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Abstract

The task of rumour verification in social me-001
dia concerns assessing the veracity of a claim002
on the basis of conversation threads that result003
from it. While previous work has focused on004
predicting a veracity label, here we reformu-005
late the task to generate model-centric free-text006
explanations of a rumour’s veracity. The ap-007
proach is model agnostic in that it generalises008
to any model. Here we propose a novel GNN-009
based rumour verification model. We follow a010
zero-shot approach by first applying post-hoc011
explainability methods to score the most impor-012
tant posts within a thread and then we use these013
posts to generate informative explanations us-014
ing opinion-guided summarisation. To evalu-015
ate the informativeness of the explanatory sum-016
maries, we exploit the few-shot learning capa-017
bilities of a large language model (LLM). Our018
experiments show that LLMs can have similar019
agreement to humans in evaluating summaries.020
Importantly, we show explanatory abstractive021
summaries are more informative and better re-022
flect the predicted rumour veracity than just023
using the highest ranking posts in the thread. 1024

1 Introduction025

Evaluating misinformation on social media is a026

challenging task that requires many steps (Zubiaga027

et al., 2016): detection of rumourous claims, iden-028

tification of stance towards a rumour, and finally029

assessing rumour veracity. In particular, misinfor-030

mation may not be immediately verifiable using re-031

liable sources of information such as news articles032

since they might not have been available at the time033

a rumour has emerged. For the past eight years, re-034

searchers have focused on the task of automating035

the process of rumour verification in terms of as-036

signing a label of true, false, or unverified (Zubiaga037

et al., 2016; Derczynski et al., 2017). However,038

recent work has shown that while fact-checkers039

1A sample of generated explanations and code are provided.
Colour-coded changes of the revised paper are in A. E.

Figure 1: Example of a PHEME thread for which the
claim is predicted to be unverified by our model. Our
proposed pipeline first identifies replies which agree
or disagree with the model prediction and then sum-
marises the former ones to generate an explanation for
the model’s prediction.

agree with the urgent need for computational tools 040

for content verification, the output of the latter can 041

only be trusted if it is accompanied by explanations 042

(Procter et al., 2023). 043

Thus, in this paper, we move away from black- 044

box classifiers of rumour veracity to generating 045

explanations written in natural language (free-text) 046

for why, given some evidence, a statement can be 047

assigned a particular veracity status (see Figure 048

1). This has real-world applicability particularly in 049

rapidly evolving situations such as natural disasters 050

or terror attacks (Procter et al., 2013), where the 051

explanation for an automated veracity decision is 052

crucial (Lipton, 2018). To this effect, we use a 053

popular benchmark, the PHEME (Zubiaga et al., 054

2016) dataset, to train a rumour verifier and em- 055

ploy the conversation threads that form its input to 056
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generate model-centric explanation summaries of057

the model’s assessments.058

Atanasova et al. (2020), Kotonya and Toni059

(2020) and Stammbach and Ash (2020) were the060

first to introduce explanation summaries for fact-061

checking across different datasets. Kotonya and062

Toni (2020) provided a framework for creating063

abstractive summaries that justify the true verac-064

ity of the claim in the PUBHealth dataset, simi-065

larly to Stammbach and Ash (2020) who augment066

FEVER (Thorne et al., 2018) dataset with a corpus067

of explanations. Atanasova et al. (2020) proposed a068

jointly trained system that produces veracity predic-069

tions and explanations extracted from ruling com-070

ments on LIAR-PLUS (Alhindi et al., 2018). The071

approach in (Kotonya and Toni, 2020) results in ex-072

planatory summaries that are, however, not faithful073

to the model, while Atanasova et al. (2020) requires074

a supervised approach. Our goal is to create a novel075

zero-shot method for abstractive explanations that076

explain the rumour verification model’s predictions.077

We make the following contributions:078

• We introduce a zero-shot framework for gen-079

erating abstractive explanations using opinion-080

guided summarisation for the task of rumour ver-081

ification. To the best of our knowledge, this is the082

first time free-text explanations are introduced083

for this task.084

• We investigate the benefits of using a gradient-085

based algorithm and a game theoretical algorithm086

to provide explainability.087

• While our explanation generation method is gen-088

eralisable to any verification model, we introduce089

a novel graph-based hierarchical approach.090

• We evaluate the informativeness of several ex-091

planation baselines, by providing them as input092

to a few-shot trained large language model. Our093

results show that our proposed abstractive model-094

centric explanations are on average more infor-095

mative in 77% of the cases as opposed to 49%096

for all other baselines.097

• We provide both human and LLM-based evalua-098

tion of the generated explanations, showing that099

LLMs achieve sufficient agreement with humans,100

thus allowing scaling of the evaluation of the101

explanatory summaries in absence of gold-truth102

explanations.103

2 Related Work104

Explainable Fact Checking Following the ex-105

ample of fact-checking organisations (e.g., Snopes,106

Full Fact, Politifact), which provide journalist- 107

written justifications to determine the truthfulness 108

of claims, recent datasets augmented with free- 109

text explanations have been constructed: LIAR- 110

PLUS (Alhindi et al., 2018), PubHealth (Kotonya 111

and Toni, 2020), AVeriTeC (Schlichtkrull et al., 112

2023). A wide range of explainable outputs and 113

methods have been proposed: theorem proofs (Kr- 114

ishna et al., 2022), knowledge graphs (Ah- 115

madi et al., 2019), question-answer decomposi- 116

tions (Boissonnet et al., 2022; Chen et al., 2022), 117

reasoning programs (Pan et al., 2023), deployable 118

evidence-based tools (Zhang et al., 2021b) and sum- 119

marisation (Atanasova et al., 2020; Kotonya et al., 120

2021; Stammbach and Ash, 2020; Kazemi et al., 121

2021; Jolly et al., 2022). We adopt summarisation 122

as our generation strategy as it fluently aggregates 123

evidence from multiple inputs and has been proven 124

effective in similar works which we discuss next. 125

Explainability as Summarisation Atanasova 126

et al. (2020) and Kotonya and Toni (2020) lever- 127

aged large-scale datasets annotated with gold jus- 128

tifications to generate supervised explanations for 129

fact-checking, while Stammbach and Ash (2020) 130

used few-shot learning on GPT-3 to create the e- 131

FEVER dataset of explanations. Similar to (Stamm- 132

bach and Ash, 2020), Kazemi et al. (2021) also 133

leveraged a GPT-based model (GPT-2) to gener- 134

ate abstractive explanations, but found that that 135

their extractive baseline, Biased TextRank, out- 136

performed GPT-2 on the LIAR-PLUS dataset (Al- 137

hindi et al., 2018). Jolly et al. (2022) warn that 138

the output of extractive explainers lacks fluency 139

and sentential coherence, which motivated their 140

work on unsupervised post-editing using the ex- 141

planations produced by Atanasova et al. (2020). 142

Our approach is different from the above as we 143

derive our summaries from microblog content (as 144

opposed to news articles as done by Atanasova et al. 145

(2020); Stammbach and Ash (2020); Kazemi et al. 146

(2021); Jolly et al. (2022), and only use the subset 147

of posts relevant to the model’s decision to inform 148

the summary (rather than summarising the whole 149

input as in (Kotonya and Toni, 2020; Kazemi et al., 150

2021). Moreover, we rely on a zero-shot generation 151

approach without gold explanations, contrary to 152

(Atanasova et al., 2020; Kotonya and Toni, 2020). 153

LLMs as evaluators Having generated explana- 154

tory summaries the question arises as to how to 155

evaluate them at scale. LLMs have been employed 156

as knowledge bases for fact-checking (Lee et al., 157
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Figure 2: Framework of our proposed approach to obtain faithful generated explanations for the rumour verifier.

2020; Pan et al., 2023), as explanation generators158

for assessing a claim’s veracity (Stammbach and159

Ash, 2020; Kazemi et al., 2021) and, as of recently,160

as evaluators in generation tasks. Most works fo-161

cused on assessing the capability of LLM-based162

evaluation on summarisation tasks, either on long163

documents (Wu et al., 2023) or for low-resource164

languages (Hada et al., 2023). While there is work165

focusing on reducing positional bias (Wang et al.,166

2023b) and costs incurred (Wu et al., 2023) for us-167

ing LLM-based evaluators, our evaluation is most168

similar to Liu et al. (2023a); Shen et al. (2023); Chi-169

ang and Lee (2023), who study the extent of LLM-170

human agreement in evaluations of fine-grained171

dimensions, such as fluency or consistency. We172

believe we are the first to use an LLM-powered173

evaluation to assess the informativeness and faith-174

fulness of explanations for verifying a claim.175

3 Methodology176

Our methodological approach (Figure 2) consists177

of three individual components: i) training a ru-178

mour verification model; ii) using a post-hoc ex-179

plainability algorithm; iii) generating summary-180

explanations. The approach to explanation genera-181

tion is zero-shot and model-agnostic.182

We demonstrate our approach on PHEME (Zubi-183

aga et al., 2016), a widely used benchmark dataset184

for classifying social media rumours into either185

unverified, true or false. It contains conversation186

threads that cover 5 real-world events such as the187

Charlie Hebdo attack and the Germanwings plane188

crash. We adopt the same leave-one-out testing189

as previous works (Dougrez-Lewis et al., 2022)190

which favours real-world applicability as the model191

is tested on new events not included in training.192

Task Formulation For a model trained on ru-193

mour verification M, an attribution-based expla-194

nation method E , and a rumourous conversation195

thread consisting of posts T = {p1, ...pl} with196

embeddings {x1, ...xl} ⊂ Rn, we define the post197

importance as a function f(M,E) : T → R. 198

f(M,E)(pi) =

n∑
j=1

E(M, xi)j =

n∑
j=1

eij (1) 199

where ei ∈ Rn is the attribution vector for embed- 200

ding xi of post pi such that each value eij corre- 201

sponds to the weight of feature xij assigned by the 202

explainer algorithm E . 203

The summary is generated from the subset of 204

posts that are most important for the model pre- 205

diction, i.e., I = {pi | f(M,E)(pi) > 0}. Note a 206

thread will contain posts that agree with the pre- 207

diction (positive importance scores) and posts that 208

disagree (negative importance scores). 209

3.1 Rumour Verification Model 210

Our explanation generation method is applicable to 211

any rumour verification model, but here we chose 212

an approach based on graph neural networks (See 213

Figure 3), which caters for a flexible information 214

structure combining information in the conversa- 215

tion thread with information about stance. This is 216

the first time a GNN-based model enriched with 217

stance has been proposed for PHEME. 218

Structure-Aware Model Structure-aware mod- 219

els such as tree-based and graph-based are among 220

the best performing for rumour verification (Kochk- 221

ina et al., 2018; Bian et al., 2020; Kochkina et al., 222

2023), given that the task heavily relies on user in- 223

teractions for determining veracity. Our approach 224

models the conversation thread as a graph, where 225

interactions between posts manifest as propagation 226

(top-down) and dispersion (bottom-up) flows sim- 227

ilar to Bian et al. (2020). The architecture con- 228

tains GraphSage (Hamilton et al., 2017) layers, 229

proven to yield meaningful node representations, 230

followed by GAT (Veličković et al., 2018) layers, 231

which are shown to improve performance in similar 232

tasks (Kotonya et al., 2021; Zhang et al., 2021a; Jia 233

et al., 2022). Sentence Transformers embeddings 234
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Figure 3: Architecture of our GNN-based rumour verifier enhanced with structure and stance-aware components:
Propagation/Dispersion represent the outputs of each respective component, while Propagation*/Dispersion*
represent the stance-enriched outputs of these.

