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ABSTRACT

The boundary element method (BEM) provides an efficient numerical framework
for solving multiple scattering problems in unbounded homogeneous domains,
since it reduces the discretization to the domain boundaries, thereby condensing the
computational complexity. The procedure first consists in determining the solution
trace on the boundaries of the domain by solving a boundary integral equation,
after which the volumetric solution can be recovered at low computational cost
with a boundary integral representation. As the first step of the BEM represents the
main computational bottleneck, we introduce PIBNet, a learning-based approach
designed to approximate the solution trace. The method leverages a physics-
inspired graph-based strategy to model obstacles and their long-range interactions
efficiently. Then, we introduce a novel multiscale graph neural network architecture
for simulating the multiple scattering. To train and evaluate our network, we present
a benchmark consisting of several datasets of different types of multiple scattering
problems. The results indicate that our approach not only surpasses existing state-
of-the-art learning-based methods on the considered tasks but also exhibits superior
generalization to settings with an increased number of obstacles. Code available
upon acceptance.

1 INTRODUCTION

Multiple scattering is defined by Martin (2006) as ”the interaction of fields with two or more
obstacles”, as illustrated in fig. 1. The main challenge in such problems lies in the combined effect of
the number of obstacles and their separation distances, as these factors govern the complexity of the
multiple reflections. The boundary element method (BEM) (Bonnet, 1999) is an efficient numerical
method for solving linear partial differential equations (PDEs) such as the one involved in multiple
scattering. Unlike the finite element method (FEM), the BEM reformulates the PDE into a boundary
integral equation (BIE) with unknowns restricted to the problem boundaries. After solving the BIE,
the solution in the volumetric domain is evaluated using the boundary integral representation. Thus,
by reducing the dimensionality of the problem, the BEM can offer significant gains in computational
efficiency and accuracy compared to the FEM for wave propagation problems in unbounded domains.
Within the BEM, the two computational stages have very different costs: solving the BIE on the
boundaries is significantly more expensive than evaluating the boundary integral representation to
recover the volumetric solution.

To reduce the overall computational cost, several learning-based approaches have been proposed
to simulate multiple scattering (Hao et al., 2021; Nair et al., 2025). Taking advantage of the recent
development in neural network architectures for solving PDEs, these approaches rely either on
discretizing the solution domain or on neural fields. Discretization-based methods (Pfaff et al.,
2020; Zhdanov et al., 2025) handle complex geometries and boundary conditions but inherit the
computational cost of traditional solvers. Neural field approaches (Raissi et al., 2019) represent the
solution as a continuous function, allowing inference at arbitrary points, but for complex geometries,
they still rely on conditioning over discretized domains (Serrano et al., 2024; Alkin et al., 2024;
2025). Due to these limitations, learning-based multiple-scattering methods have been restrained to
two-dimensional problems only.

Inspired by methods based on the BEM that learn the boundary solution instead of solving the BIE
to alleviate the BEM bottleneck (Lin et al., 2021; Fang et al., 2024), we propose, PIBNet. It is a
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learning-based method to simulate PDEs that can be solved with the BEM i.e. linear and semi-linear
PDEs. More specifically, in this paper, we address multiple scattering due the inherent challenges
of such problems. We first present a benchmark including simulation datasets that focus on 3D
exterior scattering problems for both Helmholtz and Laplace problems under Dirichlet or Neumann
boundary conditions, as well as meaningful metrics to evaluate the estimated solution. Neural fields,
which have frequently been used to solve similar tasks (Lin et al., 2021; Fang et al., 2024), are not
suitable here due to the presence of multiple disjoint obstacles. Since efficiently capturing long-range
interactions between obstacles is crucial, a natural approach is to explore transformer-based methods
developed for solving PDEs or point cloud processing. However, as shown numerically in section 6.2,
these approaches exhibit limited performance. To improve the accuracy, we propose PIBNet, a
method in which distant interactions are explicitly represented as edges in graphs. To avoid the
computational cost of adding all possible interaction edges, we propose a physics-informed strategy
for connecting distant points, combined with a multiscale message-passing graph neural network
(GNN) that approximate the boundary solution to multiple scattering problems. In contrast to other
message-passing architectures for PDE simulation, such as Lino et al. (2022), the work most closely
related to ours, we strictly apply the principles of U-Net (Ronneberger et al., 2015), thereby increasing
the latent dimensionality at coarser resolutions. To this end, we introduce a node feature expander
that increases the latent dimensionality at coarser resolutions. This approach outperforms existing
state-of-the-art learning-based methods dedicated to solving PDEs. Finally, we show the ability of
our architecture to generalize to environments with up to three times more obstacles than those seen
in the training set. In summary, we propose the following contributions:

1. A benchmark of datasets of exterior Laplace and Helmholtz problems with multiple disjoint
obstacles obtained using the BEM.

