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ABSTRACT

The rise of large-scale multimodal models has paved the pathway for ground-
breaking advances in generative modelling and reasoning, unlocking transforma-
tive applications in a variety of complex tasks. However, a pressing question that
remains is their genuine capability for stronger forms of generalization, which
has been largely underexplored in the multimodal setting. Our study aims to ad-
dress this by examining sequential compositional generalization using COMPACT
(Compositional Activities), a carefully constructed, perceptually grounded dataset
set within a rich backdrop of egocentric kitchen activity videos. Each instance in
our dataset is represented with a combination of raw video footage, naturally oc-
curring sound, and crowd-sourced step-by-step descriptions. More importantly,
our setup ensures that the individual concepts are consistently distributed across
training and evaluation sets, while their compositions are novel in the evaluation
set. We conduct a comprehensive assessment of several unimodal and multimodal
models. Our findings reveal that bi-modal and tri-modal models exhibit a clear
edge over their text-only counterparts. This highlights the importance of multi-
modality while charting a trajectory for future model development in this domain.

1 INTRODUCTION

Humans possess a remarkable ability to rapidly understand new concepts by leveraging and com-
bining prior knowledge. This compositional generalization allows for an understanding of com-
plex inputs as a function of their constituent parts. For instance, having grasped the meanings of
“dax” and “walk twice” humans can effortlessly understand “dax twice” (Lake & Baroni, 2018).
However, even as neural networks trained on increasingly larger datasets achieve impressive results
across a wide range of tasks, their ability to compositionally generalize remains limited. Recently,
the research community has demonstrated growing interest in evaluating models under different
distributions, such as temporal shifts (Lazaridou et al., 2021; Liska et al., 2022), or unseen com-
positions (Lake & Baroni, 2018; Ettinger et al., 2018; Bahdanau et al., 2019; Surı́s et al., 2020).
Within the domain of multimodal learning, prior investigations into compositionality have primarily
delved into visual grounding (Thrush et al., 2022), downstream multimodal tasks like image caption-
ing (Nikolaus et al., 2019; Jin et al., 2020) and visual question answering (Bahdanau et al., 2019), or
vocabulary acquisition from videos (Surı́s et al., 2020) or with interactive agents (Hill et al., 2019).

Addressing the challenge of compositional generalization in the context of multimodal models be-
comes increasingly pertinent with the recent advancements in large multimodal foundation models,
such as GPT-4 OpenAI (2023), Flamingo (Alayrac et al., 2022), and IDEFICS (Laurençon et al.,
2023). This inspires us to investigate their potential for multimodal sequential compositional gen-
eralization, which we define as the model’s capability to understand and generate predictions about
novel compositions of primitive elements derived from sequential multimodal inputs – for instance,
video data wherein actions unfold in a discernible order. Consider the process of cooking onions:
one typically needs to peel and slice an ONION before frying it in a PAN. Our central inquiry revolves
around the proficiency of models in comprehending such sequential and compositional activities.1

In this study, we introduce COMPACT (Compositional Activities) to investigate multimodal sequen-
tial compositional generalization, a uniquely constructed compositional dataset curated from the

1Note that this is different from in-context learning, where large-scale pretrained models are prompted to
perform a task in a zero-shot setting, given a support set of task demonstrations.
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Figure 1: Overview of the compositional generalization setup in our COMPACT dataset. During
training, the model has seen the verbs wash, close, put down, throw, open, pour, cut and pick up
with the objects GARBAGE BIN, FRIDGE, SESAME OIL, ONION, and CELERY. It has never seen the
composition of cut and CELERY, and thus needs to generalize to this novel composition at test time.

EPIC KITCHENS-100 dataset (Damen et al., 2022, EK-100). The EK-100 dataset encompasses
100 hours of egocentric video footage from 45 distinct kitchens, documenting individuals perform-
ing routine household tasks. Each video contains three streams of information: visual data in the
videos; audio data involving non-narrative audio elements –such as the sounds associated with
chopping an onion; and textual data in the form of short, crowd-sourced descriptions of the depicted
activities, like “slice the carrot”, “pick up the milk”, or “wash the plate”. From these descriptions,
individual verb and object concepts such as slice, pick up, wash, and CARROT, MILK, PLATE can be
extracted. The compositional splits are devised based on the verb and object concepts gleaned from
the video descriptions, resulting in training and evaluation sets showcasing similar distributions
of atomic concepts but featuring varied combinations therein. Consequently, models are necessi-
tated to compositionally generalize from the training data. Aligning with the “dax twice” principle
from Lake & Baroni (2018), if a model has been trained with videos illustrating how to slice various
food items, excluding ROOT VEGETABLES, then it should be capable of compositionally generaliz-
ing to understand what it means to slice the ROOT VEGETABLES from previously unseen instances.

In our study, we conduct a comprehensive evaluation of publicly available models, encompass-
ing encoder-only pretrained models such as ImageBind (Girdhar et al., 2023) and MERLOT
Reserve (Zellers et al., 2022) in addition to (multimodal) large language models (LLMs) like
LLaMA2 (Touvron et al., 2023) and IDEFICS (Laurençon et al., 2023). These models exhibit versa-
tility in processing various combinations of input streams, ranging from language-only to combina-
tions like video + language, video + audio, and even video + language + audio. Our key experimental
finding indicates the formidable challenge that all of these models face in mastering compositional
generalization. Yet, it becomes abundantly clear that the utilization of multimodal input sources
yields discernible advantages, suggesting a promising direction for refining future models.

2 THE COMPACT DATASET

In our pursuit to systematically examine multimodal sequential compositional generalization, we de-
vised the COMPACT dataset, leveraging sequences from the EK-100 dataset (Damen et al., 2022). As
previously noted, each video in the EK-100 features first-person perspectives of unscripted kitchen
activities occurring within natural household environments. A video is composed of a sequence
of shorter clips, represented as V = (v1, . . . ,vk), each of which is accompanied by manually-
annotated English narrations, denoted by x1, . . . ,xk, describing the activities within. Additionally,
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these clips are integrated with audio tracks, a1, . . . ,ak, which contain the sounds of occurring ac-
tions. We define an instance in the dataset as a combination of video – audio – narration: (V,A,X).
Each instance consists of a window of 4 clips, with the initial 3 clips serving as context and the last
one designated for prediction.

Given this dataset, our primary focus is to facilitate researchers in exploring how multimodal models
compositionally generalize to unseen combinations of concepts. We meticulously curate the COM-
PACT dataset to ensure a specific property: the individual concepts are consistently distributed across
training and evaluation sets, while their compositions are novel in the evaluation set. This design
mandates that a model should exhibit systematic generalization when interpreting the evaluation set.
To illustrate, refer to the example shown in Figure 1. During training, the model comes across nouns
such as CELERY, GARBAGE BIN, FRIDGE, ONION, and verbs including take, wash, close, put down.
In our evaluation set, we specifically seek instances where an object-verb composition has not been
previously encountered during training; for example, the unique pairing of the cut with the CELERY.

