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Abstract

Vision Transformers (ViTs) have recently been explored for structural MRI classification,
motivated by their ability to capture non-local image structure. However, in limited and
heterogeneous clinical cohorts, their weak inductive biases and sensitivity to training con-
ditions often lead to high-variance behaviour. While binary settings such as cognitively
normal vs. dementia are widely reported and typically exhibit moderate variability, we
show that this stability does not extend to differential diagnosis. When increasing task
complexity (e.g., controls vs. Alzheimer’s Disease vs. Frontotemporal Dementia), perfor-
mance becomes sensitive to class imbalance and phenotype overlap, with greater variability
driven by fewer samples per class, noisier labels, and increased inter-site heterogeneity.

In this study, we investigate a stabilization protocol combining data augmentation, ar-
chitectural constraints, and optimization strategies on multi-site MRI datasets. We assess
how model variance evolves with task complexity using patient-level paired bootstrapping,
calibration analysis, paired significance tests, and estimates of the probability of false out-
performance to obtain uncertainty-aware comparisons across models.

Our results highlight conditions under which Transformer-based classifiers can be con-
sistently trained with limited neuroimaging data and illustrate that several performance
gains disappear once stochastic variability is reported. These results emphasize that reliable
differential diagnosis with ViTs requires both robust stabilization protocols to mitigate opti-
mization noise and standardized uncertainty quantification beyond simple point-estimates.

Keywords: Vision Transformers, Neurodegenerative Disease, Differential Diagnosis, Sta-
bility, Reproducibility, Robustness, Uncertainty Quantification.

1. Introduction

Transformer-based deep learning architectures such as ViT (Dosovitskiy et al., 2021)
and Swin (Liu et al., 2021) are increasingly applied to neurodegeneration classification from
structural MRI alone, due to their ability to capture distributed atrophy patterns that ex-
tend beyond local receptive fields (Shamshad et al., 2023; Alamir et al., 2024). Yet, unlike
Convolutional Neural Networks (CNNs), these models lack the spatial inductive biases in-
herent to visual data (e.g., locality and translation invariance) and are typically trained
on large, homogeneous datasets, which are conditions rarely met in clinical neuroimag-
ing (Matsoukas et al., 2021). Medical data specificities, including inherent noise, acquisi-
tion heterogeneity, and severe class imbalance, exacerbate the instability of unregularized
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transformers. Combined with the lack of intrinsic spatial constraints, these factors make
optimization brittle, with sharp loss landscapes and heightened sensitivity to initialization,
data ordering, and hyperparameters (Chen et al., 2022; Park and Kim, 2022).

Such instability is a critical bottleneck for the field. While CNNs remain robust base-
lines, they lack the unified token representation required to seamlessly integrate imaging
with non-spatial modalities, such as genomics or tabular data in a unified embedding space
(Wang et al., 2022b; Bi et al., 2024). Reported gains in medical imaging often lie within
stochastic variability once uncertainty is quantified (Bouthillier et al., 2021), and recent
audits show that formal significance testing is uncommon in leading venues (Christodoulou
et al., 2025). These issues are particularly acute in classification tasks compared to segmen-
tation. While voxel-wise segmentation metrics benefit from high information density per
image, allowing for precise performance estimates even with moderate sample sizes, image-
level classification relies on sparse supervisory signals (one label per volume) (El Jurdi et al.,
2025). Consequently, classification tasks require substantially larger cohorts to achieve com-
parable statistical precision (Varoquaux, 2018), making them susceptible to the stochastic
variability inherent in clinical datasets where sample sizes are typically constrained.

In neurodegenerative disease classification, while Cognitively Normal (CN) vs. Alzheimer
Disease (AD) settings mask this difficulty (Basaia et al., 2019; Wen et al., 2020b), multiclass
tasks involving behavioral variant Frontotemporal Dementia (bvFTD), semantic variant
Primary Progressive Aphasia (svPPA), and nonfluent variant Primary Progressive Aphasia
(nfvPPA) frequently reveal ranking inversions between architectures and unstable decision
boundaries. This instability is exacerbated by the reliance on purely imaging-based diagno-
sis; for example differentiating bvFTD from AD is particularly challenging solely from MRI
due to overlapping atrophy patterns in the anterior cingulate and frontoinsula (Perry et al.,
2017). This creates a ”grey zone” where data-hungry models struggle to identify decision
boundaries without the guidance of clinical or neuropsychological scores.

This work examines the stability and robustness of Transformers under the specific chal-
lenges of differential diagnosis on MRI. We identify techniques preserving calibration and
ranking consistency across random seeds and distribution shifts. To this end, we propose:

1. A stability assessment across task complexities: By contrasting a standard
3-class setup (detailed in Appendix E) with a granular 5-class differential diagno-
sis (CN/AD/bvFTD/svPPA/nfvPPA), we quantify how increased phenotypic overlap
and class imbalance amplify instability in Transformers compared to CNNs.

2. A benchmarking of stabilization strategies: Using a representative hierarchical
vision transformer as a reference, we conduct an extensive ablation study reviewing
the impact of data-level (augmentation, sampling), architectural (initialization, regu-
larization), and optimization strategies. We identify a specific protocol that allows to
close the generalization gap in limited-data regimes without relying on pretraining.

3. An uncertainty-aware evaluation protocol: Moving beyond point-estimates, we
employ patient-level paired bootstrapping, calibration analysis, and the probability of
false outperformance (Christodoulou et al., 2025). This framework allows us to differ-
entiate genuine signal from optimization noise, i.e. that standard evaluation reports
gains that fail to reach statistical significance with proper uncertainty quantification.

Our findings delineate the conditions under which Transformers can be deployed reli-
ably for neurodegenerative disease classification. As architectures like MedViT show that
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Transformer-based models can surpass strong CNN baselines, our stabilization principles
offer a pathway to unlock this potential across medical ViTs, clarifying which performance
differences persist once stochastic variability and distribution shifts are accounted for. The
code and stabilization protocols are publicly available.1

2. Related Work

Transformers have emerged as interesting alternatives to CNNs in medical imaging,
offering the ability to capture long-range dependencies and global image structure (Doso-
vitskiy et al., 2021; Liu et al., 2021). While hierarchical variants like Swin (Liu et al.,
2021) and domain-specific adaptations (e.g., Hatamizadeh et al., 2022; Wald et al., 2025a)
attempt to mitigate the quadratic cost of attention and introduce inductive biases, training
remains notoriously fragile. Unlike CNNs, Transformers lack spatial priors, making them
prone to overfitting and unstable optimization on the small, heterogeneous cohorts typical
of clinical neuroimaging (He et al., 2023; Shen et al., 2023).

Dementia classification has progressed from hand-crafted features with SVMs (Klöppel
et al., 2008) to deep 3D CNNs (Wen et al., 2020a; Nguyen et al., 2023) and, recently, Trans-
formers (Nguyen et al., 2024). Current literature reports high performance for binary AD
detection (Alamir et al., 2024). However, differential diagnosis involving FTD subtypes re-
mains challenging due to overlapping phenotypes (Wu et al., 2025), a setting where the lack
of rigorous uncertainty quantification is critical. Recent audits suggest that many reported
performance gains in medical imaging may be attributable to stochastic variability rather
than genuine architectural improvements (Christodoulou et al., 2025). This issue is exacer-
bated in Transformers due to their sensitivity to initialization and hyperparameters (Chen
et al., 2022), requiring multi-seed evaluation (Bouthillier et al., 2021; Del Pup et al., 2024).

Addressing this instability requires a holistic approach to regularization and evaluation.
Standard stabilization strategies include heavy data augmentation (Zhang et al., 2018; Car-
doso et al., 2022), architectural constraints (e.g., LayerScale, stable initialization) (Touvron
et al., 2021; Kedia et al., 2024), and optimization techniques such as sharpness-aware min-
imization (SAM) or label smoothing (Foret et al., 2021; Müller et al., 2020). Furthermore,
relying solely on accuracy metrics is insufficient for clinical reliability. Robust assessment re-
quires analyzing calibration (Guo et al., 2017) and validating statistical significance through
paired tests and bootstrapping (McNemar, 1947; Efron, 1979). Complementarily, we employ
the Brier score (Brier, 1950) to specifically quantify prediction over-confidence, offering an
assessment of probabilistic reliability distinct from discrimination ranking. Our work tends
to unify these disparate components, benchmarking stabilization strategies specifically for
the low-data, high-imbalance framework of dementia differential diagnosis.

