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ABSTRACT

With the growing prominence of the Mixture of Experts (MoE) architecture in
developing large-scale foundation models, we investigate the Hierarchical Mixture
of Experts (HMoE), a specialized variant of MoE that excels in handling complex
inputs and improving performance on targeted tasks. Our investigation highlights
the advantages of using varied gating functions, moving beyond softmax gating
within HMoE frameworks. We theoretically demonstrate that applying tailored
gating functions to each expert group allows HMOoE to achieve robust results,
even when optimal gating functions are applied only at select hierarchical levels.
Empirical validation across diverse scenarios supports these theoretical claims.
This includes large-scale multimodal tasks, image classification, and latent domain
discovery and prediction tasks, where our modified HMoE models show great
performance improvements.

1 INTRODUCTION

In recent years, the integration of mixture-of-experts (MoE) within large-scale foundation models has
markedly advanced the machine learning field (Jiang et al., [2024; |[Fedus et al., 2022} Riquelme et al.|
2021;[Zhou et al.,2022; Mustafa et al.,|2022). MoE architectures, known for their ability to efficiently
handle diverse and complex datasets, have facilitated significant improvements in model performance
without a proportional increase in computational demand. They address bottlenecks associated with
traditional deep learning architectures by dynamically allocating resources to parts of the model for
which they are most relevant (Yuksel et al., 2012} |[Shazeer et al.,2017). The Hierarchical Mixture of
Experts (HMoE) model (Fritsch et al.,[1996) is a special type of MoE architecture that is characterized
by a layered structure of decision modules and expert networks that operate in tandem to refine
decision-making at each level, optimizing the allocation of computational resources and enhancing
specialization for complex tasks. Unlike the standard MoE, which typically involves a single gating
network directing inputs to various expert networks, HMoE introduces multiple layers of gating
mechanisms and experts. This hierarchical design divides the problem space recursively, allowing
different experts to specialize in subspaces of the input space, leading to enhanced flexibility and
model generalization (Jiang & Tanner, |1999; |Azran & Meir, [2004).

Figure [[|compares HMoE and standard MoE in processing multimodal input data. The hierarchical
structure of HMoE makes it particularly effective at handling complex inputs, such as data that can
be divided into semantically meaningful subgroups. This recursive partitioning enables HMoE to
select features and specialize in various segments of the input space more effectively, especially in
high-dimensional data scenarios (Peralta & Sotol 2014). The unique capability of HMoE to handle
complex datasets makes it particularly valuable across a range of applications. Historically, HMoE
has been applied on image classification (Irsoy & Alpaydin, |2021)), speech recognition (Peng et al.|
1996; [Zhao et al.l[1994), and complex decision-making tasks (Jeremiah et al., 2013} [Moges et al.,
2016). However, there is a notable lack of recent studies on HMOoE in the literature, partly due to its
more complex structure as compared to standard MoE. For instance, while standard MoE requires
the selection of a single gating function, HMoE necessitates the choice of multiple gating functions,
introducing additional hyperparameters and therefore greater complication in model specification.
Given the increasing complexity of input data in the modern era, such as multiple modalities or
subgroups defined by ambiguous latent domains, there is a growing demand for models that can
deliver accurate and individualized predictions for each subgroup. Therefore, it is worthwhile to study
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Figure 1: Comparison of HMoE and standard MoE in managing multimodal input: MoE excels at processing
homogeneous inputs. However, it faces challenges with more intricate structures, such as inputs that can be
split into subgroups or those with inherently hierarchical configurations. By contrast, HMoE improves upon
this by decomposing tasks into subproblems and directing subsets of data to specialized groups of experts. This
approach allows for more granular specialization and enhances the model’s capability to handle complex inputs.

HMOoE, which can leverage the intrinsic information within complex input structures and achieve
superior performance on corresponding tasks.

In this paper, we investigate distinct selections of gating functions within HMoE and their impact
on overall performance. This is a critical issue and will lay the groundwork for future research in
this relatively unstudied domain. It is important to note that expert specialization, as discussed in
Dai et al.|(2024), is a critical problem that involves understanding how quickly an expert becomes
specialized in specific tasks or aspects of the data. To address this, we conduct a comprehensive
analysis of the convergence behavior of experts within two-level HMoE models, using three different
combinations of the conventional softmax gating (Jordan & Jacobs, |1994) and the Laplace gating
as suggested in|Han et al.[(2024). Our theoretical analysis reveals that employing Laplace gating
at both levels of the HMoE framework accelerates expert convergence and significantly improves
performance relative to baseline. We further validate this through extensive empirical evaluations
across diverse scenarios, demonstrating HMoE’s effectiveness on complex datasets, such as those
with inherent hierarchies or clustered data that can be partitioned into subgroups. By incorporating the
three aforementioned combinations of gating functions, our experiments confirm that using Laplace
gating at both levels consistently improves performance across multiple downstream tasks compared
to the standard softmax gating baseline. Additionally, we observe that different combinations of
Laplace and softmax gating can also noticeably enhance results, leading to better and more robust
performance by offering a broader selection of gating function combinations. These findings highlight
the practical benefits of selecting appropriate gating functions to enhance HMoE’s capabilities.

Notations. We let [n] stand for the set {1,2,...,n} for any n € N. Next, for any set S, we

denote | S| as its cardinality. For any vector v € R? and o := (a1, a,...,aq) € N, we let
v = vtuy? o vg? ] = v+ v+ ..+ g and o = aqlas! ... ag!, while [jv]| stands for

its L2-norm value. For any two positive sequences (a,,)n>1 and (by,),>1, we write a,, = O(by,)
or a, < b, if there exists C' > 0 such that a,, < Cb,, for all n € N. Meanwhile, the notation

a, = Op(b,) indicates that a,, /b, is stochastically bounded. Lastly, for any two probability density

functions p, ¢ dominated by the Lebesgue measure 1, we denote h?(p, q) = % J(/p— \/a)zd,u as

their squared Hellinger distance and V' (p, q) = % J |p — qldp as their Total Variation distance.

2 THEORETICAL CONTRIBUTIONS AND METHODS

We conduct a convergence analysis of expert estimation in the two-level Gaussian HMoE under three
settings of alternatively using the Softmax gating and Laplace gating in the two levels of the model.
Our goal is to find which gating combination would induce the fastest expert estimation rate.

2.1 SOFTMAX-SOFTMAX HMOE

We begin by considering the scenario when the two-level Gaussian HMoE is equipped with the
Softmax gating in both levels. More specifically, let us assume that an i.i.d. sample of size n:
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(X1,Y7),(X2,Ys),...,(X,,Y,) in R? x R, where X is an input and Y; is a response variable, is
generated from that model whose conditional density function is given by

k1 k3
e (yle) ==Y o((ai) e +05) Y o((whyi,) @ + Bl m Wl s,) " + 70, v50,).
=1 ia=1

ey
Above, the abbreviation S'S' stands for “Softmax-Softmax”, indicating that the softmax gating is used
in both levels of the Gaussian HMOoE. Next we define

= X X
G. Ze p(¥, Ze P8 11 )0(at, iy, 7y g g 1)

i1=1 i2=1
as a correspondlng mixing measure, i.e., a weighted sum of Dirac measures 9§, where
T vf ) are true yet unknown parameters in the parameter space

(11’ 11’612\11 zz\il’ iriz) Wiviar Viyio

O CRxRY xR xR?x R x R, . Additionally, k} denotes the number of mixtures in the two-level
Gaussian HMoE, whereas k3 is the number of experts in each mixture. For any integer k¥ € N and

real-valued vector (v;)*_;, we denote by o(v;) := exp(v;)/ 25:1 exp(v;) the softmax function.
Meanwhile, 7(-|u, v) is an univariate Gaussian density function with mean g and variance v.
Recall that expert specialization is an essential problem in the MoE literature where we explore how

fast an expert specializes in some tasks or some aspects of the data (Dai et al.|[2024; Krishnamurthy
et al.,[2023)), which can be captured through the convergence analysis of expert estimation.

Maximum likelihood estimation (MLE). To estimate the unknown parameters, or equivalently the
unknown mixing measure G, we utilize the maximum likelihood method (van de Geer, [2000). For
simplicity, we assume that the value of £} is known as the analysis would become unnecessarily
complicated otherwise. At the same time, the value of k5 remains unknown. Then, we over-specify
the true model (I by considering an MLE within a class of mixing measures with at most &}k
components, where ks > k3, as follows:

@,S;S '= argmax Z log(p2° (V3] X)), )
Gegk* k2(@)
. . ; K}
in which gkf7k2 (©) = {G = Zif:l exp(bs, ) Zif:l exp(ﬂiglil)é(ail Wigliy My ig Tirig Viria) © kl2 €
[kz], (bi17ailvﬁigﬁlawilizaTiligvnili271/i1i2) S 9}~
Assumptions. For the sake of theory, we make some following standard assumptions on the data as
well as the model parameters throughout this paper:

(A.1) We assume that the parameter space © is compact and the input space X is bounded to
guarantee the MLE convergence.

(A.2) In order that the Gaussian HMOE is identifiable, that is, p2° (y|z) = pgs (y|x) for almost every
(z,y) implies G = G.,, the softmax gating value must not be invariant to parameter translation.
Therefore, we let aj.. = 04, b = 0 and wi.\; = 04, B, = 0forany iy € (k1]

(A.3) For any iy € [ki], let (0} 1,751, V5 1)+ (n;‘lk; STk V;k;) be distinct parameters so that
the Gaussian distributions associated with the same parent node are different from each other.
(A.4) To ensure that the gating depend on the input, we assume at least one among gating parameters

in the first level a7y, . . ., a};r (resp. those in the second level w7, . .. ,w,*q) is different from zero.