2.1 FORMING THE COMPOSITIONAL SPLITS

We use the Maximum Compound Divergence heuristic (Keysers et al., 2020) to curate a dataset that
requires compositional generalization. The EK-100 dataset is annotated with 97 verb classes and 300
noun classes; these become the noun and verb atoms. Each instance in the dataset is assigned to the
training / validation / test split based on the atomic and compound divergence (similarity) based on
weighted distributions using Chernoff coefficient Cα(P∥Q) =

∑
k p

α
k q1−α

k ∈ [0, 1] (Chung et al.,
1989). To make atom distributions similar in train and test, we use α = 0.5 for atom divergence.
Here, we set α = 0.1 to reflect that it is more important for a compound to be found in P (train)
rather than the probabilities in P (train) and Q (test) match exactly. Following this logic, we define
compound divergence, and atom divergence for a train set U and test set W as follows:

DC(U∥W ) = 1 − C0.1(FC(U) ∥FC(W ))

DA(U∥W ) = 1 − C0.5(FA(U) ∥FA(W ))

where FA(T ) denotes frequency distribution of atoms, and FC(T ) denotes the distribution of com-
pounds for a given set T and DA and DC denote atom and compound divergences, respectively.

We calculated divergence scores for each instance until the atomic divergence of train and test set
DA < 0.02 and compound divergence of train and test set DC > 0.6, which represents a sweet
spot in terms of target distributions of atoms and compounds in the train and test sets (see Fig. 5
in the Appendix A.1). Finally, we randomly divide this test set into a validation and test set. The
resulting dataset has 8,766 instances, which are split into 4,407 training, 2,184 validation, and 2,175
test instances. Please refer to Appendix A for the implementation details and Appendix B for a more
detailed analysis of the COMPACT dataset.

3 MULTIMODAL SEQUENTIAL COMPOSITIONAL GENERALIZATION

Anticipating what comes next is a fundamental aspect of human cognition (Bar, 2007; Clark, 2015).
From a cognitive perspective, it also serves as an engaging training paradigm (Baroni, 2020). In
Multimodal Sequential Compositional Generalization, we seek to understand the extent to which
multimodal foundation models are capable of understanding what comes next in activity sequences.
We propose two tasks to measure multimodal sequential compositional generalization in the COM-
PACT dataset: (i) next utterance prediction, and (ii) atom classification.

3.1 NEXT UTTERANCE PREDICTION TASK

The next utterance prediction task is a language generation problem, in which models need to predict
the text narration that describes the final input in a sequence. Let S = (X,V,A) denote a triplet
representing a short video clip with X = {xi}Ki=1 being a sequence of K utterances, which describe
a household activity and grounded with visual and audio signals, denoted by V = {vi}Ki=1 and
A = {ai}Ki=1, respectively. This task involves generating the (K + 1)th utterance, y = xK+1,
following the preceding K utterances and multimodal cues. The training data for this task consists
of a set of sequences of microsegments, {(S,y)}.
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3.2 ATOM CLASSIFICATION TASK

The atom classification is a simplified form of the next utterance prediction task. Here, a model
only needs to predict the verb and noun in the final input, in isolation of generating grammatically
correct sentences. As such, it can be approached as a multi-class classification problem. Diverging
from conventional action anticipation tasks (Damen et al., 2022; Gammulle et al., 2019; Ke et al.,
2019), our unique setup allows us to approach atom classification through a compositional lens,
enabling the prediction of verbs and nouns separately. More formally, let S = (X,V,A) denote a
triplet representing a video clip with X = {xi}Ki=1 representing a sequence of K utterances, which
describe a household activity and grounded with visual and audio signals, denoted by V = {vi}Ki=1

and A = {ai}Ki=1, respectively. Our atom classification task involves predicting the verb/noun in
the (K + 1)th utterance, y = xC

K+1, following the preceding K utterances and multimodal cues
where C denotes the verb or noun class.

4 MODELS

In our experiments, we benchmark a variety of neural network models on the proposed next utter-
ance prediction and atom classification tasks, including several text-only (unimodal) and multimodal
models to better understand the importance of different modalities in compositional generalization.

4.1 TEXT-ONLY UNIMODAL BASELINE (L)

Our first baseline is a text-only model to account for unexpected biases in COMPACT (Thomason
et al., 2019). This is an encoder-decoder Transformer (Vaswani et al., 2017) with a hidden size of
256 units, where each microsegment is encoded within its own context. The model is trained using
only the textual utterances x1:K from the microsegment as the input, and the next utterance xK+1

as the target, i.e. to predict p (xK+1|x1:K). We use the same backbone in all multimodal baselines.

4.2 MULTIMODAL BASELINES

Vision and Language (VL): Our Vision and Language baseline encodes both textual and visual
context for the next utterance prediction task. This model encodes the textual utterances x1:K of
each action from microsegments and the keyframe images v1:K to predict the next utterance xK+1,
i.e. p (y = xK+1|x1:K ,v1:K). This model is adapted from a model that parses a visual scene and
learns cross-modal self-attention (Tsai et al., 2019) over textual inputs and visual data.

The visual inputs are encoded using pretrained CNN, and the textual inputs are encoded using a
Transformer. More specifically, for the visual modality, we extract two types of features: one type
represents global visual features, and the other represents object-level features. For the global fea-
tures, we use a pretrained ResNet50 model (He et al., 2016) with ImageNet weights (Russakovsky
et al., 2015). Object-level features are extracted using a Faster-RCNN object detector (Ren et al.,
2017) with a ResNet-101 backbone (He et al., 2016) which is pretrained on MSCOCO (Lin et al.,
2014) and finetuned on EK-100. We extract visual features from 5 objects for each keyframe. The
resulting representation of a visual keyframe is the concatenation of the global and the object-level
features. This concatenated vector is projected into a lower-dimensional space with a linear layer.
The textual inputs are encoded using a Transformer with a 256D hidden layer.