(Reimers and Gurevych, 2019) are used to initialise235

the node representations in the graphs. The propa-236

gation and dispersion component outputs are each237

concatenated with the output of a stance compo-238

nent and pooled, resulting in another concatenated239

representation to which a final multi-head attention240

layer (Vaswani et al., 2017) is applied.241

Stance-Aware Component Stance detection242

is closely linked to misinformation detection243

(Hardalov et al., 2022) with previous work hav-244

ing shown that a joint approach improves rumour245

verification (Zubiaga et al., 2016; Derczynski et al.,246

2017; Gorrell et al., 2019; Yu et al., 2020; Dougrez-247

Lewis et al., 2021). As such our model includes a248

stance component unlike the GNN by Bian et al.249

(2020). Since only a small portion of the PHEME250

dataset is annotated with gold stance labels for the251

RumourEval competition (Derczynski et al., 2017),252

we generate silver labels for the whole corpus. In253

particular, we train a RoBERTa model (Liu et al.,254

2019) for stance classification and extract the em-255

beddings from the last hidden layer to augment the256

rumour verification task with stance information.257

See Appendix D for experimental setup.258

F C O G S F1
Model w/o stance & dis-
persion .235 .241 .281 .372 .371 .360

Model w/o stance .228 .267 .300 .333 .293 .405
Model with stance &
dispersion .208 .341 .313 .403 .358 .434

SAVED (Dougrez-
Lewis et al., 2021) .372 .351 .304 .281 .332 .434

Table 1: PHEME results for each fold and overall re-
ported as macro-averaged F1 scores. The fold abbre-
viations stand for Ferguson, Charlie Hebdo, Ottawa
Shooting, Germanwings Crash and Sydney Siege

.

Ablation study for Rumour Verifier We include259

a short ablation study of our proposed baselines in260

Table 1. As expected, removing both stance and 261

structure knowledge from the model degrades per- 262

formance by almost 7 F1-points overall. The model 263

enhanced with all the components (stance, propa- 264

gation and dispersion) outperforms its counterparts 265

across the majority of folds; we hypothesise per- 266

formance does not improve for the Ferguson fold 267

due to its severe label imbalance skewed towards 268

unverified rumours. Moreover, our complete model 269

achieves competitive results and is comparable to 270

the current state-of-the-art model on the PHEME 271

dataset, the SAVED model by Dougrez-Lewis et al. 272

(2021). 273

3.2 Explaining the Model 274

3.2.1 Attribution Method 275

We experiment with two classes of attribution meth- 276

ods: gradient-based and game-theory-based. For 277

gradient-based methods, we choose Integrated Gra- 278

dients (IG) (Sundararajan et al., 2017). This is a 279

local explainability algorithm that calculates attri- 280

bution scores for each input unit by accumulating 281

gradients along the interpolated path between a lo- 282

cal point and a starting point with no information 283

(baseline). IG was selected over other gradient- 284

based saliency methods such as DeepLIFT (Shriku- 285

mar et al., 2017) as it has been shown to be more 286

robust (Pruthi et al., 2022) when applied in classifi- 287

cation tasks. Shapley Values (SV) (Štrumbelj and 288

Kononenko, 2014) is the representative explain- 289

ability method derived from game theory and has 290

been used in many applications (Zhang et al., 2020; 291

Mosca et al., 2021; Mamta and Ekbal, 2022). Its at- 292

tribution scores are calculated as expected marginal 293

contributions where each feature is viewed as a 294

’player’ within a coalitional game setting. 295

Note that we focus on post-hoc methods instead 296

of intrinsic ones, such as attention, in our architec- 297
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ture to keep the framework generalisable to other298

rumour verification models. Specifically, we use299

IG and SV2 as methods for E to calculate the post300

importance f in Eq 1. This importance with respect301

to model prediction is then leveraged to sort the302

posts within the thread in descending order. We303

then construct subsets of important posts Ik ⊂ I304

such that |Ik| = k%|I| with Ik representing the305

k% most important posts of the rumour thread,306

k = 25, 50, 100. These will be used as inputs for307

summarisation in the next stage to determine the308

trade-off between post importance and number of309

posts necessary to construct a viable explanation.310

3.2.2 Summarisation for Explanation311

We propose explanation baselines spanning dif-312

ferent generation strategies: extractive vs abstrac-313

tive, model-centric vs model-independent and in-314

domain vs out-of-domain.315

Extractive Explanations316

• Important Response: the response within the317

thread scored as most important by each attri-318

bution method. This is model-dependent.319

• Similar Response: the response within the thread320

most semantically similar to the source claim, as321

scored by SBERT (Reimers and Gurevych, 2019).322

This model-independent baseline is inspired by323

(Russo et al., 2023).324

Abstractive explanations have a dual purpose325

that fits the challenging set-up of our pipeline: they326

serve as a way to aggregate important parts of327

the thread, and also provide a fluent justification328

sourced from multiple views to a claim’s veracity.329

• Summary of I: We summarise the set I of impor-330

tant posts to obtain a model-centric explanation.331

We fine-tune BART (Lewis et al., 2020) on the332

MOS corpus by Bilal et al. (2022) that addresses333

summarisation of topical groups of tweets by pri-334

oritising the majority opinion expressed. Both335

MOS and PHEME were collected from the same336

platform, Twitter. We hypothesise this template-337

guided3 approach will satisfy the explanatory pur-338

pose since user opinion is an important indicator339

for assessing a claim’s veracity in rumour ver-340

ification (Hardalov et al., 2022). Similarly, we341

define explanations Summary of I25, I50.342

• Out-of-domain Summary: We use the BART343

(Lewis et al., 2020) pre-trained on the CNN/344

2Used captum package (Kokhlikyan et al., 2020) for both.
3The template summary takes the form: Main Story +

Majority Opinion expressed in the thread.

Daily Mail (Nallapati et al., 2016) dataset without 345

any fine-tuning and summarise the entire thread. 346

This yields a model-independent explanation. 347

We note that while supervised summarisation is 348

used to inform our generation strategy, our result- 349

ing explanations never rely on gold explanations 350

annotated for the downstream task of fact-checking. 351

In fact, neither MOS (Bilal et al., 2022) nor the 352

CNN/Daily Mail (Nallapati et al., 2016) datasets 353

were aimed for fact-checking and both focus on 354

broad topics unrelated to the PHEME claims. 355

4 Automatic Evaluation of Explanation 356

Quality 357

As the PHEME dataset lacks gold standard explana- 358

tions to compare against, we prioritise the extrinsic 359

evaluation of the generated explanations with re- 360

spect to their usefulness in downstream tasks. This 361

is similar to work on explanatory fact-checking 362

(Stammbach and Ash, 2020; Krishna et al., 2022). 363

In particular, we use the criterion of informa- 364

tiveness defined by Atanasova et al. (2020) as the 365

ability to deduce the veracity of a claim based on 366

the explanation. If the provided explanation is not 367

indicative of any veracity label, the explanation is 368

considered uninformative. Otherwise, we compare 369

the veracity suggested by the explanation to the 370

prediction made by the model. This enables the 371

evaluation of the explanation’s fidelity to the model 372

and is one of the main approaches to assess explana- 373

tory faithfulness (Jacovi and Goldberg, 2020). 374

We devise a novel evaluation strategy for cap- 375

turing the informativeness of generated explana- 376

tions based on LLMs. This is motivated by recent 377

work demonstrating the effectiveness of LLMs as 378

zero-shot reasoners and judges for various tasks 379

(Kojima et al., 2022; Chen, 2023; Chan et al., 2023; 380

Zheng et al., 2023), including as a zero-shot evalu- 381

ator for summarisation outputs (Liu et al., 2023b; 382

Shen et al., 2023; Wang et al., 2023a; Liu et al., 383

2023a). We use OpenAI’s gpt-3.5-turbo-03014, 384

hereinafter referred to as ChatGPT. We follow a 385

multiple-choice setting in the prompt similar to 386

Shen et al. (2023). Our initial experiments con- 387

firmed previous findings (Brown et al., 2020) that 388

GPT reasoning can be improved by including a few 389

annotated representative examples of the evaluation 390

4Used GPT-3.5-turbo due to its lower running costs com-
pared to GPT-4. This is a snapshot of the model from 1 March
2023 that will not receive updates – this should encourage the
reproducibility of our evaluation.
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within its prompt 5 (See Appx. A).391

We ran a pilot study (See Appendix C) to es-392

tablish which temperature setting yields the most393

robust LLM evaluation. To account for any non-394

deterministic behaviour, the experiment was run395

three times. We find the results remain 100% con-396

sistent across runs for temperature 0. As this is397

in line with the settings used in similar works em-398

ploying LLMs as evaluators (Shen et al., 2023),399

we also use this value for our experiment. Each400

request is sent independently via the Open AI API.401

Since using an LLM evaluator allows us to scale402

our evaluation (Chiang and Lee, 2023), we use all403

suitable PHEME threads6 (i.e. 1233 / 2107 threads)404

for testing. This set-up foregoes the costs neces-405

sary to obtain a diverse manually-annotated test set406

and offers more statistical power to the results as407

recommended by Bowman and Dahl (2021).408

5 Results and Discussion409

The results are shown in Table 2.410

Uninformative Unfaithful Faithful

Extractive Explanations

Important Response (IG) 67.23 21.33 11.44
Important Response (SV) 65.29 22.30 12.41
Similar Response 30.98 43.88 25.14

Abstractive Explanations

Summary of I25 (IG) 23.68 46.55 29.76
Summary of I25 (SV) 22.95 48.50 28.55
Summary of I50 (IG) 22.11 46.47 30.41
Summary of I50 (SV) 23.60 47.20 29.20
Summary of I (IG) 24.90 48.58 26.52
Summary of I (SV) 23.60 48.90 27.49
Out-of-domain Summary 39.17 38.28 22.55

Table 2: Explanation evaluation wrt model prediction
(%). If the explanation cannot be used to infer a veracity
label for the claim, it is uninformative. Otherwise, the
explanation is faithful if its label coincides with the
prediction and unfaithful if not. Best scores are in bold.

Model-centric vs Model-independent We note411

that the explanations Out-of-domain Summary and412

Similar Response are independent of the rumour413

verification model built in section 3.1 as they are414

not produced by any of the post-hoc algorithms.415

Hence, while these are not expected to be faithful,416

we analyse how they compare in informativeness to417

the other model-centric explanations. We find that418

abstractive explanations (Summaries of I25, I50,419

5We experimented with several prompt designs varying in
level of detail (no justification of answer, no examples) and
found that the most exhaustive prompt yielded best results

6Suitable defined as at least ten posts and the majority are
non-empty after URL and user mentions are removed.

Claim
Update from Ottawa: Cdn soldier dies from shooting -Parliamentary guard wounded
Parliament Hill still in lockdown URL

Prediction: Unverified

Explanation Summaries

Important Response: @USER Ok, time to take it to the *** muslims. Look out Allah,
here comes the revenge. ***. (Uninformative)
Similar Response: #AttackinOttawa @USER: Update Cdn soldier dies from shooting
-Parliamentary guard wounded Parliament Hill still in lockdown URL (True)

Summary of I25 (IG): Soldier dies from shooting in Ottawa and Parliament Hill is in
lockdown. The majority think the media is wrong to report that Parliament Hill was in
lockdown and that the lockdown was a ploy to target Muslims. (False)

Summary of I50 (IG): Cdn soldier dies from shooting dead in Ottawa. The majority are
sceptical about the news of the shooting and some are questioning where the confirmation
is coming from. (Unverified)
Summary of I (IG): Cdn soldier dies from shooting in Ottawa and Parliament Hill is in
lockdown. Most users ask where the news of the gunman is and are wondering who is
responsible for his death. Many of the responses use humour and irony, such as: ’I don’t
think the soldier is dead’. (Unverified)
Out-of-domain Summary: Update from Ottawa: -Cdn soldier dies from shooting
-Parliamentary guard wounded. It looks like confirmations are coming in now. I don’t
think the soldier is dead. (Unverified)

Table 3: Example explanation summaries. Manually-
annotated red highlights explain the model prediction
for the given claim. ChatGPT evaluations are in ().