2. PIBNet, our method that combines a physics-inspired strategy for modeling long-range
interactions as graphs and a new U-Net-like multiscale GNN architecture for estimating the
boundary solution of the multiple scattering problems.

(a) (b) (c)

Figure 1: Illustrations of the resulting field u (dashed arrows) from the scattering of an incoming
wave uinc (solid arrows) by two obstacles Ω1 and Ω2 (a). In (b), the obstacles are closer to each other
and in (c), there is a third obstacle Ω3. This induces more complex interactions between uinc and
obstacles.

2 PRELIMINARIES ON THE BOUNDARY ELEMENT METHOD

This section provides a comprehensive overview of the boundary element method (BEM) (Bonnet,
1999) through the problem of multiple scattering (Martin, 2006) of an incident wave uinc. Let
Ω =

⋃n
i=1 Ωi ∈ R3 be the union of n closed bounded sets Ωi, 1 ≤ i ≤ n, representing obstacles

that do not intersect. We assume that each set Ωi has a Lipschitz-continuous and piecewise-smooth
boundary Γi and let Γ =

⋃n
i=1 Γi. The homogeneous Helmholtz equation is given by:

{Lu = 0 in R3 \ Ω

u = −uinc on Γ
(1)
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where L = ∆ + k2 with k the wavenumber. We assume the Sommerfeld radiation condition:
lim|x|→∞ |x|

(
∂
∂|x| − ik

)
u(x) = 0 is satisfied, which ensures that no energy is radiated from infinity.

Therefore, the total field is given by utot = u+ uinc.

The BEM relies on a reformulation of eq. (1) as a boundary integral equation. The key ingredient in
this reformulation is the Green’s function G, defined as the solution of LG = δ where δ denotes the
Dirac delta function. For our problem, the variational form of the boundary integral equation can be
defined as follows: ∫

Γ

u(x)q(x)dx =

∫
Γ×Γ

G(x− y)q(x)p(y)dxdy (2)

where q is a test function and p is the unknown. The solution of this equation gives only the trace of
the density p. The second step of the method consists in applying the boundary integral representation
to compute the scattered field in the volume:

u(x) = S(p)(x), x ∈ R3 \ Ω (3)

where S(p)(x) =
∫

Γ
G(x− y)p(y)dy is the single layer potential operator.

After discretization of Γ, eq. (2) becomes a fully populated linear system, with storage and solution
complexities of O(N2) and O(N3), respectively. Instead of direct solvers, iterative solvers such as
GMRES (Saad & Schultz, 1986) are often employed for BIEs. The number of iterations needed
for convergence provides insight into the intrinsic difficulty of the problem, such as the level of
multiple scattering occurring between obstacles in the given configurations. Fast algorithms like the
Fast Multipole Method or Hierarchical Matrices (Chaillat et al., 2008; 2017; Darve, 2000) bring the
complexity of BEM down to linear or quasi-linear, yet the method remains computationally expensive
for parametric investigations involving many configurations or frequency ranges.

The computational bottleneck of the BEM lies in solving the boundary integral equation. Once the
solution trace on the boundary is obtained, the volumetric field can be efficiently reconstructed using
the boundary integral representation. We develop a machine learning model to predict the boundary
solution, allowing us to accelerate the most expensive part of the computation while still recovering
the full volumetric solution.

3 RELATED WORK

3.1 LEARNING AND BOUNDARY ELEMENT METHOD

Many approaches aim to replace the resolution of the BIE with a neural network, since it is the most
computationally demanding part of the BEM. Most of these approaches are conditional neural fields
(Lin et al., 2021; 2023; Qu et al., 2024). In these models, the inputs consist of 2D coordinates of
points on the surface, together with additional information specific to the problem, such as surface
shape parameters or boundary conditions. To improve accuracy, Fang et al. (2024) and Meng et al.
(2024) use a frequency representation for input values with a high variation range. More complex
geometries have also been addressed with GNN in Wang et al. (2025b). Once the solution of the BIE
is returned by the neural network, it can be used to compute the solution of the original PDE with the
boundary integral representation as in BEMs. Thus, learning-based BEM can provide an efficient
framework for solving PDEs since the solution domain dimension of the BIE is smaller than that
of the original PDE. However, all the approaches discussed in this section are limited to problems
involving a single surface. This work addresses scattering problems with multiple disjoint obstacles,
a setting that introduces interesting challenges.