3. Method

3.1. Datasets

We construct an in-domain (ID) pool combining data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (Mueller et al., 2005) and the multi-site ALLFTD consor-
tium (Boeve et al., 2020), two longitudinal studies monitoring Alzheimer’s Disease (AD)

1. https://github.com/EloiNavet/ViT-Stability-Neurodegeneration/
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and Frontotemporal Lobar Degeneration (FTLD) respectively. We focus on the clinical
spectrum of FTD subtypes, categorized into behavioral variant Frontotemporal Dementia
(bvFTD), semantic variant Primary Progressive Aphasia (svPPA), and nonfluent variant
Primary Progressive Aphasia (nfvPPA). To assess robustness to domain shifts, we employ
an Out-Of-Domain (OOD) pool aggregating NIFD (Frontotemporal Lobar Degeneration
Neuroimaging Initiative, 2009) and NACC (Beekly et al., 2007). Table 1 summarizes the
class composition across these cohorts, while full cohort-level criteria and demographics are
provided in Appendix A. Although this aggregated dataset is substantial by medical stan-
dards, it remains orders of magnitude smaller than the massive datasets typically required
to train vision transformers in general computer vision.

Distribution shifts and class imbalance. While the ID cohort (ADNI+ALLFTD)
already displays inherent class imbalance, it retains actionable representation for all FTD
subtypes (see Table 1). In contrast, the OOD cohort (NIFD+NACC) shows an even more
pronounced disparity, with rare FTD subtypes representing < 1.5% of the test sample. We
preserve this natural prevalence to assess robustness under realistic epidemiological and
covariate shifts. Evaluation is performed on unmodified OOD data; only ID training may
use balanced sampling (Section 4.2.1). Due to scarcity, minority-class OOD metrics show
wider confidence intervals and are interpreted primarily for global stability and calibration.

Table 1: Subject distribution across cohorts. The ID set combines ADNI and ALLFTD, and
the OOD set aggregates NIFD and NACC. Note the scarcity of FTD subtypes in the OOD
set reflecting clinical prevalence. Counts displayed as Dataset1 / Dataset2 for each group.

Group Datasets CN AD bvFTD nfvPPA svPPA Total

ID ADNI / ALLFTD 1090 / 322 649 / 5 – / 229 – / 66 – / 76 1739 / 698
OOD NIFD / NACC 136 / 2115 – / 485 74 / 26 37 / 6 39 / 4 286 / 2636

Cross-validation and evaluation. ID experiments use patient-level stratified 10-fold
cross-validation across dataset, diagnosis, sex, and age bins, with a 7/2/1 train/val/test
split per fold. OOD evaluation uses a fixed NIFD+NACC test set without overlap.

Image preprocessing. All T1-weighted MRIs undergo a unified pipeline: N4 bias cor-
rection (Tustison and et al., 2010), skull stripping, affine and diffeomorphic MNI registra-
tion (Avants et al., 2011; Fonov et al., 2011), 1mm resampling, Z-scoring, and fixed FOV
cropping. To avoid leakage from longitudinal data, a single baseline scan is selected per
subject; CN participants are required to maintain longitudinal diagnostic stability. Genetic
FTD cases in ALLFTD are excluded.

3.2. Models

Backbones. We benchmark a set of volumetric transformers and CNN baselines, selecting
the variant model whose parameter count is close to the median across backbones:

1. ViT-3D: a non-hierarchical ViT extended to 3D via volumetric patch embedding
(Dosovitskiy et al., 2021; Wang et al., 2022a);

2. Swin-3D (baseline): a hierarchical Swin with shifted 3D windows (Liu et al., 2022);
3. Swin-3D (deformable): Swin-3D equipped with deformable patch locations (Nguyen

et al., 2024);
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4. MedViT-3D: A robust hybrid CNN-Transformer model (Manzari et al., 2023), that
we extended to 3D, combining local convolutions and global attention mechanisms;

5. Segmentation-based CNNs + SVM: A neuroanatomically driven pipeline using
an ensemble of 125 3D U-Nets (AssemblyNet) (Coupé et al., 2020) for regional feature
extraction, followed by an SVM classifier. This baseline serves as a high-capacity ref-
erence for anatomy-driven performance rather than a resource-equivalent competitor;

6. 3D CNN: A 3D ResNet-18 (Hara et al., 2018). We selected the 18-layer variant to
match the parameter count of the transformer architectures (≈ 30M). While deeper
variants theoretically offer higher capacity, 3D convolutions induce a rapid growth
in parameter count, so the 18-layer variant offers a more favorable trade-off between
model complexity and the available dataset scale.

Rationale for stabilization testbed. While hybrid architectures like MedViT-3D demon-
strate superior baseline performance (as shown in Section 4), we explicitly selected Swin-3D
with deformable patch location as the primary testbed for our stabilization ablation study
(Section 4.2.1). Unlike MedViT, which relies on convolutional stems for stability, Swin-
DPL allows us to isolate the optimization challenges intrinsic to hierarchical self-attention
mechanisms. Our goal is to identify training protocols that allow standard Transformers to
close the gap with hybrids and CNNs.

Training framework. Training uses AdamW (Loshchilov and Hutter, 2019), cross-entropy
loss, global batch size 128 (with gradient accumulation), cosine decay with warmup (Loshchilov
and Hutter, 2017), mixed precision, and early stopping on validation loss. Regularization
via Stochastic Depth (DropPath, (Huang et al., 2016)) and weight decay follows the spe-
cific configurations recommended by the respective model authors. All hyperparameters
were fixed prior to experiments to isolate seed-dependent variation. While deterministic
flags were enabled, strictly reproducible training remains elusive in 3D deep learning due
to hardware-level implementation details.2

To rigorously quantify this instability, we employed a multi-seed evaluation protocol,
repeating training runs with distinct random seeds for initialization and sampling. While
this strategy is computationally expensive, multiplying the training budget by the num-
ber of seeds, it is strictly necessary to dissociate genuine architectural improvements from
stochastic optimization noise when working with small datasets as we are. Unless stated
otherwise, we ran 5 trainings per architecture for this analysis.

We evaluate stabilization components both individually and in combination. All models
use the same preprocessed volumes, identical splits and compute budgets, except for SVM
that requires training 125 U-Nets (≈2.17M parameters each) (Coupé et al., 2020).

For each architecture, 10 models are trained (one per fold). ID performance is computed
by concatenating the fold-specific test predictions. For OOD evaluation, we average the
softmax outputs of the 10 fold-specific models.

2. Despite deterministic seeds, atomic operations in specific 3D CUDA kernels (e.g.,
avg pool3d backward cuda, grid sampler 3d backward cuda) introduce irreducible bit-wise noise.
This implementation-induced variability necessitates the multi-seed protocol described in Section 3.4.1.
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3.3. Stabilization strategies

To mitigate the instability inherent to training Transformers on limited, heterogeneous
MRI cohorts, we investigate a composite stabilization protocol. We categorize these strate-
gies into data-centric, architectural, and optimization-based components. Mathematical
formulations and implementation details are provided in Appendix C.

3.3.1. Training and optimization

Data regularization. Given the high dimensionality of volumetric inputs relative to
the cohort size, we employ extensive data augmentation. We use the MONAI frame-
work (Cardoso et al., 2022) to apply domain-specific 3D transformations, including affine
and elastic deformations, sagittal flips, bias-field simulation, and k-space artifact injection
(see Appendix B for parameter ranges). To counteract decision boundary collapse in high-
dimensional space, we employ MixUp (Zhang et al., 2018), which trains the network on
convex combinations of sample pairs and their labels. This encourages the model to behave
linearly in-between training examples. Furthermore, to address the severe class imbalance
in the OOD settings (see Table 1), we use balanced sampling, ensuring that minibatches
contain a uniform distribution of classes.

Optimization landscape smoothing. Standard Stochastic Gradient Descent (SGD)
often converges to sharp minima in Transformers, which generalizes poorly. To try to
mitigate this, we use Sharpness-Aware Minimization (SAM) (Foret et al., 2021), that
simultaneously minimizes the loss value and the loss curvature, biasing the solution toward
flatter regions of the loss landscape. We further smooth the optimization trajectory using
exponential moving average (EMA) of model weights. By averaging parameters over
the training trajectory, EMA provides a robust estimate of the ”center” of the optimization
basin, often yielding better generalization than the final checkpoint. Finally, we apply label
smoothing to prevent the network from becoming over-confident on noisy labels, a critical
factor given the phenotypic overlap in neurodegenerative diseases.

Architectural constraints. We evaluate signal propagation stabilization techniques:
LayerScale (Touvron et al., 2021), which introduces learnable diagonal matrices to scale
residual updates, and a Stable Initialization scheme (Kedia et al., 2024) to preserve acti-
vation variance throughout the network depth. We also benchmark ShakeDrop (Yamada
et al., 2019), a stochastic regularization method within the residual block.

