Direct)
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Figure 6: Upper bounds on privacy parameter ¢ for various schemes all using the Gaussian mechanism, as
a function of E the number of “epochs” - times the scheme was sequentially computed, for fixed parameters
o=1,6=10"%1t=10"

Claim F4. Given 0 € (0,1) and two distributions P, Q and, denote by () = ir;%(é(m) < 0).
Givene > 0, ife(6) < e and R, (P||Q) > ¢, then o* < .
A direct implication of this Lemma is that searching on monotonically increasing values of o and

using the best bound on € achieved at any point to check the relevancy of «, we don’t have to compute
many values of « greater than a* before we stop.

Proof. Denote by vs() the bound on € achieved using R, (P||Q). From Lemma[A.1] ~5(cr) =
R, (P||Q) + ¢(«) for a non negative ¢ (except for the range o > 1/(24) which provides a vacuous
bound). Since R,, (P||@) is monotonically non-decreasing in « we have for any o > a,

75(a’) > Ro (P||Q) > Ra (P|IQ) > &,

S0 it cannot provide a better bound on . O

G Comparison to other techniques

For completeness, we state how one can directly estimate the hockey-stick divergence of the en-
tire random allocation scheme. This technique was first presented in the context of the Gaussian
mechanism by (Chua et al.|[2024a].

We first provide an exact expression for the privacy profile of the random allocation scheme.

Lemma G.1. For any randomizer R and € > 0 we have,

1 0(Y5;%,L e
5At(R)(€):V~R%t(L) ;Ze( ) —e

1€[t] +

Given o > 0, if N, is a Gaussian mechanism with noise scale o we have,

&=
S
o
M
VN
S
N |
=

\
9]
m

6At(N“)(€) - Z~N(0,0214)

+
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We note that up to simple algebraic manipulations, this hockey-stick divergence is essentially the
expectation of the right tail of the sum of ¢ independent log-normal random variables, which can be
approximated as a single log-normal random variable [Neelesh B. et al.||2007]], but this approximation
typically provide useful guarantees only for large number of steps.

Proof. Denote by I the index of the selected allocation. Notice that for any i € [t] we have,

i—1 i—1

Pa,ray I = i) = | [] Prevy @) | Preo @) | [] Preo W) | = Payriny (@) - #
Pr(1)(yi)
j=1 j=1 (L)
Prsy (yi)
= Pa,(ry) (v Pa, () (0|] = i) = PA,,(R;L)('U) S5
g:[f] g:[ﬂ Pre1y(yi)
Using this identity we get,
P.A (R-*)('U ) PR( 1 ¢ .
14 vik, 1) =In| =% =In| = elr(Yiss, L)
At(R)( ) <PAt(R;J_)(’U zez[t]PR J_) t Z

Plugging this into the definition of the hockey-stick divergence completes the proof of the first part.

The second part is a direct result of the dominating pair for the random allocation scheme of the
Gaussian mechanism (Claim [D.3]). O

G.1 Monte Carlo simulation|Chua et al.[[2024a]]

Using Monte Carlo simulation to estimate this quantity, is typically done using the
E, “1 — ae {wiPQ)] J representation of the hockey-stick divergence, so that numerical sta-
bility can be achieved by bounding the estimates quantity € [0, 1].

A naive estimation will require an impractical number of experiments, especially in the low § and
high confidence level regimes. These challenges can be partially mitigated using importance sampling
and order statistics, a new technique recently presented by |Chua et al.|[20244]. Still, this technique
suffers from several limitations. It can only account for the setting of £ = 1 and does not provide
a full PLD, and so cannot be composed. It can only estimate d, so plotting € as a function of some
other parameter is computationally prohibitive. Figure[/|illustrates simultaneously the tightness of
our bounds, which are within a constant from the lower bound in the delta regime, and the limitations
of the MC methods which become loose in the § < 10~* regime for the chosen parameters.
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Figure 7: Comparison of ¢ bound for Poisson scheme with various bounds for the random allocation scheme,
for several o and t values; our combined methods, the high probability and the average estimations of using
Monte Carlo simulation with order statistics, 5 - 105 samples and 99% confidence level, by m{