3.2 LEARNING PDES ON UNSTRUCTURED DATA

PDEs often require processing unstructured data, either because of complex domains (airfoils,
geological formations) or to leverage adaptive meshing (Pfaff et al., 2020). Computer-vision-based
approaches that are effective with grid-structured data (Wang et al., 2025a; Colagrande et al., 2025)
can be adapted to unstructured data with continuous convolutions (Ummenhofer et al., 2019), for
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instance. Other works (Li et al., 2023a;b) project the unstructured data onto a regular grid in the latent
space before applying FNO layers (Li et al., 2021). As mentioned in the previous section, neural
fields may be leveraged (Fang et al., 2024) but they are limited by the capacity of the conditioning
mechanism to address complex geometries. Many GNN approaches have been developed (Sanchez-
Gonzalez et al., 2020; Li et al., 2019; 2020a;b). One of the most popular, MeshGraphNet (Pfaff et al.,
2020), has been extended several times to handle multiple resolutions (Fortunato et al., 2022; Cao
et al., 2023; Ripken et al., 2023). However, none of these approaches expand latent dimensions for
low-resolution meshes. Following U-Net (Ronneberger et al., 2015), the multi-level extension of
MeshGraphNet we propose in this paper implements this feature. More recently, multiple transformer-
based methods reach top performance on numerous benchmarks, most of which focusing on reducing
the quadratic computation complexity of attention. Thus, several approaches propose efficient
attention mechanisms (Li et al., 2022; Hao et al., 2023; Xiao et al., 2024). Other approaches propose
to apply transformers locally. For instance, the Transolver architecture (Li et al., 2022; Luo et al.,
2025) performs attention on learnable slices of flexible shape of the input data. Erwin (Zhdanov
et al., 2025) and GOAT (Wen et al., 2025) clustered the input data in hierarchical balls. Finally, as
shown in (Zhdanov et al., 2025), attention-based point cloud processing approaches (Wu et al., 2024b)
may be relevant for learning PDEs with unstructured data. In this paper, based on our knowledge
of the BEM, we propose a neural architecture to approximate the boundary solution of multiple
scattering problems that outperforms other learning-based approaches designed for solving PDEs on
unstructured data.

4 DATASETS & METRICS

This section presents the benchmark employed for solving the following three problems:

1. Exterior Helmholtz Dirichlet problem with an incident wave of unit amplitude emitted from
a monopole source. The Dirichlet boundary condition is therefore parametrized by the
source location x0 ∈ R3 \ Ω ∪ Γ and the wavenumber k:

u(x) = −eik‖x−x0‖2

‖x− x0‖2
, x ∈ Γ. (4)

2. Exterior Helmholtz Neumann problem with an incident unit plane wave. The Neumann
boundary condition is parametrized by the incident wave’s direction v and the wavenumber
k:

∂u

∂n
= −ikeikx·v, x ∈ Γ (5)

where ∂u
∂n = ∇u(x) · n is the normal derivative and n the normal vector to Γ at x.

3. Exterior Laplace Dirichlet problem with standard boundary conditions:

u(x) = −Φ0 −
Φ1

‖x− x0‖2
− 2Φ2v ·

x− x0

‖x− x0‖2
, x ∈ Γ (6)

where Φ0, Φ1 and Φ2 are three constants between −1 and 1, x0 ∈ R3 \ Ω ∪ Γ and v is a
unit vector in R3.

We generated a training dataset and several test datasets for each problem. Each sample consists of
randomly sized and positioned, non-overlapping ellipsoidal obstacles, randomly selected boundary
condition parameters, and the corresponding boundary solution trace as the label. Ellipsoids are
characterized by their center coordinates and semi-axis lengths.

For each problem, the training set samples contain three obstacles, and we created a test set with three
obstacles. Moreover, for Laplace and Helmholtz Dirichlet problems, we also provide test sets with six
and nine obstacles. The meshes representing the obstacles and the trace solution were generated using
the BEMPP library (Betcke & Scroggs, 2021). We also recorded the number of GMRES iterations
required to converge for each sample to monitor their computational complexity. Further details
about the datasets are provided in table 1, and the BIE formulations used to generate the labels are
included in the appendix (see appendix A).

For evaluation, we assess the performance on the Laplace problem using the relative error of the
trace, Errrel. For the Helmholtz problems, we introduce two metrics: the relative error of the trace
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Table 1: Main characteristics of our datasets. Lengths are given without unit.

Number of samples in
the training / test sets

Environment
size

Edges length in
obstacle meshes

Ellipses semi-axes
length (min - max)

Wavelength
(min - max)

104 / 103 10× 10× 10 0.1 0.3 - 1.5 0.6 - 6

amplitude, Errampl, and the absolute error of the trace phase, Errangle. The definitions of these
metrics for a single sample are given by:

Errrel =
∑
x∈Γ

∣∣p̂(x)− p∗(x)
∣∣/(∑

x∈Γ

|p∗(x)|
)

(7)

Errampl =
1

#Γ

∑
x∈Γ

∣∣∣∣ |p̂(x)| − |p∗(x)|
|p∗(x)|

∣∣∣∣ (8)

Errangle =
1

#Γ

∑
x∈Γ

atan2(sin(∆p), cos(∆p)), ∆p = ∠p̂(x)− ∠p∗(x) (9)

where p∗ and p̂ denote the ground-truth boundary trace obtained from the BEM and the neural
network prediction, respectively, # indicates the cardinality of a set, and ∠ stands for the angle of a
complex number. These metrics are then averaged over all samples in a dataset.