I) informed by the rumour verifier are the most 420

informative of all. Thus, summarising a selection 421

of important posts learned during the rumour ver- 422

ification process yields a better explanation than 423

relying on individual replies or summarising the 424

whole thread. 425

Integrated Gradients vs Shapley Values The 426

summaries generated via IG achieve better scores 427

than the SV ones in both informativeness and faith- 428

fulness. While SV initially provides a better Im- 429

portant Response, it fails to detect other important 430

posts within the thread as suggested by the scores 431

for I25 and I50. Moreover, the time complexity 432

for the SV algorithm is exponential as its sampling 433

strategy increases proportionately with the num- 434

ber of perturbed input permutations. We note the 435

average computation time for both algorithms to 436

assess a thread of 15 posts: 0.5s for IG and 2011s 437

for SV. This makes IG a more suitable algorithm 438

with respect to both performance and running time. 439

Extractive Explanation The best extractive 440

baseline is the Similar Response, which selects 441

the closest semantic match from the thread to the 442

claim. Followed by are model-centric baselines 443

Important Response for both IG and SV, lagging 444

behind by a large margin. We investigate the reason 445

behind this performance by checking the stance 446

labels of the corresponding posts. Using the la- 447

belled data from Derczynski et al. (2017), we train 448

a binary RoBERTa to identify comments and non- 449
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comments7 where a comment is defined as a post450

that is unrelated or does not contribute to a ru-451

mour’s veracity. We find that 64% of posts corre-452

sponding to Important Response labelled as unin-453

formative are also classified as comments, much454

higher than 47% for Similar Response. This ex-455

plains why semantic similarity can uncover a more456

relevant explanation than the Important Response457

alone. Still, this method suffers from ’echoing’ the458

claim 8, which risks missing out on other important459

information found in the thread (see Table 3).460

Abstractive Explanation The abstractive expla-461

nations are shown to be considerably more in-462

formative than most extractive baselines. They463

have the advantage of aggregating useful informa-464

tion that appears later in the conversation. For465

instance, the abstractive explanations in Table 3466

indicate posters’ doubt and requests for more de-467

tails. Furthermore, using an opinion-driven sum-468

mariser is better for constructing a more informa-469

tive summary-explanation than other options (See470

Sec. 3.2). We have also investigated the degree of471

information decay in relation to the number of posts472

used for summary construction in model-centric ex-473

planations. In Table 2, the summary based on the474

first half of important posts (I50) yields the most475

informative and faithful explanation for both al-476

gorithms, closely followed by the I25 one. The477

worst-performing model-centric explanation is that478

generated from the whole set of important replies479

(I). We calculate the cumulative importance score480

of these data partitions and note I25 and I50 con-481

tain 75% and 93% respectively of the thread’s total482

importance. This suggests the remaining second483

half of the importance-ordered thread offers little484

relevant information towards the model’s decision.485

6 Human Evaluation of LLM-based486

Evaluators487

Our human evaluation study has two goals: 1)488

quantify the evaluation capability of ChatGPT, the489

LLM employed in our experiments in Sec. 5 to as-490

sess automatic explanations and 2) investigate the491

performance of ChatGPT against more recently-492

published LLMs. The results are in Table 4.493

We ran a pilot study on 50 threads randomly494

sampled, such that each fold and each label type495

7The original task is a 4-way classification of posts into
one of the stance labels: support, deny, query, or comment.
This is simplified by aggregating the first three labels into one.

8The majority of informative Similar Responses are classi-
fied as supporting the claim.

Agreement Informativeness Detection Veracity Prediction

Ann - Ann 82% 88%

Ann - ChatGPT 69% 68%

Ann - ChatGPT 0613 64% 74%

Ann - GPT-4 63% 80%

Table 4: Pairwise agreement scores for the overlap be-
tween the evaluations of the annotators (Ann) and the
LLM. The LLMs are: ChatGPT ("gpt-3.5-turbo-0301"),
ChatGPT 0613 ("gpt-3.5-turbo-0613") and GPT-4. The
evaluations are conducted for two tasks: informative-
ness detection and veracity prediction.

is equally represented for a fair evaluation of the 496

LLM performance. We follow a similar evalua- 497

tion setup to the work of (Atanasova et al., 2020), 498

who study whether their generated summaries pro- 499

vide support to the user in fact checking a claim. 500

We check the LLM-based evaluation of automatic 501

explanations on two tasks: 1. Informativeness 502

Detection, where an Explanation is classified as ei- 503

ther informative or uninformative and 2. Veracity 504

Prediction, where an Informative Explanation is 505

assigned true, false or unverified if it helps deter- 506

mine the veracity of the given claim. 507

Two Computer Science PhD candidates profi- 508

cient in English were recruited as annotators for 509

both tasks. Each annotator evaluated the test set of 510

explanation candidates, resulting in 300 evaluations 511

per annotator. The same guidelines and examples 512

from Appendix A are used as instructions. 513

6.1 Evaluation of ChatGPT 514

Informativeness Detection In our first human 515

experiment (Table 4: first column), we evaluate 516

whether ChatGPT correctly identifies an informa- 517

tive explanation. We find that the agreement be- 518

tween our annotators is 82% which we set as the 519

upper threshold for comparison. We note that the 520

agreement between human evaluators and Chat- 521

GPT consistently remains above the random base- 522

line, but experiences a drop. Fleiss Kappa is 523

κ = 0.441, which is moderate but higher than 524

the agreement of κ = 0.269, 0.345, 0.399 reported 525

by Atanasova et al. (2020) for the same binary 526

setup. After examining the confusion matrix for 527

this task (See Appendix B), it is observed that most 528

mismatches arise from false positives - ChatGPT 529

labels an Explanation as informative when it is not. 530

Finally, we find this type of disagreement occurs in 531

instances when the rumour is a complex claim, i.e., 532

a claim with more than one check-worthy piece of 533
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information within it. As suggested by Chen et al.534

(2022), the analysis of complex real-world claims535

is a challenging task in the field of fact checking536

and we also observe its impact on our LLM-based537

evaluation for rumour verification.538

Veracity Prediction In our second human exper-539

iment (Table 4: second column), we evaluate if540

ChatGPT correctly assigns a veracity label to an541

Informative explanation. Again, we consider 88%,542

the task annotator agreement to be the upper thresh-543

old. Despite the more challenging set-up (ternary544

classification instead of binary), the LLM main-545

tains good agreement: Fleiss Kappa κ = 0.451546

(again higher than those of Atanasova et al. (2020)547

for the multi-class setup κ = 0.200, 0.230, 0.333).548

Manual inspection of the disagreement cases re-549

veals that the most frequent error type (58 / 75 mis-550

labelled cases exhibit this pattern - See Appendix551

B) is when ChatGPT classifies a rumour as unveri-552

fied based on the Explanation, while the annotator553

marks it as true. We hypothesise that an LLM fails554

to pick up on subtle cues present in the explanation555

that are otherwise helpful for deriving a veracity556

assessment. For instance, the Explanation "I think557

channel 7 news is saying he [the hostage-taker] is558

getting agitated bcoz of it [the hostage’s escape],559

its time to go in." implies that the escape indeed560

took place as validated by Channel 7; this cue helps561

the annotator assign a true label to the correspond-562

ing claim "A sixth hostage has escaped from the563

Lindt cafe in Sydney!".564

We acknowledge the limitations of using an565

LLM as an evaluator, which reduces the richness566

of annotator interaction with the task, but show567

through our human evaluations that good agree-568

ment between an LLM and humans can still be569

achieved. This not only allows the scaling of fi-570

nal results to the entire dataset instead of being571

confined to a small test set (See Sec. 4), but also572

provides an automated benchmarking of generated573

explanations when the ground truth is missing.574

6.2 Comparison to other LLMs575

As ChatGPT is a closed-source tool continually576

updated by its team, it is important to investigate577

how ChatGPT-powered evaluations are influenced578

by the release of newer versions of the same lan-579

guage model or by substitution with improved mod-580

els. To this effect, we compare the legacy version581

of ChatGPT released on 1 March 2023 with its582

more recent version, ChatGPT 0613 (released on583

13 June 2023) and finally with GPT-4, a multi- 584

modal model equipped with broader general knowl- 585

edge and more advanced reasoning capabilities. 586

We note that that while there are differences 587

between the labels produced by the two versions, 588

there is a higher agreement with human judgement 589

for the newer snapshot ChatGPT 0613 when as- 590

sessed on the more complex task of veracity pre- 591

diction. A similar behaviour is observed for GPT-4, 592

whose performance is the most aligned with hu- 593

man judgment in the second task. After examining 594

the error patterns (See Appendix B), we observe a 595

notable difference between ChatGPT-based mod- 596

els and GPT-4: while both temporal snapshots of 597

ChatGPT tend to evaluate irrelevant explanations 598

as informative (See Sec. 6.1), GPT-4 suffers from 599

assigning too many false negatives. This implies 600

the existence of a positive bias for ChatGPT models 601

and a negative bias for GPT-4. 602

Based on our limited findings, we hypothesise 603

that more recent models have the potential to be 604

more reliable evaluators of explanations than older 605

models, given their higher agreement with human 606

annotators. However, the model choice needs to 607

be grounded into the task requirements (i.e., which 608

errors should be prioritised) and availability of com- 609

putational costs (at the moment of writing GPT-4 610

is 20x more expensive than ChatGPT). 611

7 Conclusions and Future Work 612

We presented a novel zero-shot approach for gener- 613

ating abstractive explanations of model predictions 614

for rumour verification. Our results showed abstrac- 615

tive summaries constructed from important posts 616

scored by a post-hoc explainer algorithm can be 617

successfully used to derive a veracity prediction 618

given a claim and significantly outperform extrac- 619

tive and model-independent baselines. We also 620

found using an LLM-based evaluator for assessing 621

the quality of the generated summaries yields good 622

agreement with human annotators for the tasks of 623

informativeness detection and veracity prediction. 624

In future work, we plan to jointly train the ve- 625

racity prediction and explanation generation and 626

assess how an end-to-end approach impacts the 627

quality of resulting explanations. Additionally, we 628

aim to enrich the explanations by incorporating ex- 629

ternal sources of information such as PHEMEPlus 630

(Dougrez-Lewis et al., 2022). Another direction is 631

generating fine-grained explanations for addressing 632

all check-worthy aspects within complex claims. 633
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Limitations634

Summarisation of threads The format of the635

conversation threads is challenging to summarise.636

Our approach to summarisation is to flatten the637

conversation tree and to concatenate the individual638

posts, which are then used as an input to a BART639

model. This approach is naïve as the meaning of640

the nested replies can be lost if considered indepen-641

dently of the context. We posit that a graph-based642

neural summariser capable of encoding both the643

hierarchy of posts and their information as nodes644

in a graph, would benefit the summarisation of mi-645

croblog opinions. A relevant approach has been646

proposed by Wang et al. (2020) for extractive sum-647

marisation of news articles, though this would need648

to be adapted for the more challenging format of649

microblog posts and account for the potential topic650

shifts exhibited by very long threads as seen in Sun651

and Loparo (2019).652

Task limitation At the moment, the explanations653

are constructed exclusively from the information654

present in the thread. Consequently, the degree of655

evidence present in a thread is reflected into the656

explanatory quality of the summary.657

Complex Claims As seen in the paper, com-658

plex claims are a challenging subset of rumours659

to evaluate. Using the heuristic outlined in Chen660

et al. (2022) to identify complex claims based on661

verb count, we find that 22% of the claims within662

PHEME are classified as complex. To generate663

comprehensive explanations covering each check-664

worthy aspect within such claims, a re-annotation665

of PHEME is required which is only labelled at666

claim-level at the moment.667

Human Evaluation Evaluation via large lan-668

guage models is in its infancy. While there have669

been very encouraging recent results of using it as670

a viable alternative to human evaluation, these are671

still early days. It is unclear how much the evalu-672

ation stability is impacted by prompt design or by673

substitution with open-source language models.674

Evaluation criteria for generated output Since675

our explanations rely on generation mechanisms676

including automatic summarisers, it is important to677

acknowledge that there are other evaluation crite-678

ria native to the generation field which are outside679

the scope of this paper and have not been covered.680

We note that since hallucination, redundancy, co-681

herence and fluency have already been tested in682

the original works (Lewis et al., 2020; Bilal et al., 683

2022) introducing the summarisers we employ, we 684

prioritised the criteria relevant to explainable fact- 685

checking in the experiments of this paper: infor- 686

mativeness of explanations and faithfulness to pre- 687

dicted veracity label. 688

Ethics Statement 689

Our experiments use PHEME dataset, was given 690

ethics approval upon its original release. However, 691

we note that the dataset contains many instances of 692

hate speech that may corrupt the intended aim of 693

the summaries. In particular, summaries that use 694

the majority of posts within the thread may exhibit 695

hate-speech content exhibited by parts of the input 696

text. 697
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Guerini. 2023. Benchmarking the generation of fact967
checking explanations. Transactions of the Associa-968
tion for Computational Linguistics, 11:1250–1264.969