We additionally repeat the analysis using the experimental setting presented in|Chua et al.|[2024a
Figure 2], both in the form of Figure[T]and Figure[7] The choice of ¢ depends on the experimental
settings, the dataset (Criteo pCTR or Criteo search conversion logs) and the batch size.

pCTR - 1024: t = 35,938 SCL -1024: t = 12,500

102 10
£ gy . £
10!
10!
A
*
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
o 4
pCTR - 8192: t = 4,492 SCL - 8192: t = 1,563

10? 102

1
10 10t

0.1 0.2 0.3 0.4 0.5 0.1 0.2 03 0.4 0.5
[ o
—*— g, - Local A g4 - Allocation (Our - Direct) # g, - Allocation (Our - Decomposition)
&p - Poisson (PLD) @ g, - Allocation (Our - Recursive) 4— &,4 - Allocation (CGHKKLMSZ24 - Lower Bound)

Figure 8: Upper bounds on privacy parameter ¢ as a function of the noise parameter o for various schemes and
the local algorithm (no amplification), all using the Gaussian mechanism, with privacy parameters § = 10~7
and various values of ¢, following the experimental parameters following the experimental settings of [Chua et al|
[20244, Figure 2]. In the Poisson scheme A = 1/%.
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Figure 9: Comparison of § bound for Poisson scheme with various bounds for the random allocation scheme, for
several o and t values; our combined methods, the high probability and the average estimations of using Monte
Carlo simulation with order statistics, 5 - 10° samples and 99% confidence level, following the experimental

parameters following the experimental settings of 120244, Figure 2].

G.2 RDP-based bound by Dong et al.|[2025]

A recent independent work by [Dong et al] [2025] considered the same setting under the name
Balanced Iteration Subsampling. In Theorem 3.1 they provide two RDP bounds for the remove
direction and one for add, that are comparable to Theorem [4.4]in our work. Since the bound for
the remove direction always dominated the add direction, we focus on it. The first one is tight
but computationally expensive even for the case of k = 1, as it sums over O(t*®) terms (in the
case of k = 1 their expression matches the one proposed by |[Liew and Takahashi| [2022]], which is
mathematically identical to our, but requires O(t*) summands rather than our O(2%) ones.). The
second bound they propose requires summing only over a linear (in k) number of terms which
is significantly more efficient than our term, but is lossy. This gap is more pronounced in some
parameter regimes, mainly when the « used for inducing the best bound on ¢ is large. On the other
hand, this method allows for direct analysis of the £ > 1 case, while our analysis relies on the
reduction to composition of & runs of the random allocation process with a selection of 1 out of ¢/k
steps.

Figure [T0] depicts the spectrum of these effects. For small values of k, our RDP based bounds are
tighter than the loose bound proposed by [2025]], while for the large values of k£ when ¢ is
quite large our composition based analysis is looser.
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Figure 10: Upper bounds on privacy parameter ¢ as a function of the the number of allocations  for the Poisson
and random allocation schemes, all using the Gaussian mechanism with fixed parameters § = 1076, ¢ = 210,
o = 0.6. The y-axis uses logarithmic scale to emphasize the relative performance.

H Privacy-utility tradeoff

The results of |Chua et al.| [2024a] show that in the context of training DP-SGD, random allocation
(or balls-and-bins sampling) has the utility benefits of shuffling while having the privacy benefits of
Poisson subsampling. Here we investigate the privacy-utility trade-off in a simple-to-analyze setting
of mean estimation over a Boolean hypercube, that illustrates one possible source of this relative
advantage.