The visual and textual modalities are then encoded by a cross-modal (CM) self-attention mechanism.
In this model, we consider two modalities α and β, sequences of each modalities are denoted as
Xα ∈ RTα×dα and Xβ ∈ RTβ×dβ , respectively and T(·) denotes sequence length and d(·) denotes
feature dimension. In this model, α is the language modality, and β is the visual modality. In the
cross-modal attention, the textual features are the keys, and the visual features are the queries and
values, for aligning visual features to textual features. Let the Query be defined as Qα = XαWQα

,
the Keys as Kβ = XβWKβ

, and the Values as Vβ = XβWVβ
, where WQα

∈ Rdα×dk ,WKβ
∈

Rdβ×dk and WVβ
∈ Rdβ×dv are learnable weights. The cross-modal self-attention from β to α is
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Figure 2: Overview of multimodal Audio, Vision and Language (AVL) baseline which integrates
image, object-level, audio and textual features using two crossmodal self-attention blocks incorpo-
rated within a Transformer-based encoder and decoder architecture to predict the next utterance.

formulated as a latent adaptation Yα ∈ RTα×dv :

Yα = CMβ→α(Xα, Xβ) = softmax

(
QαK

⊤
β√

dk

)
Vβ (1)

The output Yα has the same length as Qα, but it is represented in the feature space of Vβ . This
enables the model to fuse different modalities, learning an alignment between the visual and textual
features (see Eq.1). There are different strategies proposed in the literature for modeling cross-modal
interactions and fusing different modalities (Xu et al., 2023). We fuse different modalities via a self-
attention layer (Vaswani et al., 2017) over the aligned vision and language features, which are then
fed to a 3-layer Transformer decoder with 4 attention heads that generates the next utterances.

Audio and Language (AL): The Audio and Language baseline has the same structure as the VL
baseline. The key difference is that we represent the additional context using audio features instead
of visual features. The model encodes both the textual utterances x1:K and the accompanying audio
data a1:K to predict the next utterance xK+1, i.e. p (xK+1|x1:K ,a1:K). The audio features are 512D
vectors extracted using VGGSound (Chen et al., 2020), which is pretrained on 200K videos from
YouTube videos totalling 550 hours of audio data. Here, the model learns a cross-modal attention
over audio and textual features, analogously to the VL model, as inputs to a Transformer decoder.

Object and Language (OL): The Object and Language baseline once again uses the same architec-
ture as VL baseline, but the visual context is represented using the labels of detected objects instead
of continuous visual features. In this model, we embed object tags as a secondary set of textual
features to our model along with the input utterances. Here, the object tags are represented as 292D
one-hot encoded vectors (based on the number of unique tags) and projected to 256D with a simple
linear layer. In this case, cross-modal attention aligns object tag features with language features.

Audio, Vision and Language (AVL): In the Audio, Vision, and Language (AVL) baseline,
we leverage the audio, visual, and textual data using two cross-modal self-attention blocks.
We use textual utterances x1:K of each action along with the visual features v1:K from the
keyframes, and the VGGSound audio features a1:K to predict the next utterance xK+1, i.e.
p (y = xK+1|x1:K ,v1:K ,a1:K). In this model, the input to the Transformer decoder is the con-
catenation of the audio-aligned textual features from the audio-textual cross-modal block with the
visual-aligned textual features from the visual-textual cross-modal block (see Fig.2 for an overview).
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Object, Audio and Language (OAL): The final baseline adds an extra modality to the OL baseline
model to determine whether audio features affect the performance of a model that uses object tags.
Here, we incorporate the extracted audio features from each microsegment to the OL model.

4.3 PRETRAINED MODELS

To comprehend the significance of large-scale pretraining, we conduct an extensive evalu-
ation involving several publicly available models, namely LLaMA2 (Touvron et al., 2023),
IDEFICS (Laurençon et al., 2023), MERLOT Reserve (Zellers et al., 2022, MerlotR), and Image-
Bind (Girdhar et al., 2023). In our assessment, we investigate the performance of encoder-only
models across both tasks, whereas auto-regressive models are evaluated exclusively through prompt-
ing within the context of the next utterance prediction task. It is worth noting that interpreting the
performance of the pretrained models can be complicated as they may violate the distributional
consistency between the train and test splits during their pretraining (Kim et al., 2022).

Unimodal Models: LLaMA2 is a large-scale text-only pretrained large language model trained on
500B tokens. We evaluate the LLaMA2-Chat 6.7B variant, as this version incorporates instruction
tuning, resulting in much coherent and relevant predictions.

Multimodal Models: MerlotR learns to extract representations over video frames, text, and audio.
The model is composed of an image encoder, an audio encoder, and a joint encoder that fuses
textual, visual, and audio representations. This model employs contrastive span training, where
an aligned span of audio and text is masked. In its training setup, the objective is to maximize
representation similarity to an independent encoding of the masked audio and text spans. We extract
multimodal audio and vision features through its pretrained encoder utilizing a similar backbone as
in the VL model. ImageBind is a multimodal model that learns joint embeddings for 6 different
modalities, including language, vision, and audio. It is trained only on image-paired data to bind the
modalities together. We train a decoder using features extracted from the vision, language, and audio
modalities. IDEFICS is a large-scale multimodal large language model based on Flamingo (Alayrac
et al., 2022) architecture. It is composed of frozen language model and frozen vision encoder with
learnable cross-attention blocks connection language and vision modalities. As Flamingo is not
openly available and IDEFICS performs better than other open-source Flamingo implementations
such as OpenFlamingo (Awadalla et al., 2023), we experiment with IDEFICS 9B version as the
vision LLM. We prompt these models without any finetuning, and report 5-shot results for LLaMA2
and IDEFICS (see Section A.4 for prompting formats and Section E.3 for prompting ablations).

4.4 TASK-SPECIFIC CHANGES

For the atom classification task, we adapt the models described in the previous section by slightly
modifying their architectures. In particular, we remove the decoder Transformer in these models and
replace it with two fully connected layers, and train models by considering a classification objective
that involves predicting either the verb or the noun in classifying the atoms.

5 EXPERIMENTAL SETUP

Evaluation Metrics: We use unigram BLEU (Papineni et al., 2002), Exact Match (EM), Categori-
cal Accuracy (CA) and BERTScore (Zhang et al., 2019) metrics. The reported values represent the
mean and standard deviation across 3 separate runs. In LLaMA2 and IDEFICS, we use nucleus sam-
pling instead of separate runs. For EM, we calculate an accuracy score between the generated text
sequence and the groundtruth. CA uses the verb and noun categories in EK-100 and calculates the
categorization accuracy based on category match between the predicted sequence and groundtruth,
e.g. the verbs slice, dice, and chop fall into the same verb category cut, and the nouns MOZZARELLA,
PANEER and PARMESAN are grouped into the same noun category CHEESE. Hence, slice PANEER
prediction is considered accurate if the groundtruth is dice PARMESAN.

Training Procedure: In next utterance prediction task, models are trained to minimize the neg-
ative log-likelihood of generating the next utterance, where the multimodal models are condi-
tioned on additional modalities. Given the microsegment S and the model parameters θ, the ob-
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jective function is to minimize the negative log-likelihood of the m tokens in the next utterance:
L(θ) = −

∑m
i=1 log p(yi|S; θ). In atom classification task, models are trained by attaching a

MLP with a multi-class classification layer to the encoding of a microsegment S . The objective
function is to minimize the cross-entropy loss of predicting the expected atom (verb or noun):
L(θ) = − log p(xC

K+1|S; θ). See Appendix D for implementation details.