3.3.2. Inference and Evaluation

Uncertainty-aware inference. Comparison based on single point-estimates is unreliable
when using small datasets. We therefore employ checkpoint ensembling, averaging the
softmax predictions of the top-K validation checkpoints. This acts as a simplified Snapshot
Ensemble (Huang et al., 2017), marginalizing out local optimization noise. To address
calibration, we apply post-hoc temperature scaling (Guo et al., 2017), optimizing a single
scalar parameter on the validation set to align confidence scores with empirical accuracy.
Finally, we explore Test-Time Augmentation (TTA), aggregating predictions across
multiple transformed views (flips, crops) of the test volume via inverse-entropy weighting,
prioritizing views where the model is most confident.
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3.4. Evaluation protocol

3.4.1. Instability quantification

To distinguish genuine architectural improvements from stochastic noise, we adopt a
rigorous multi-seed evaluation protocol. Each fold is trained with a distinct seed, capturing
variability arising from weight initialization, data ordering, and hardware nondeterminism.

We move beyond point-estimates by quantifying uncertainty via patient-level paired
bootstrapping (B = 104 replicates) (Efron, 1979). While parametric assumptions can hold
for dense segmentation tasks (El Jurdi et al., 2025), classification metrics on imbalanced co-
horts often exhibit skewed, non-Gaussian distributions. We therefore opt for non-parametric
bootstrapping to avoid distributional assumptions. We report the normalized Coefficient
of Variation (nCV) to compare stability across datasets of varying sizes (see Appendix D
for derivation). Statistical significance is assessed using a dual strategy: paired Wilcoxon
signed-rank tests evaluate architectural stability across the 10 folds (in-domain), while
McNemar’s test (McNemar, 1947) assesses the diagnostic agreement of the final ensem-
bled models (out-of-domain), with Bonferroni correction applied. Following Christodoulou
et al. (2025), we also report the Probability of False Outperformance (PFO) to estimate
the likelihood that a reported gain is not significant.

3.4.2. Metric Selection

Discrimination metrics. To address class imbalance (see Table 1), we report four com-
plementary metrics: Accuracy (ACC), Matthews Correlation Coefficient (MCC), Macro-
F1, and Precision-Recall AUC (PR-AUC). While ACC provides a standard overview, it
is biased toward majority classes. Since Balanced Accuracy (BACC) can be inflated by
saturated majority performance, we prioritize MCC as our primary ranking metric, that
leverages the full confusion matrix and provide a robust correlation estimate regardless of
class ratios. Complementarily, Macro-F1 ensures equal contribution from all phenotypes,
penalizing collapse on rare subtypes, while weighted one-vs-rest PR-AUC assesses discrim-
inatory power across decision thresholds, accounting for the varying support of each class.
Finally, granular per-class F1 scores are detailed in Appendix E.

Calibration. Clinical deployment requires models to be trustworthy, not just accurate (Be-
goli et al., 2019). Standard discrimination metrics do not distinguish between a model that
is cautiously wrong and one that is confident but wrong. We therefore evaluate reliability
using the Expected Calibration Error (ECE) (Guo et al., 2017), which measures the
alignment between predicted confidence and empirical accuracy (i.e., ”does a 90% confi-
dence prediction imply a 90% probability of correctness?”). Complementarily, we employ
the Brier Score (Brier, 1950), a proper scoring rule that penalizes over-confident false
predictions. This metric helps identify over-confident models that assign high probability
to incorrect classes, a critical failure mode in differential diagnosis that accuracy can mask.

4. Results

4.1. Instability in differential diagnosis

While preliminary experiments on a standard 3-class setup (CN/AD/FTD) confirmed
the viability of Swin-DPL (see Appendix E), the transition to the 5-class differential di-
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Table 2: Baseline performance (5-class: CN/AD/bvFTD/nfvPPA/svPPA differential
diagnosis). Performance metrics for Convolutional (ResNet, SVM) and Transformer
(ViT, Swin) architectures on the CN/AD/bvFTD/nfvPPA/svPPA task. Results are re-
ported for in-domain (ID, 10-fold CV) and out-of-domain (OOD, 10 models average)
settings. Bold indicates the best performance per column.
Values: Mean ± 95% CI (B = 104), all metrics in %. ↑=higher-is-better, ↓=lower-is-better.

Configuration Params ACC ↑ MCC ↑ PR-AUC ↑ Macro-F1 ↑ ECE ↓ Brier ↓

ID

CNNs + SVM ≈270M* 82.80± 1.52 69.27± 2.53 67.72± 3.67 62.61± 3.68 47.84 11.43
ResNet-18 3D 33.16M 79.86± 1.56 64.04± 2.60 60.73± 3.61 57.47± 3.52 42.89 11.20
MedViT 3D 34.99M 78.83± 1.62 62.39± 2.63 58.37± 3.41 54.14± 3.12 44.04 11.65
ViT-3D 23.18M 69.39± 1.82 44.21± 2.84 39.41± 2.05 33.56± 2.29 36.65† 12.68
Swin-3D 29.27M 73.33± 1.74 51.53± 2.90 52.15± 3.06 46.96± 2.80 39.07 12.12
Swin-3D DPL 41.02M 78.75± 1.65 61.60± 2.74 57.46± 3.06 49.57± 2.86 43.76 11.67

O
O
D

CNNs + SVM ≈270M* 88.38± 1.17 69.67± 2.88 72.97± 4.51 67.97± 4.62 53.28 11.05
ResNet-18 3D 33.16M 88.90± 1.15 71.03± 2.86 73.58± 4.51 65.07± 3.72 52.54 10.71
MedViT 3D 34.99M 89.31± 1.12 72.16± 2.77 75.67± 4.31 61.99± 3.62 55.08 11.26
ViT-3D 23.18M 80.43± 1.44 49.74± 3.14 53.14± 3.69 29.75± 0.77 47.60† 11.96
Swin-3D 29.27M 83.04± 1.35 57.56± 3.16 63.72± 4.31 50.76± 3.90 49.07 11.62
Swin-3D DPL 41.02M 85.74± 1.23 63.86± 2.95 70.64± 4.84 56.18± 3.57 50.64 11.22

*Includes the segmentation backbone. †Low ECE here reflects under-confidence, not calibration.

agnosis (CN/AD/bvFTD/svPPA/nfvPPA) reveals critical stability bottlenecks (Table 2).
The granular classification induces a performance drop, highlighting the challenge of dis-
tinguishing phenotypically similar FTD subtypes.

In ID, pure Transformers struggle due to data scarcity: ViT-3D exhibits optimization
collapse, failing to disentangle minority classes. This confirms that global attention mecha-
nisms require more data or priors to find stable decision boundaries. Conversely, SVM and
ResNet-18 maintain robust discrimination. The introduction of the Deformable Patch Lo-
cation (DPL) allows Swin-3D to recover significant performance, aligning its ID convergence
with CNN baselines.

OOD evaluation reveals a hierarchy shift. The hybrid MedViT-3D achieves the highest
generalization in global metrics (ACC, MCC, PR-AUC), suggesting strong robustness to
acquisition shifts. However, its lower Macro-F1 compared to SVM and ResNet indicates
that this global performance comes at the cost of minority classes. While hybrids generalize
well on average, strong inductive biases (SVM/CNN) seem better equipped to preserve
recall on rare phenotypes (nfvPPA/svPPA) under distribution shifts. Finally, ViT-3D’s low
ECE reflects under-confidence rather than true calibration.

Transitioning from the 3-class to the 5-class setting, we observe that the widths of
the bootstrap confidence intervals do not differ significantly. This highlights a limitation
of bootstrapping, which is inherently constrained by the fixed sample size N rather than
the intrinsic difficulty of the optimization landscape. Similarly, while global nCV values
remain comparable, the granular per-class analysis (see Appendix E) reveals highly non-
uniform stability: variance spikes for minority phenotypes (nfvPPA, svPPA) where nCV
exceeds 0.1 (vs <0.01 for controls), yet this volatility is masked in global metrics by the
robustness of majority classes. These results show that 1) global metrics alone cannot fully
characterize model reliability, and 2) greater task complexity introduces subtype-specific
stochastic variability, motivating the proposed stabilization study.
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Table 3: Training stabilization ablation (5-class). Quantitative comparison of training strate-
gies applied to the Swin-3D DPL backbone. The table reports discrimination (ACC, MCC,
PR-AUC, Macro-F1) and calibration (ECE, Brier) metrics for in-domain (ID, 10-fold CV)
and out-of-domain (OOD, 10 models averaged predictions) settings. The upper section
evaluates components applied individually to the baseline, while the lower section presents
the results of the cumulative stabilization protocol.
Values: Mean ± 95% CI (B = 104), all metrics in %. ↑=higher-is-better, ↓=lower-is-better.