5 METHOD

G0 G1→2 G2 G2→1

Figure 2: Illustration of some directed graph representations used in PIBNet in the case of two
obstacles. Graph edges are in dark blue, while the light blue corresponds to the obstacle meshes. G0:
the boundary graph (arrows have been omitted for readability), G1→2: the downsampling graph from
level 1 to 2, G2: the distant nodes graph and G2→1: the upsampling graph from level 2 to 1. We omit
the downsampling and upsampling graphs G0→1 and G1→0 between levels 0 and 1 which are similar
to graphs G1→2 and G2→1 at a lower resolution.

This paper focuses on the task of multiple scattering Martin (2006), therefore, an accurate representa-
tion of the obstacles and of their precise relative position is mandatory. For this purpose, we build
graphs representing the obstacles at various resolution levels and graphs for the transitions between
two levels. At the highest level (i.e. the lowest resolution), we create a graph connecting distant
obstacles with a physics-inspired edge selection strategy. In this section, we present our PIBNet
method: after defining the different graphs and the physics-inspired edge selection strategy, we
introduce our GNN architecture which consists of an encoder and a processor. The encoder initializes
the graph nodes and edges features, while the processor apply message-passing layers to model the
interactions between the obstacles.

Graphs definition Let G0 = (V 0, E0) be the graph called boundary graph with nodes V 0 and
bidirected edges E0 that corresponds to the union of the n meshes G0

Γi
= (V 0

Γi
, E0

Γi
) that repre-

sents the discretized boundaries Γi of the obstacles Ωi, 1 ≤ i ≤ n, so that G0 =
⋃n
i=1 G0

Γi
=

(
⋃n
i=1 V

0
Γi
,
⋃n
i=1E

0
Γi

). We build a multiscale representation of G0 with L levels using an octree
so that for each level 0 < j < L, we have a new set of nodes V j satisfying p(V j) ⊂ p(V j−1)
where p(V ) returns the set of positions of the nodes in the node set V . We also obtain down-
sampling directed edges Ej−1→j and upsampling directed edges Ej→j−1 that link nodes be-
tween level j − 1 and j. The downsampling edges are used to create downsampling graphs

5
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Downsampling Block Upsampling Block

Figure 3: Illustration of the processor part of PIBNet GNN architecture with a number of levels L = 3.
The graph representation used by each processor block is given above the corresponding block. It is
composed of Nb Boundary Graph Processor Blocks at the beginning, then 2 Downsampling Blocks,
Nd Distant Nodes Graph Processor Blocks, L − 1 Upsampling Blocks, and Nb Boundary Graph
Processor Blocks at the end.

Gj−1→j = (V d,j−1, Ej−1→j) where p(V d,j) = p(V j) while the upsampling edges provides up-
sampling graphs Gj→j−1 = (V u,j−1, Ej→j−1) where p(V u,j) = p(V j). To model the interactions
between distant nodes, we create a distant nodes graph GL−1 = (V L−1, EL−1) with bidirected
edges EL−1 so that each nodes of the highest level V L−1 is connected to a fraction α of the other
nodes in V L−1 according to a physics-inspired strategy described below. We illustrated some of
these graphs in fig. 2.

Physics-inspired edge selection strategy In this paper, we address the Laplace and Dirichlet prob-
lems, for which the Green functions are given by G(x) = − 1

4πr and G(x) = − e−ikr

4πr , respectively,
where r = ‖x‖2, x ∈ R3 \ Ω ∪ Γ. This implies that obstacles interact more strongly at short
distances, while long-range interactions remain present. Thus, to generate the edges EL−1 in the
distant nodes graph GL−1, we propose an edge selection strategy consistent with physics that favors
connections between close nodes but still allows some longer-range interactions. For each of the
α|V L−1| required edges originating from a node in V L−1, nc candidate edges are randomly proposed
from the V L−1 − 1 potential candidates, and the shortest one is chosen.

Encoder The encoder initializes the edge features of each graph and the node features of G0; the
node features of the other graphs are initialized later. The edge features of each graph are encoded
using a dedicated MLP. Thus, for each edge e of a graph G, the inputs of the encoder are a sinusoidal
positional encoding of the distance D(e) between the two connected nodes, the normalized direction
of e, and other features which depend on the boundary conditions (more details in appendix B). The
output dimension is d0 for edges in E0, dj for edges in Ej−1→j and Ej−1→j , and dL−1 for edges
in EL−1. The node features of V 0 are encoded with an MLP whose inputs are determined by the
boundary conditions (more details in appendix B). The output dimension of this MLP is d0.