6 RESULTS

6.1 ATOM CLASSIFICATION

Table 1: Quantitative comparison of baselines for Atom Classification. The best and the second best
performing results are highlighted in bold and underlined, respectively.

Verb Classification

EM CA BERTScore

L 13.37 ± 0.5 28.47 ± 3.1 75.16 ± 0.6

VL 14.02 ± 0.2 28.68 ± 2.3 75.29 ± 0.5

AL 13.76 ± 0.3 30.05 ± 4.6 76.26 ± 0.5

AVL 14.06 ± 0.7 30.98 ± 2.1 76.12 ± 0.7

OL 12.79 ± 0.1 29.97 ± 1.5 75.66 ± 0.2

OAL 13.91 ± 0.5 29.90 ± 1.3 75.97 ± 0.9

MerlotR 13.71 ± 0.1 33.50 ± 1.8 76.07 ± 0.2

ImageBind 15.40 ± 0.2 31.54 ± 2.5 76.54 ± 0.4

MRH 2.39 9.61 73.60

Noun Classification

EM CA BERTScore

44.91 ± 0.3 51.83 ± 0.3 86.27 ± 0.2

42.72 ± 0.7 49.57 ± 0.3 85.81 ± 0.2

43.95 ± 0.2 51.11 ± 0.5 86.08 ± 0.1

43.34 ± 0.4 50.43 ± 0.9 85.92 ± 0.1

44.35 ± 0.9 51.24 ± 0.8 86.00 ± 0.3

43.83 ± 0.9 51.03 ± 0.5 85.92 ± 0.2

45.42 ± 0.6 52.24 ± 0.7 86.42 ± 0.1

33.67 ± 0.3 44.55 ± 0.1 83.96 ± 0.1

57.24 61.15 89.75

In Table 1, we present the outcomes of our atom classification task, which seeks to understand
models’ abilities to predict verb and noun atoms in isolation. For predicting verbs, we observe a
similar trend in performance with the next utterance prediction task results. However, all models
perform poorly in predicting nouns compared to the MRH baseline (Most Recent Heuristic). This
baseline employs the most recently referenced object in the input microsegment as a prediction
for the target noun, and most recently referenced verb as a prediction for the target verb. While
the language-only baseline outperforms the multimodal baselines in noun prediction, we observe a
slight improvement over the language-only model in predicting verbs within the multimodal models.
This subtle yet noteworthy improvement underlines the value of leveraging multiple modalities for
verb-related predictions.

6.2 NEXT UTTERANCE PREDICTION

Table 2: Next Utterance Prediction results on the test split. Using audio, visual, or object features
consistently improves performance compared to the language-only unimodal baseline. The best-
performing results are highlighted in bold, while the second-best results are underlined for clarity.

Inputs BLEU EM CA BERTScore

L 21.75 ± 1.0 2.89 ± 0.3 6.43 ± 0.2 79.06 ± 0.1

VL 31.25 ± 0.3 7.27 ± 0.1 12.95 ± 0.4 81.27 ± 0.1

AL 30.82 ± 0.5 6.81 ± 0.5 13.22 ± 0.9 81.20 ± 0.0

AVL 31.73 ± 0.4 7.04 ± 0.4 12.93 ± 0.8 81.50 ± 0.1

OL 30.79 ± 0.6 6.36 ± 0.2 12.21 ± 0.1 81.23 ± 0.1

OAL 32.02 ± 0.2 7.32 ± 0.6 13.08 ± 0.9 81.51 ± 0.1

MerlotR 31.50 ± 0.3 6.75 ± 0.2 12.85 ± 0.1 81.37 ± 0.2

ImageBind 33.52 ± 0.3 9.45 ± 0.5 15.04 ± 1.0 82.31 ± 0.2
IDEFICS 25.64 ± 0.4 5.76 ± 0.1 7.89 ± 0.5 80.92 ± 0.1

LLaMA2 27.50 ± 0.6 5.36 ± 0.6 7.41 ± 0.7 78.76 ± 0.2
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Table 2 presents the results of the next utterance prediction experiments. Notably, all multimodal
models surpass the language-only baseline. Our baseline model that incorporates visual features
(VL) exhibits consistent increases, showing gains of up to 9 BLEU, 4 EM, 6 CA, and 1 BERTScore
points, compared to the language-only variant. Furthermore, harnessing a mix of audio, visual, and
language features (AVL) or augmenting audio features with object tags (OAL) leads to additional
improvements, highlighting the contribution of fusing multiple modalities. The most significant
overall boost in performance is observed when visual features are utilized in the ImageBind pre-
trained model, resulting in approximate increases of 11, 6, 8, and 2 points, for BLEU, EM, CA, and
BERTScore metrics, respectively. The fact that LLaMA2 generates utterances with higher BLEU
but lower BERTScore than IDEFICS suggests that LLaMA2 can better imitate the required dataset
vocabulary than IDEFICS, even though IDEFICS produces more semantically plausible outputs.
Conclusively, ImageBind’s performance shows the advantages of employing pretrained multimodal
features over merely merging separate unimodal encodings.

Inputs (utterances and auxiliary modalities) Prediction (next utterance)

clean bowl open dishwasher open drawer

GT : place bowl
L : close dishwasher
OL : place bowl
VL : close dishwasher
AL : close drawer
AVL : dry bowl
OAL : place bowl
MerlotR : close dishwasher
ImageBind : put bowl in dishwasher
LLaMA2 : get clean
IDEFICS : put bowl away.

turn on tap rinse chopsticks take fork

GT : rinse fork
L : put down colander
OL : put down fork
VL : put down fork
AL : put down fork
AVL : put fork with sponge
OAL : put down fork
MerlotR : put down fork
ImageBind : put chopstick onto drying rack
LLaMA2 : turn chopsticks
IDEFICS : stir soup

put pan in drainer pick up mug pick up sponge

GT : sponge mug
L : put sponge
OL : sponge mug
VL : sponge mug
AL : sponge mug
AVL : sponge mug
OAL : sponge mug
MerlotR : sponge mug
ImageBind : sponge mug
LLaMA2 : put sponge in sink
IDEFICS : sponge mug

put down spring onions take courgettes take pepper

GT : cut pepper
L : cut spring onions
OL : put down courgette
VL : put down spring onions
AL : put pepper
AVL : cut pepper
OAL : put down courgette
MerlotR : open pepper
ImageBind : cut pepper
LLaMA2 : take spring onions
IDEFICS : put down knife

Figure 3: Next Utterance Prediction qualitative results. Models consider different combinations
of input modality, as described in Section 4. Blue refers to correct, orange incorrect and purple
semantically close.