Configuration ACC ↑ MCC ↑ PR-AUC ↑ Macro-F1 ↑ ECE ↓ Brier ↓

ID

Baseline (BL) 78.75± 1.65 61.60± 2.74 57.46± 3.06 49.57± 2.86 43.76 11.67
+ 3D Augments (DA) 82.02± 1.52 68.12± 2.57 62.82± 3.78 59.26± 3.68 46.32 11.31
+ EMA (DA+E) 81.79± 1.52 67.42± 2.56 62.97± 3.83 61.15± 3.72 45.97 11.32
+ Label smoothing (DA+E+LS) 81.11± 1.54 66.15± 2.60 65.14± 3.75 58.88± 3.83 48.29 12.05
+ Balanced sampling (DA+E+LS+BS) 81.33± 1.54 66.89± 2.62 65.29± 3.71 61.42± 3.62 48.33 11.98
+ MixUp (DA+E+LS+BS+M) 81.62± 1.54 67.28± 2.59 66.43± 3.89 63.02± 3.71 48.94 12.04

O
O
D

Baseline (BL) 85.74± 1.23 63.86± 2.95 70.64± 4.84 56.18± 3.57 50.64 11.22
+ 3D Augments (DA) 87.39± 1.22 68.28± 2.88 72.72± 4.91 66.21± 4.63 51.61 10.94
+ EMA (DA+E) 88.24± 1.20 69.41± 2.89 74.64± 4.52 65.66± 4.71 52.22 10.83
+ Label smoothing (DA+E+LS) 88.34± 1.16 69.98± 2.89 74.10± 4.81 66.44± 4.50 55.25 11.65
+ Balanced sampling (DA+E+LS+BS) 88.14± 1.19 70.20± 2.83 75.30± 4.99 71.44± 4.48 55.06 11.65
+ MixUp (DA+E+LS+BS+M) 88.41± 1.19 70.38± 2.87 74.91± 4.90 71.54± 4.52 55.56 11.71

4.2. Effect of stabilization

4.2.1. Training

Table 3 reports ablations of training-time stabilization components on Swin-3D DPL
for the 5-class task. Domain-specific 3D MRI augmentation is the only isolated compo-
nent that consistently improves OOD discrimination. In contrast, EMA weights and label
smoothing, when used alone, induce small changes in accuracy and MCC but systematically
degrade ECE and Brier, indicating that they sharpen the decision function at the expense
of probability reliability. The cumulative protocol (DA+E+LS+BS+M) narrows the generaliza-
tion gap with the stabilized ResNet-18 baseline without relying on architectural changes.
Class-balanced sampling and MixUp have limited effect when applied in isolation but are
required in the cumulative setting to maintain non-zero F1 for minority FTD subtypes and
to prevent decision-boundary collapse on nfvPPA and svPPA.

Figure 1 analyzes inter-seed stability via the normalized coefficient of variation across
the training configurations of Table 3. Data augmentation and EMA consistently improve
stability (lower nCV) across all metrics and domains, suggesting they effectively smooth the
optimization landscape. Conversely, MixUp increases ID variability, particularly for ECE,
while preserving OOD stability. This suggests that local variability prevents the model from
settling into sharp minima, effectively trading training precision for better generalization.

Figures 2(a) and 2(b) summarize the statistical validation among the six training pro-
tocols of Table 3. We employ Wilcoxon to confirm that performance gains are consistent
across training folds (ID, Figure 2(a)), and McNemar to validate the diagnostic superiority
of the final ensembled system (OOD, Figure 2(b)). These matrices show that several numer-
ical differences, including the improvement of the fully stabilized protocol over the baseline,
reach standard significance thresholds, whereas intermediate variants such as DA+E often
remain statistically indistinguishable despite visible shifts in mean performance. Beyond
these training ablations, McNemar tests on OOD predictions also indicate that Swin-3D
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Figure 1: Normalized coefficient of variation profiles of training strategies. Bar plots
displaying the inter-seed stability for 5 different seeds and multiple training stabilization
components described in Table 3, covering both individual strategies and the cumulative
protocol. Results are separated into in-domain (left) and out-of-domain (right) evalu-
ations. We report accuracy, Matthews Correlation Coefficient, Precision-Recall AUC,
Macro-F1, Expected Calibration Error, and Brier score for each individual component as
well as the composition of them.
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Figure 2: Statistical assessment of stabilization and robustness. Statistical validation ma-
trices: (a) Wilcoxon signed-rank test p-values (in-domain), (b) McNemar test p-values
(out-of-domain), and (c) Probability of False Outperformance (PFO) heatmap.

DPL significantly outperforms the standard Swin-3D backbone (p < 0.05), supporting the
contribution of the deformable patch inductive bias. Complementarily, Figure 2(c) reports
the PFO to assess the risk of illusory gains. It highlights that while the fully stabilized
protocol yields a negligible PFO, intermediate strategies often exhibit high risk, i.e. their
apparent gain may stem from stochastic variability rather than genuine signal.

4.2.2. Models

Table 4 benchmarks architectural regularization techniques commonly employed in large-
scale vision transformers. Unlike the data-centric strategies identified in Section 4.2.1, ar-
chitectural modifications proved ineffective or detrimental on this limited dataset.

Transitioning from Pre-Norm to Post-LN caused a collapse in discrimination, likely
due to gradient vanishing in early stages, an issue typically mitigated by massive-batch
pretraining not feasible with clinical MRI. Similarly, Sharpness-Aware Minimization (SAM),
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Table 4: Model stabilization ablation (5-class). Architectural and optimization con-
straints for in-domain (ID, 10-fold CV) and out-of-domain (OOD, 10 models averaged
predictions). Standard vision strategies prove ineffective compared to the optimization
protocol defined in Table 3.
Values: Mean ± 95% CI (B = 104), all metrics in %. ↑=higher-is-better, ↓=lower-is-better.

Configuration ACC ↑ MCC ↑ PR-AUC ↑ Macro-F1 ↑ ECE ↓ Brier ↓

ID

Baseline 78.75± 1.65 61.60± 2.74 57.46± 3.06 49.57± 2.86 43.76 11.67
Post-LN 62.25± 1.93 25.94± 2.71 48.58± 3.01 29.92± 3.34 26.51 12.64†

ShakeDrop 78.83± 1.62 62.28± 2.65 58.27± 3.37 53.75± 3.38 44.68 11.86
Stable Init 77.88± 1.64 59.87± 2.71 58.31± 3.32 48.83± 2.88 43.32 11.78
LayerScale (γ0=0.1) 78.17± 1.62 60.30± 2.72 57.61± 3.33 48.24± 2.90 43.70 11.79
SAM (ρ=0.05) 66.68± 1.87 37.04± 3.09 39.76± 2.48 31.68± 2.22 34.62 12.99

O
O
D

Baseline 85.74± 1.23 63.86± 2.95 70.64± 4.84 56.18± 3.57 50.64 11.22
Post-LN 79.23± 1.47 28.48± 3.36 61.41± 4.34 36.60± 4.62 43.36 11.13†

ShakeDrop 84.61± 1.30 62.67± 2.97 70.13± 4.90 58.35± 3.80 50.48 11.53
Stable Init 85.71± 1.25 63.66± 2.99 70.20± 4.75 56.82± 3.49 50.94 11.29
LayerScale (γ0=0.1) 85.50± 1.27 62.71± 3.08 68.71± 4.79 53.24± 3.85 50.78 11.30
SAM (ρ=0.05) 77.97± 1.51 39.90± 3.49 47.18± 3.64 30.65± 1.98 46.14 12.33

†Low ECE and Brier here reflects under-confidence, not calibration.

hypothesized to improve generalization, paradoxically degraded performance. This suggests
that SAM’s adversarial perturbations disrupt convergence when gradients are already noisy
due to the restricted batch sizes of 3D training.

Regarding signal propagation, LayerScale (Touvron et al., 2021) proved hypersensitive:
small initialization (γ0 = 10−5) prevented convergence, while γ0 = 0.1 merely restored
baseline parity. Passive regularization (ShakeDrop, Stable Initialization (Kedia et al., 2024))
offered no statistically significant improvement.

Crucially, the cumulative training protocol (bottom row) yields the only significant
leap. This confirms that for medical ViTs trained from scratch, the bottleneck lies in the
optimization landscape (smoothing via augmentation and averaging) rather than in the
intrinsic architectural definition.

4.2.3. Evaluation

To assess stability across imbalanced classes, we employ nCV to decouple intrinsic sta-
bility from sample size bias (σ ∝ 1/

√
N) (see Appendix D.1). As shown in Figure 3, while

raw CV decreases mechanically with N , nCV remains invariant once N > 1000, enabling
fair comparison between majority classes and rare FTD subtypes.