Now, we investigate the convergence behavior of the density estimation p%s to the true density pés
in Theorem T| whose proof can be found in Appendix [F|

Theorem 1. Given an MLE @55 defined in equation @), the corresponding density estimation psés
converges to the true density pg's under the Hellinger distance h at following rate:
P(Ex[h(pZ5s (1X), p&7 (1X))] > C1v/log(n) /n) < exp(—cylogn),

where C1 and ¢ are universal constants.
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Theorem [I] indicates that the rate for estimating the true conditional density of the Gaussian
HMOoE is of parametric order (’)p(n_l/ 2). Consequently, if we are able to construct a loss
function among parameters denoted by, for example, £(G,,G.) , and establish the bound
L(Gn,G.) S Ex [h(p%ﬁs(|X),pgf(|X))], then we will obtain the parameter estimation rates

E(@n, G.) = Op(n~'/?), which leads to our desired rates for estimating experts. However, while
such Hellinger bound has been well studied under the setting of one-level Gaussian MoE |Ho et al.
(2022); Nguyen et al.|(2023)), it has remained elusive for the hierarchical setting. In the following
paragraph, we will point out fundamental obstacles for deriving that bound.

Challenges. Our main technique for deriving the parameter estimation rates is to decompose
the density estimation and the true density, i.e. p2 GSS (y|lz) — p2° (y|z), into a combination of

lmearly mdependent terms by applying the Taylor expansion to the function u(a: a,w,n,T,V) =
exp(a'x)exp(w x)m(y|n ' = + 7,v) with respect to its parameters. In previous works (Ho et al.,
2022; |[Nguyen et al.| [2023), it is well-known that there is an interaction between the mean parameter
7 and variance v of the Gaussian density via the partial differential equation (PDE) %Z = % . %.
Such PDE induces several linearly dependent terms in the aforementioned decomposition, thereby
leading to significantly slow rates for estimating those parameters. In this paper, we discover that the

first-level gating parameter a also interacts with the second-level parameters w, v, 7, that is,

ou  0%u Ju  Ou
on  0adr’ Oa Ow’
To the best of our knowledge, these intrinsic interactions have not been noted before in the literature.

Therefore, we have to take the solvability of the unforeseen system of poylnomial equations (@) into
account to capture that interaction.

3)

System of polynomial equations. For each m > 2, we define 5% (m) as the smallest natural number
r such that the following system does not have any non-trivial solutions for the unknown variables

(i 41,5925 435, Q4iz5 951, )Z’:l

m
1
> > 1 PLATLaS S ai sl =0, 1< |pl 4t < (@)
i2=1 (al,ag,ag,a4,a5)€I§ﬁ02
wherefgfpz = {(a, a2, a3,a4,05) ERIXRI xR x R xRy : a1 + g + a3 = py, |as| +

ay + 2a5 = p2}. Here, a solution is categorlzed as non- tr1v1a1 1f all the values of p;, are different
from zero and at least one among qy4;, is non- Zero Note that %% (m) is a monotonically increasing
function. However, finding the exact value of 7°° (m) is a demanding problem in the field of algebraic
geometry (Sturmfels} 2002)). Thus, we provide in Lemma (whose proof is in Appendix some
specific values of 7°° (m) when m is small, while those for larger m are left for future development.

Lemma 1. For any d > 1, we have that v°°(2) = 4 and v5°(3) = 6, while we conjecture that
TSS(m) > Tform > 4.

Voronoi loss. To precisely characterize the convergence rate of parameter estimation, it is necessary
to capture the number of fitted parameters approaching each individual true parameter in both levels
of Gaussian HMoE. For that purpose, let us introduce the concept of Voronoi cells (Manole & Hol
2022). In particular, given an arbitrary mixing measure G € gksz (©), we distribute its atoms across
the Voronoi cells {V}, (G), j1 € [ki]} and {V},;,(G), j1 € [ki], j2 € [k3]} generated by the atoms
of G, where

Vi, = Vi (G) = {ir € (k] : [lai, — aj || < llai, —ag [, Vo # 51},
Viglis = Vialin (G) := {iz € [k2] = I€iy 15, = Cpgu | < I€is 1 = Capy ll, V2 # G2}

with G, 15, += (Wig 15 Mjyiy» Tinis Vinia) @0 5 = (W3 125105, T Vi g )- Note that when
the MLE G, is sufficiently close to its true counterpart G, since the value of k] is known, we have

|V]—1( n)| = 1forany j; € [k]], meaning that each parameter a7 is fitted by exactly one parameter.
On the other hand, as k3 is unknown and we over-specify it by a arger value k2, a Voronoi cell Vj, 5,
could have more than one element. Furthermore, the cardinality of V;,|;, is exactly the number of
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fitted parameters converging to Q;zl j,- For instance, |V}, ;,| = 2 indicates that (]’?‘2‘ it is fitted by two
parameters. Now, we define a Voronoi loss function based on the Voronoi cells as follows:

Ly, o) (G, GY) Z ‘ exp(b;, ) — exp(b

J1=1 1€V, J1=1li1€V;,

11 HAalljl ||

K
+ Z Z eXp(bi1> Z Z exp(ﬁith)(HAwizjz\h |+ |‘Anj1i2j2|| + |A7—j1i2j2| + ‘ij1i2j2|)

Ji=li1 €V, jg:\Vj?‘jJ:l i2€vj2|.‘i1

+ Z z exp(ﬁiz\h)(”Awiﬂﬂh ”2 + HAnjlinQ”rl('v]?I“l) + ‘ATj1i2j2|T2(|Vj2|h|)

J2:|Vjy 15, [>192€V55 5,

kY k3
+|ij1i2j2‘TS(Ivhljll)) + Z Z exp(bil) Z ) Z exp(ﬂiglh) - exp(ﬁ;;\]d) ) )

J1=141€Vj, J2=1 izEij‘jl

where 71,72,73 : N — N are some integer-valued functions and we denote Aa;, ;, = a;, — a;*-l,
AWiyjoljs *= Winljy ~ Winljrs AMjrigje 7= Mjriy = My jos DTjringa 7= Tjrin = 75, jp A AV, 1=
Vjyis — Vj, j,- Given the above loss function, we are ready to characterize the convergence behavior
of expert estimation in the following theorem.

Theorem 2. The following Hellinger lower bounds hold true for any G € G 1, (©):
Ex [h(pS5 (1), S5 (1X))] 2 L350 p55 455 (G, o).

As a result, we obtain that L 1 ,ss ,ss 1,55 (GS5.G,) = Op(n~1/2).

Proof of Theorem [2]is in Appendix [E] The above results together with the formulation of the Voronoi
loss L (1,55 ,s5 1,5y in equation (5) implies that

(i) Exact-speciﬁed parameters The rates for estimating exact- speciﬁed parameters

aj, wJ2 I M51js> Thjas Vi1 j, Which are approached by exactly one fitted parameter, i.e. their Voronoi
cells have only one element [V}, | = [V}, ;,| = 1, are parametric on the sample size n, standing at the

order Op(n~'/2). Additionally, the gating bias parameters exp(b7, ) and exp( also share the

same parametric estimation rates.

J\J)

% .
J2 \Jl’njlh’TJl]z’V]l]z which

are fitted by more than one parameter, i.e. [Vj,;,| > 1, their estimation rates are not ho-

7,1, are of order Op(n~1/4). At the
same time, those for 7 ; .77, ,v; ; depend on their number of fitted parameters V), 15, | and
the solvablhty of the polynomlal equanon system in equatlon @), standing at the orders of
Op(n= Y Wizin D), O p (=127 Wiz1in ), O p(n=2/7"" (Viz1 D), respectively. For instance,
when |V, ;| = 3, these rates become Op(n~1/%), Op(n='/'2), Op(n="/%), which are signifi-
cantly slower than those for exact-specified parameters. These slow rates occur due to the interactions
mentioned in the “Challenges” paragraph.

(ii) Over-specified parameters: For over-specified parameters w’

mogeneous. In particular, the rates for estimating w’

(iii) Expert estimation: Recall that expert specialization is an essential problem where we learn
how fast an expert specializes in some tasks or some aspects of the data. Therefore, it is important to
understand the convergence behavior of the expert estimation, particularly its data-dependent term
(7];‘1 jz)Tm. According to the Cauchy-Schwarz inequality, we have

SSn

~ 5SS, * *
(P ) T — (m5,5,) el < 05" =5 - . (6)

nll 12
where nSS " is an MLE of 1M}, j,- Since the input space is bounded and from the estimation rate
of nj, ;, in the above two remarks, we deduce that (17;*1 j2)T:c admits an estimation rate of order
~ ~ .SS
Op(n~Y/2) when |V;,;,| = 1 or Op(n= /""" (Wi21iD) when [V, ;,| > 1. Note that the latter

rate is significantly slow since the term 7% (|V}, ;, |) grows as the number of fitted experts [V, ;, |
increases.
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2.2 SOFTMAX-LAPLACE HMOE

Moving to this section, we study the effects of replacing the softmax gating in the second level with
the Laplace gating on the convergence of expert estimation under the Gaussian HMoE. In particular,
the conditional density function in equation (T)) becomes

k} k3

petyle) =Y ol(a) e +b7,) D o(=llwi,y, — @l + 8wl ,) T2 + 7, v70,).

il =1 iz =1
(N
where the abbreviation S L stands for “Softmax-Laplace”. Additionally, the MLE under this setting,

denoted by @ , is determined 51mllarly to that in equation (2). The main difference between the
density p2* (y|w ) from its counterpart pZ® (y|x) is the Laplace gating function o(=lw,;, — =l +

. \il) in the second level. Due to this gating change, the interaction between parameters a and w
via the PDE g—g = g“ in equation (3) no longer holds true, while others still exist. As a consequence,
we only need to consider a simpler (fewer variables) system of polynomial equations than that in
equation (@). More specifically, for each m > 2, we define 751 (m) as the smallest natural number
r such that the following system does not have any non-trivial solutions for the unknown variables
(piz ;g2 q3i2 s Q4455 454, )2,21:

m

1
> > 1 PLASaS e, =0, 1< |p| 4 < ®)
i2=1 (az,a3,a4,05)€LSE ’
where Z5L = {(az, a3, 4, 05) € R X R X RX Ry : g + g = py, [as| + g + 205 = pa}.