In Fig. 3, we present a qualitative comparison of the baseline models via randomly selected exam-
ples from the test set. We believe that these illustrative examples effectively showcase the intricate
and challenging nature of the proposed COMPACT dataset. During training, the models have never
encountered compounds like place BOWL, or rinse FORK. In all of these illustrative examples, the
text-only unimodal model fails to generalize to these novel compositions. However, in the first
example, the OL and OAL baselines can predict the target composition correctly. ImageBind and
IDEFICS, even though not exact matches, generates semantically plausible predictions. In the sec-
ond example, all baselines struggle at predicting the verb while majority of the models predict the
correct noun FORK, in line with performance discrepancy between verbs and nouns in Table 1. In
the third example, all multimodal models can correctly predict the next utterance by leveraging the
auxiliary modalities. Note that, LLaMa2 also fails in this example whereas IDEFICS can generate
correct utterances. In the fourth example, AVL model and ImageBind models can correctly pre-
dict the cut PEPPER utterances. Interestingly, for this example both audio and vision inputs are
needed, indicating that for sequential compositional generalization, models might have to leverage
the available perceptual signal coming from different modalities at the same time.
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7 RELATED WORK

Compositionality. Baroni (2020) studied the linguistic generalization capabilities of artificial neu-
ral networks. Lake et al. (2019) explored compositionality in a human-like few-shot setting, while
others have studied compositionality at the representation level such as (Dasgupta et al., 2018; Et-
tinger et al., 2018). Unimodal compositional generalization datasets such as SCAN (Lake & Baroni,
2017), CFQ (Keysers et al., 2020), and COGS (Kim & Linzen, 2020) have been widely used in the
literature to assess generalization abilities of neural networks. In parallel, researchers have been ex-
ploring different directions towards compositional generalization e.g. meta learning, (Lake, 2019),
altering existing architectures (Akyurek & Andreas, 2021), and data augmentation (Qiu et al., 2022).

Grounded Learning. Johnson et al. (2017) studied systematic generalization in visual reason-
ing tasks. Bahdanau et al. (2019) investigated systematic generalization in a VQA-like context
while Nikolaus et al. (2019) focused on compositionality to construct unseen combinations of con-
cepts while describing images. Seo et al. (2020) transcribed speech to rank correct utterances in
instructional videos. Surı́s et al. (2020) studied compositionality in word acquisition from nar-
rated videos. Jin et al. (2020) investigated continual learning in unseen compound acquisition from
paired image-caption streams. Other existing studies revolve around crafting conceptual benchmark
datasets specifically designed to evaluate compositionality, e.g. (de Vries et al., 2019; Vani et al.,
2021). Grounded compositional generalization is explored in (Ruis et al., 2020; Wu et al., 2021)
within a 2D grid environment. Xu et al. (2021); Yun et al. (2023) investigated grounded composi-
tional generalization for the concept learning problem. Li et al. (2022a) studied compositionality in
a grounded setup with audio-language, Chen et al. (2021) leveraging audio-vision modality pairs.

Foundation Models. Recently, researchers have been studying foundation models to explore the
possibilities of utilizing different modalities such as audio, vision, and text to solve grounded real-
world problems (Guzhov et al., 2022; Girdhar et al., 2023; Driess et al., 2023). More recently, to
assess visually-grounded compositional generalization capabilities of models, Bogin et al. (2021)
proposed COVR, Zhuo et al. (2023) proposed ViLPAct, Ma et al. (2023) proposed CREPE. Unlike
previous studies, our focus centers on a real-world audio, vision and language setting for composi-
tional generalization (see Figure 1). We believe this study contributes towards better understanding
the open challenges in multimodal sequential compositional generalization for foundation models.

8 CONCLUSION

Limitations. Despite the promising results, there exists a few limitations of our work. In our
work, we introduce a novel dataset called COMPACT, that is carefully curated from the EK-100
dataset (Damen et al., 2022), which involves videos of daily kitchen activities, to dissect the impact
of visual and auditory signals on linguistic compositionality. Hence, our conclusions may hinge
upon certain domain-specific variables. It could be interesting to conduct future studies in an open-
domain setting which might unravel additional insights. We investigate several different multimodal
models for both next utterance prediction and atom classification tasks. However, it is important
to note that for multimodal learning how to integrate different modalities is considered as an open
research problem. In the literature, different strategies for multimodal data fusion have been pro-
posed. Our experimental analysis could be further extended by considering some models that fuse
the modalities in a way different than ours. More interestingly, from a systematic generalization
point of view, an analysis could be carried out to explore the most effective fusion scheme. Finally,
we acknowledge the textual utterances that we use in our work are inherently simplistic and do not
capture all of the complexities in natural languages. Consequently, extending this work to a more
natural source of language data that mirrors those complexities could be quite interesting direction.

Conclusion. In this paper, we present an investigation of linguistic compositionality and systematic
generalization in a grounded setting for multimodal sequential compositional generalization. We
show how a multimodal dataset can be utilized as a challenging test bed for this purpose. We design
the next utterance prediction and atom classification tasks and follow a methodical approach in
generating the training, validation and test sets for our compositional splits. We experiment with
several baseline models and investigate models’ ability to generalize to novel compositions and
show how multimodal data can contribute towards solving systematic generalization problem and
highlight major challenges. We hope our work will stimulate further research along these directions.
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APPENDIX

In the following, we provide a comprehensive set of supplementary notes that delve deeper into
various aspects of our research:

• Data Curation, Algorithms, and Preprocessing (Section A): This section outlines the
steps taken in data curation, algorithmic processes, and preprocessing techniques applied.

• Exploratory Analysis of COMPACT (Section B): Here, we present a detailed analysis of
the COMPACT dataset, highlighting its unique characteristics.

• Implementation Details and Reproducibility (Section D): This section offers a detailed
account of our implementation methodology, providing valuable information for those in-
terested in replicating or extending our work.

• Further Analysis (Section E): We conduct additional analyses, expanding on key findings
and offering deeper insights into the compositional generalization phenomenon.

• Ethics Statement (Section F): In this section, we present a comprehensive ethics statement
detailing our commitment to ethical research practices throughout the study.

A DATA CURATION, ALGORITHMS AND PREPROCESSING

A.1 CURATING COMPACT: AN OVERVIEW

In our data curation and preprocessing for COMPACT, we leverage the EPIC-Kitchens-100 (EK-
100) dataset, a collection of egocentric kitchen activity videos, which are split into shorter clips with
accompanying narrations and audio tracks—referred to as “microsegments”.