Processor The processor, illustrated in fig. 3, is composed of multiple processor blocks that are
applied to a graph G = (V,E). Each processor blocks consists of a message-passing with one edge
feature update eq. (10) followed by one node feature update eq. (11):

f ′ekl
= φe(fekl

, fvk , fvl) (10)

f ′vk = φn(fvk ,
∑
k

f ′ekl
) (11)

where φe and φn are MLPs and fekl
are the features of edge ekl ∈ E connecting node vk ∈ V to

node vl ∈ V of features fvk and fvl , respectively.
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¡The first step of the processor consists of Nb processor blocks applied to the boundary graph G0. It is
followed by L−1 downsampling blocks, each applied to a downsampling graph Gj−1→j , 0 < j < L.
To this end, the features of nodes V d,j−1 are initialized by the node features expander, which is an
MLP that projects the node features of V d,j−1 (or of V 0 when j = 0) from a dimension dj−1 to a
dimension dj , before a processor block is applied. Then, the node features of V L−1 are initialized
with the output node features of the final downsampling block and Nd processor blocks are applied
to the distant nodes graph GL−1. Thereafter, L − 1 upsampling blocks are applied, one to each
upsampling graph Gj→j−1, that is composed of a processor block that reduces the feature dimension
from dj to dj−1. The node features of V u,j−1 are initialized with the node features of V u,j (or V L−1

if j = L − 1) for the nodes that exist in both sets and with the node features of V d,j−1 otherwise.
Finally, Nb processor blocks are applied to the graph G0 whose node features are initialized with the
node features of V u,1, output by the last upsampling block. The last processor block returns an output
vector of dimension df for each node in V 0 which corresponds to the approximate BIE solution on
the discretization of the boundary Γ. For the Laplace problem df = 1 and for the Helmholtz problem
df = 2 corresponding to the real and imaginary parts of the BIE solution, respectively.

6 EXPERIMENTS

We evaluate PIBNet through extensive experiments on the new benchmark proposed. We compare
the results of our method against those of other state-of-the-art learning-based approaches for solving
PDEs on unstructured data including GNN-based methods such as MeshGraphNet (Pfaff et al., 2020),
MuS-GNN (Lino et al., 2022), BSMS-GNN (Cao et al., 2023) or transformer-based methods such
as Transolver (Wu et al., 2024a), Transolver++ (Luo et al., 2025) and Erwin (Zhdanov et al., 2025).
For the fairness of comparison, all GNN-based baselines are trained and evaluated on graphs that
incorporate the additional edges introduced by our physics-inspired edge selection strategy to connect
the various obstacles. We also include the point cloud processing method Point Transformer v3
referred to as PTv3 (Wu et al., 2024b) in our comparisons.

6.1 IMPLEMENTATION DETAILS

Regarding our architecture, we set the number of levels to L = 3 and we connect each node to a
fraction α = 0.1 of the other nodes at the highest level L− 1. The expansion rate of the dimension
of latent layers is 2 when the level index increases by one. This means that for 0 < j < L, the
dimension dj of a latent layer is given by dj = d0 × 2j . Moreover, we set the dimension of the latent
layers of the first level to d0 = 64. We perform the octree using Ripken et al. (2023) implementation
and keeping every two levels. In the physics-inspired strategy, the number of candidate edges nc per
required edge in EL−1 is set to 2 unless otherwise mentioned. The architecture details of the methods
we compare against are given in appendix C. All models are supervised with the groundtruth solution
of the BIE using a Huber loss (Huber, 1992) with parameter δ = 1.0. The models are trained from
scratch for 100 epochs, with AdamW optimizer (Loshchilov & Hutter, 2017), a batch size of 16, a
learning rate starting at 10−4 decreasing to 10−7 with a cosine scheduler, and gradient clipping by
norm with a maximum value of 1.0. We also leverage data augmentation which consists of the same
random rotation applied to the node positions of the input mesh and to the source location. Hardware
details are given in appendix D.

6.2 RESULTS

In table 2, we present the performance on the test datasets with the same data distribution as the
training set, i.e., with three obstacles per sample. Since our approach involves random processes, we
report the mean of five evaluations, each with a different seed. We measure an average relative standard
deviation of 0.3% across all datasets and metrics, demonstrating the stability and reproducibility
of our method. The results highlight the superiority of GNN approaches over transformer-based
methods. This may be due to the better expressiveness of graph representations which explicitly
model distant interactions with edges, compared to multihead attention. Furthermore, the results show
that our physics-inspired edge selection strategy is architecture agnostic. The lower performance of
BSMS-GNN is due to its GNN architecture which relies on graph convolutions providing a coarser
modeling of distant interaction relative to message passing with edge feature updates as in the other
GNNs. Our PIBNet method outperforms MeshGraphNet Pfaff et al. (2020), the second-best approach,
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Table 2: Benchmark results on three obstacle datasets.