Michael Schlichtkrull, Zhijiang Guo, and Andreas Vla-970
chos. 2023. Averitec: A dataset for real-world claim971
verification with evidence from the web.972

Chenhui Shen, Liying Cheng, Yang You, and Lidong973
Bing. 2023. Are large language models good evalua-974
tors for abstractive summarization?975

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-976
daje. 2017. Learning important features through977
propagating activation differences. In International978
conference on machine learning, pages 3145–3153.979
PMLR.980

Dominik Stammbach and Elliott Ash. 2020. e-fever: Ex-981
planations and summaries forautomated fact check-982
ing. In Conference for Truth and Trust Online.983

Yingcheng Sun and Kenneth Loparo. 2019. Topic shift984
detection in online discussions using structural con-985
text. In 2019 IEEE 43rd Annual Computer Software986
and Applications Conference (COMPSAC), volume 1,987
pages 948–949.988

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.989
Axiomatic attribution for deep networks. In Proceed-990
ings of the 34th International Conference on Machine991
Learning - Volume 70, ICML’17, page 3319–3328.992
JMLR.org.993

James Thorne, Andreas Vlachos, Oana Cocarascu,994
Christos Christodoulopoulos, and Arpit Mittal. 2018.995
The fact extraction and VERification (FEVER)996
shared task. In Proceedings of the First Workshop on997
Fact Extraction and VERification (FEVER), pages 1–998
9, Brussels, Belgium. Association for Computational999
Linguistics.1000

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob1001
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz1002
Kaiser, and Illia Polosukhin. 2017. Attention is all1003
you need. In Advances in Neural Information Pro-1004
cessing Systems, volume 30. Curran Associates, Inc.1005
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A Guidelines and Examples for Assessing1070

the Informativeness of Explanations1071

You will be shown a Claim and an Explanation. The
veracity of the Claim can either be true, false or
unverified. Choose an option from A to D that answers
whether the Explanation can help confirm the veracity
of the Claim.

A: The Explanation confirms the information in the Claim is
true. The Explanation will include evidence to prove the
Claim or show users believing the Claim.

B: The Explanation confirms the information in the Claim is
false. The Explanation will include evidence to disprove the
Claim or show users denying the Claim.

C: The Explanation confirms the information in the Claim is
unverified. The Explanation will state no evidence exists to
prove or disprove the Claim or show users doubting the
Claim.

D: The Explanation is irrelevant in confirming the veracity
of the Claim. The Explanation will not include any mention
of evidence and users will not address the veracity of the
Claim.

Claim: {claim}
Explanation: {explanation}

Table 5: Example task instructions used in the prompt
following a multiple-choice setting.

B Error Analysis of LLM’s performance 1072

as Evaluator 1073

We note that our ChatGPT-human agreement scores 1074

for both tasks are similar or higher to those re- 1075

ported by Zubiaga et al. (2016), who employ crowd- 1076

sourced workers for annotating similar classifica- 1077

tion subtasks on the PHEME dataset: 61.1% for 1078

labelling certainty of rumours and 60.8% for clas- 1079

sifying types of evidence arising from the thread. 1080

We report the performance of ChatGPT, Chat- 1081

GPT 0614 and GPT-4 as evaluators using the man- 1082

ually annotated set of 300 explanations. The error 1083

analysis is shared via a confusion matrix for each 1084

task: informativeness detection (See Table 7) and 1085

veracity prediction (See Table 8). The results are 1086

reported as counts. 1087

C Pilot Study on Temperature Setting for 1088

ChatGPT 1089

We used the same explanations in Table 4 and ran 1090

a small pilot study to assess how incrementing the 1091

temperature parameter affects the LLM evaluation. 1092

Results are in Table 9. We used increments of 0.2 1093

in temperature and ran the experiment 3 times to 1094

account for the non-deterministic behaviour. Over- 1095

all, the evaluations remain consistent (94% of the 1096

labels output by ChatGPT are the same) across runs 1097

and temperature values. In particular, we note that 1098

when using temperature 0, the evaluations remain 1099

100% consistent and for non-zero temperature, the 1100

evaluation only impacts the labelling of the last 1101

explanation which is less helpful than previous ex- 1102

planation candidates. 1103

D Experimental Setup 1104

We train the rumour verification model for 300 1105

epochs with learning rate 10−5. The training loss 1106

is cross-entropy. The optimizer algorithm is Adam 1107

(Kingma and Ba, 2015). Hidden channel size is 1108

set as 256 for the propagation and dispersion com- 1109

ponents and 32 hidden channel size for the stance 1110

component. The batch size is 20. For the Graph- 1111

Sage layers, we apply a mean aggreggator scheme, 1112

followed by a relu activation. For the Multi-headed 1113

Attention layer, we use 8 heads. Embeddings gen- 1114

erated by the "all-MiniLM-L6-v2" model from Sen- 1115

tence Transformers (Reimers and Gurevych, 2019) 1116

are used to initialise the node representations in the 1117

graphs. To avoid overfitting, we randomly dropout 1118

an edge in the graph networks with probability 1119

0.1. We use a Nvidia A5000 GPU for our model 1120
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Claim: Victims were forced to hold a flag on the cafe window.
Explanation: Users believe this is true and point to the released footage.
Your answer: A

Claim: BREAKING: Hostages are running out of the cafe #sydneysiege
Explanation: Some users believe the claim is unverified as Channel 9 did not confirm and some agree that the details of
potential escape should not be disclosed.
Your answer: C

Claim: One of the gunmen left an ID behind in the car.
Explanation: One of the gunmen left an ID behind in the car. The majority deny the ID was found there and point to the
media for blame.
Your answer: B

Claim: Three people have died in the shooting.
Explanation: Three people have died in the shooting. Most users pray the attack is over soon.
Your answer: D

Claim: NEWS #Germanwings co-pilot Andreas Lubitz had serious depressive episode (Bild newspaper) #4U9525
URL LINK
Explanation:Germanwings co-pilot Andrés Lubitz has serious depressive episode. Never trust bild. Users believe that
bild is a fake newspaper and the stories concerned with the suicide of Andreas Lubitz should not be discussed.
Your answer: C

Claim: Snipers set up on National Art Gallery as we remain barricaded in Centre Block on Parliament Hill #cdnpoli.
Explanation: Snipers set up on National Art Gallery as we remain barricaded in Centre Block on Parliament Hill. Most
users are skeptical about the news and await more details.
Your answer: C

Claim: BREAKING: #Germanwings co-pilot’s name is Andreas Lubitz, a German national, says Marseilles prosecutor.
Explanation: He didn’t have a political or religious background.
Your answer: D

Claim: Several bombs have been placed in the city
Explanation: This is false, why then cause panic and circulate on social media?
Your answer: B

Claim: Police report the threats released by the criminals.
Explanation: The majority threaten to condemn anyone who is a terrorist.
Your answer: D

Claim: #CharlieHebdo attackers shouted ’The Prophet is avenged’.
Explanation: In video showing assassination of officer.walking back to car they shouted: ’we avenged the prophet.We
killed Charlie Hebdo’
Your answer: A

Table 6: Ten representative examples covering diverse explanation styles and veracity labels are selected. These are
included in the final prompt for ChatGPT.

training. All model implementation is done via1121

the pytorch-geometric package (Fey and Lenssen,1122

2019) for graph neural networks.1123

E Current Submission colour-coded for 1124

the changes we have implemented 1125

compared to the previous version of the 1126

manuscript 1127

Red stands for removed material and blue stands 1128

for new additions. 1129
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LLM
Annotator Informative Uninformative

ChatGPT

Informative 169 107
Uninformative 81 143

ChatGPT 0613

Informative 236 104
Uninformative 114 146

GPT-4

Informative 160 30
Uninformative 190 220

Table 7: Confusion Matrices for ChatGPT, ChatGPT
0613 and ChatGPT-4 for the task of Informativeness
Detection

LLM
Annotator True False Unverified

ChatGPT

True 105 3 4
False 12 18 5

Unverified 58 3 61

ChatGPT 0613

True 114 3 8
False 10 10 6

Unverified 26 8 51

GPT-4

True 78 0 2
False 10 10 9

Unverified 7 84 40

Table 8: Confusion Matrices for ChatGPT, ChatGPT
0613 and ChatGPT-4 for the task of Veracity Prediction
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Explanation T = 0 T = 0.2 T = 0.4 T = 0.6 T = 0.8 T = 1

@TorontoStar Ok, time to take it to the ***mus-
lims. Look out Allah, here comes the revenge.
***.

D,D,D D,D,D D,D,D D,D,D D,D,D D,D,D

Soldier dies from shooting in Ottawa and Par-
liament Hill is in lockdown. The majority think
the media is wrong to report that Parliament Hill
was in lockdown and that the lockdown was a
ploy to target Muslims.

B,B,B B,B,B B,B,B B,B,B B,B,B B,B,B

Cdn soldier dies from shooting dead in Ottawa.
The majority are sceptical about the news of the
shooting and some are questioning where the
confirmation is coming from.

C,C,C C,C,C C,C,C C,C,C C,C,C C,C,C

Cdn soldier dies from shooting in Ottawa and
Parliament Hill is in lockdown. Most users ask
where the news of the gunman is and are won-
dering who is responsible for his death. Many
of the responses use humour and irony, such as:
’I don’t think the soldier is dead’.

C,C,C C,A,C C,C,C C,C,C C,A,A C,C,A

Table 9: Labels output by ChatGPT for each explanations across 3 different runs.
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Generating Zero-shot Abstractive Explanations for Rumour Verification

Anonymous ACL submission

Abstract

The task of rumour verification in social me-001
dia concerns assessing the veracity of a claim002
on the basis of conversation threads that result003
from it. While previous work has focused on004
predicting a veracity label, here we reformu-005
late the task to generate model-centric free-text006
explanations of a rumour’s veracity. The ap-007
proach is model agnostic in that it generalises008
to any model. Here we propose a novel GNN-009
based rumour verification model. We follow a010
zero-shot approach by first applying post-hoc011
explainability methods to score the most impor-012
tant posts within a thread and then we use these013
posts to generate informative explanations us-014
ing opinion-guided summarisation. To evalu-015
ate the informativeness of the explanatory sum-016
maries, we exploit the few-shot learning capa-017
bilities of a large language model (LLM). Our018
experiments show that LLMs can have similar019
agreement to humans in evaluating summaries.020
Importantly, we show explanatory abstractive021
summaries are more informative and better re-022
flect the predicted rumour veracity than just023
using the highest ranking posts in the thread. 1024

1 Introduction025

Evaluating misinformation on social media is a026

challenging task that requires many steps (Zubiaga027

et al., 2016): detection of rumourous claims, iden-028

tification of stance towards a rumour, and finally029

assessing rumour veracity. In particular, misinfor-030

mation may not be immediately verifiable using re-031

liable sources of information such as news articles032

since they might not have been available at the time033

a rumour has emerged. For the past eight years, re-034

searchers have focused on the task of automating035

the process of rumour verification in terms of as-036

signing a label of true, false, or unverified (Zubiaga037

et al., 2016; Derczynski et al., 2017). However,038

recent work has shown that while fact-checkers039

1A sample of generated explanations and code are provided.
Colour-coded changes of the revised paper are in A. E.