To curate our sequences of microsegments, we employ a window of 4 clips, with the initial 3 clips
serving as context and the last one designated for prediction, yielding a total of 22,136 instances. We
filter out repeated utterances that clearly represent a continuation of the same action, treating them
as duplicates. Additionally, we exclusively consider text descriptions that share common nouns,
ensuring that the noun mentioned in the target description also appears in the source text. This
heuristic guarantees the presence of the target noun in both input sequences during both inference
and training, allowing our setup to solely evaluate compositionality and systematic generalization.

Inputs (utterances and auxiliary modalities) Target (next utterance)

Image

Text take off gloves pick up knife check butter in bowl

GT : put down knife

Image

Text put down water filter put down glass pick up pan from sink

GT : rinse pan

Figure 4: Curating dataset instances for compositional generalization. Targets such as put down
KNIFE and rinse PAN have never been observed by the learner during the training phase.

In our experimental setup, we introduce a scenario where a model must have prior exposure to all
constituent atoms within a test instance, such as GRAB THE PLATE. WASH CUCUMBER. TAKE
KNIFE., and is then tasked with predicting the subsequent utterance, such as SLICE CUCUMBER,
during inference. It is important to emphasize that this target composition has never been encoun-
tered during the model’s training phase (refer to Fig. 4). This setup allows testing models’ ability
to generalize to entirely unobserved compositions, even those with zero probability of occurrence
in the training data. To create such dataset splits, we employ the Maximum Compound Divergence
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(MCD) heuristic, crafting distributions that maintain similarity in the distribution of individual con-
cepts (atoms), while deliberately introducing disparities in the distributions of concept combinations.
In our case, we utilize 97 verb classes and 300 noun classes from the EK-100 dataset as the atoms.
In particular, each sample is assigned to a specific split based on the atomic and compound diver-
gence (similarity) based on weighted distributions using Chernoff coefficient (Chung et al., 1989).
This process yields 8,766 instances, which are further partitioned into 4,407 for training, 2,184 for
validation, and 2,175 for testing.

In Fig. 5, we visualize the atomic and the compound distributions over the constructed training,
validation and test splits of our proposed compositional setup. Notably, these splits exhibit similar
distributions concerning atoms while training and val/test splits do differ in terms of compounds.
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Figure 5: Plot on the left demonstrates the distribution of atoms while plot on the right shows the
distribution of compounds for the train/validation/test splits in compositional split setup.

A.2 ATOM AND COMPOUND SELECTION

In Algorithm 1, we describe the heuristic we use to create the compositional splits in COMPACT
following the Maximum Compound Divergence (Keysers et al., 2020)

Algorithm 1: Split Generation Algorithm
Data: Dataset M
Result: Train split U , Test split W

1 Init U , W ;
2 Init Atom Divergence DA, Compound Divergence DC ;
3 Init MT with items in M ;
4 Init i to 0;
5 while MT is not empty do
6 Randomly choose T ∈ {U,W} to add an item;
7 if i = 0 then
8 Randomly select and remove an item m from MT;
9 Add m to split T ;

10 else
11 Calculate DA for remaining items if added to T ;
12 Filter items with DA below a threshold;
13 if no items meet the criteria then
14 Select item with highest DC as the best candidate;
15 else
16 Calculate DC for items if added to T ;
17 Select the item with highest DC as the best candidate;
18 Add the best candidate item to split T ;
19 Increment i by 1;
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A.3 PREPROCESSING

A.3.1 CHOOSING KEYFRAMES FROM VIDEOS

We adapt a straightforward yet effective approach to select representative images from each mi-
crosegment. We employ a simple heuristic to identify which keyframes to be selected for the span
of the video clip. In particular, we run an object detector on the video frames and select the frames
containing the highest count of object proposals detected by the object detector. This selection en-
sures that we capture the most visually informative frame from among the available candidates. In
the case of ImageBind, we opt for the middle frame from each narration video.

A.3.2 TOKENIZATION

As a preprocessing step, we replace multiword tokens with a single word. For instance, each oc-
currence of put-down is replaced with put down and each occurance of OLIVE OIL is replaced with
OLIVE OIL. This preprocessing step is not applied to LLaMA2 and IDEFICS, since these models
have their own vocabulary. Similarly, LLaMA2 and IDEFICS use their own tokenizers while other
models simply use a whitespace tokenizer.

A.4 PROMPTING FORMAT

In this section, we describe the heuristic we employ to formulate the inputs for our evaluation
prompts targeting generative models. It is worth noting that the prompting templates for IDEFICS
and LLaMA2, though similar, are not interchangeable as IDEFICS has the capacity to harness both
visual and language data.

First, for both LLMs, we include an instruction at the start of the prompt as our language models are
instruction-tuned. Then, we enumerate a set of few-shot examples. Finally, we provide the source
section at the end of the prompt, leaving the target to be predicted.

A.4.1 LLAMA2 PROMPT EXAMPLE

An example LLaMA2 5-shot prompt can be seen in the Fig. 6.

Predict the next narration given 3 sequential previous narrations from a cooking video
put down bowl . move frying pan . pick up spatula => put down spatula
put down bowl . move jar . pick up egg => crack egg
move yoghurt . put down bowl . pick up yogurt => put yoghurt
put down bowl . grab wok . move tap => lather wok
put down bowl . pick up spatula . stir meat pieces with spatula => put down spatula
pick up tins . put down tins . move bowl =>

Figure 6: Prompt template utilized for LLaMA2 evaluation.

A.4.2 IDEFICS PROMPT EXAMPLE

An example IDEFICS 1-shot prompt can be seen in the Fig. 7. <Image n> denotes the image for
the nth narration scene.

Predict the next action narration given 3 sequential previous actions (image-narration
pairs) in a cooking video.
put down bowl <Image 1> . move frying pan <Image 2> . pick up spatula <Image 3> =>
put down spatula
pick up tins <Image 1> . put down tins <Image 2> . move bowl <Image 3> =>

Figure 7: Prompt template utilized for IDEFICS evaluation.
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B EXPLORATORY ANALYSIS OF COMPACT

In this section, we share an exploratory analysis of the COMPACT.
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Figure 8: Word clouds for validation (left), test (middle) and train (right) splits.
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Figure 9: Distribution of verbs (top) and nouns (middle and bottom) from COMPACT

In Fig.8, we present the word cloud visualization for our compositionality splits consisting of all ut-
terances. Fig. 9 illustrates the verb and noun distributions in the COMPACT dataset where validation
and test splits are jointly stacked on top of the train split occurances and displayed in a lighter color.