Regarding inference-time strategies quantified in Table 5, snapshot ensembling emerges
as the most effective method for variance reduction. By averaging predictions across the
top-K validation checkpoints, ensembling effectively marginalizes the local optimization
noise inherent to the loss landscape of Transformers. As shown in Figure 11 (Appendix E),
this strategy yields the lowest nCV across all metrics in both ID and OOD regimes. Fur-
thermore, the stability analysis in Figure 4 indicates that these benefits saturate beyond
K = 12 models, suggesting a diminishing return that balances computational cost with re-
liability. Complementarily, post-hoc temperature scaling significantly improves calibration,
lowering the OOD Brier score without altering ranking metrics (PR-AUC), confirming that
calibration errors can be addressed orthogonally to discrimination stability.

11



Navet Giraud Mansencal Coupé
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Figure 3: Impact of sample size and Test-Time Augmentation (TTA) on stability. Evo-
lution of the normalized coefficient of variation across 5 random seeds as a function of
dataset size. We compare standard inference (No-TTA, dashed lines) against TTA (solid
lines) for both In-Domain (ID) and Out-of-Domain (OOD) settings. Note that while TTA
acts as an effective stabilizer in the ID regime (lowering nCV, particularly for Macro-F1),
this benefit does not consistently transfer to the OOD setting.

Table 5: Inference-time strategies performance. Quantitative comparison of Test-Time Aug-
mentation (TTA), Temperature Scaling, and Snapshot Ensembling (K = 12) applied to
the fully stabilized Swin-3D DPL model. We report discrimination (ACC, MCC, PR-
AUC, Macro-F1) and reliability (ECE, Brier) metrics for in-domain and out-of-domain.
Values: Mean ± 95% CI (B = 104), all metrics in %. ↑=higher-is-better, ↓=lower-is-better.

Variant ACC ↑ MCC ↑ PR-AUC ↑ Macro-F1 ↑ ECE ↓ Brier ↓

ID

Baseline 81.62± 1.54 67.28± 2.59 66.43± 3.89 63.02± 3.71 48.94 12.04
TTA 82.07± 1.54 68.82± 2.51 67.75± 3.83 66.73± 3.38 51.44 12.62
Temp. Scale 81.54± 1.52 67.08± 2.58 65.61± 3.98 63.02± 3.71 46.24 11.44
TTA + Temp. 82.07± 1.54 68.82± 2.51 67.17± 3.97 67.17± 3.31 46.97 11.50
Ensemble 82.02± 1.54 68.09± 2.56 65.31± 3.79 62.88± 3.63 49.78 12.15

O
O
D

Baseline 88.41± 1.19 70.38± 2.87 74.91± 4.90 71.54± 4.52 55.56 11.71
TTA 86.43± 1.23 67.40± 2.83 74.66± 5.00 70.23± 4.03 55.85 12.44
Temp. Scale 88.86± 1.16 71.46± 2.82 74.34± 5.08 71.54± 4.50 53.41 10.99
TTA + Temp. 86.46± 1.25 67.63± 2.83 74.08± 5.14 70.67± 3.99 51.51 11.22
Ensemble 88.31± 1.18 70.56± 2.82 75.90± 4.62 72.15± 4.40 55.85 11.83

Conversely, our results expose a key limitation of test-time augmentation (TTA) in
neuroimaging. Although TTA is typically used to reduce variance, it proved detrimental
in this differential-diagnosis setting, degrading OOD discrimination. As shown in Figure 3,
TTA does not yield the consistent stability gains provided by ensembling. This suggests
that the applied augmentations, though aligned with the training transforms, are either not
representative of the OOD distribution or not well suited to our architecture.

5. Discussion

Optimization landscape and the calibration-discrimination trade-off. While ViTs
theoretically offer global receptive fields capable of modeling distributed atrophy patterns
(Dosovitskiy et al., 2021), their application to medical imaging is constrained by weak induc-
tive biases and limited cohort sizes. Our findings suggest that the performance gap often
observed between pure ViTs and CNNs stems largely from optimization: in small, het-
erogeneous clinical cohorts, sharp minima and sensitivity to initialization dominate model
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behaviour. Medical data specificities, such as acquisition noise, inter-site heterogeneity, and
pronounced class imbalance, exacerbate this instability in unregularized Transformers.

Crucially, our analysis of the Brier score reveals a recurrent trade-off: models achiev-
ing the highest discrimination (Accuracy/MCC) often exhibit degradation in probabilistic
reliability. Without regularization, the minimization of cross-entropy drives the network
toward over-confident predictions (sharp decision boundaries); consequently, when these
”superior” models are wrong, they do so with high confidence, penalizing the Brier score.
We show that a targeted training scheme combining domain-specific 3D augmentation and
regularization mitigates this behavior, enabling Swin-based models to match the robustness
of strong baselines while preserving calibration in both in-domain and out-of-domain.

The potential of Transformers and the hybrid bridge. Contrary to the narrative
that Transformers are inherently unsuitable for small-scale medical datasets, our results
with MedViT-3D demonstrate that attention-based models can indeed outperform robust
CNN baselines (ResNet-18) and segmentation ensembles. This validates the potential of
token-based architectures to capture subtle, distributed markers of neurodegeneration that
may elude purely local convolutional filters.

However, this performance must me considered carefully. The stability of MedViT
stems largely from its hybrid design, where convolutional stems inject inductive biases
that smooth the optimization. In contrast, pure or hierarchical Transformers, which lack
this explicit structural guidance, exhibit high variance and optimization brittleness (as
seen in Figure 7). While hybrids offer a performance gain, investigating the stabilization
of standard Transformers remains essential. Unlike CNNs, whose performance tends to
saturate, Transformers exhibit favorable scaling laws (Dosovitskiy et al., 2021) and offer
the unified architecture required for future multimodal integration (e.g., fusing MRI, PET,
and tabular neuropsychological scores). Establishing robust stabilization schemes for these
backbones is therefore a prerequisite for deploying scalable, multimodal architectures in
clinical settings without relying on convolutional backbones.

Disentangling data variance from optimization instability. Our scaling analysis
(Figure 5) aligns with theoretical expectations (1/

√
N): confidence interval widths decrease

predictably as the number of subjects grows. As shown by El Jurdi et al. (2025), boot-
strapping provides a computationally efficient way to estimate confidence intervals without
distributional assumptions. However, it captures only data-driven variance (aleatoric un-
certainty), not the intrinsic architecture instability (epistemic/optimization uncertainty).
Thus, two models may exhibit identical bootstrap CIs yet differ greatly in their sensitivity
to initialization. Ideally, architectural stability would be assessed by averaging predictions
over many random seeds, but the cost of 3D training makes this impractical for routine de-
velopment. Consequently, the stabilization techniques used here serve as a practical proxy:
by flattening the loss landscape and enforcing consistency, they reduce the irreducible error
of single-seed training, which remains standard in clinical deep-learning deployment.

Limitations. The OOD cohort exhibits significant class imbalance, particularly for nfv-
PPA and svPPA. Despite reporting macro-averaged metrics and employing balanced sam-
pling, evaluation variance for these minority classes remains elevated, as confirmed by
per-class stability analysis. Furthermore, label noise presents a specific challenge in the
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differential diagnosis of PPA. Clinical ground truth relies heavily on neuropsychological as-
sessments and language tests, forming a multimodal composite reference standard. Training
MRI-only models on these targets introduces inherent ambiguity, as structural signatures
may lag behind or only partially reflect clinical phenotypes defined by non-imaging tests.
Finally, recent work shows that self-supervised learning on large medical cohorts can inject
inductive biases missing in standard ViTs and may further reduce variance (Wald et al.,
2025b). Future work should assess whether such pretraining alters the stability profile
observed here, particularly for rare FTD subtypes.

6. Conclusion

This work examined the stability and reproducibility of Vision Transformers for neu-
rodegenerative disease classification from structural MRI. All deep models exhibited non-
negligible variability across seeds, with ViTs showing the highest sensitivity in the low-data,
multiclass differential diagnosis setting involving FTD variants. Through systematic abla-
tion, we showed that a tailored optimization protocol, combining domain-specific 3D MRI
augmentation, optimization smoothing, and balanced sampling, substantially reduces vari-
ance and enables Swin-based models to approach the robustness of strong CNN baselines
in both in-domain and out-of-domain evaluations, without modifying the backbone archi-
tecture.

Our uncertainty-aware evaluation framework, based on patient-level bootstrapping, cali-
bration analysis, and the probability of false outperformance, revealed that differences that
appear meaningful at the level of mean accuracy often fall within stochastic variability
once uncertainty is quantified. Reproducible medical deep learning therefore requires go-
ing beyond single-seed point estimates to routinely report calibration, confidence intervals,
and ranking stability across seeds and distribution shifts. Future work should investigate
whether self-supervised pretraining on large unlabeled cohorts and the integration of non-
imaging clinical covariates can provide additional inductive biases to stabilize Transformer-
based classifiers while reducing the need for heavy regularization.
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Appendix A. Extended dataset description

This appendix provides detailed inclusion criteria, cohort characteristics, and full demographic
tables referenced in Section 3.1.