Here, a solution is called non-trivial if all the values of p;, are different from zero and at least one
among ¢4;, is non- zero Th1s system has been considered inNguyen et al.[(2023) where they show
that 7°%(2) = 4 and 57 (3) = 6. We observe that the function 7 admits identical behavior to
the function % in Lemma|l|at some particular points. Nevertheless, it is challenging to make an
explicit comparison between these two functions, which requires further technical tools in algebraic
geometry Sturmfels| (2002)) to be developed.

Next, note that we can achieve the density estimation rate Ex [h(p2%, (1X),pg"(-|X))] =

o p(n~1/?) using similar arguments for Theorem(see Appendix . Thus, we will present only the
convergence of parameter and expert estimation under the setting of this section in Theorem 3]

Theorem 3. The following Hellinger lower bounds hold true for any G € G 1, (©):
Ex [h(ng(lX)Mpgf(LX))] z £(%T’SL,7’SL, 1'r’SL)((;7 G*)

As a result, we obtain that L 1 ,st .s1 1,51y (G‘ﬁL, Gy) = (51:(77,71/2).

Proof of Theorem [3]is in Appendix [E] From the above results, it can be seen that the parameter
and expert estimation when using the softmax gating and Laplace gating in the first and second
levels of the Gaussian HMoE share the same convergence behavior as those when using the softmax
gating in both levels in Theorem [2} In particular, by arguing analogously to equation (6), we get

that the data-dependent term of expert (17, ;, ,) T has an estimation rate of order Op(n~1/%) when

[Visj| = 1or Op(n _1/’"SL(\VJ2\J1\)) when |V;,;,| > 1. Thus, we can see that substituting the

softmax gating with the Laplace gating in the second level is not enough to accelerate the expert

. . 2
estimation rate (see Table | This is because the interaction g“ = 8?15‘7 between 1) and other

parameters in equation (3) still occurs under the setting of softmax -Laplace gating Gaussian HMoE.

2.3 LAPLACE-LAPLACE HMOE

In this section, we consider the two-level Gaussian HMoE equipped with the Laplace gating in both
levels. More specifically, the conditional density function in equation (7)) turns into
k3 k3

pE-(yle) =) o(—llaj, — || +b;,) Z o(=llwi, i, — @l + B )m Wi, @ + 7, v3h,),
i1=1 iz=1
©))
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where the abbreviation LL stands for “Laplace-Laplace”. Furthermore, the definition of the MLE

under this setting, denoted by @,%L, is determined similarly to that in equation (2). Under this setting,
the first-level softmax gating o ((a;, )T+ b ) used in previous sections is replaced with the Laplace

. . . . . 2
gating o(—|laj, — x| + b}, ), leading to the disappearance of the interaction g—f’ = 21 between n
. . . . 52
and other parameters mentioned in equation (3)). Therefore, we only need to cope with % = % . % as

in/Ho et al.[(2022). Consequently, it is sufficient to take account of the following system of polynomial
equations with substantially fewer variables than those in equations (@) and (8). In particular, for
each m > 2, we define rZL (m) as the smallest natural number r such that the following system does

not have any non-trivial solutions for the unknown variables (p;,, q4i,, @5i, )f’;zlz
= 1
2
oY orhaien =0 1<p<n (10)

12=1 (aq,05)€LSL

where TU0 := {(a4, a5) € R X Ry : ay + 205 = p}. Here, a solution is called non-trivial if all the
values of p;, are different from zero and at least one among q4;, is non-zero. The above system has
been studied in[Ho & Nguyen| (2016) which show that 7% (2) = 4 and r**(3) = 6. These values
are similar to those of the aforementioned functions % and r°L.

As demonstrated in Appendix EL we also obtain the convergence rate of density estimation
Ex [h(pégL (-1 X), p&" (-|X))] = Op(n~1/?) under this setting. Given that result, we are ready to
investigate the impacts of using the Laplace gating in both levels on the convergence behavior of
parameter and expert estimation in the below theorem.

Theorem 4. The following Hellinger lower bounds hold true for any G € Gy 1, (©):

Ex [A(pg" (1X),p6- (1X)] 2 Laprr 1r0n) (G, GL).
As a result, we obtain that ;C(Q,T.LL’%TLL)(éﬁL, G.) = Op(n~1/2).

Proof of Theorem is in Appendix [El From the formulation of the loss function L5 ,rz 1,11y in
equation (3), we observe that all the parameter estimations share the same convergence behavior as
those under the previous two settings, except for the estimation of 0}, ; which enjoys a convergence
rate of order Op(n~"/2) when |V, ;,| = 1 or Op(n~'/4) when [V}, ;,| > 1. By employing the
same arguments as in equation (), we deduce that the data-dependent term of expert (7,5, )Tz also
admits these rates. Compared to those when using the softmax gating in either level or both levels,
the expert estimation rates when using the Laplace gating in both levels are improved significantly as

they no longer depend on the term rZ (IVj,15:1) (see Table . This rate acceleration occurs since

. . C C 2/ . . . .
the interaction 9% = -9 between 1 and other parameters mentioned in equation (3 does not exist
on 0aoT

under this setting. As a result, we claim that the convergence of expert estimation under the two-level
Gaussian HMOoE is benefited the most when equipped with the Laplace gating in both levels.

T

Table 1: Summary of estimation rates for the data-dependent term (7];*-1 j2) x in experts. Below,
experts are called exact-specified when |V}, ;, | = 1 and over-specified when [V}, ;, | > 1.

Gating Softmax-Softmax Softmax-Laplace Laplace-Laplace
E);pert Exact-specified Op(n=1/2) Op(n=1/2) Op(n=1/2)
estima- ~ = —
tion rates | Over-specified Op(n=Yr"WiinDy | Op(n=/" L(sz\-h')) Op(n~1/%)

3 EXPERIMENTS

In this section, we empirically demonstrate the effects of employing various combinations of gating
functions in HMoE to validate our theoretical findings and discuss empirical insights. First, we show
that HMoE outperforms standard MoE and other alternatives, particularly in cases with inherent
subgroups or multilevel structures, where HMoE excels. We then conduct comprehensive ablation
studies to analyze the impact of different gating function combinations and perform case studies
across various scenarios. Beyond performance improvements, these experiments provide valuable
insights into how different gating function combinations influence the distribution of input modules,
offering explanations for the performance variations observed with different gating configurations.
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Table 2: Comparison of HMoE-based methods (gray) and baselines, utilizing vital signs and clinical notes of
MIMIC-IV (Johnson et al.} 2020). The best results are highlighted in bold font, and the second-best results are
underlined. All results are averaged across 5 random experiments.

MulT MAG TFN HAIM MISTS MoE HMOoE
4S-THM AUROC | 7556 £0.34 79.36+025 79.12+0.56 78.87+£0.00 77.23+0.82 83.134+0.36 85.59+0.44
F1 38.65+ 025 40.87+0.17 4096 +0.37 39.78 £0.00 4598 £0.49 46.824+0.28 47.57 +0.32
LOS AUROC | 82.12+0.98 81.944+036 81.65+043 8246£0.00 80.34+0.61 83.764+0.59 86.26+ 0.61
F1 73.16 £0.51 7278 £0.22 73.89+0.52 72.75+£0.00 73224043 7432+044 76.07+0.29
25-PHE AUROC | 7041 £044 71.17+036 72.26+0.27 63.57+0.00 71.49+0.59 73.87+0.71 73.81+£0.51

F1 3233 +£0.62 32.86+£0.19 3424+0.14 42.80+£0.00 3329+0.23 3596+0.23 35.64+0.18

HMOoE Implementation. We implement the two-level HMoE module, inspired by |[Lepikhin et al.
(2020). Algorithm|[I]in Appendix outlines the procedure, which employs a recursive computation
strategy to process inputs in a coarse-to-fine manner. The inputs are first partitioned by the outer
dispatcher, followed by the inner dispatcher, into subgroups, which are then sent to specialized groups
and experts for independent processing. The outputs from the experts are recursively combined using
inner and outer combination tensors to produce the final output. Gating losses from both levels are
integrated and scaled to regularize training, promoting balanced expert utilization.