Figure 1:
::::::::
Example

::
of

::
a
::::::::
PHEME

::::::
thread

:::
for

::::::
which

::
the

::::::
claim

::
is

::::::::
predicted

::
to

:::
be

:::::::::
unverified

::
by

::::
our

::::::
model.

:::
Our

::::::::
proposed

::::::::
pipeline

::::
first

:::::::::
identifies

::::::
replies

::::::
which

::::
agree

:::
or

:::::::
disagree

::::
with

::::
the

:::::
model

:::::::::
prediction

::::
and

::::
then

:::::::::
summarises

:::
the

::::::
former

::::
ones

::
to
::::::::
generate

::
an

::::::::::
explanation

::
for

:::
the

:::::::
model’s

:::::::::
prediction.

agree with the urgent need for computational tools 040

for content verification, the output of the latter can 041

only be trusted if it is accompanied by explanations 042

(Procter et al., 2023). 043

Thus, in this paper, we move away from black- 044

box classifiers of rumour veracity to generating 045

explanations written in natural language (free-text) 046

for why, given some evidence, a statement can be 047

assigned a particular veracity status
:::
(see

:::::::
Figure 048

::
1). This has real-world applicability particularly 049

in rapidly evolving situations such as natural disas- 050

ters or terror attacks (Procter et al., 2013), where 051

the explanation for an automated veracity decision 052

is crucial (Lipton, 2018). To this effect, we use a 053

popular benchmark, the PHEME (Zubiaga et al., 054

2016) dataset, to train a rumour verifier and em- 055

1



ploy the conversation threads that form its input to056

generate model-centric explanation summaries of057

the model’s assessments.058

Atanasova et al. (2020), Kotonya and Toni059

(2020) and Stammbach and Ash (2020) were the060

first to introduce explanation summaries for fact-061

checking across different datasets. Kotonya and062

Toni (2020) provided a framework for creating ab-063

stractive summaries that justify the true veracity064

of the claim in the PUBHealth dataset, similarly065

to Stammbach and Ash (2020) who augment the066

FEVER (Thorne et al., 2018) dataset with a cor-067

pus of explanations. Atanasova et al. (2020) pro-068

posed a jointly trained system that produces verac-069

ity predictions as well as explanations in the form070

of extracted evidence
:::
and

::::::::::::
explanations

:::::::::
extracted071

from ruling comments on the LIAR-PLUS dataset072

(Alhindi et al., 2018). The approach in (Kotonya073

and Toni, 2020) results in explanatory summaries074

that are, however, not faithful to the model, while075

Atanasova et al. (2020) requires a supervised ap-076

proach. Our goal is to create a novel zero-shot077

method for abstractive explanations that explain078

the rumour verification model’s predictions. We079

make the following contributions:080

• We introduce a zero-shot framework for gen-081

erating abstractive explanations using opinion-082

guided summarisation for the task of rumour ver-083

ification. To the best of our knowledge, this is the084

first time free-text explanations are introduced085

for this task.086

• We investigate the benefits of using a gradient-087

based algorithm and a game theoretical algorithm088

to provide explainability.089

• While our explanation generation method is gen-090

eralisable to any verification model, we introduce091

a novel graph-based hierarchical approach.092

• We evaluate the informativeness of several expla-093

nation baselines, including model-independent094

and model-dependent ones stemming from the095

highest scoring posts by providing them as in-096

put to a few-shot trained large language model.097

Our results show that our proposed abstractive098

model-centric explanations are
::
on

:::::::
average

:
more099

informative in 77% of the cases as opposed to100

49% for all other baselines.101

• We provide both human and LLM-based evalua-102

tion of the generated explanations, showing that103

LLMs achieve sufficient agreement with humans,104

thus allowing scaling of the evaluation of the105

explanatory summaries in absence of gold-truth106

explanations.107

2 Related Work 108

Explainable Fact Checking Following the ex- 109

ample of fact-checking organisations (e.g., Snopes, 110

Full Fact, Politifact), which provide journalist- 111

written justifications to determine the truthfulness 112

of claims, recent datasets augmented with free- 113

text explanations have been constructed: LIAR- 114

PLUS (Alhindi et al., 2018), PubHealth (Kotonya 115

and Toni, 2020), AVeriTeC (Schlichtkrull et al., 116

2023). A wide range of explainable outputs and 117

methods have been proposed: theorem proofs (Kr- 118

ishna et al., 2022), knowledge graphs (Ah- 119

madi et al., 2019), question-answer decomposi- 120

tions (Boissonnet et al., 2022; Chen et al., 2022), 121

reasoning programs (Pan et al., 2023), deployable 122

evidence-based tools (Zhang et al., 2021b) and sum- 123

marisation (Atanasova et al., 2020; Kotonya et al., 124

2021; Stammbach and Ash, 2020; Kazemi et al., 125

2021; Jolly et al., 2022). We adopt summarisation 126

as our generation strategy as it fluently aggregates 127

evidence from multiple inputs and has been proven 128

effective in similar works which we discuss next. 129

Explainability as Summarisation Atanasova 130

et al. (2020) and Kotonya and Toni (2020) lever- 131

aged large-scale datasets annotated with gold jus- 132

tifications to generate supervised explanations for 133

fact-checking, while Stammbach and Ash (2020) 134

used few-shot learning on GPT-3 to create the e- 135

FEVER dataset of explanations. Similar to (Stamm- 136

bach and Ash, 2020), Kazemi et al. (2021) also 137

leveraged a GPT-based model (GPT-2) to gener- 138

ate abstractive explanations, but found that that 139

their extractive baseline, Biased TextRank, out- 140

performed GPT-2 on the LIAR-PLUS dataset (Al- 141

hindi et al., 2018). Jolly et al. (2022) warn that 142

the output of extractive explainers lacks fluency 143

and sentential coherence, which motivated their 144

work on unsupervised post-editing using the ex- 145

planations produced by Atanasova et al. (2020). 146

Our approach is different from the above as we 147

derive our summaries from microblog content (as 148

opposed to news articles as done by Atanasova et al. 149

(2020); Stammbach and Ash (2020); Kazemi et al. 150

(2021); Jolly et al. (2022), and only use the subset 151

of posts relevant to the model’s decision to inform 152

the summary (rather than summarising the whole 153

input as in (Kotonya and Toni, 2020; Kazemi et al., 154

2021). Moreover, we rely on a zero-shot generation 155

approach without gold explanations, contrary to 156

(Atanasova et al., 2020; Kotonya and Toni, 2020). 157

2



Figure 2: Framework of our proposed approach to obtain faithful generated explanations for the rumour verification
model

::::::
verifier. It explains the process of explanation generation, where the weights from a model are passed

through an explainer algorithm to identify important input nodes, which are then filtered and used in abstractive
summarisation.

LLMs as evaluators Having generated explana-158

tory summaries the question arises as to how to159

evaluate them at scale. LLMs have been employed160

as knowledge bases for fact-checking (Lee et al.,161

2020; Pan et al., 2023), as explanation generators162

for assessing a claim’s veracity (Stammbach and163

Ash, 2020; Kazemi et al., 2021) and, as of recently,164

as evaluators in generation tasks. Most works fo-165

cused on assessing the capability of LLM-based166

evaluation on summarisation tasks, either on long167

documents (Wu et al., 2023) or for low-resource168

languages (Hada et al., 2023). While there is work169

focusing on reducing positional bias (Wang et al.,170

2023b) and costs incurred (Wu et al., 2023) for us-171

ing LLM-based evaluators, our evaluation is most172

similar to Liu et al. (2023a); Shen et al. (2023); Chi-173

ang and Lee (2023), who study the extent of LLM-174

human agreement in evaluations of fine-grained175

dimensions, such as fluency or consistency. We176

believe we are the first to use an LLM-powered177

evaluation to assess the informativeness and faith-178

fulness of explanations for verifying a claim.179

3 Methodology180

Our methodological approach (Figure 2) consists181

of three individual components: i) training a ru-182

mour verification model; ii) using a post-hoc ex-183

plainability algorithm; iii) generating summary-184

explanations. The approach to explanation genera-185

tion is zero-shot and model-agnostic.186

We demonstrate our approach on PHEME (Zubi-187

aga et al., 2016), a widely used benchmark dataset188

for classifying social media rumours into either189

unverified, true or false. It contains conversation190

threads that cover 5 real-world events such as the191

Charlie Hebdo attack and the Germanwings plane192

crash. We adopt the same leave-one-out testing193

as previous works (Dougrez-Lewis et al., 2022)194

which favours real-world applicability as the model195

is tested on new events not included in the test 196

data
::::::
training. 197

Task Formulation For a model trained on ru- 198

mour verification M, an attribution-based expla- 199

nation method E , and a rumourous conversation 200

thread consisting of posts T = {p1, ...pl} with 201

embeddings {x1, ...xl} ⊂ Rn, we define the post 202

importance as a function f(M,E) : T → R. 203

f(M,E)(pi) =
n∑

j=1

E(M, xi)j =
n∑

j=1

eij (1) 204

where ei ∈ Rn is the attribution vector for embed- 205

ding xi of post pi such that each value eij corre- 206

sponds to the weight of feature xij assigned by the 207

explainer algorithm E . 208

The summary is generated from the subset of 209

posts that are most important for the model pre- 210

diction, i.e., I = {pi | f(M,E)(pi) > 0}. Note a 211

thread will contain posts that agree with the pre- 212

diction (positive importance scores) and posts that 213

disagree (negative importance scores). 214

3.1 Rumour Verification Model 215

Our explanation generation method is applicable to 216

any rumour verification model, but here we chose 217

an approach based on graph neural networks (See 218

Figure 3), which caters for a flexible information 219

structure combining information in the conversa- 220

tion thread with information about stance. This is 221

the first time a GNN-based model enriched with 222

stance has been proposed for PHEME. 223

Structure-Aware Model Structure-aware mod- 224

els such as tree-based and graph-based are among 225

the best performing for rumour verification (Kochk- 226

ina et al., 2018; Bian et al., 2020; Kochkina et al., 227

2023), given that the task heavily relies on user in- 228

teractions for determining veracity. Our approach 229

3



Figure 3: Architecture of our
::::::::::
GNN-based

:
rumour verification model

::::::
verifier

:
enhanced with structure-aware

:::::::
structure and stance-aware componentsbased on graph neural networks. In the diagram, :

:
Propagation/Dispersion

/Dispersion represent the outputs of each respective component, while Propagation*/Dispersion* represent the
stance-enriched outputs of these.

models the conversation thread as a graph, where230

interactions between posts manifest as propagation231

(top-down) and dispersion (bottom-up) flows sim-232

ilar to Bian et al. (2020). The architecture con-233

tains GraphSage (Hamilton et al., 2017) layers,234

proven to yield meaningful node representations,235

followed by GAT (Veličković et al., 2018) layers,236

which are shown to improve performance in similar237

tasks (Kotonya et al., 2021; Zhang et al., 2021a; Jia238

et al., 2022). Sentence Transformers embeddings239

(Reimers and Gurevych, 2019) are used to initialise240

the node representations in the graphs. The propa-241

gation and dispersion component outputs are each242

concatenated with the output of a stance compo-243

nent and pooled, resulting in another concatenated244

representation to which a final multi-head attention245

layer (Vaswani et al., 2017) is applied.246

Stance-Aware Component Stance detection247

is closely linked to misinformation detection248

(Hardalov et al., 2022) with previous work hav-249

ing shown that a joint approach improves rumour250

verification (Zubiaga et al., 2016; Derczynski et al.,251

2017; Gorrell et al., 2019; Yu et al., 2020; Dougrez-252

Lewis et al., 2021). As such our model includes a253

stance component unlike the GNN by Bian et al.254

(2020). Since only a small portion of the PHEME255

dataset is annotated with gold stance labels for the256

RumourEval competition (Derczynski et al., 2017),257

we generate silver labels for the whole corpus. In258

particular, we train a RoBERTa model (Liu et al.,259

2019) for stance classification and extract the em-260

beddings from the last hidden layer to augment the261

rumour verification task with stance information.262

See Appendix D for experimental setup.263

Performance of
::::::::
Ablation

::::::::
study

::::
for

:::
Ru-264

mour Verification BaselinesWe include the265

performance
:::::::
Verifier

:::
We

:::::::::
include

::
a
:::::::

short266

:
F

:
C

:
O

:
G

:
S

:
F1

::::
Model

:::
w/o

::::
stance

::
&

::::::
dispersion :::

.235
:::
.241

:::
.281

:::
.372

:::
.371

:::
.360

::::
Model

::
w/o

::::
stance

:::
.228

:::
.267

:::
.300

:::
.333

:::
.293

:::
.405

::::
Model

:::
with

::::
stance

::
&

::::::
dispersion :::

.208
:::
.341

:::
.313

:::
.403

:::
.358

:::
.434

::::
SAVED

:::::::::::::::::
(Dougrez-Lewis et al., 2021)

:::
.372

:::
.351

:::
.304

:::
.281

:::
.332

:::
.434

Table 1:
:::::::
PHEME

::::::
results

::::
for

::::
each

:::::
fold

:::
and

:::::::
overall

:::::::
reported

:::
as

::::::::::::::
macro-averaged

:::
F1

:::::::
scores.