C CHOICE OF EK-100 FOR COMPACT

The EPIC-Kitchens-100 (EK-100) dataset was chosen due to its established reputation in the re-
search community and its densely annotated instructions, offering a rich and diverse dataset. It
also has a clear segmentation of instructions, including verb and noun annotations, making it an
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ideal candidate for curating the COMPACT dataset, allowing us to leverage audio, vision, and text
modalities effectively.

Previously proposed datasets in the literature such as CrossTask (Zhukov et al., 2019) and GAIN
(Li et al., 2022b) also consists of text instructions and multimodal components. Unlike CrossTask,
which focuses on cross-task generalization, our study centers on compositional generalization. Simi-
larly, while sharing similarities with GAIN in dataset formulation and the use of instructional videos,
COMPACT differs in the description of atomic concepts and the mathematical definition of out-of-
distribution (OOD) scenarios. We also conduct further analysis to evaluate whether the proposed
benchmarks such as CrossTask or GAIN could be considered for a compositional generalization
benchmark. Nevertheless, lack of proper annotations for atoms and compounds and the number of
instances seems to be a challenge to generate compositional splits for these benchmarks.

D IMPLEMENTATION DETAILS AND REPRODUCIBILITY

For the reproducibility of our results, we plan to make the code, models, COMPACT splits and
extracted features publicly available. All models are implemented with PyTorch.

D.1 TRAINING REGIME AND HYPERPARAMETERS

We use the AdamW optimizer (Loshchilov & Hutter, 2017) with ReduceLROnPlateau learning rate
scheduler to reduce the learning rate during training when validation BLEU plateaus. To train the
models for next utterance prediction, we employ cross-entropy loss, initialize network weights via
uniform distribution for both the encoder and the decoder. We use an early stopping strategy and stop
the training if validation BLEU does not improve after a certain threshold. We clip gradients and set
the gradient threshold to 0.1, and use a 3-layer multihead attention with 4-heads in the crossmodal
self-attention block in all our multimodal models. We use the same strategy for atom classification,
with one distinction where we use accuracy for early stopping and learning rate scheduler.

Table 3: Hyperparameters for each task. NUP refers to Next Utterance Prediction and AC refers to
Atom Classification tasks.

Task Optimizer LR Batch Size Patience Scheduler Metric Weight Decay Dropout

NUP AdamW 3e-4 128 50 BLEU 5e-5 0.3
AC AdamW 3e-4 128 50 Accuracy 5e-5 0.3

Hyperparameters for each task are given in Table 3. In our experiments, we use the ReduceLROn-
Plateau learning rate scheduler with the patience of 40. Following the insights from Csordás et al.
(2021), we use the performance score as a monitoring metric for the scheduler (also early stopping)
rather than using loss. For the NUP and AC tasks, we use BLEU and accuracy scores, respectively.

D.2 MODEL SIZES AND TRAINING TIME

In Table 4, we present the number of trainable parameters and training time (MM:SS) for all of our
trainable baseline models for both the next utterance prediction task and atom classification task.

LLaMA2 and IDEFICS experiments are ran on NVIDIA Tesla T4 and NVIDIA Tesla V100 GPUs
respectively. Other experiments are run on NVIDIA 1080Ti GPUs.
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Table 4: Model sizes and their training times for our experiments. Training times are averaged over
3 runs.

Next Utterance Prediction

Model #params Train Time

L 4.8M 20:45
OL 12.0M 38:15
VL 12.5M 49:15
AL 12.0M 40:00
AVL 12.6M 52:00
OAL 12.1M 39:00

MerlotR 12.1M 18:30
ImageBind 8.4M 28:15

Atom Classification

#params Noun Train Time Verb Train Time

2.1M 2:45 2:00
9.3M 12:15 8:30
9.7M 26:45 22:00
9.3M 10:45 8:15
9.9M 15:30 13:00
9.4M 14:15 10:30

9.4M 6:30 4:45
5.7M 9:45 8:30

E FURTHER ANALYSIS

E.1 GENERALIZATION ON VALIDATION SPLIT

Table 5: Next utterance prediction results on validation split. Using audio, visual, or object features
always improves performance compared to the language-only unimodal baseline. We report the
mean and the standard deviation across three runs.

Inputs BLEU EM CA BERT Score

L 21.43 ± 0.5 2.88 ± 0.1 6.22 ± 0.2 79.2 ± 0.1

VL 30.59 ± 0.4 7.35 ± 0.6 12.39 ± 1 81.24 ± 0.4

AL 30.47 ± 0.1 7.06 ± 0.3 12.16 ± 0.2 81.19 ± 0.1

AVL 31.22 ± 0.1 7.44 ± 0.4 12.54 ± 0.3 81.44 ± 0.1

OL 30.50 ± 0.4 7.03 ± 0.2 12.42 ± 0.8 81.1 ± 0.1

OAL 31.42 ± 0.1 7.99 ± 0.5 13.36 ± 0.2 81.5 ± 0.1

MerlotR 31.36 ± 0.4 7.17 ± 0.6 12.68 ± 0.5 81.34 ± 0.1

ImageBind 34.13 ± 0.5 10.45 ± 0.8 16.08 ± 0.8 82.45 ± 0.2
IDEFICS 25.15 ± 0.8 5.66 ± 0.5 7.17 ± 0.5 80.75 ± 0.2

LLaMA2 26.52 ± 0.5 5.37 ± 0.3 6.99 ± 0.4 78.59 ± 0.1

Table 6: Atom classification results on validation split. We report mean across three runs. Best and
second best performing results are highlighted in bold and underlined, respectively.

Verb Classification

EM CA BERT Score

L 12.92 ± 0.8 28.96 ± 3.3 74.96 ± 0.4

VL 14.02 ± 0.2 30.23 ± 1.7 75.19 ± 0.5

AL 14.48 ± 0.7 31.07 ± 3.7 76.21 ± 0.2

AVL 14.01 ± 0.3 31.15 ± 2.5 75.84 ± 0.9

OL 12.77 ± 0.3 30.87 ± 1.1 75.53 ± 0.3

OAL 14.30 ± 0.2 30.79 ± 1.5 76.02 ± 0.6

MerlotR 13.15 ± 0.5 32.53 ± 0.6 75.74 ± 0.2

ImageBind 14.91 ± 0.2 31.31 ± 3.1 76.28 ± 0.5

MROH – – –

Noun Classification

EM CA BERT Score

44.78 ± 0.8 52.28 ± 0.8 86.35 ± 0.1

42.35 ± 0.3 49.38 ± 0.4 85.88 ± 0.1

43.71 ± 0.2 50.79 ± 0.2 86.05 ± 0.1

43.48 ± 0.5 50.59 ± 0.8 86.10 ± 0.2

44.03 ± 0.3 51.40 ± 0.1 86.03 ± 0.1

44.13 ± 0.5 50.86 ± 0.8 86.09 ± 0.2

44.52 ± 0.8 51.31 ± 0.6 86.22 ± 0.2

34.15 ± 0.5 44.59 ± 0.2 84.11 ± 0.1

57.51 60.90 89.89

In Table 5 we present generalization performance on the validation split for next utterance prediction
task and in Table 6 we demonstrate the generalization performance on validation split for atom
classification task.
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E.2 GENERALIZATION PERFORMANCE OVER EPOCHS
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Figure 10: Generalization performance of the models over the epochs. Even though the training
performance of a model improves on COMPACT, this does not necessarily mean that its validation
and test performance will also become better due to the compositional nature of the COMPACT
dataset.