Method Number of
Parameters (M)

Laplace Helmholtz Dirichlet Helmholtz Neumann
Errrel Errampl Errangle Errampl Errangle

MeshGraphNet 2.4 0.039 0.116 0.114 0.053 0.052
MuS-GNN 2.7 0.0632 0.161 0.149 0.068 0.069

BSMS-GNN 0.8 0.107 0.221 0.189 0.080 0.083
PTv3 77.2 0.066 0.148 0.141 0.065 0.068

Transolver 4.6 0.183 0.596 0.454 0.070 0.073
Transolver++ 4.2 0.195 0.635 0.466 0.103 0.122

Erwin 7.9 0.119 0.218 0.175 0.074 0.076
Ours 5.2 0.041 0.091 0.090 0.046 0.047

Figure 4: Qualitative results for the three problems of our benchmark with three obstacles (in
white). From left to right are the 3D volumetric solution of the total field obtained with GMRES
(the groundtruth), with PIBNet and with PTv3 predictions of the trace solution, respectively, and
the corresponding errors relative to the groundtruth with PIBNet and PTv3, respectively. For each
problem, the 3D volumetric solutions of the total field and their associated errors are sampled within
a square domain of side length 10 on the plane z = 0.

with an average improvement of 8% across all datasets and metrics. The fact that MeshGraphNet
outperforms MuS-GNN may be explained by the latter’s hierarchical architecture in which the latent
dimensionality is held fixed across resolutions, thereby limiting network capacity at coarser levels.
In contrast, our architecture increases the latent dimension at low resolutions, leading to the best
performance. PTv3 is the best transformer-based approach; its good performance may stem from its
larger number of parameters, but it could also be attributed to its architecture, which is specifically
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Figure 5: Estimation errors as a function of the number of obstacles for the Laplace Dirichlet problem
(left) and the Helmholtz Dirichlet problem (middle and right).

designed for processing point clouds. The irregular distribution of points in point cloud datasets aligns
more closely with our data, which consists of points sampled on the surfaces of distant objects. In
contrast, PDE benchmarks (Pfaff et al., 2020; Janny et al., 2023) are typically based on nearly regular
meshes that cover almost the entire domain. We also note that Transolver (Wu et al., 2024a) and
Transolver++ (Luo et al., 2025) are not adapted for this task since they reach lower performance than
our baseline in table 3 which do not model distant interaction between obstacles. In appendix E, we
analyze the correlation between the per-sample mean absolute error and the GMRES iteration count
(a proxy for the number of reflections), the wavenumber and the dispersion of obstacles. Qualitative
results for the top GNN and transformer approaches that are PIBNet and PTv3, respectively, are
shown in fig. 4.

6.3 GENERALIZATION

In fig. 5, we examine the generalization ability of models trained on datasets with three obstacles per
sample to test environments with six and nine obstacles. As the number of obstacles exceeds three, we
adapt the physics-inspired edge selection strategy during inference to adjust the focus on the closest
obstacles. Specifically, the number nc of candidate edges per required edge in EL−1 is increased
to 3. A thorough study of the impact of nc on performance for different numbers of obstacles is
provided in appendix F. As the number of obstacles increases, the results show a consistent decline in
performance across all methods. This trend is expected because a higher number of obstacles induces
quadratic growth in pairwise interactions. This substantially increases the problem’s complexity,
resulting in reduced performance in scenarios with six or nine obstacles. Additionally, our models
are only trained with a fixed number of obstacles per dataset sample, which may affect their ability
to generalize to a different number of obstacles. PIBNet demonstrates that it generalize better than
the other methods on wave problems. For the Laplace problems, PIBNet’s lower generalization
capabilities relative to MuS-GNN can be explained by the overfitting of our model with scenarios
with three obstacles. Since our PIBNet architecture has been designed for more complex Helmholtz
problems, the PIBNet capacity may be too high for the comparatively simpler Laplace problems.

6.4 RUNTIME ANALYSIS

In fig. 6, we study the runtime for generating the trace of the solution on the boundaries for the
Helmholtz Dirichlet problem with respect to the number of obstacles. We compare approaches
running on the same GPU including learning-based methods and the BEM with different convergence
tolerance thresholds rtol for GMRES. This study shows that learning-based approaches are orders of
magnitude faster than the BEM. However, unlike learning-based methods, whose runtime depends
only on the number of nodes in the obstacle meshes, the BEM’s runtime is sensitive to wavelength
and the relative position of obstacles. Regarding learning-based methods, the very low runtime of
Transolver and Transolver++ reflects minimal computational cost, as both approaches are designed
to process very large meshes (Wu et al., 2024a; Luo et al., 2025), which explains their limited
performance. For BSMS-GNN, the low runtime relative to other GNN-based methods stem from the
absence of MLP to process edge features. PIBNet has the highest runtime for three- and six-obstacle
problems, but remains close to MuS-GNN, Point Transformer V3 and Erwin. However, we observe
that PIBNet scales better than Erwin, which has the worst runtime for nine-obstacle problems. The
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Figure 6: Comparison of runtime on with respect to the number of obstacles for learning-based
methods and for the BEM considering different different convergence tolerance thresholds rtol for
GMRES.

higher runtime of PIBNet relative to other graph methods is mainly due to the increase of latent
dimension at coarser scales.