A.1. Cohort overview

The In-Domain (ID) pool combines ADNI and ALLFTD, two harmonized longitudinal initiatives
capturing AD and FTD clinical spectra. The Out-of-Domain (OOD) pool merges NIFD and NACC,
which differ substantially in acquisition protocols, diagnostic granularity, recruitment strategies, and
site diversity, thereby inducing both covariate and label distribution shifts.

A.2. Subject selection

All analyses rely strictly on cross-sectional sampling. For each participant, we retain a single
baseline T1w MRI to prevent leakage from repeated sessions, longitudinal progression, or variable
scan quality. CN subjects must exhibit consistent diagnosis throughout follow-up. Participants with
mixed or inconsistent diagnoses, atypical comorbidities, or missing metadata are excluded.

Because ALLFTD is genetically enriched, we remove carriers of known pathogenic mutations
(e.g., MAPT, C9orf72, GRN ) to align it with the predominantly sporadic composition of NIFD. For
FTD subtyping, diagnostic labels follow each consortium’s clinical adjudication protocols; ambiguous
or overlapping classifications are excluded.

A.3. Imaging pipeline

All T1w volumes undergo a unified preprocessing workflow to reduce site-specific variance:

1. N4 bias-field correction (Tustison and et al., 2010);

2. brain extraction;

3. affine + diffeomorphic ANTs registration to MNI (Avants et al., 2011; Fonov et al., 2011);

4. resampling to a 1mm isotropic grid;

5. per-subject Z-score intensity normalization;

6. center-cropping to a fixed 3D field of view.

The same pipeline is applied across all cohorts. Scans failing QC after registration or skull stripping
are discarded.

A.4. Distribution shifts

The NIFD+NACC OOD pool exhibits pronounced long-tail distributions. FTD subtypes (espe-
cially svPPA and nfvPPA) are rare, accounting for fewer than 40 subjects per subtype. In contrast,
CN and AD groups reach several thousand samples in NACC alone. This mismatch reflects real
clinical prevalence rather than sampling artifacts.

These shifts imply:

• limited statistical power for subtype-resolved OOD metrics;

• sensitivity of bootstrap confidence intervals to minority-class scarcity;

• an increased role of calibration measures over raw accuracy;

• a stringent test of robustness to both covariate (scanner/site) and label (class ratio) shifts.
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A.5. Cross-validation strategy

ID experiments use 10-fold patient-level CV. Stratification jointly accounts for dataset member-
ship, diagnostic category, biological sex, and discretized age (5-bin scheme). Within each fold, data
are split into 70%/20%/10% train/validation/test. Each subject appears exactly once in an ID test
set across folds.

OOD evaluation is performed on a fixed held-out NIFD+NACC set with no overlap with ID
subjects.

A.6. Detailed demographics

Table 6: Subject distribution across cohorts. The in-domain (ID) set combines ADNI and
ALLFTD, while the out-of-domain (OOD) set aggregates NIFD and NACC. Cells report
the number of subjects with sex distribution (Female/Male) in the first line, and age mean
[min-max] range in the second line. Dataset names include magnetic field strength and
the count of unique scanner models.

G
r
o
u
p

Dataset
Diagnosis

Total

CN AD bvFTD nfvPPA svPPA

ID

ADNI
(1.5T/3T)

30 scanners

1090 (688/402)

69.7 [50-90]

649 (281/368)

75.1 [55-94]
– – –

1739 (969/770)

71.7 [50-94]

ALLFTD
(3T)

19 scanners

322 (203/119)

46.3 [18-79]

5 (4/1)

66.8 [60-71]

229 (76/153)

64.5 [40-85]

66 (36/30)

68.9 [48-83]

76 (39/37)

66.0 [50-86]

698 (358/340)

56.7 [18-86]

Total
1412 (891/521)

64.4 [18-90]

654 (285/369)

75.0 [55-94]

229 (76/153)

64.5 [40-85]

66 (36/30)

68.9 [48-83]

76 (39/37)

66.0 [50-86]

2437 (1327/1110)

67.4 [18-94]

O
O
D

NIFD
(3T)

3 scanners

136 (77/59)

63.5 [39-81]
–

74 (23/51)

61.8 [45-74]

37 (20/17)

68.8 [54-81]

39 (15/24)

63.4 [50-73]

286 (135/151)

63.7 [39-81]

NACC
(3T)

16 scanners

2115 (1437/678)

68.1 [19-100]

485 (266/219)

72.3 [38-96]

26 (10/16)

64.4 [54-73]

6 (4/2)

68.0 [57-77]

4 (3/1)

64.9 [57-81]

2636 (1720/916)

68.8 [19-100]

Total
2251 (1514/737)

67.8 [19-100]

485 (266/219)

72.3 [38-96]

100 (33/67)

62.5 [45-74]

43 (24/19)

68.7 [54-81]

43 (18/25)

63.5 [50-81]

2922 (1855/1067)

68.3 [19-100]

Appendix B. Augmentation protocols

Table 7 details the hyperparameter configurations for the MRI-specific data augmentation pipeline
implemented via MONAI. All transformations are applied stochastically during training with the spec-
ified probabilities.

Appendix C. Detailed stabilization protocols

This section provides the mathematical formulation and theoretical justification for the stabi-
lization strategies employed in Section 3.3. We detail the specific hyperparameters used to ensure
reproducibility.
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Table 7: Detailed hyperparameters for 3D MRI augmentations. Probabilities (p) indicate the like-
lihood of applying the transform per sample. Note that sagittal flipping is included to
enforce anatomical invariance during training.

Category Transform (MONAI) Parameters

Spatial
RandAffine p = 0.5, Rot ±30◦, Scale ±0.3, Trans

±10 vox, Padding: border
Rand3DElastic p = 0.2, σ ∈ [5, 8], Magnitude ∈

[100, 200]
RandFlip p = 0.5, Axis 0 (Sagittal)

Intensity

RandBiasField p = 0.3, Coeff range ∈ [0.0, 0.3] (Order
3)

RandAdjustContrast p = 0.3, γ ∈ [0.7, 1.5]
RandScaleIntensity p = 0.3, Factor ∈ [−0.5, 1.0]
RandHistogramShift p = 0.2, Control points ∈ [5, 15]
AdaptiveGaussianNoise p = 0.2, Factor= 0.1 (injection relative

to std)
AdaptiveRicianNoise p = 0.2, Standard Rician injection

Artifacts
RandGibbsNoise p = 0.2, α ∈ [0.5, 1.0]
RandKSpaceSpikeNoise p = 0.1, Intensity ∈ [13, 15] (k-space

scale)

C.1. Data-Level regularization

MixUp. Standard empirical risk minimization often leads to memorization when N is small.
To counteract this, MixUp (Zhang et al., 2018) encourages the model to behave linearly between
training examples. It generates synthetic samples (x′, y′) by interpolating between random pairs of
inputs (xi, yi) and (xj , yj):

x′ = λxi + (1− λ)xj , y′ = λyi + (1− λ)yj , (1)

where the interpolation coefficient λ is drawn from a Beta distribution λ ∼ Beta(α, α) with α =
0.3. MixUp is applied after spatial and intensity transforms and preferentially pairs samples from
distinct classes to enforce decision boundary regularization (Tokozume et al., 2018). In high-
dimensional MRI space, this regularization prevents over-confident predictions in regions free of
training data, effectively smoothing the decision boundary between phenotypically similar classes,
such as FTD subtypes.

Note that we also investigated CutMix (Yun et al., 2019) as an alternative mixing strategy.
However, preliminary experiments yielded inferior performance compared to baseline or MixUp,
likely because the rectangular region replacement destroys global anatomical context essential for
analyzing distributed atrophy patterns. Consequently, we report only MixUp results.

Class-aware balanced sampling. Given the severe imbalance in the OOD cohort (see Ta-
ble 1), standard uniform sampling would bias the gradient updates toward majority classes (CN,
AD). We adjust the sampling probability pi for an image xi with label yi = c as:

pi =
1

C · nc
, (2)

where C is the total number of classes and nc is the number of available samples for class c. This en-
sures that the expected number of samples per class in each mini-batch is uniform (B/C), preventing
the minority FTD subtypes from being treated as outliers during optimization.
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C.2. Optimization dynamics

Sharpness-Aware Minimization (SAM). Vision Transformers trained on small datasets
tend to converge to sharp local minima, which generalize poorly under distribution shifts. SAM (Foret
et al., 2021) explicitly seeks parameters w that lie in a ”flat” neighborhood by solving a minimax
game:

min
w

LSAM(w) where LSAM(w) = max
∥ϵ∥2≤ρ

L(w + ϵ). (3)

Here, ρ = 0.05 is the radius of the perturbation neighborhood. In theory, by minimizing the loss
under the worst-case weight perturbation ϵ, SAM finds solutions robust to parameter noise. This
flatness is a proxy for generalization capability, essential when transferring models from ID to OOD
domains.