3.1 PRIMARY RESULTS

HMOoE Improves Multimodal Fusion. We first evaluate the effectiveness of HMoE on the MIMIC-
IV dataset, a comprehensive database containing records from nearly 300k patients admitted to a
medical center between 2008 and 2019, focusing on a subset of 73,181 ICU stays. We integrated
diverse patient modalities, including vital signs (time series), clinical notes, and CXR (chest X-ray
images). Our tasks of interest in the MIMIC dataset include 48-hour in-hospital mortality prediction
(48-IHM), 25-type phenotype classification (25-PHE), and length-of-stay (LOS) prediction. The
baselines include: (1) the Multimodal Transformer (MulT), which models modality interactions
(Tsai1 et al., |2019); (2) the Multimodal Adaptation Gate (MAG), which addresses consistency and
differences across modalities (Rahman et al.| [2020); (3) the early fusion method Tensor Fusion
Network (TFN) (Zadeh et al., 2017); (4) the HAIM data pipeline (Soenksen et al.,|2022), specifically
designed for integrating multimodal data from MIMIC-IV; (5) MISTS, a cross-attention approach
combined with irregular sequence modeling (Zhang et al.,|2023); and (6) multimodal fusion using
MoE (Han et al.| 2024). The data is first processed by modality-specific encoders, with the obtained
modality embeddings then fed into 12 stacked HMoE modules with residual connections to produce
the outcome. Details of the building blocks are provided in the appendix. Table [2] presents the
outcomes of integrating time series, clinical notes, and CXR data into various prediction tasks. The
HMOoE (Laplace-Laplace) outperforms the baselines in most scenarios, often by a significant margin.
While the MoE-based fusion method (Han et al.,|2024)) has proven effective in multimodal fusion, the
inherent hierarchical structure of the HMoE module further enhances its ability to process multimodal
inputs, allowing for more specialized expert assignment and improved performance.

HMOoE Enhances Clinical Latent Domain Discovery. Many datasets in high-stakes applications
can be categorized into different latent domains. For instance, in clinical prediction tasks, patients can
be grouped based on latent domains such as age, medical history, treatment, and symptoms. Training
a generic model on heterogeneous patient data is often less effective than using a domain-specific
model, as demonstrated by the SLDG method proposed by [Wu et al.|(2024). However, SLDG assigns
a fixed classifier to each domain without considering the interactions between them. Moreover, it
relies heavily on a separate hierarchical clustering process, which is separated from model training
and limits input data to low-dimensional forms like short time series, failing to utilize a broader range
of patient modalities. We extend this framework by evaluating HMoE for latent domain modeling
tasks, using the HMoE module as a substitute for domain-specific classifiers. The HMoE module
partitions inputs based on the similarity-driven top-k routing mechanism, allowing tokens from each
patient sample to be shared across multiple inner and outer experts simultaneously. In addition to
MIMIC-1V, we also evaluated our methods on the eICU dataset (Pollard et al.l [2018)), which covers
over 139k patients admitted to ICUs across the United States between 2014 and 2015. We followed
the experimental settings used by |Wu et al.| (2024)). For predictive tasks, we tested our method
on readmission prediction and mortality prediction, and included representative baselines: Oracle
(trained directly on the target test data), Base (trained solely on the source training data), as well as
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Table 3: We apply HMoE to multi-domain and multi-modal patient data. HMoE delivers customized predictions
for each group, while effectively accounting for the interactions and uniqueness of each group. This approach
greatly improves results compared to current state-of-the-art methods.

Dataset elCU MIMIC-IV
Task Readmission Mortality Readmission Mortality
Metric AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

Oracle | 21.92+0.15 6772+ 042 27.14+0.06 83.87+0.57 | 2821 +0.34 69.31+0.53 42.83+0.48 89.82+0.75
Base 10.41 £0.12 51.01 £0.31 23.02+0.24 80.31+043 | 23.70+0.23 66.54 +0.41 37.40 £0.20 86.10 + 0.64
DANN 13.50 £0.09 53.79+0.19 2447 +0.08 80.82+0.27 | 24.68 £0..09 67.31 +0.33 38.01 £0.17 87.34+0.39
MLDG 10.41 £0.07 5254 +£0.43 22414012 79.73£0.39 | 20.50+0.14 63.724+0.29 3598 £0.31 85.72+0.68
IRM 13.62£0.13 53.78+0.22 25.18+0.09 80.09+0.47 | 2423 +0.21 66.804+ 022 38.72+£0.19 87.59+043
SLDG 18.57 £0.10 62304046 26.79+0.16 82.44+0.19 | 2741 £0.10 69.024+0.40 41.56+0.12 89.85+ 0.59
HMoE 19.39 £ 0.05 63.61 = 0.23 26.60 +£0.08 81.92 +0.28 | 27.82 +0.24 69.13 £0.21 42.23+0.32 89.47 +0.18
HMoE-M - - - - 2797 £0.18 69.19 £0.26 4247 +0.35 89.65£0.13

CIFAR-10 Dataset (Tiny) ImageNet

o °© o =
e = gy & L = = -

© O

o o
~ ]
o =}

Softmax MoE
Softmax-Softmax HMoE

Softmax MoE
Softmax-Softmax HMoE

Accuracy (%)
~
o
Top-1 Accuracy (%)
[=2]
o

= ==
60 R —— Laplace-Softmax HMoE 0 _ = | — Laplace-Softmax HMoE
= —— Softmax-Laplace HMoE = = —— Softmax-Laplace HMoE
50f o - -
= Laplace-Laplace HMoE 20 %1 Laplace-Laplace HMoE
One-Layer MoE Model Vision-MoE One-Layer MoE Model Vision-MoE
(a) (b)

Figure 2: We evaluate the impact of using different gating function combinations in HMoE and compare it with
standard MoE on (a) CIFAR-10 and (b) ImageNet. First, we present the results of one-layer MoE models (left
side of each figure), where the model contains only the module of that specific setting. For the one-layer results,
we use Tiny-ImageNet as a substitute for the full ImageNet. Next, we integrate these MoE modules into the
state-of-the-art Vision MoE model (right) (Ruiz et al.l|2021) and compare the performance on the full datasets.

domain generalization methods that require domain IDs: DANN (Ganin et al.,[2016) and MLDG
(Li et al| [2018), and those that do not require IDs: IRM (Arjovsky et al.,[2019). Table [3| presents
the results for both datasets. Among all the tested methods, HMoE with the Softmax-Laplace gating
combination achieved the best overall performance on both tasks. Given HMoE’s advantage in
processing multimodal inputs, we further added clinical notes and CXR modalities to the MIMIC-IV
dataset (HMoE-M in Table [3), which led to additional performance improvements thanks to the joint
benefit of customized modeling and the inclusion of extra modality information.

3.2 QUANTATITIVE ANALYSIS

Combinations of Different Gating Mechanisms. Figure [2]compares the performance of different
gating function combinations on the commonly used CIFAR-10 and ImageNet datasets. We first
evaluate a single module (i.e., a one-layer MoE model) on CIFAR-10 and Tiny-ImageNet, followed
by integrating these modules into the Vision-MoE framework (Riquelme et al.,|2021)): in the Vision
Transformer (ViT) models, we selectively replace an even number of FFN layers with targeted
MOoE layers and test the models on the full datasets. The performance gap between different gating
functions is more pronounced in the one-layer MoE models due to the amplified effect of the module
differences, while the difference becomes smaller after incorporating them into Vision MoE. The
results show that the Laplace-Laplace gating combination achieves the best performance, while
the combination of Laplace and Softmax gating also yields competitive results. Overall, HMoE
demonstrates its potential to enhance the capacity of image classification models.

Multimodal Routing Distributions. We then analyze how modality tokens are distributed across
different experts and groups. Figure [3] displays the distribution of three modality tokens in the
best-performing HMoE block for corresponding tasks from the MIMIC-IV dataset. The HMoE
module consists of two expert groups, each containing four experts. The results are taken from the
final HMoE block of the trained model, using the first batch of data. Most vital signs and clinical
notes tokens are routed to expert group 1, while CXR tokens are predominantly routed to expert group
2. For tasks (a) and (b), vital signs and clinical notes contribute more heavily to the overall HMoE
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Figure 3: Token distribution (time series, CXR, clinical notes) of HMoE blocks of a multimodal transformer.
We present the best-performing gating combinations for three tasks evaluated on MIMIC-IV, where the HMoE
block comprises 2 outer expert groups, each containing 4 inner experts. Expert IDs 1 to 4 (left section of each
figure) represent token distributions from expert group 1, and expert IDs 5 to 8 (middle section) represent token
distributions from expert group 2. The right section shows the relative weights assigned to each expert group.
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Figure 4: (a) Distribution of top clinical events across expert IDs under heterogeneous versus homogeneous
gating functions. (b)/(c) Performance variations as the number of inner/outer experts increases.

prediction, particularly in task (b). However, for task (c), CXR tokens play a more significant role,
contributing almost as much as vital signs, despite being present in smaller quantities. Additionally,
due to the load-balancing loss applied during training, the total token count is nearly uniformly
distributed among experts, with minimal token dropping because of exceeding capacity limits.

Distribution of Clinical Events. Given that the number of clinical event categories is much larger
than the number of modalities, it is more intuitive to visualize the impact of different gating function
combinations on the distribution of clinical events. Figure ] (a) illustrates the routing distribution
for the most commonly observed clinical events using the best-performing Softmax-Laplace gating
combination of HMoE in latent domain discovery, compared to the Softmax gating function. The
results indicate that the Softmax-Laplace combination promotes greater diversification in routing
clinical event samples to experts while encouraging expert sharing across different categories. We
further conduct ablation studies by varying the number of inner and outer experts in the best-
performing HMoE across four tasks, as shown in FigureEl (b) and (c¢), where their number of outer
and inner experts is fixed at 2 and 4, respectively. The results demonstrate that increasing the
number of experts has a positive impact on performance, particularly for inner experts, though this
improvement comes with an increase in computational demands.