:::::
The

:::::
fold

:::::::::::
abbreviations

:::::
stand

::::
for

:::::::::
Ferguson,

::::::::
Charlie

:::::::
Hebdo,

::::::
Ottawa

:::::::::
Shooting,

::::::::::::
Germanwings

::::::
Crash

::::
and

:::::::
Sydney

::::
Siege

.

:::::::
ablation

::::::
study

:
of our proposed baselines , the 267

structure-aware model and its stance-aware 268

version, in Table 1. 269

As expected, integrating stance knowledge 270

into the model boosts
:::::::::
removing

:::::
both

::::::
stance

::::
and 271

::::::::
structure

::::::::::
knowledge

:::::
from

:::
the

::::::
model

::::::::
degrades

:
per- 272

formance by almost 3
:
7
:

F1-points overallwith 273

improved scores .
::::
The

::::::
model

:::::::::
enhanced

::::
with

:::
all

:::
the 274

:::::::::::
components

:::::::
(stance,

:::::::::::
propagation

::::
and

:::::::::::
dispersion) 275

:::::::::::
outperforms

::
its

::::::::::::
counterparts across the majority of 276

folds; we hypothesise performance does not im- 277

prove for the Ferguson fold due to its severe la- 278

bel imbalance skewed towards unverified rumours. 279

Moreover, we observe that the model enhanced 280

with the stance-aware component
:::
our

:::::::::
complete 281

:::::
model

:
achieves competitive results and is compa- 282

rable to the current state-of-the-art model on the 283

PHEME dataset, the SAVED model by Dougrez- 284

Lewis et al. (2021). 285

3.2 Explaining the Model 286

3.2.1 Attribution Method 287

We experiment with two classes of attribution meth- 288

ods: gradient-based and game-theory-based. For 289

4



gradient-based methods, we choose Integrated Gra-290

dients (IG) (Sundararajan et al., 2017). This is a291

local explainability algorithm that calculates attri-292

bution scores for each input unit by accumulating293

gradients along the interpolated path between a lo-294

cal point and a starting point with no information295

(baseline). IG was selected over other gradient-296

based saliency methods such as DeepLIFT (Shriku-297

mar et al., 2017) as it has been shown to be more298

robust (Pruthi et al., 2022) when applied in classifi-299

cation tasks. Shapley Values (SV) (Štrumbelj and300

Kononenko, 2014) is the representative explain-301

ability method derived from game theory and has302

been used in many applications (Zhang et al., 2020;303

Mosca et al., 2021; Mamta and Ekbal, 2022). Its at-304

tribution scores are calculated as expected marginal305

contributions where each feature is viewed as a306

’player’ within a coalitional game setting.307

Note that we focus on post-hoc methods instead308

of intrinsic ones, such as attention, in our architec-309

ture to keep the framework generalisable to other310

rumour verification models. Specifically, we use311

IG and SV2 as methods for E to calculate the post312

importance f in Equation
:::
Eq 1. This importance313

with respect to model prediction is then leveraged314

to sort the posts within the thread in descending315

order. We then construct subsets of important posts316

Ik ⊂ I such that |Ik| = k%|I| with Ik represent-317

ing the k% most important posts of the rumour318

thread, k = 25, 50, 100. These will be used as319

inputs for summarisation in the next stage to de-320

termine the trade-off between post importance and321

number of posts necessary to construct a viable322

explanation.323

3.2.2 Summarisation for Explanation324

We propose explanation baselines spanning dif-325

ferent generation strategies: extractive vs abstrac-326

tive, model-centric vs model-independent and in-327

domain vs out-of-domain.328

Extractive Explanations329

• Important Response: the response within330

the thread scored as most important by331

each attribution method. This is a model-332

dependentexplanation.333

• Similar Response: the response within the thread334

most semantically similar to the source claim, as335

scored by SBERT (Reimers and Gurevych, 2019).336

This model-independent baseline is inspired by337

(Russo et al., 2023).338

2Used captum package (Kokhlikyan et al., 2020) for both.

Abstractive explanations have a dual purpose 339

that fits the challenging set-up of our pipeline: they 340

serve as a way to aggregate important parts of 341

the thread, and also provide a fluent justification 342

sourced from multiple views to a claim’s veracity. 343

• Summary of I: We summarise the set I of impor- 344

tant posts to obtain a model-centric explanation. 345

We fine-tune BART (Lewis et al., 2020) on the 346

MOS corpus introduced by Bilal et al. (2022) 347

that addresses summarisation of topical groups 348

of tweets by prioritising the majority opinion ex- 349

pressed.
::::
Both

:::::
MOS

::::
and

::::::::
PHEME

:::::
were

::::::::
collected 350

::::
from

::::
the

:::::
same

:::::::::
platform,

:::::::
Twitter.

::
We hypothe- 351

sise this template-guided3 approach will satisfy 352

the explanatory purpose since user opinion is an 353

important indicator for assessing a claim’s verac- 354

ity in rumour verification (Hardalov et al., 2022). 355

Similarly, we define explanations Summary of 356

I25& Summary of I50:,:::
I50. 357

• Out-of-domain Summary: We use the BART 358

(Lewis et al., 2020) pre-trained on the CNN/ 359

Daily Mail (Nallapati et al., 2016) dataset without 360

any fine-tuning and summarise the entire thread. 361

This yields a model-independent explanation. 362

We note that while supervised summarisation is 363

used to inform our generation strategy, our result- 364

ing explanations never rely on gold explanations 365

annotated for the downstream task of fact-checking. 366

In fact, neither MOS (Bilal et al., 2022) nor the 367

CNN/Daily Mail (Nallapati et al., 2016) datasets 368

were aimed for fact-checking and both focus on 369

broad topics unrelated to the PHEME claims. 370

4 Automatic Evaluation of Explanation 371

Quality 372

As the PHEME dataset lacks gold standard explana- 373

tions to compare against, we prioritise the extrinsic 374

evaluation of the generated explanations with re- 375

spect to their usefulness in downstream tasks. This 376

is similar to work on explanatory fact-checking 377

(Stammbach and Ash, 2020; Krishna et al., 2022). 378

In particular, we use the criterion of informative- 379

ness defined by Atanasova et al. (2020) as the abil- 380

ity to deduce the veracity of a claim based on the ex- 381

planation. If the provided explanation is not indica- 382

tive of any veracity label(true, false, or unverified), 383

:
, the explanation is considered uninformative. Oth- 384

erwise, we compare the veracity suggested by the 385

explanation to the prediction made by the model. 386

3The template summary takes the form: Main Story +
Majority Opinion expressed in the thread.
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This enables the evaluation of the explanation’s387

fidelity to the model and is one of the main ap-388

proaches to assess explanatory faithfulness in the389

research community (Jacovi and Goldberg, 2020).390

:::::::::::::::::::::::::
(Jacovi and Goldberg, 2020)

:
.391

We devise a novel evaluation strategy for captur-392

ing the informativeness of generated explanations393

based on LLMs. This is motivated by recent work394

demonstrating the effectiveness of LLMs as zero395

shot reasoners and judges for various tasks (Ko-396

jima et al., 2022; Chen, 2023; Chan et al., 2023;397

Zheng et al., 2023), including as a zero-shot evalu-398

ator for summarisation outputs (Liu et al., 2023b;399

Shen et al., 2023; Wang et al., 2023a; Liu et al.,400

2023a). We use OpenAI’s gpt-3.5-turbo-03014,401

hereinafter referred to as ChatGPT, which is a402

snapshot of the model from 1 March 2023 that403

will not receive updates – this should encourage404

the reproducibility of our evaluation. We follow405

a multiple-choice setting in the prompt similar to406

Shen et al. (2023). Our initial experiments con-407

firmed previous findings (Brown et al., 2020) that408

GPT reasoning can be improved by including a409

few annotated representative examples of the eval-410

uation within its prompt (See Appendix 5
::::
(See411

:::::
Appx.

:
A). We experimented with several prompt412

designs varying in level of detail (no justification413

of answer, no examples) and found that the most414

exhaustive prompt yielded best results. The final415

task instructions used for the prompt are in Table 5.416

417

We ran a pilot study (See Appendix C) to es-418

tablish which temperature setting yields the most419

robust LLM evaluation. To account for any non-420

deterministic behaviour, the experiment was run421

three times. We find the results remain 100% con-422

sistent across runs for temperature 0. As this is423

in line with the settings used in similar works em-424

ploying LLMs as evaluators (Shen et al., 2023),425

we also use this value for our experiment. Each426

request is sent independently via the Open AI API.427

Since using an LLM evaluator allows us to scale428

our evaluation (Chiang and Lee, 2023), we use all429

suitable PHEME threads6 (i.e. 1233 / 2107 threads)430

4Used GPT-3.5-turbo due to its lower running costs com-
pared to GPT-4.

:::
This

:
is
::
a

::::::
snapshot

::
of

:::
the

:::::
model

:::
from

::
1
:::::
March

::::
2023

:::
that

:::
will

:::
not

:::::
receive

::::::
updates

:
–
:::
this

:::::
should

::::::::
encourage

:::
the

:::::::::::
reproducibility

::
of

::
our

:::::::::
evaluation.

5
:::
We

::::::::::
experimented

:::
with

::::::
several

:::::
prompt

::::::
designs

::::::
varying

::
in

:::
level

:::
of

::::
detail

:::
(no

:::::::::
justification

::
of

::::::
answer,

:::
no

::::::::
examples)

:::
and

::::
found

:::
that

:::
the

::::
most

::::::::
exhaustive

::::::
prompt

:::::
yielded

::::
best

:::::
results

6Suitable defined as at least ten posts and the majority are
non-empty after URL and user mentions are removed.

for testing. This set-up foregoes the costs neces- 431

sary to obtain a diverse manually-annotated test set 432

and offers more statistical power to the results as 433

recommended by Bowman and Dahl (2021). 434

5 Results and Discussion 435

The results are shown in Table 2. 436

Uninformative Unfaithful Faithful

Extractive Explanations

Important Response (IG) 67.23 21.33 11.44
Important Response (SV) 65.29 22.30 12.41
Similar Response 30.98 43.88 25.14

Abstractive Explanations

Summary of I25 (IG) 23.68 46.55 29.76
Summary of I25 (SV) 22.95 48.50 28.55
Summary of I50 (IG) 22.11 46.47 30.41
Summary of I50 (SV) 23.60 47.20 29.20
Summary of I (IG) 24.90 48.58 26.52
Summary of I (SV) 23.60 48.90 27.49
Out-of-domain Summary 39.17 38.28 22.55

Table 2: Explanation evaluation wrt model prediction
(%). If the explanation cannot be used to infer a veracity
label for the claim, it is uninformative. Otherwise, the
explanation is faithful if its label coincides with the
prediction and unfaithful if not. Best scores are in bold.