Label smoothing. Medical diagnostic labels inevitably contain aleatoric uncertainty due to
inter-rater variability. Training with ”hard” one-hot targets yk ∈ {0, 1} forces the model to be
over-confident, often leading to overfitting. We relax the targets into soft probabilities ỹk:

ỹk = (1− ε)yk +
ε

K
, (4)

where K = 5 is the number of classes and ε = 0.1 is the smoothing factor. This prevents the net-
work from seeking infinite logit gaps for challenging samples (e.g., ambiguous early-stage dementia),
resulting in better calibrated probabilities (lower ECE) as shown in Figure 3.

Exponential Moving Average (EMA). Stochastic Gradient Descent introduces noise into
the optimization trajectory, particularly with small batch sizes. EMA maintains a ”shadow” model
with weights θ̃ that are updated at each step t using the current online weights θt:

θ̃t =

∑K−1
k=0 βkθt−k∑K−1

k=0 βk
. (5)

We use a slow decay rate β = 0.999 and K = 3 to average the last 3 model weights. This acts as an
averaging filter, effectively smoothing out the high-frequency oscillations of the optimization path.
It provides a more stable estimate of the central tendency of the loss basin.

C.3. Architectural Constraints

LayerScale. Deep Transformers (like Swin) often suffer from signal degradation in deeper layers.
LayerScale (Touvron et al., 2021) facilitates signal propagation by introducing a learnable diagonal
matrix Λl to scale the output of the residual block F :

xl+1 = xl + Λl · F(LN(xl)), Λl = diag(λl,1, . . . , λl,d). (6)

Initializing λ to a small value (e.g., 10−5) allows the network to behave closer to an identity func-
tion at the start of training, easing the optimization of deep architectures on small datasets where
gradients might otherwise vanish or explode.

C.4. Inference-time aggregation

Test-Time Augmentation (TTA) with entropy weighting. We apply M = 8 trans-
formations Tm (flips, crops) to each test volume x. Simple averaging can be detrimental if certain
views (e.g., occluded crops) yield noisy predictions. We therefore use inverse-entropy weighting to
prioritize confident predictions. The final probability ȳ is:

ȳ =

M∑
m=1

wmpm(Tm(x)), wm ∝ 1

H(pm) + ξ
, (7)
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whereH(pm) is the entropy of the prediction and ξ is a stability constant. This explicitly marginalizes
over geometric nuisance variables, enforcing invariance to acquisition variations that the model may
not have fully learned during training.

Ensemble of snapshots. To determine the optimal ensemble size K, we analyzed the evolution
of inter-seed stability as a function of the number of aggregated checkpoints. Figure 4 illustrates the
nCV for discrimination metrics across varyingK. We observe a characteristic convex profile in the In-
Domain setting: while increasingK initially reduces variance by marginalizing out local optimization
noise, the stability benefits saturate and even degrade beyond K = 12. This inflection point likely
indicates that expanding the ensemble further necessitates the inclusion of suboptimal checkpoints
(ranked 13th and below on validation data), which dilutes the consensus and re-introduces variance.
Consequently, we selected K = 12 as the operating point for all reported experiments, providing the
optimal trade-off between variance reduction and computational inference cost.
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Figure 4: Effect of ensemble size on stability. Evolution of the normalized CV for Accuracy,
MCC, and PR-AUC as a function of the number of models in the snapshot ensemble (K).

Appendix D. Evaluation metrics and definitions

This appendix provides the formal definitions of the metrics used in the evaluation protocol.

D.1. Stability metrics

Normalized Coefficient of Variation (nCV). Figure 5 validates uncertainty estimates by

tracking 95% CI width against test set size. The widths follow a theoretical C/
√
N decay (R2 > 0.9

for Accuracy/MCC), confirming that reported instability is intrinsic to the models rather than a
sampling artifact.

Standard deviation naturally decreases as sample size N increases (σ ∝ 1/
√
N). To compare the

intrinsic stability of models across classes with vastly different sizes (e.g., 2000 CN vs. 40 nfvPPA),
we use the nCV to decouple stability from sampling density:

nCV =
√
N

σ

µ
, (8)

where µ and σ are the mean and standard deviation of the metric across seeds. This normalization
allows for a fair comparison of variance between majority and minority classes.
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Figure 5: Confidence Interval Scaling Analysis. Evolution of the 95% CI half-width as a
function of the training set size N (subsampled from the OOD cohort). The solid lines
represent the theoretical fit y = C/

√
N . The high R2 values indicate that the esti-

mated uncertainty strictly follows expected statistical laws, validating the reliability of
the reported variance.

Probability of False Outperformance (PFO). The PFO estimates the probability that a
baseline model A is actually superior to a proposed model B, despite the observed mean difference
δ̄ > 0. It is computed directly from the bootstrap replicates:

P̂r(∆ ≤ 0) =
1

B

B∑
b=1

1(δb ≤ 0), (9)

where δb is the performance difference in the b-th bootstrap sample.

D.2. Classification Metrics

To ensure consistency and readability throughout the paper, all reported metrics (discrimination
and reliability) are scaled by a factor of 100 and expressed as percentages.

To formally define the metrics, let K be the C × C confusion matrix where Kij represents the
number of samples of class j predicted as class i. We define the total samples s =

∑
ij Kij , the total

correct predictions c =
∑

k Kkk, the total predictions for class k as pk =
∑

j Kkj , and the total true
labels for class k as tk =

∑
i Kik.

Accuracy. Standard accuracy measures the overall proportion of correct predictions. While
intuitive, it can be misleading in imbalanced settings where majority classes dominate the score.

ACC =

∑
k Kkk

s
=

c

s
. (10)

Matthews Correlation Coefficient (MCC). We employ the multiclass generalization of
the MCC. Unlike F1 or Accuracy, MCC involves all four quadrants of the confusion matrix (True
Positives, False Positives, True Negatives, False Negatives), making it the most robust single-value
metric for imbalanced datasets.

MCC =
c · s−

∑
k pktk√

(s2 −
∑

k p
2
k)(s

2 −
∑

k t
2
k)

. (11)
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Precision-Recall AUC. The PR-AUC assesses the trade-off between Precision (P ) and Recall
(R) across different decision thresholds τ ∈ [0, 1]. For a multi-class problem, we compute the Area
Under the Curve (AUC) for each class k in a one-vs-rest manner and report the macro-average
(unweighted mean) to ensure equal contribution from all phenotypes regardless of prevalence:

PR-AUC =
1

C

C∑
k=1

∫ 1

0

Pk(R) dR, (12)

where Pk = Kkk

pk
and Rk = Kkk

tk
are the precision and recall for class k computed at varying operating

points.

Per-class F1-Score. The F1-score for a specific class k is the harmonic mean of its precision
and recall. It effectively penalizes the model if it fails to retrieve instances of class k (low recall) or
hallucinates them (low precision).

F1k = 2 · Pk ·Rk

Pk +Rk
=

2Kkk

pk + tk
. (13)

Macro F1-Score. To obtain a global performance metric that treats all classes equally regardless
of their support size (prevalence), we compute the unweighted mean of the per-class F1 scores.

Macro-F1 =
1

C

C∑
k=1

F1k. (14)

D.3. Reliability Metrics

Expected Calibration Error (ECE). We calculate the ECE (Guo et al., 2017), which ap-
proximates the expected difference between the model’s confidence and its actual accuracy. Following
standard practice, we employ a fixed discretization scheme with M = 15 equidistant bins based on
the maximum softmax probability:

ECE =

M∑
m=1

|Bm|
N

∣∣acc(Bm)− conf(Bm)
∣∣, (15)

where Bm is the set of samples in bin m, acc(Bm) is the accuracy within the bin, and conf(Bm) is
the average confidence. Lower ECE indicates better calibration. In a clinical setting, a low ECE
is critical as it implies that a prediction made with 90% confidence indeed corresponds to a 90%
probability of correctness, fostering trust in the decision support system.

Brier Score. The Brier score (Brier, 1950) is computed as the Mean Squared Error between the
predicted probability distribution and the one-hot encoded ground truth. To align its scale with
accuracy, we report it as a percentage:

Brier =
1

N · C

N∑
i=1

C∑
k=1

(
P (yi = k | xi)− 1[yi = k]

)2
. (16)

Here, the score is normalized by the number of classes C, preventing mechanical inflation due to task
dimensionality. Unlike accuracy, which relies solely on the ranking, the Brier score heavily penalizes
over-confident false predictions. It thus provides a holistic assessment of probabilistic reliability,
favoring models that remain uncertain when evidence is ambiguous.
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Table 8: Baseline performance comparisons for 3-class classification (CN/AD/FTD).
Performance metrics for Convolutional (ResNet, SVM) and Transformer (ViT, Swin) ar-
chitectures. Results are reported for in-domain (10-fold CV) and out-of-domain (10 models
average) settings. Bold indicates the best performance per column.
Values: Mean ± 95% CI (B = 10, 000). ↑=higher-is-better, ↓=lower-is-better.