4 DISCUSSIONS AND LIMITATIONS

In this work, we explored diverse gating function combinations beyond Softmax in a two-level
hierarchical mixture of experts (HMoE). Our theoretical analysis demonstrated that using Laplace
gating in HMoE improves convergence behavior, and employing Laplace gating at both levels
significantly optimizes performance. We validated this theoretical finding on multiple real-world tasks,
while also showcasing the effectiveness of HMoE in handling complex inputs, such as multimodal
and multidomain data. However, the enhanced ability to process complex inputs comes with increased
computational demands, which is a key limitation of HMoE. For future work, we plan to explore
techniques like pruning to reduce computational costs in large-scale multimodal tasks and to identify
more suitable downstream applications for HMoE.

10
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our empirical results, we provide comprehensive descriptions of the
data, preprocessing steps, and implementation details in Appendices[B] [C| and[D] Additionally, the
code is included in the supplementary materials for submission. All datasets utilized in this study are
publicly accessible online, though access to the MIMIC-IV and eICU datasets requires an additional
approval process following their regulations.
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Supplement to “On Expert Estimation in Hierarchical Mixture of
Experts: Beyond Softmax Gating Functions”

In this supplementary material, we first introduce some related works to this paper in Appendix
The dataset information, preprocessing procedures, and implementation details can be found in
Appendices [B] [C| and D] respectively. Next, we provide the proof for the convergence of expert
estimation in Appendix [E} while that for the convergence of density estimation is presented in Ap-
pendix [F} Then, we continue to streamline the proof of Lemma[I]in Appendix [G]before investigating
the identifiability of the Gaussian HMoE in Appendix [H]

A RELATED WORKS

MoE (Jacobs et al.,[1991};|Xu et al.| |{1994) has gained significant popularity for managing complex
tasks since its introduction three decades ago. Unlike traditional models that reuse the same parameters
for all inputs, MoE selects distinct parameters for each specific input. This results in a sparsely
activated layer, enabling a substantial scaling of model capacity without a corresponding increase
in computational cost. Recent studies (Shazeer et al., 2017 [Fedus et al., [2022}; Mustafa et al.|
20225 [Zhou et al., [2023; |Shen et al., 2023; [Han et al., 2024} have demonstrated the effectiveness
of integrating MoE with cutting-edge models across a diverse range of tasks. [Nie et al.| (2021));
Zhou et al.|(2022); [Puigcerver et al.|(2023) have also tackled key challenges such as accuracy and
training instability. With the growing prevalence of MoE, the HMoE architecture has also been
utilized to enhance model generalization performance in complex data structures. For instance, Ng &
McLachlan| (2007) leveraged HMOoE to more effectively manage hierarchical data, thereby improving
classification accuracy in medical datasets. Similarly, Peralta & Soto|(2014) introduced regularized
HMOoE models with embedded local feature selection, which enhanced model performance in high-
dimensional scenarios. Due to its ability to assign input partitions to specialized experts, HMoE
is particularly well-suited for multi-modal or multi-domain applications (Zhao et al., 2021)). Prior
research has demonstrated that HMoE can ensure robust generalization capabilities (Azran & Meir,
2004). However, existing studies have primarily assessed HMoE in small-scale experiments and have
not shown its effectiveness in large-scale real-world settings.

While MoE has been widely employed to scale up large models, its theoretical foundations have
remained relatively underdeveloped. First of all, Mendes & Jiang| (2011) studied the maximum
likelihood estimator for parameters of the MoE with each expert being a polynomial regression
model. In particular, they investigated the convergence rate of the estimated density to the true
density under the Kullback-Leibler (KL) divergence and gave some insights on how many experts
should be chosen. Next, Ho et al.| (2022) conducted a similar convergence analysis for input-free
gating Gaussian MoE but using the Hellinger distance for the density estimation problem instead
of the KL divergence. Additionally, they utilized the generalized Wasserstein distance to capture
the parameter estimation rates which were negatively affected by the algebraic interactions among
parameters. [Nguyen et al.| (2023) then generalized these results to a more popular setting known as
softmax gating Gaussian MoE. Rather than leveraging the generalized Wasserstein distance for the
parameter estimation problem, they proposed novel Voronoi-based loss functions which were shown
to characterize the parameter estimation rates more accurately. Recently, [Han et al.| (2024)) advocated
using a new Laplace gating function which induced faster convergence rates than the softmax gating
functions due to a reduced number of parameter interactions. However, to the best of our knowledge,
a comprehensive convergence analysis for HMoE has remained elusive in the literature.

B DATASET INFORMATION

B.1 MIMIC-IV

MIMIC-IV (Johnson et al.,[2020) is a comprehensive database containing records from nearly 300,000
patients admitted to a medical center between 2008 and 2019, focusing on a subset of 73,181 ICU
stays. We linked core ICU records, including lab results and vital signs, with corresponding chest
X-rays (Johnson et al.l 2019b)), radiological notes (Johnson et al.l 2023), and electrocardiogram
(ECG) data (Gow et al., 2022) recorded during the same ICU stay.
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Tasks of Interest. We design an in-hospital mortality prediction task (referred to as 48-IHM) to
assess our method’s capability in forecasting short-term patient deterioration. Additionally, accurately
predicting patient discharge times is vital for improving patient outcomes and managing hospital
resources efficiently [Bertsimas et al.| (2022)), leading us to implement the length-of-stay (LOS) task.
Both the 48-IHM and LOS tasks are framed as binary classification problems, utilizing a 48-hour
observation window (for patients staying at least 48 hours in the ICU) to predict in-hospital mortality
(48-IHM) and patient discharge (without death) within the subsequent 48 hours (LOS). Moreover,
recognizing the presence of specific acute care conditions in patient records is key for several clinical
goals, such as forming cohorts for studies and identifying comorbidities |Agarwal et al.| (2016).
Traditional approaches, which often rely on manual chart reviews or billing codes, are increasingly
being complemented by machine learning models Harutyunyan et al.|(2019). Automating this process
demands high-accuracy classifications, which drives the development of our 25-type phenotype
classification (25-PHE) task. This multilabel classification problem involves predicting one of 25
acute care conditions using data from the entire ICU stay. We summarize the details of these tasks
below:

* 48-THM: This is a binary classification task where we aim to predict in-hospital mortality
based on data collected during the first 48 hours of ICU admission, applicable only to
patients who remained in the ICU for at least 48 hours.

* LOS: The length-of-stay task is structured similarly to 48-IHM. For patients who stayed
in the ICU for a minimum of 48 hours, the objective is to predict whether they will be
discharged (without death) within the next 48 hours.

» 25-PHE: This multilabel classification task involves predicting one of 25 acute care condi-
tions |[Elixhauser (2009)); Lovaasen & Schwerdtfeger| (2012), such as congestive heart failure,
pneumonia, or shock, at the conclusion of each patient’s ICU stay. Since the original task
was developed for diagnoses based on ICD-9 codes, and MIMIC-IV includes both ICD-9
and ICD-10 codes, we convert diagnoses coded in ICD-10 using the conversion database
from [Butler| (2007).

Evaluation. We concentrated on patients with complete data across all modalities, which yielded
a dataset of 8,770 ICU stays for the 48-IHM and LOS tasks, and 14,541 stays for the 25-PHE task.
To assess the performance of the single-label tasks, 48-IHM and LOS, we utilize the F1-score and
AUROC as our evaluation metrics. For the 25-PHE task, following prior research (Zhang et al., 2023;
Lin et al.,2019; |Arbabi et al.,2019), we rely on macro-averaged F1-score and AUROC as the primary
measures of evaluation. For the multimodal fusion task, we allocated 70% data for training, while
the remaining 30% was evenly divided between validation and testing. For clinical latent domain
discovery, similar to Wu et al.| (2024)), we segment the dataset into four temporal groups: 2008-2010,
2011-2013, 2014-2016, and 2017-2019. Each group is then divided into training, validation, and
testing sets, following a 70%, 10%, and 20% split, respectively. Patients admitted after 2014 are
treated as the target test data, while all earlier patients are used as the source training data.

B.2 EICU

The eICU dataset (Pollard et al.,2018)) includes over 200,000 visits from 139,000 patients admitted
to ICUs in 208 hospitals across the United States. The data was gathered between 2014 and 2015.
The 208 hospitals are categorized into four regions based on their geographic location: Midwest,
Northeast, West, and South. We define our cohorts by excluding visits from patients younger than 18
or older than 89, as well as visits exceeding 10 days in length or containing fewer than 3 or more than
256 timestamps. Additionally, we omit visits shorter than 12 hours, since predictions are made 12
hours post-admission.

Tasks of Interest. For the readmission task using the eICU dataset, our goal is to predict whether
a patient will be readmitted within 15 days after discharge. Similar to the MIMIC-IV dataset, the
mortality prediction task focuses on determining whether a patient will pass away following discharge.

Evaluation. The eICU dataset is divided into four regional groups: Midwest, Northeast, West, and
South. Each region is further split into 70% for training, 10% for validation, and 20% for testing. To
assess the performance gap between regions, we compare the backbone model’s performance when
trained on data from the same region versus data from other regions, as proposed by |Wu et al.| (2024).
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The region with the largest performance gap (Midwest) is selected as the target test data, while the
remaining regions (Northeast, West, and South) are used as the source training data. To compare with
baselines from |Wu et al.| (2024), we use the same evaluation metrics: Area Under the Precision-Recall
Curve (AUPRC) and the Area Under the Receiver Operating Characteristic Curve (AUROC) scores.

B.3 IMAGE CLASSIFICATION DATASETS

CIFAR-10. CIFAR-10/Krizhevsky et al.|(2009) is a well-known dataset in computer vision, commonly
used for object recognition tasks. It contains 60,000 color images, each with a resolution of 32x32
pixels, representing one of 10 object categories (“plane,” “car,” “bird,” “cat,” “deer,” “dog,” “frog,”
“horse,” “ship,” “truck”), with 6,000 images per class.