Model-centric vs Model-independent We note 437

that the explanations Out-of-domain Summary and 438

Similar Response are independent of the rumour 439

verification model built in section 3.1 as they are 440

not produced by any of the post-hoc algorithms. 441

Hence, while these are not expected to be faithful, 442

we analyse how they compare in informativeness to 443

the other model-centric explanations. We find that 444

abstractive explanations (Summaries of I25, I50, 445

I) informed by the rumour verifier are the most 446

informative of all. Thus, summarising a selection 447

of important posts learned during the rumour ver- 448

ification process yields a better explanation than 449

relying on individual replies or summarising the 450

whole thread. 451

Integrated Gradients vs Shapley Values The 452

summaries generated via IG achieve better scores 453

than the SV ones in both informativeness and faith- 454

fulness. While SV initially provides a better Im- 455

portant Response, it fails to detect other important 456

posts within the thread as suggested by the scores 457

for I25 and I50. Moreover, the time complexity 458

for the SV algorithm is exponential as its sampling 459

strategy increases proportionately with the num- 460

ber of perturbed input permutations. We note the 461

average computation time for both algorithms to 462

assess a thread of 15 posts: 0.5s for IG and 2011s 463
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:::
Claim
Update from Ottawa: Cdn soldier dies from shooting -Parliamentary guard wounded
Parliament Hill still in lockdown URL

:::::
Prediction

:
:
:::::
Unverified

::::::
Explanation

::::::
Summaries

Important Response: @TorontoStar Ok, time to take it to the *** muslims. Look out
Allah, here comes the revenge. ***. (Uninformative)
Similar Response: #AttackinOttawa @TorontoStar: Update Cdn soldier dies from
shooting -Parliamentary guard wounded Parliament Hill still in lockdown URL (True)

Summary of I25 (IG): Soldier dies from shooting in Ottawa and Parliament Hill is in
lockdown. The majority think the media is wrong to report that Parliament Hill was in
lockdown and that the lockdown was a ploy to target Muslims. (False)

Summary of I50 (IG): Cdn soldier dies from shooting dead in Ottawa. The majority are
sceptical about the news of the shooting and some are questioning where the confirmation
is coming from. (Unverified)
Summary of I (IG): Cdn soldier dies from shooting in Ottawa and Parliament Hill is in
lockdown. Most users ask where the news of the gunman is and are wondering who is
responsible for his death. Many of the responses use humour and irony, such as: ’I don’t
think the soldier is dead’. (Unverified)
Out-of-domain Summary: Update from Ottawa: -Cdn soldier dies from shooting
-Parliamentary guard wounded. It looks like confirmations are coming in now. I don’t
think the soldier is dead. (Unverified)

Table 3:
::::::::
Example

:::::::::::
explanation

::::::::::::
summaries.

::::::::::::::::
Manually-annotated

:::::
red

::::::::::
highlights

::::::::
explain

:::::
the

:::::
model

:::::::::
prediction

::::
for

::::
the

:::::
given

::::::
claim.

:::::::::::
ChatGPT

:::::::::
evaluations

:::
are

::
in

::
().

for SV. This makes IG a more suitable algorithm464

with respect to both performance and running time.465

Extractive Explanation The best extractive466

baseline is the Similar Response, which selects467

the closest semantic match from the thread to the468

claim. Followed by are model-centric baselines469

Important Response for both IG and SV, lagging470

behind by a large margin. We investigate the reason471

behind this performance by checking the stance472

labels of the corresponding posts. Using the la-473

belled data from Derczynski et al. (2017), we train474

a binary RoBERTa to identify comments and non-475

comments7 where a comment is defined as a post476

that is unrelated or does not contribute to a ru-477

mour’s veracity. We find that 64% of posts corre-478

sponding to Important Response labelled as unin-479

formative are also classified as comments, much480

higher than 47% for Similar Response. This ex-481

plains why semantic similarity can uncover a more482

relevant explanation than the Important Response483

alone. Still, this method suffers from ’echoing’ the484

claim 8, which risks missing out on other important485

information found in the thread (see Table 3).486

Abstractive Explanation The abstractive expla-487

nations are shown to be considerably more in-488

formative than most extractive baselines. They489

7The original task is a 4-way classification of posts into
one of the stance labels: support, deny, query, or comment.
This is simplified by aggregating the first three labels into one.

8The majority of informative Similar Responses are classi-
fied as supporting the claim.

have the advantage of aggregating useful informa- 490

tion that appears later in the conversation. For 491

instance, the abstractive explanations in Table 3 492

indicate posters’ doubt and requests for more de- 493

tails. Furthermore, using an opinion-driven sum- 494

mariser is better for constructing a more informa- 495

tive summary-explanation than other options (See 496

Sec. 3.2). We have also investigated the degree of 497

information decay in relation to the number of posts 498

used for summary construction in model-centric ex- 499

planations. In Table 2, the summary based on the 500

first half of important posts (I50) yields the most 501

informative and faithful explanation for both al- 502

gorithms, closely followed by the I25 one. The 503

worst-performing model-centric explanation is that 504

generated from the whole set of important replies 505

(I). We calculate the cumulative importance score 506

of these data partitions and note I25 and I50 con- 507

tain 75% and 93% respectively of the thread’s total 508

importance. This suggests the remaining second 509

half of the importance-ordered thread offers little 510

relevant information towards the model’s decision. 511

6 Human Evaluation of LLM-based 512

Evaluators 513

Agreement Informativeness Detection Veracity Prediction

Ann - Ann 82% 88%

Ann - ChatGPT 69% 68%

Ann - ChatGPT 0613 64% 74%

Ann - GPT-4 63% 80%

Table 4: Pairwise agreement scores for the overlap be-
tween the evaluations of the annotators (Ann) and the
LLM. The LLMs are: ChatGPT ("gpt-3.5-turbo-0301"),
ChatGPT 0613 ("gpt-3.5-turbo-0613") and GPT-4. The
evaluations are conducted for two tasks: informative-
ness detection and veracity prediction.

Our human evaluation study has two goals: 1) 514

quantify the evaluation capability of ChatGPT, the 515

LLM employed in our experiments in Sec. 5 to 516

assess automatic explanations and 2) investigate 517

the performance of ChatGPT against more recently- 518

published LLMs. The results are in Table 4. 519

We ran a pilot study on 50 threads randomly 520

sampled, such that each fold and each label type 521

is equally represented for a fair evaluation of the 522

LLM performance. We follow a similar evalua- 523

tion setup to the work of (Atanasova et al., 2020), 524

who study whether their generated summaries pro- 525

vide support to the user in fact checking a claim. 526

We check the LLM-based evaluation of automatic 527

7



explanations on two tasks: 1. Informativeness528

Detection, where an Explanation is classified as ei-529

ther informative or uninformative and 2. Veracity530

Prediction, where an Informative Explanation is531

assigned true, false or unverified if it helps deter-532

mine the veracity of the given claim.533

Two Computer Science PhD candidates profi-534

cient in English were recruited as annotators for535

both tasks. Each annotator evaluated the test set of536

explanation candidates, resulting in 300 evaluations537

per annotator. The same guidelines included in the538

prompt from Table 5 and examples from Appendix539

A are used as instructions. Before starting, the540

research team met with the annotators to ensure541

the tasks were understood, a process which lends542

itself to a richer engagement with the guidelines.543

6.1 Evaluation of ChatGPT544

Informativeness Detection In our first human545

experiment (Table 4: first column), we evaluate546

whether ChatGPT correctly identifies an informa-547

tive explanation. We find that the agreement be-548

tween our annotators is 82% which we set as the549

upper threshold for comparison. We note that the550

agreement between human evaluators and Chat-551

GPT consistently remains above the random base-552

line, but experiences a drop. Fleiss Kappa is553

κ = 0.441, which is moderate but higher than554

the agreement of κ = 0.269, 0.345, 0.399 reported555

by Atanasova et al. (2020) for the same binary556

setup. After examining the confusion matrix for557

this task (See Appendix B), it is observed that most558

mismatches arise from false positives - ChatGPT559

labels an Explanation as informative when it is not.560

Finally, we find this type of disagreement occurs in561

instances when the rumour is a complex claim, i.e.,562

a claim with more than one check-worthy piece of563

information within it. As suggested by Chen et al.564

(2022), the analysis of complex real-world claims565

is a challenging task in the field of fact checking566

and we also observe its impact on our LLM-based567

evaluation for rumour verification.568

Veracity Prediction In our second human exper-569

iment (Table 4: second column), we evaluate if570

ChatGPT correctly assigns a veracity label to an571

Informative explanation. Again, we consider 88%,572

the task annotator agreement to be the upper thresh-573

old. Despite the more challenging set-up (ternary574

classification instead of binary), the LLM main-575

tains good agreement: Fleiss Kappa κ = 0.451576

(again higher than those of Atanasova et al. (2020)577

for the multi-class setup κ = 0.200, 0.230, 0.333). 578

Manual inspection of the disagreement cases re- 579

veals that the most frequent error type (58 / 75 mis- 580

labelled cases exhibit this pattern - See Appendix 581

B) is when ChatGPT classifies a rumour as unveri- 582

fied based on the Explanation, while the annotator 583

marks it as true. We hypothesise that an LLM fails 584

to pick up on subtle cues present in the explanation 585

that are otherwise helpful for deriving a veracity 586

assessment. For instance, the Explanation "I think 587

channel 7 news is saying he [the hostage-taker] is 588

getting agitated bcoz of it [the hostage’s escape], 589

its time to go in." implies that the escape indeed 590

took place as validated by Channel 7; this cue helps 591

the annotator assign a true label to the correspond- 592

ing claim "A sixth hostage has escaped from the 593

Lindt cafe in Sydney!". 594

We acknowledge the limitations of using an 595

LLM as an evaluator, which reduces the richness 596

of annotator interaction with the task, but show 597

through our human evaluations that good agree- 598

ment between an LLM and humans can still be 599

achieved. This not only allows the scaling of fi- 600

nal results to the entire dataset instead of being 601

confined to a small test set (See Sec. 4), but also 602

provides an automated benchmarking of generated 603

explanations when the ground truth is missing. 604

6.2 Comparison to other LLMs 605

As ChatGPT is a closed-source tool continually 606

updated by its team, it is important to investigate 607

how ChatGPT-powered evaluations are influenced 608

by the release of newer versions of the same lan- 609

guage model or by substitution with improved mod- 610

els. To this effect, we compare the legacy version 611

of ChatGPT released on 1 March 2023 with its 612

more recent version, ChatGPT 0613 (released on 613

13 June 2023) and finally with GPT-4, a multi- 614

modal model equipped with broader general knowl- 615

edge and more advanced reasoning capabilities. 616

We note that that while there are differences 617

between the labels produced by the two versions, 618

there is a higher agreement with human judgement 619

for the newer snapshot ChatGPT 0613 when as- 620

sessed on the more complex task of veracity pre- 621

diction. A similar behaviour is observed for GPT-4, 622

whose performance is the most aligned with hu- 623

man judgment in the second task. After examining 624

the error patterns (See Appendix B), we observe a 625

notable difference between ChatGPT-based mod- 626

els and GPT-4: while both temporal snapshots of 627

ChatGPT tend to evaluate irrelevant explanations 628
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as informative (See Sec. 6.1), GPT-4 suffers from629