6.5 ABLATION

In table 3, we study the impact of the different components of our method for the exterior Helmholtz
Dirichlet problem. First, we highlight the importance of connecting distant nodes to account for
dependencies between them. Then, we demonstrate the advantages of using a U-Net-like multi-level
architecture with an optimal number of levels, which is achieved with L = 3. To be fair in terms of
computational complexity, we maintain the same number of edges connecting distant nodes as the
number of levels varies. We justify that expanding the dimension of the latent layers at each level
results in better performance than keeping it constant even if the average latent dimension is identical.
Finally, we show that our physics-inspired edge selection strategy for connecting nodes at the highest
level is superior to a purely random edge selection.

Table 3: Ablation study. nc corresponds to the number of candidate edges per required edge in EL−1.

Distant nodes
connection

Number of
levels L

Latent dimension
at the finest level

Latent dimension
expansion factor nc Errampl Errangle

7 1 64 – – 0.328 0.205
3 1 64 – 1 0.202 0.181
3 2 64 2 1 0.138 0.135
3 3 64 2 1 0.097 0.097
3 4 64 2 1 0.115 0.112
3 3 128 1 1 0.112 0.110
3 3 64 2 2 0.091 0.090
3 3 64 2 3 0.093 0.092

7 CONCLUSION

In this work, we introduce PIBNet, a new learning-based method for solving linear and semi-linear
PDEs that can be solved by the BEM and focus on multiple scattering problems. This approach
proposes to explicitly represent distant interactions that occur in such tasks using graphs created
with a physics-inspired strategy. Based on the BEM, we present a new multiscale GNN architecture
for estimating the solution trace on the boundary of the domain. Thus, the solution for the entire
domain can be quickly estimated using the boundary integral representation of the problem. To
evaluate this method, we introduce a novel benchmark of multiple scattering simulations which
includes Laplace and Helmholtz problems. Our results demonstrate that PIBNet surpasses other
state-of-the-art learning-based methods for solving PDEs and processing point clouds. Additionally,
PIBNet generalizes better to settings with a greater number of obstacles on wave problems.
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APPENDIX

A DATASETS DETAILS

The BIE and the representation formulations used for each problem we address are given in table 4.
The BIE solution is approximated with GMRES (Saad & Schultz, 1986) with a convergence tolerance
of 10−5.

B INPUT DETAILS

Laplace Dirichlet problem

• Node encoder inputs:
– A sinusoidal positional encoding of the distance between the current node and x0,
– The normalized direction of x0 relative to the current node,
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Table 4: Formulations of the BIE and of the representations used to generate the dataset for each
problem where S and N are the single-layer and the hypersingular boundary integral operator,
respectively, while S and D are the single-layer and the double-layer potential operator, respectively.

Problem BIE Representation
Laplace Dirichlet Sp = u u = Sp

Helmholtz Dirichlet Sp = u u = Sp
Helmholtz Neumann Np = ∂u

∂n u = Dp

– The normalized direction v,
– Each term of the boundary condition computed at the current node position.

• Edge encoder inputs:

– A sinusoidal positional encoding of the length of the edge,
– The normalized direction of the edge,

Helmholtz Dirichlet problem

• Node encoder inputs:

– A sinusoidal positional encoding of the distance between the current node and the
source x0,

– The normalized direction of the source x0 relative to the current node,
– The wavenumber of the sample,
– The sine and the cosine of the angle of an incident wave coming from x0.

• Edge encoder inputs:

– A sinusoidal positional encoding of the length of the edge,
– The normalized direction of the edge,
– The wavenumber of the sample,
– The sine and the cosine of the angle of an incident wave at the destination node coming

from the source node.

Helmholtz Neumann problem

• Node encoder inputs:

– The normalized direction of v of the incident wave,
– The wavenumber of the sample,
– The sine and the cosine of the angle of the incident wave at the location of the node,
– A sinusoidal positional encoding of the distance between the current node and the

average of node positions,
– The direction of the average of the node positions.

Here, the use of average node positions is mandatory for methods that are not based on
meshes to provide information about node positions relative to each other. For the other
problems, this information comes from the distance and direction of the source x0. For the
sake of fairness, this input is used with all methods.

• Edge encoder inputs:

– A sinusoidal positional encoding of the length of the edge,
– The normalized direction of the edge,
– The wavenumber of the sample,
– The sine and the cosine of the angle of an incident wave at the destination node coming

from the source node.
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Table 5: Implementation details of the different methods we compare against in this paper. The
hyperparameters have been tuned to maximize performance on the Helmholtz Dirichlet problem.