ImageNet. We use the ImageNet database from ILSVRC2012 (Russakovsky et al.,[2015), where
the task is to classify images into 1,000 distinct categories, using a vast dataset of over 1.2 million
training images and 150,000 validation and test images sourced from the ImageNet database.

Tiny-ImageNet. The Tiny-ImageNet is a smaller, more manageable subset of the ImageNet dataset.
It contains 100,000 images and 200 classes selected from full ImageNet dataset. All images are
resized to 64x64 pixels to reduce computational demands.

C DATA PREPROCESSING FOR CLINICAL TASKS

During preprocessing, we selected 30 relevant lab and chart events from each patient’s ICU records to
capture vital sign measurements. For chest X-rays, we employed a pre-trained DenseNet-121 model
(Cohen et al.,[2022)), which had been fine-tuned on the CheXpert dataset (Irvin et al.,|2019), to extract
1024-dimensional image embeddings. Additionally, we used the BioClinicalBERT model (Alsentzer|
et al.,[2019) to generate 768-dimensional embeddings for the radiological notes.

Time Series. We selected 30 time-series events for analysis, as outlined in (Soenksen et al., |[2022]).
This included nine vital signs: heart rate, mean/systolic/diastolic blood pressure, respiratory rate,
oxygen saturation, and Glasgow Coma Scale (GCS) verbal, eye, and motor response. Additionally,
21 laboratory values were incorporated: potassium, sodium, chloride, creatinine, urea nitrogen,
bicarbonate, anion gap, hemoglobin, hematocrit, magnesium, platelet count, phosphate, white blood
cell count, total calcium, MCH, red blood cell count, MCHC, MCYV, RDW, platelet count, neutrophil
count, and vancomycin. Each time series value was standardized to have a mean of 0 and a standard
deviation of 1, based on values from the training set. We use the Transformer as an encoder for time
series data.

Chest X-Rays. To integrate medical imaging into our analysis, we use the MIMIC-CXR-JPG module
(Johnson et al.,[2019a) available through Physionet (Goldberger et al.,|2000), which contains 377,110
JPG images derived from the DICOM-based MIMIC-CXR database (Johnson et al., 2019b). As
described in |Soenksen et al.| (2022)), each image is resized to 224 x 224 pixels, and we extract
embeddings from the final layer of the DenseNet121 model. To identify X-rays taken during the
patient’s ICU stay, we match subject IDs from MIMIC-CXR-JPG with the core MIMIC-IV database
and then filter the X-rays to those captured between the ICU admission and discharge times.

Clinical Notes To incorporate text data, we use the MIMIC-IV-Note module (Johnson et al., |2023)),
which includes 2,321,355 deidentified radiology reports for 237,427 patients. These reports can
be linked to patients in the main MIMIC-IV dataset using a similar matching method as employed
for chest X-rays. It is important to note that we were unable to access intermediate clinical notes
(i.e., notes recorded by clinicians during the patient’s stay), as they have not yet been made publicly
available. We extract note embeddings using the Bio-Clinical BERT model (Alsentzer et al., 2019).

D IMPLEMENTATION DETAILS

D.1 MODEL ARCHITECTURE
Once embeddings from each input modality or domain are generated, we address the issue of

irregularity in the data. To do this, we use a discretized multi-time attention (mMTAND) module
(Shukla & Marlin, [2021)), which applies a time attention mechanism (Kazemi et al.,[2019)) to convert
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Algorithm 1 Computation Procedure for the 2-Level Hierarchical MoE Module

1: Input: x € REXNXD: batch size B, sequence length N, embedding dimension D, number of outer/inner
experts E,/E;, capacity per outer/inner expert C,, C;, dispatch tensor D, combine tensor C

2: D,, C,, L, = Gateouter(x) > compute outer dispatch, outer combine tensors, and outer gating loss

3: x(ghed) — > D m™e® . x®md) 1 dispatch inputs to outer experts using dispatch tensor

4: D;, C;,L; = Gateinner(Xouter) > compute inner dispatch, inner combine tensors, and inner gating loss
5: xif,;’e’ft;"b’ci’d) =3 Dieo’b’c(”ei’c"’) -x{eobreod) 1 dispatch inputs to the inner experts

6: Yexperts = EXperts(Xexperts) [> expert processing

7: yleebmd) — = e CEE" wbrcoseisei) yif,;’e:;;’b’c’ 9 1> combine inner expert outputs

8: yomd) — Ze . cbmee) yfj;’;;c 9 > combine outer expert outputs

9: L=XLo+ L; ) > compute total loss

10: Return: y, £

irregularly sampled observations into discrete time intervals. This approach has been employed in
previous works such as (Zhang et al., 2023} |Han et al.,2024)). The mTAND module transforms the
irregular sequences into fixed-length representations, which are then passed into the MoE fusion
layer with a residual connection. This fusion layer comprises multi-head self-attention followed
by the HMoE module. In total, there are 12 MoE fusion layers, and the output from this layer is
optimized using task-specific loss and load imbalance loss. We apply a dropout rate of 0.1 and use
the Adam optimizer with a learning rate of le-4 and a weight decay of le-5. All models are trained
for 100 epochs. For the multimodal experiment, we use a batch size of 2, while for the latent domain
discovery experiment, the batch size is set to 256.

D.2 HMOE MODULE

The detailed implementation procedure of the two-level HMoE module of the MoE fusion layer can
be found in Algorithm[I] We have also provided Python code as part of the supplementary material.

E PROOFS FOR CONVERGENCE OF EXPERT ESTIMATION

Proof of Theorems 2] Bland[] Overview. We will focus on establishing the following inequality:

inf  Ex[h(pdP(1X), p&P (1 X))/ L s m ) (G Gs) > 0
GEQ;?@(@) X[( (| ) (‘ ))]/ (r1,72, 3)( )

where the value of (11,12, 73) varies with the variable type € {SS, SL, LL}. Note that the Hellinger
distance h is lower bounded by the Total Variation distance V/, thatis, h > V/, it suffices to demonstrate
that

inf  Ex [V (1X), 01X )]/ Ly rars) (G, G) > 0. 1
cea™ (o) EX VA" (1), pe! (XN L 1) (G Ge) an

To this end, we first show that

li f Ex [V (pd" (1X), pEP C1XN]/ L1y rar5) (Go Gi) > 0. (12
E%Gegk*kz(@)£(2T2r3)(GG)<s x V(e (1X), pal CIXN/ Ly s ) (12)

The proof of this result will be presented later. Now, suppose that it holds true, then there exists a
positive constant &’ that satisfies

inf Ex [V (0™ (1X), pEP C1X NN/ Ly rarg) (G Gs) > 0
Geg,q,@(éle(a,c*)gs/ x[V(pc" (|X), CIXNDI/ Ly a3 ( )

Thus, it suffices to establish the following inequality:

inf Ex [V(p&Pe(1X), &P (1 X))/ L1y 2 ) (G, G) > 0. 13
Gegkﬁl«,kQ(@l)I:lﬁl(G,G*)>E’ X[ ( ( | ) ( ‘ ))]/ ( 1,72, 3)( ) ( )

Assume by contrary that the inequality (I3])) does not hold true, then we can seek a sequence of mixing
measures G}, € Gy 1,(0) that satisfy £, (G, G.) > ¢’ and

lim Ex [V (pe! (1X), e C1XO)/ Ly a.r0) Gy G) = 0
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Thus, we deduce that E x [V(pg’,pe( | X), type( |X))] — 0asn — co. Since O is a compact set,

we can substitute the sequence (G’ ) by one of its subsequences that converges to a mixing measure
G'" € Gir 1, (©). Recall that L., ,, r,)(G7,, G«) > €', then we deduce that L;., ,, »,)(G', Gx) > €’
By employing the Fatou’s lemma, it follows that

0= lim Ex[V(pd(1X), s C1X)]/Lir1 ra,ra) Gy G)

2

1 . . e €
2 5/117?3@ ‘pg’ff (ylz) — p&P(ylz)| d(z,y).

Thus, we obtain that p/F* (y|x) = pg"® (y|x) for almost surely (z,y). According to Proposmon
we get that G’ = G, which yields that Ly, r2.r)(G', G) = 0. This result contradicts the fact that

L(ry rsr3)(G',Gy) > &’ > 0. Hence, we obtain the result in equation (T3], which together with the
inequality (]E[) leads to the conclusion in equation (TT).

Now, we are going back to the proof of the inequality (12).