assigning too many false negatives. This implies630

the existence of a positive bias for ChatGPT models631

and a negative bias for GPT-4.632

Based on our limited findings, we hypothesise633

that more recent models have the potential to be634

more reliable evaluators of explanations than older635

models, given their higher agreement with human636

annotators. However, the model choice needs to637

be grounded into the task requirements (i.e., which638

errors should be prioritised) and availability of com-639

putational costs (at the moment of writing GPT-4640

is 20x more expensive than ChatGPT).641

7 Conclusions and Future Work642

We presented a novel zero-shot approach for gener-643

ating abstractive explanations of model predictions644

for rumour verification. Our results showed abstrac-645

tive summaries constructed from important posts646

scored by a post-hoc explainer algorithm can be647

successfully used to derive a veracity prediction648

given a claim and significantly outperform extrac-649

tive and model-independent baselines. We also650

found using an LLM-based evaluator for assessing651

the quality of the generated summaries yields good652

agreement with human annotators for the tasks of653

informativeness detection and veracity prediction.654

In future work, we plan to jointly train the ve-655

racity prediction and explanation generation and656

assess how an end-to-end approach impacts the657

quality of resulting explanations. Additionally, we658

aim to enrich the explanations by incorporating ex-659

ternal sources of information such as PHEMEPlus660

(Dougrez-Lewis et al., 2022). Another direction is661

generating fine-grained explanations for addressing662

all check-worthy aspects within complex claims.663

Limitations664

Summarisation of threads The format of the665

conversation threads is challenging to summarise.666

Our approach to summarisation is to flatten the667

conversation tree and to concatenate the individual668

posts, which are then used as an input to a BART669

model. This approach is naïve as the meaning of670

the nested replies can be lost if considered indepen-671

dently of the context. We posit that a graph-based672

neural summariser capable of encoding both the673

hierarchy of posts and their information as nodes674

in a graph, would benefit the summarisation of mi-675

croblog opinions. A relevant approach has been676

proposed by Wang et al. (2020) for extractive sum-677

marisation of news articles, though this would need 678

to be adapted for the more challenging format of 679

microblog posts and account for the potential topic 680

shifts exhibited by very long threads as seen in Sun 681

and Loparo (2019). 682

Task limitation At the moment, the explanations 683

are constructed exclusively from the information 684

present in the thread. Consequently, the degree of 685

evidence present in a thread is reflected into the 686

explanatory quality of the summary. 687

Complex Claims As seen in the paper, com- 688

plex claims are a challenging subset of rumours 689

to evaluate. Using the heuristic outlined in Chen 690

et al. (2022) to identify complex claims based on 691

verb count, we find that 22% of the claims within 692

PHEME are classified as complex. To generate 693

comprehensive explanations covering each check- 694

worthy aspect within such claims, a re-annotation 695

of PHEME is required which is only labelled at 696

claim-level at the moment. 697

Human Evaluation Evaluation via large lan- 698

guage models is in its infancy. While there have 699

been very encouraging recent results of using it as 700

a viable alternative to human evaluation, these are 701

still early days. It is unclear how much the evalu- 702

ation stability is impacted by prompt design or by 703

substitution with open-source language models. 704

Evaluation criteria for generated output Since 705

our explanations rely on generation mechanisms 706

including automatic summarisers, it is important to 707

acknowledge that there are other evaluation crite- 708

ria native to the generation field which are outside 709

the scope of this paper and have not been covered. 710

We note that since hallucination, redundancy, co- 711

herence and fluency have already been tested in 712

the original works (Lewis et al., 2020; Bilal et al., 713

2022) introducing the summarisers we employ, we 714

prioritised the criteria relevant to explainable fact- 715

checking in the experiments of this paper: infor- 716

mativeness of explanations and faithfulness to pre- 717

dicted veracity label. 718

Ethics Statement 719

Our experiments use PHEME dataset, was given 720

ethics approval upon its original release. However, 721

we note that the dataset contains many instances of 722

hate speech that may corrupt the intended aim of 723

the summaries. In particular, summaries that use 724

the majority of posts within the thread may exhibit 725
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hate-speech content exhibited by parts of the input726

text.727
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A
:::::::::::
Guidelines

:::::
and Examples of

:::
for1100

Assessing the Informativeness of1101

Explanations1102

You will be shown a Claim and an Explanation. The
veracity of the Claim can either be true, false or
unverified. Choose an option from A to D that answers
whether the Explanation can help confirm the veracity
of the Claim.

A: The Explanation confirms the information in the Claim is
true. The Explanation will include evidence to prove the
Claim or show users believing the Claim.

B: The Explanation confirms the information in the Claim is
false. The Explanation will include evidence to disprove the
Claim or show users denying the Claim.

C: The Explanation confirms the information in the Claim is
unverified. The Explanation will state no evidence exists to
prove or disprove the Claim or show users doubting the
Claim.

D: The Explanation is irrelevant in confirming the veracity
of the Claim. The Explanation will not include any mention
of evidence and users will not address the veracity of the
Claim.

:::::
Claim:

:::::::
{claim}

:::::::::
Explanation

:
:
:::::::::::
{explanation}

Table 5:
:::::::
Example

::::
task

::::::::::
instructions

::::
used

::
in
:::

the
:::::::

prompt

::::::::
following

:
a
:::::::::::::
multiple-choice

:::::::
setting.

B Error Analysis of LLM’s performance 1103

as Evaluator 1104

We note that our ChatGPT-human agreement scores 1105

for both tasks are similar or higher to those re- 1106

ported by Zubiaga et al. (2016), who employ crowd- 1107

sourced workers for annotating similar classifica- 1108

tion subtasks on the PHEME dataset: 61.1% for 1109

labelling certainty of rumours and 60.8% for clas- 1110

sifying types of evidence arising from the thread. 1111

We report the performance of ChatGPT, Chat- 1112

GPT 0614 and GPT-4 as evaluators using the man- 1113

ually annotated set of 200
:::
300

:
explanations. The 1114

error analysis is shared via a confusion matrix for 1115

each task: informativeness detection (See Table 7) 1116

and veracity prediction (See Table 8). The results 1117

are reported as counts. 1118

C Pilot Study on Temperature Setting for 1119

ChatGPT 1120

We used the same explanations in Table 4 and ran 1121

a small pilot study to assess how incrementing the 1122

temperature parameter affects the LLM evaluation. 1123

Results are in Table 9. We used increments of 0.2 1124

in temperature and ran the experiment 3 times to 1125

account for the non-deterministic behaviour. Over- 1126

all, the evaluations remain consistent (94% of the 1127

labels output by ChatGPT are the same) across runs 1128
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Claim: Victims were forced to hold a flag on the cafe window.
Explanation: Users believe this is true and point to the released footage.
Your answer: A

Claim: BREAKING: Hostages are running out of the cafe #sydneysiege
Explanation: Some users believe the claim is unverified as Channel 9 did not confirm and some agree that the details of
potential escape should not be disclosed.
Your answer: C

Claim: One of the gunmen left an ID behind in the car.
Explanation: One of the gunmen left an ID behind in the car. The majority deny the ID was found there and point to the
media for blame.
Your answer: B

Claim: Three people have died in the shooting.
Explanation: Three people have died in the shooting. Most users pray the attack is over soon.
Your answer: D

Claim: NEWS #Germanwings co-pilot Andreas Lubitz had serious depressive episode (Bild newspaper) #4U9525
URL LINK
Explanation:Germanwings co-pilot Andrés Lubitz has serious depressive episode. Never trust bild. Users believe that
bild is a fake newspaper and the stories concerned with the suicide of Andreas Lubitz should not be discussed.
Your answer: C

Claim: Snipers set up on National Art Gallery as we remain barricaded in Centre Block on Parliament Hill #cdnpoli.
Explanation: Snipers set up on National Art Gallery as we remain barricaded in Centre Block on Parliament Hill. Most
users are skeptical about the news and await more details.
Your answer: C

Claim: BREAKING: #Germanwings co-pilot’s name is Andreas Lubitz, a German national, says Marseilles prosecutor.
Explanation: He didn’t have a political or religious background.
Your answer: D

Claim: Several bombs have been placed in the city
Explanation: This is false, why then cause panic and circulate on social media?
Your answer: B

Claim: Police report the threats released by the criminals.
Explanation: The majority threaten to condemn anyone who is a terrorist.
Your answer: D

Claim: #CharlieHebdo attackers shouted ’The Prophet is avenged’.
Explanation: In video showing assassination of officer.walking back to car they shouted: ’we avenged the prophet.We
killed Charlie Hebdo’
Your answer: A

Table 6: Ten representative examples covering diverse explanation styles and veracity labels are selected. These are
included in the final prompt for ChatGPT.

and temperature values. In particular, we note that1129

when using temperature 0, the evaluations remain1130

100% consistent and for non-zero temperature, the1131

evaluation only impacts the labelling of the last1132

explanation which is less helpful than previous ex-1133

planation candidates.1134

D Experimental Setup1135

We train the rumour verification model for 3001136

epochs with learning rate 10−5. The training loss1137

is cross-entropy. The optimizer algorithm is Adam1138

(Kingma and Ba, 2015). Hidden channel size is1139

set as 256 for the propagation and dispersion com-1140

ponents and 32 hidden channel size for the stance1141

component. The batch size is 20. For the Graph- 1142

Sage layers, we apply a mean aggreggator scheme, 1143

followed by a relu activation. For the Multi-headed 1144

Attention layer, we use 8 heads. Embeddings gen- 1145

erated by the "all-MiniLM-L6-v2" model from Sen- 1146

tence Transformers (Reimers and Gurevych, 2019) 1147

are used to initialise the node representations in the 1148

graphs. To avoid overfitting, we randomly dropout 1149

an edge in the graph networks with probability 1150

0.1. We use a Nvidia A5000 GPU for our model 1151

training. All model implementation is done via 1152

the pytorch-geometric package (Fey and Lenssen, 1153

2019) for graph neural networks. 1154
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LLM
Annotator Informative Uninformative

ChatGPT

Informative 169 107
Uninformative 81 143

ChatGPT 0613

Informative 236 104
Uninformative 114 146

GPT-4

Informative 160 30
Uninformative 190 220

Table 7: Confusion Matrices for ChatGPT, ChatGPT
0613 and ChatGPT-4 for the task of Informativeness
Detection

LLM
Annotator True False Unverified

ChatGPT

True 105 3 4
False 12 18 5

Unverified 58 3 61

ChatGPT 0613

True 114 3 8
False 10 10 6

Unverified 26 8 51

GPT-4

True 78 0 2
False 10 10 9

Unverified 7 84 40

Table 8: Confusion Matrices for ChatGPT, ChatGPT
0613 and ChatGPT-4 for the task of Veracity Prediction

E Current Submission colour-coded for1155

the changes we have implemented1156

compared to the previous version of the1157

manuscript1158

Red stands for removed material and blue stands1159

for new additions.1160
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Explanation T = 0 T = 0.2 T = 0.4 T = 0.6 T = 0.8 T = 1

@TorontoStar Ok, time to take it to the ***mus-
lims. Look out Allah, here comes the revenge.
***.

D,D,D D,D,D D,D,D D,D,D D,D,D D,D,D

Soldier dies from shooting in Ottawa and Par-
liament Hill is in lockdown. The majority think
the media is wrong to report that Parliament Hill
was in lockdown and that the lockdown was a
ploy to target Muslims.

B,B,B B,B,B B,B,B B,B,B B,B,B B,B,B

Cdn soldier dies from shooting dead in Ottawa.
The majority are sceptical about the news of the
shooting and some are questioning where the
confirmation is coming from.

C,C,C C,C,C C,C,C C,C,C C,C,C C,C,C

Cdn soldier dies from shooting in Ottawa and
Parliament Hill is in lockdown. Most users ask
where the news of the gunman is and are won-
dering who is responsible for his death. Many
of the responses use humour and irony, such as:
’I don’t think the soldier is dead’.

C,C,C C,A,C C,C,C C,C,C C,A,A C,C,A

Table 9: Labels output by ChatGPT for each explanations across 3 different runs.
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