Configuration # Params ACC ↑ MCC ↑ PR-AUC ↑ Macro-F1 ↑ ECE ↓ Brier ↓

In-domain (10-fold CV)

CNNs + SVM ≈270M* 84.25± 1.46 71.62± 2.56 85.02± 1.89 78.77± 2.01 33.04 13.90
ResNet-18 3D 33.16M 82.40± 1.50 68.47± 2.65 83.43± 1.97 77.25± 1.98 28.88 13.32
MedViT 3D 34.99M 85.92 ± 1.38 74.68 ± 2.41 86.51 ± 1.79 80.77 ± 1.92 32.89 13.13

ViT-3D 23.18M 68.97± 1.83 43.88± 2.91 61.81± 2.19 55.08± 2.26 21.43† 16.83
Swin-3D 29.27M 75.50± 1.68 55.53± 2.89 72.30± 2.31 65.36± 2.31 26.02 15.65
Swin-3D DPL 41.02M 80.54± 1.52 64.84± 2.64 79.83± 2.15 73.18± 2.15 30.10 14.63

Out-of-domain (10 models averaged predictions)

CNNs + SVM ≈270M* 88.52± 1.15 70.18± 2.87 83.84± 2.48 77.31± 2.35 37.44 13.26
ResNet-18 3D 33.16M 88.73± 1.15 71.09± 2.87 85.88± 2.23 80.63± 2.17 36.21 12.68
MedViT 3D 34.99M 91.23 ± 1.05 76.95 ± 2.65 88.93 ± 2.07 84.98 ± 1.98 38.97 12.53

ViT-3D 23.18M 78.17± 1.49 45.77± 3.19 68.49± 2.84 56.57± 2.85 30.51† 15.51
Swin-3D 29.27M 82.63± 1.38 56.76± 3.22 75.01± 2.80 70.42± 2.69 33.90 14.82
Swin-3D DPL 41.02M 85.23± 1.27 63.35± 3.03 81.05± 2.51 74.46± 2.47 34.88 13.97

*Includes the parameters of the underlying segmentation backbone, AssemblyNet (Coupé et al., 2020), composed of
125 U-Nets (≈2.17M params each). †Low ECE for ViT-3D reflects under-confidence due to poor discrimination, not

effective calibration.

Appendix E. Instabilities arise going from 3 to 5 classes

Table 8 summarizes the baseline performance on the standard 3-class task. As detailed in
the Introduction, differentiating bvFTD from AD presents a significant challenge due to overlapping
atrophy patterns in the anterior cingulate and frontoinsula (Perry et al., 2017). Consequently, unlike
binary classification, this task exposes the limitations of models lacking strong inductive biases.

In In-Domain (ID), while the hybrid MedViT-3D sets the upper bound, the anatomy-driven
SVM establishes a high baseline among standard methods, leveraging precise segmentation priors to
disentangle overlapping phenotypes. The 3D ResNet-18 follows closely, confirming that convolutional
inductive biases are data-efficient even without explicit segmentation. Conversely, the lack of priors
in standard ViT-3D leads to poor convergence. However, the hierarchical Swin-3D DPL variant
significantly mitigates this issue, reaching an MCC of 64.84%, thereby narrowing the performance
gap with CNNs compared to the vanilla ViT.

The OOD evaluation reveals a shift in the performance hierarchy. While the SVM dominates
ID, the 3D ResNet-18 achieves robust generalization performance among non-hybrid architectures,
marginally outperforming the SVM. This indicates that end-to-end convolutional features general-
ize slightly better to site-specific variations than fixed segmentation priors in this 3-class regime.
Among Transformers, Swin-DPL remains the most viable option, significantly outperforming the
standard Swin-3D and ViT-3D. As observed in the 5-class task, ViT-3D’s seemingly favorable ECE
is deceptive, resulting from low-confidence predictions rather than accurate calibration.

Figure 6 profiles the stochastic stability via the nCV. The SVM (purple bars) serves as a stability
lower bound (nCV < 0.1), confirming that observed instability in deep models arises from weight
optimization rather than aleatoric uncertainty. Standard ViT-3D exhibits substantial volatility
(orange bars), with variance spikes indicating sensitivity to initialization. Crucially, the introduction
of deformable patches in Swin-DPL (green bars) acts as a stabilizer, reducing variance to levels
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approaching the ResNet baseline (blue bars), suggesting that constraining the attention mechanism
effectively smooths the optimization landscape.

Moving to the 5-class setting, Figure 7 illustrates how increased task complexity disproportion-
ately affects Transformer stability. ViT-3D nCV spikes in the OOD setting, indicating inconsistent
decision boundaries for minority FTD subtypes. The SVM baseline retains a low variance profile,
suggesting that predefined U-Net features provide a representation space less susceptible to opti-
mization noise driven by class imbalance. Although Swin-3D DPL improves mean performance over
standard Swin, it retains discernible seed-to-seed variability compared to CNN baselines.
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Figure 6: Inter-seed stability profiling (3-class). Normalized Coefficient of Variation across
5 random seeds for the 3-class task. Comparison between In-domain (left) and Out-of-
domain (right) regimes. Lower nCV values indicate higher stability against initialization
noise.
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Figure 7: Inter-seed stability profiling (5-class). Normalized Coefficient of Variation across 5
random seeds for the differential diagnosis task. Comparison between In-domain (left)
and Out-of-domain (right) regimes. Lower nCV values indicate higher stability against
initialization noise.
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Appendix F. Extended stability and granular analysis

While the main text reports macro-averaged stability metrics, Figures 8 through 10 present
the nCV for the F1-score of each specific class. This stratified analysis indicates that the stability
observed in aggregated metrics is predominantly driven by the majority classes (CN, AD). The
minority phenotypes, specifically nfvPPA and svPPA, exhibit notably higher variance across seeds
(nCV > 0.1, reaching up to 1.2).
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Figure 8: Per-class F1-score normalized coefficient of variation for the 3-class task (Ta-
ble 8) computed across 5 random seeds. The stability profile shows lower variance for
majority classes (CN, AD), while the FTD class exhibits higher variability across archi-
tectures, particularly for the standard ViT-3D.
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Figure 9: Per-class F1-score normalized coefficient of variation for the 5-class task (Ta-
ble 2) computed across 5 random seeds. The decomposition of the FTD class into
subtypes reveals substantial instability for the minority classes (nfvPPA, svPPA), which
is masked in macro-averaged metrics.

This breakdown identifies specific limitations of stabilization strategies that are not apparent
in global averages. As illustrated in Figure 10, while label smoothing (LS) generally improves
calibration metrics, it appears to induce higher variance for the nfvPPA class in the out-of-domain
setting (Right panel). This suggests that enforcing soft targets on rare, distinct phenotypes may
interfere with robust feature learning under distribution shifts. Conversely, the combined protocol
(DA+E+LS+BS+M) effectively suppresses variance for the ID minority classes (Left panel), supporting
the synergistic effect of the proposed framework.

Figure 11 details the stability profile of the evaluated inference-time strategies. While Test-
Time Augmentation (TTA) reduces variance in the in-domain setting, it fails to generalize this
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Figure 10: Per-class F1-score normalized coefficient of variation for training strategies
(Table 3) computed across 5 random seeds. Comparison of stability across diagnosis
subtypes for ID and OOD settings. Note the scale difference in variance for minor-
ity classes compared to majority classes. While the Baseline (BL) and MixUp (M)
show high volatility in-domain for nfvPPA, Label Smoothing (LS) exhibits increased
sensitivity for this class in OOD settings.

benefit to the out-of-domain cohort. Specifically, TTA exhibits higher volatility than the baseline
for calibration metrics (ECE, Brier) in OOD. This finding supports the hypothesis that applying
geometric transformations (particularly sagittal flipping) to lateralized phenotypes such as nfvPPA
and svPPA creates anatomically inconsistent samples that degrade model reliability. Conversely,
snapshot ensembling consistently achieves the lowest nCV across all discrimination and reliabil-
ity metrics, confirming that averaging predictions across validation checkpoints is the most robust
strategy to mitigate stochastic optimization variability.
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Figure 11: Normalized coefficient of variation for evaluation strategies. Comparison of
inter-seed stability (N = 3 runs) for Baseline (BL), Test-Time Augmentation (TTA),
Calibrated models, and Ensemble methods. Ensembling consistently yields the low-
est nCV across metrics, indicating that averaging predictions effectively mitigates the
variance induced by optimization noise.
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