Proof of the inequality (T2) Suppose that the inequality (I2) does not hold, then we can find a
sequence of mixing measures (G.,) in Gy: ,(©) that satisfies L, ,, r,)(Grn, Gx) — 0 and

Ex [V (pe? (1%, 0@ CIXO)/L 1 ) (Giny G) = 0, (14)

as n — oc. For each ji € [k{], let V}, 1=V}, (G),) be a Voronoi cell of G, generated by the ji-th
components of G.. As the Voronoi loss V} has only one element and our arguments are asymptotic,

we may assume WLOG that V! =V, = { j1} for any j; € [k7]. Then, the Voronoi loss becomes

ki
Ly, rars) (Gn, Gy) = Z ‘exp(b?l) —exp(b Z exp (b} )||Aaf || + Z exp(b

J1=1 J1=1 Jj1=1

[ S Y e (180, |+ 1ANS Ll + AT+ 1AV 1)

Jo: |V]2‘]1‘ 1 ZQGVJZ‘]I

+ Z Z eXp 12|Jl) ("szzjz\h ||2 + ||A77]122]2 Hﬁ + |A 3112]2|

Ja2: |v72|71 [>1 12€V]2|]1

18007 ) | + Z exp(b Z [>T (8, — ey, (15)

Ji=1 J2=1 i2€V;

2171

Since Ly, ryrq)(Gn,Gx) — 0asn — oo, it follows that exp(b") — exp(b},), a;ll - aj,
* n
exp(B7, |Jl) = exp(B,15, s Wiy, = Wi Mhia = Mijar Thris = Th A0 75, — v, forall

J1J2
]1 € [kj ] jg S [kﬁ;] and 75 € ij\jl‘

Subsequently, we consider three different settings where the variable type takes the value in the set

{SS,SL,LL} in Appendices and [E3] respectively. In each appendix, the proof will be
divided into three main stages.
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E.1 WHEN type =SS

When type = 58, the corresponding Voronoi loss function is £1,ss .55 1,55)(Gn, Gx) = L1
where we define

5
1

L, = Z exp(b}, ) — exp(b Z exp(by, )| Aaj, || + Z exp(b} )

Jj1=1 Jj1=1 J1=1

g l Z Z exp Z2\J1 (”Awlzjzlle + ”AnhZszH + ‘A ]112]2| + |A Jllzjz‘)

32:Vijg 141 |=192€V50 15,

XY (B (1AW P+ A0,

j2:|V_7'2|_7'1 [>142€Vj,5,

5SS
len

+ |A7- | "t

J1i2J2

]112]2

+ |Av? 72'“ ) + Z exp(b Z ‘ exp( Lz\jl) - eXP(B;zljl) . (16)

Jji=1 j2=1 i€V

J2li1

Step 1 - Taylor expansion: In this stage, we aim to decompose the term

j{jeXp )V Ta +05) | 22 (ylz) — & (ylz))]

Ji=1

into a combination of linearly independent terms using the Taylor expansion. For that purpose, let us
denote

SS,

P> (yl) : Z Yo oWy T+ AL Tl ) T T ),
J2=1i2€V5, 5,
k3

SS, * T

P (yle) ==Y o((@h, ) @+ B )Wl (05,5,) T ® + 7y Vi)
Jo=1

Then, it can be checked that the quantity @, is divided as

Qu =Y exp(t];) [exp((a,) T@)p ™" o) — exp((a},) @) W)

kq
= D exp(b,) [exp((af,) @) — exp((aj,) ")) pE (y])

Jji=1

+ > (exp(b},) — exp(b},)) exp((aj,) @) [pff”(ylw) — e, (ylx)

Ji=1

= An — By + Ch. (17)

Step 1A - Decompose A, : Using the same techniques for decomposing @,,, we can decompose A,,
as follows:

kY n
exp(b},)
A= S .
=1 g exp((Why ) T + 87,5

[An7j111 + A”JLQ + An7j173]’
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where

n,j1,1 + Z Z eXp 22|]1 |:6Xp(( 12\31) )exp<(a?1>—rw)7r(y|(n?1i2 T$+T]1127 jnlzz)

J2=102€Vj, 15,

- exp(<w;2|j1)—rm) exp((a;I)Ta})ﬂ'(yK?];jz) z + TJ1J2’ ;1]2):|

—Z > exp(Bly) [ exp((@iy;,) @) — exp((w,;,) )]

J2=142€V5,5,

)SSn

x exp((a}, )" z)p;”" (ylz),

k3

Apjizi= Z ( Z exp(ﬁgljl) — exp(,é’;z‘jl)) eXp((w;‘jl)Ta:)

J2=1 12€Vj,)5
* * * SS,
x [exp((aj,) "&)w(yl(m},5,) " + 75,5, v, 5,) —exp((a],) @)y " (vl @)

Based on the cardinality of the Voronoi cells V}, ;,, we continue to divide the term A, ;, 1 into two
parts as

Anji1 = Z Z exp 12|J1 [eXp(( zz\h) )exp((agll)T:E)ﬂ'(yKT]?li?)Tw—l—TJ”z, Jnllz)
J2:[Vjy 141 |51 92€V55 5,
— exp((w},;,) @) exp((a],) "@)m(y|(m},5,) " ® + 7}, 5,0 v fm)}
+ Z Z GXp 12|J1 |:eXp(( zz\jl) )exp((aZ)Ta:)w(y\(nyliQ)Ta:+ij, ]nlm)
Ja2: |V12I31|>112€v32|31
o eXp((w;ﬂjl)Tm) eXp((a;l)Tw)ﬂ-(yKn;ljz) z + Th]z’ ;(172)}
= An,jl,l,l + An,j1,1,2~

Let £(n,7) = n'x + 7. By applying the first-order Taylor expansion, the term A, ji1,1 can be
rewritten as

|
ITEE D DD D D 2&5’;.” lals) T (A, ) (AN, 15, ) % (AT )™
Ja: |V]z|]1| 112€Vj,15, |o|=1
+as+ * T * \ T a\a3\+a4+2a5ﬂ. *
n [e3 [0 2 [e 4 [0 2
X (A, 5,) P T® TR T exp((wi,;,) @) exp((aj,) m)W(yKnJl]z) T+ T a0 Visga)

J1t272
+Rp11(x)
T
= > Z Snslivires - @ - exp((@y;,) @) exp((a),) @)
Ja: “{12\]1' 1\p1\+p271
3”27T
afpg (y|(nh]2) $+T]1J2’ J1]2)+R”11( )

where R,, 1 1(x) is a Taylor remainder satisfying R,, 1,1(x)/L1, — 0 as n — oo, and

eXp(B;n\j )
Snsolivores = D > (AW ) (A ) (A )

12€Vj,15; (a1,00,a3,04,a5)€L55

X (ATj’niigjg )044 (Ayﬁigjg )045 )

for any (pq, p2) # (04,0) and j1 € [k7], j2 € [k3] in which

I;flsm = {(a1, 00, a3,a4,05) ERY X REX R x Ry + an + az = py, || + oy + 205 = pa}.
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For each (j1, j2) € [ki] x [k3], by applying the Taylor expansion of order 7% (|Vy,;,[) := 57 |
we can represent the term A,, j, 1,2 as

SSs
2T12I11

T T
Anjiaz= Y D Suislinpyes @ exp((wh,;,) @) exp((a,) @)
J2:| Vg1 I>1 lp1+pa=1

apz
aé'pg (y|(n3132) T+ 7—3132’ ]1]2) + R 2( )

where R,, 1 2(x) is a Taylor remainder such that R,, 1 2(x)/L1, — 0 asn — oo.
Subsequently, we rewrite the term A,, ;, o as follows:

S e [en(@hy,) w) - esp((w,;,) @) exp((al) @i yle)

J2:|Vjq 5, =1 12€V55 5,

Y Y e[ e(@hy,) @) — ew((wl,y,) )| exp((a)) T (vle)

32:|Vjg 141 [>112€V55 15,
t=Anji21+ Anji 22

By means of the first-order Taylor expansion, we have

An’h,?’l: Z Z Z EXP ”‘]1 A ?2]2|J1)¢

J2: |V]2|31| 112€VJ2\J1 "'M 1
SS,
x a¥ exp((w},;,) @) exp((a],) "@)p;, " (ylz) + R 21 (@),

n SS,n
= Z Z Tn g2l L exp(( ]2\]1) )exp((ajl)T )pjl (y|.’B) + R7L72,1(x)7
Ja: ‘VJQ‘_]II 1 ‘w‘ 1

where R, 2 1(x) is a Taylor remainder such that R,, 2 1(«)/L1, — 0 as n — oo, and

exp(,@;lw ) n
Tn,j2|jl7¢ = Z ’dﬂz = (Awizjfz\]&)wa
12€Vj5 15 .
for any jo € [k3] and ¢ # Og4.

At the same time, we apply the second-order Taylor expansion to A,, ;, 2.2

SS,
Anjr 22 = Z Z Tojolinp - ® ¥ exp((w ]2|]1) )exp((a?l)T o)p;”" (ylT) + R 22(w),
Ja: |VJ2I11|>1 lb[=1

where R, 2 2(x) is a Taylor remainder such that Ry, 2 2(2)/L1, — 0 as n — oo.
As aresult, the term A,, can be rewritten as

2T72\71

kI k3 n
exp(b- ) * T
n = Z Z Z Sngalji pype - T ‘EXP((‘-"jg\jl) x)

ji=1jo= 123 —1eXP(( it 11 )Tw+5 |J1) lp1|+po=1

* 02w *
X eXp((agl)Tw)@(yKnhh) T+ Tj1j27 j1g2) + RTL 1 1( ) + R’n,l,Q(w)

2

* m SS’I’L
=" Togiiw 2 exp((why;,) @) exp((al) T2)pi 5™ (ylz) — Rpoi(®) — Roza(z)|,
||=0

(13)
where Sn,j2|j1,p1,p2 - T’"« J2lin = ZiQGVj (ﬁn ‘Jl) exp( J2lj1 )for any j2 € [k;] where

(alvplva) = (0d70d; ) and¢ =0

2\J1
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Step 1B - Decompose B,,: By invoking the first-order Taylor expansion, the term B,, defined in
equation (T7) can be rewritten as

k1
=Y exp(t},) Y (Aa})7 -z exp((a},) @)pE? (ylw) + R (@), (19)
=1 lvI=1
where R, 3(x) is a Taylor remainder such that R,, 5(x)/L1, — 0 as n — oo.
From the decomposition in equations (T7), and (I9), we realize that A,,, B,, and C,, can be
viewed as a combination of elements from the following set union:
orm

aé’pg (y‘(n;ljZ) T +7-]112’ 1112) J1 € [k } J2 € [k2]

{mpl ~exp((wh,;,) @) exp((a,) @)

0< |p1|+p2 < 27']2]1}

U{wd’exp(( L) @) exp((ag) Te)psS (yl)
S (@i, ) T+ By

{w" exp((a] )T )pfls "(ylx), Y exp((a;l)Tx)pgi(ykc) cj €[k, 0< v < 1}.

g€kl g2 € [ks), 0< 9pf < 2}

Step 2 - Non-vanishing coefficients: In this stage, we show that not all the coefficients in the
representation of A, /Ly, Bn/L1y, and Cy, /L1, go to zero as n — co. Assume that all of them
approach zero, then by looking into the coefficients associated with the term

« exp((a},)T@)p; " (ylz) in C /L1, we have

.
- .