In Fig.10, we report the BLEU scores of the models over the training, validation, and test splits at
different epochs. These plots clearly demonstrate that in a compositional setup, models can perform
well in the training set but this does not mean they can generalize to unseen distributions.

E.3 PROMPTING ABLATIONS

E.3.1 ADDITIONAL FEW-SHOT RESULTS

Table 7 and 8 offer interesting insights regarding few-shot compositional capabilities of IDEFICS
and LLaMA2 models. First, we see significant performance discrepancy between IDEFICS and
LLaMA2 on zero-shot prediction results. As IDEFICS additionally utilizes visual information
over LLaMA2, it displays better zero-shot generalization capabilities. While LLaMA2 outperforms
IDEFICS in one-shot and few-shot BLEU scores, contrastingly, IDEFICS outperforms LLaMA2 on
BERT Scores. As LLaMA2 outperforms the LLM of IDEFICS (instruct-tuned LLaMA1) on many
benchmarks (Touvron et al., 2023), we infer that LLaMA2 can imitate the vocabulary of few-shot
examples better than IDEFICS, resulting in higher BLEU scores. However, higher BERT Scores
imply that IDEFICS can reflect the semantics of the ground truth prediction better.
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Table 7: Next utterance prediction results on test split for IDEFICS. As few-shot example count
increases, performance improves on every metric consistently.

k-shot BLEU EM CA BERT Score

0-shot 8.98 ± 0.2 0.06 ± 0.1 0.12 ± 0.0 75.58 ± 0.1

1-shot 20.25 ± 0.2 4.12 ± 0.1 5.30 ± 0.1 79.75 ± 0.0

3-shot 24.85 ± 0.7 5.37 ± 0.4 7.20 ± 0.3 80.78 ± 0.1

5-shot 25.64 ± 0.4 5.76 ± 0.1 7.89 ± 0.5 80.92 ± 0.1

8-shot 26.18 ± 0.3 6.06 ± 0.2 7.92 ± 0.3 81.19 ± 0.1

Table 8: Next utterance prediction results on test split for LLaMA2. As few-shot example count
increases, performance improves on every metric consistently.

k-shot BLEU EM CA BERT Score

0-shot 2.02 ± 3.5 0.13 ± 0.1 0.15 ± 0.1 71.68 ± 0.1

1-shot 23.89 ± 0.7 3.98 ± 0.2 5.77 ± 0.1 77.90 ± 0.2

3-shot 26.17 ± 0.6 5.07 ± 0.1 7.00 ± 0.1 78.35 ± 0.1

5-shot 27.50 ± 0.6 5.36 ± 0.6 7.41 ± 0.7 78.76 ± 0.2

8-shot 27.58 ± 0.3 5.60 ± 0.2 8.01 ± 0.4 78.95 ± 0.1

E.3.2 FEW-SHOT EXAMPLE SELECTION

For few-shot example selection, rather than randomly picking k-shot examples, we employ a simple
heuristic. As Liu et al. (2022) highlight that selecting similar examples improves in-context learning
performance, we select the most similar k examples as few-shot examples. The similarity measure
between two examples is based on the noun and verb overlap. First, the intersection between the set
of nouns and the set of verbs between the main example and all training examples is computed. If
the sum of the cardinality of these sets is largest between the main example and a few-shot example,
the few-shot example is the most similar example of the main example. We provide a validation
comparison between the random example selection and our heuristic in Table 9.

Table 9: Next utterance prediction BLEU scores on validation split for IDEFICS for a single run.
Greedy decoding is used and the best score is bolded.

Strategy 0-shot 1-shot 3-shot 5-shot

Random selection 28.5 31.0 18.7 19.3
Our heuristic 28.5 34.8 23.4 23.5

E.3.3 PROMPT TEMPLATE SELECTION

For IDEFICS, as images should be included in the prompt, the selection of prompt template is
important. We compared two prompt templates (see Fig. 7 and Fig. 11) and after preliminary
analysis, used the best performing template in our paper (see Table 10).

Table 10: Next utterance prediction results on validation split for IDEFICS. Overall, used template
outperforms unused template.

Template BLEU EM CA BERT Score

Used template 25.64 ± 0.4 5.76 ± 0.1 7.89 ± 0.5 80.92 ± 0.1
Unused template 22.19 ± 0.3 5.91 ± 0.4 7.14 ± 0.5 80.53 ± 0.1
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Predict the next action narration given 3 sequential previous actions (image-narration
pairs) in a cooking video.
Narration 1: put down bowl Image 1: <Image 1>
Narration 2: move frying pan Image 2: <Image 2>
Narration 3: pick up spatula Image 3: <Image 3>
Narration 4: put down spatula

Narration 1: pick up tins Image 1: <Image 1>
Narration 2: put down tins Image 2: <Image 2>
Narration 3: move bowl Image 3: <Image 3>
Narration 4:

Figure 11: The unused alternative prompt template for IDEFICS evaluation.

E.4 T-SNE VISUALIZATION FOR AUDIO AND VISUAL EMBEDDINGS

Figure 12: Feature projection to 2D space with t-SNE using raw audio and global visual features. On
the left, audio space is shown with the verb rinse being specifically highlighted. On the right, visual
space is given with noun FRIDGE being particularly highlighted. Sampled by most common com-
pounds appearing at least 25 times in COMPACT, equally distributed for each compound (N = 25).

In order to understand the features we extracted via VGGSound and ResNet50 backbones and how
well they encode the audio and visual spaces, we visualized the raw feature embeddings by pro-
jecting them to 2D space via t-SNE. In Figure 12, we highlight the compounds with the verb rinse
and observe that audio features can meaningfully encode activities. Similarly, we analyzed the raw
global visual embeddings and highlight the compounds with the noun FRIDGE, the visualization
shows the extracted global visual embeddings can effectively encode visual surroundings.

F ETHICS STATEMENT

We curated our COMPACT dataset using the video clips from the published EPIC-Kitchens-100
dataset (Damen et al., 2022), which is publicly available. The videos that exist in this dataset were
recorded voluntarily by the participants who were not financially rewarded.
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