Model Parameter Value
MeshGraphNet (Pfaff et al., 2020) Processor depth 15

Latent dimension 128
Point Transformer V3 (Wu et al., 2024b) Grid Size 0.2

Latent dimensions (64, 128, 256, 512)
Window sizes (512, 512, 512)
Encoder depths (2, 2, 2, 6)
Encoder heads (4, 8, 16, 32)
Encoder patch size 1024
Decoder depths (2, 2, 2)
Decoder heads (4, 8, 16)
Decoder patch size 1024
Stride 2

Transolver (Wu et al., 2024a) Latent dimension 256
Number of layers 8
MPL ratio 4

Transolver++ (Luo et al., 2025) Latent dimension 256
Number of layers 8
MPL ratio 4

Erwin (Zhdanov et al., 2025) MPNN dim. 64
Latent dimensions (64, 128, 256)
Window sizes (512, 512, 512)
Encoder depths (2, 2, 6)
Encoder heads (4, 8, 16)
Decoder depths (2, 2)
Decoder heads (4, 8)
Stride 2
Distance-based attention bias Enabled

BSMS-GNN (Cao et al., 2023) MPNN dim. 128
Scale number 3

MuS-GNN (Lino et al., 2022) MPNN dim. 128
Scale number 3
Number of MPs at each level (4, 2, 4)

C IMPLEMENTATION DETAILS

The implementation details of the different state-of-the-art methods we compare against are given in
table 5.

D HARDWARE DETAILS

The data was generated on a 36 Intel Core i9-10980XE (3.00GHz) CPUs with double precision and a
tolerance threshold for GMRES set to rtol = 10−5 to obtain a highly accurate groundtruth. The time
required to generate our training datasets with 10000 samples depends on the problem and the BIE
formulation. Generating the Laplace Dirichlet, Helmholtz Dirichlet and Helmholtz Neumann training
datasets took 12, 36 and 96 hours, respectively. All training experiments have been conducted on
a single NVIDIA RTX 3090 GPU with 24GB memory. Training times range from 3-4 hours for
BSMS-GNN and Point Transformer v3, the later benefiting from flash attention acceleration Dao et al.
(2022), to more than 18 hours for Transolver and Transolver++ because of gradient accumulation
which is mandatory when the batch size exceeds 1. Otherwise, training time is 8-10 hours for PIBNet,
10-11 hours for MeshGraphNet and 12 hours for Erwin. Note that flash attention cannot be used for
training Erwin as its distance-based attention bias position encoding is mandatory to achieve good
performance.
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E ANALYSIS OF THE MODEL PERFORMANCE

Helmholtz Dirichlet

(a) (b)

Helmholtz Neumann

(c) (d)

Laplace Dirichlet

(e)

Figure 7: Mean absolute error of PIBNet predictions per dataset sample as a function of GMRES
number of iteration to create the corresponding groundtruth (left) and as a function of the correspond-
ing wavenumber (right) for the Helmholtz Dirichlet problem (top), the Helmholtz Neumann problem
(middle) and the Laplace Dirichlet problem (bottom).

In this section, we examine how the performance varies with respect to the number of GMRES
iterations, the wavenumber and the obstacle dispersion for each dataset sample.
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Figure 8: Mean absolute error of PIBNet predictions per dataset sample as a function of obstacle
dispersion which is obtained by computing the maximum of the minimum distances between obstacle
pairs.

For wave propagation problems, we expect the number of GMRES iterations to reflect the difficulty
of the problem, i.e., the number of reflections between obstacles. Consequently, we predict that
PIBNet will have more difficulty with this case, which is indeed what we observe in fig. 7 (a, c). In
addition, it is well known that the number of iterations tends to increase with the wavenumber. As
shown in fig. 7 (right), for Helmholtz problems, both the GMRES iteration count and the PIBNet
prediction errors exhibit a similar correlation with the problem’s wavenumber. In contrast, PIBNet
prediction errors and GMRES number of iterations are weakly correlated for Laplace problems which
is not a wave problem.

The fig. 8 shows the PIBNet performance per dataset sample with respect to obstacle dispersion.
We quantify dispersion as the maximum of the minimum distances between obstacle pairs for each
dataset sample. No correlation is observed for any problem. While this is expected for Laplace
problems, for wave problems, closely spaced obstacles are anticipated to produce more complex
interactions and thus higher errors. Since most of the error is already explained by the wavenumber,
one can compute the partial correlation between prediction errors and obstacle dispersion controlled
by the wavenumber. This means that the effect of the wavenumber is removed from the correlation
between prediction error and obstacle dispersion. We obtain −0.09 and −0.16 for the Helmholtz
Dirichlet and the Helmholtz Neumann problems, respectively. The two negative partial correlations
between error and obstacle dispersion are consistent with what can be expected from wave problems.

F IMPACT OF THE NUMBER OF CANDIDATE EDGES AT INFERENCE

Figure 9 illustrates the impact on performance of the number of candidate edges nc per required edge
in graph GL−1 when the number of obstacles varies.
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Figure 9: Estimation errors as a function of the number of candidate edges nc for the Laplace Dirichlet
problem (left) and the Helmholtz Dirichlet problem (middle and right).
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