We start with the one-dimensional setting. Consider a dataset s € {0,1}"™ sampled iid from a
Bernoulli distribution with expectation p € [0, 1], where p is estimated from the data elements using
one of the two schemes. Formally, at each iteration, the algorithm reports a noisy sum of the elements
in the corresponding subset y;, and the estimated expectation is p = % > icly Yie

Since p is averaged over the various steps, in the case of random allocation with the Gaussian
mechanism we have p4 = 1 (Zmes T+ e {i) where &; is the noise added at step 4. From the
property of the Gaussian mechanism ), elt] &; is a Gaussian random variable with variance to2, and
from the definition of the distribution, ",z ~ Bin(n,p), so p4 ~  (Bin(n, p) + N(0,¢5?)). In

to?

particular this implies E[p 4] = p and Var(p4) = @ + %%, where the first term is the sampling
noise and the second is the privacy noise.

xres

Poisson subsampling adds some complexity to the analysis, but can be well approximated for large
sample size. The estimation pp follows a similar distribution to that of p 4, with an additional step.
First we sample u ~ Bin(n, p), then - following the insight introduced in Lemma - we sample
v; ~ Bin(¢,1/t) for all ¢ € [u], which amounts to sampling m ~ Bin(u - ¢,1/t). We note that
E[m] = wand Var(m) = u-t- 1 (1—}) ~ u. Since wh.p. u ~ p - n, we get E[pp] = p and

— 2 . . . . .
Var(pa) ~ w + % + tn%, where the first term is the sampling noise, the second is the Poisson
sampling noise, and the third is the privacy noise.

The noise scale required to guarantee some fixed privacy parameters using the random allocation
scheme is typically larger than the one required by the Poisson scheme, as shown in Figures[I] But
following the asymptotic analysis discussed in Sectionwe have to? ~ m(;# for both schemes,

with constants differing by ~ 10% in most practical parameter regimes, as shown in Figures and

which implies the privacy noise ’57‘1’—22 is typically slightly larger for the random allocation scheme. On

the other hand, for p — 1, the Poisson sampling noise is arbitrarily larger than the sampling noise.
Since the privacy bound becomes negligible as n increases, we get that the random allocation scheme
asymptotically (in n) dominates the Poisson scheme, as illustrated in Figure[TT] Inthe e = 1,d =1
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case, the induced o is sufficiently small, so the gap is dominated by the additional Poisson sampling
noise, when € = 0.1, this effect becomes dominate only for relatively large sample size.

In the high-dimensional setting the privacy noise dominates the sampling noise and therefore the
privacy-utility tradeoff is dominated by the difference in the (known) privacy guarantees of the two
schemes. In Figure[TT]we give an example of this phenomenon for d = 1000.
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102 10° 10* 10° 102 10° 10* 10° 10? 103 104 10°
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e Poisson (0_scaled = 0.93) Poisson 30 confidence interval - Poisson (analytic)
Random allocation (o_scaled = 1.01) Random allocation 30 confidence interval - Random allocation (analytic)

Figure 11: Analytical and empirical square error for the Poisson and random allocation scheme for the setting
discussed in Appendix [H] for various values of € and d (which corresponds to an increase in sensitivity). We
set p=0.9,t = 103, 6§ = 107 '°. The experiment was carried 10* times, so the 3-std confidence intervals are
barely visible.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All claims are mathematically proven.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss both tightness of the results and computation limitations when
applied.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

[Yes]
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Justification: All the claims are detailed and all the proofs appear in the appendices.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper discusses the parameters and the supplementary material includes
the code.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code is provided as supplementary material. No data is involved.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: or [NA]

Justification: The paper only contains numerical analysis without any usage of data. All
relevant details were provided.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper mostly contains numerical analysis without any usage sampling.
when MC based methods are considered, CI are provided.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

The paper only contains numerical analysis, the longest of which runs for several minutes
on a personal computer.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This is a purely theoretical work.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper provides several new tools for analyzing the privacy of machine
learning algorithms. We do not anticipate any impacts beyond those typical for such results.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No data or models were released in this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Details can be found in the README file.
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13.

14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets were introduced.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No such thing was done in this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: No such thing was done in this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs only assisted with some of the technical coding tasks.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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