HE ‘exp(b?l)—exp(bjl) 0. (20)
"=l

exp((w* . )Tx)exp a; Tx)m(y Nign) T+ T V5,)
. (@h13) ") exp((a5,) @) (y|(m],,) 12 I iy A, /L1, we get that

2

k3
o1 exp((w* ,‘]l)Tm + 55, |31)

Z (b Z ‘ exp(f)5,) — exp(Bj,);,)| —= 0. @1

Jji=1 J2=1 i2€Vj,15,

. x¥ exp((w3, ;) @) exp((a}) "z )Pflsn(y@)
Sy ep((wly;) T+ 8

[Vis| = Land ¥ = eq,, Where eq, := (0,...,0, 1 ,0,...,0) € N%, we receive

u-th

ron Zexp > > (B Iy, — Wil = 0.

Ji=1 ]2e[k;]:‘v.12\.i1‘:1 12€Vj, |5,

in An/ﬁln for jl S [kﬂ,jg S UC;] :

Note that since the norm-1 is equivalent to the norm-2, then we can replace the norm-1 with
the norm-2, that is,

gln ZexP > > (B )Wy, = @il = 0. 22)

J1=1 J2€[k§]:WJ'2\J'1‘:1 12€V5, 15,
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2w

exp((w7, ;)" @) exp((a w)a@ Wl(n5,5,) T+ 75,5, 77,5,)

S ep((wh ) T+ B

(k7). 2 € [k3] : |VJ2|]1| =1 and p2 =1, we have that

%)T

in A,/Lq, for j; €

£1 Z exp(b Z exp(ﬁgg‘jl)h’ﬁh - 7';1]»2| — 0. (23)

Jji=1 gze[k;}:\vjz‘jl\:l

p
aPrexp((wy, ;) @) exp((af,) @) Gerr (yl(m5,5,) T + 77 5,007, 5,)

k3 *
S el e )
J1 € [k7], 72 € [k3] : [Vj,15,] = 1, py = ea,u and po = 1, we have that

in A,/Ly, for

£1 Z eXp Z Z eXp(’B;?Z\jl)”n?liz - T’;lj2” — 0. 24

J1=1 Jz€[k§]=|V.7‘2|.n [=1i2€Vj,5,

P
exp(( ]2\]1 )Tw) eXp((a;l)Tm) ggi; (y‘(n;ljz) x + Th]z ) Z/J*IJZ)

[ .
ZjéQ:l eXp((wjé\jl) €+ BJ |J1)
(k1], jo € [K3] : |Vj2|j1| = 1 and py = 2, we have that

in A,/Lq, for j1 €

£1 Z exp(b Z exp(ﬂﬁljlﬂuﬁh — v} 5,1 = 0. (25)

Ji=l1 Jze[ké]:lngmlzl

« Y exp((a},) "®)pg® (y|) in B, /L1y for ji € [kf] and v = ey, We obtain

Zexp )lal, —al, || — 0. (26)
Ji=1
z¥ exp((wh, ;) ") exp((al,) Ta)p ™" (ylx)

i -
2= (W) @+ By )
[Vj, 15,1 > 1 and ¥ = 2eq4,,,, we receive that

in A,/Ly, for j1 € [ki],jo € [Kk3] :

£1 Z exp(b Z Z eXp(ﬂZUl)”w?ﬂjl o w;z\jl ”2 — 0. (27)

Ji=1 JzE[kS]:IVijINizEV.mn

Combine the above limits together with the loss £1,, in equation (T6), it yields that

12|11 PSS
e L] I DRD DR TR (PP SR
n

J1=1 32:Vjg 151 1>1 826 V5515

~SS

32\J1
+ ‘A ]112]2| )] 7L> O’

which indicates that

; sS n rss.
o 3 e b"»[ > 3 el (1Al 0+ AR
n

J1=1 32:Vijg 31 1>192€V55 5,

~SS »SS

sz Tiali1
+ IA ]112J2| ]2“1 + |A 311232‘ 2 >‘| 7L> 0’

+1ANG, ;5072
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as n — 0o. Therefore, there exist indices ji € [ki] and j3 € [k3] : [V

SS
1 ' "33 1%
o > eXp(Bi’;m)(llwmh — Wizl £ laj; — aj; 7 4 100, — M5l
n zzEV] it
»SS
n * rff‘j* n JzUl
sy = T W s ) A0 (28)
WLOG, we may assume that j7 = j5 = 1. By examining the coefficients of the terms
ar2
P exp((w J2|J1)T ) exp((aj,)" ) 5ers (U ((5,.) " + 75,0 V55)

> nA /Ll fOI'jlzjg:l
k T n n 5
2= exp((Wjy;, ) ©+ B35,
we have exp(b1) Sy, 1/1,04.p, .0/ L1n — 0, or equivalently,
1 CXP(ﬁ?u)
n ' Z Z 2%02 (AwT;, ) (Aat)* (AnT,, )
2€V1 (al,az,a3,a4,a5)elp15p2

X (ATl”izl)o‘4 (Auﬂzl)as — 0. (29)
By dividing the left hand side of equation by that of equation (28), we get

exp (B, 1)
Zzgevm Z(a17a2,a3,047(15)6158 Tjﬂu : (Aw?izl)al(Aan)az (An?igl)OLS (ATlnizl)a4 (AVﬁ'zl)%

P1:P2
73 fﬁ — 0.
S iaevny P8 1) (1A, I + 2GR + AT, 17 + AT, [T+ |Av, =)
(30)

Let us define 37,, := max (| Awl,, [l [Aaf |l [ Ang, 72, AT I 1407, 172 £ is € Vi),
and f3,, 1= max;,ev,, exp(ﬁgll). Since the sequence exp(ﬁgll) /B, is bounded, we can replace it
by its subsequence which has a positive limit pi = lim,, 00 exp( BZH) /B,,- Note that at least one
among the limits p?z must be equal to one. Next, let us define

(A‘-'-’?fm)/ﬂ — Q14 (Aat)/M,, — g, (An?m)/ﬂn — Q34,5
(AT{,0)/ My = qaiy,  (AVT;,1)/2Mn — Gsi,
Note that at least one among q,,, g2, 43, 94i  45i, Must be equal to either 1 or —1.

By dividing both the numerator and the denominator of the term in equation (30) by EHMLPI HPQ,

we obtain the system of polynomial equations:

1 SS
Z Z ol ngqlzzquq?zzqz‘;qiz = 07 1 S |p1| +p2 S r1|1'

2€V11 (a1,a2,003,a4,005)€LSS

According to the definition of the term 7"1|1’ the above system does not have any non-trivial solutions,

which is a contradiction. Consequently, at least one among the coefficients in the representation of
An/Lin, Bn/ L1y and C,, /L1, must not converge to zero as n — oo.

Step 3 - Application of the Fatou’s lemma. In this stage, we show that all the coefficients in the
formulations of A,,/L1,, Bn/L1n and C,, /L1, go to zero as n — oo. Denote by m,, the maximum
of the absolute values of those coefficients, the result from Step 2 induces that 1/m,, /# co. By
employing the Fatou’s lemma, we have

o Ex[V(pES (1X),pE2 (X)) g (ylz) — p2 (yle)|
0= lim > [ liminf
n—00 muLin n—00 2mpLip

d(z,y).
Thus, we deduce that

P (ylx) — pe? (y|)|
an‘cln

— 0,

which results in @, /[mnL1,] — 0 as n — oo for almost surely (x, y).
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Next, we denote

eXp(b?I)Sn7j2‘jlap17p2 — Pinli exp(b?I)Tn,jz\jwl) = Dilir b
mn»cln J2171,P1,P2) mnﬁln J2171,%>
exp(Bf)(Aaf)Y exp(b,) —exp(®j,)
mnﬁln J1:7Y0 mn»cln J1

with a note that at least one among them is non-zero. Then, the decomposition of @),, in equation (I7)
indicates that

. n : Ap . By, . Cn
lim = lim — lim lim ,
n—oo mp L1, n—ooo mpli, n—oo mpLi, n—oo myLlin

in which

ki k3 2T12|11
* T
nh—>Holo mp L1 o Z Z [ Z Sﬂ,szhPuPZ - eXp((wjz\jl) 33)
I i=1j2=1 L|p,|+p,=0
. oP2r T
XeXP((ajl)T ) o2 (y|(n1112) T+ TS g Vinia) = Z Pizlinp @ exp((w 32‘j1) @)

=0

1
* SS,*
X exp((ajl)T )ph (y|$)‘| k3 N
2 g exp((wfy ) T+ 5, 0

lim = Aj, ~ -z exp 23 (y|z
Lo ZlZ e @7 exp((a,) TS (o),
lim |:SS* x) — SsS 2
n1—>oo S ]ZI X exp((aj,) ) |p;, " (vl) — p& (vl )

Since the set

T T orz * *
{wm D55 ") P05 BB W) 4 T Vi)

k3 * *
2 jp=r exp((wly; )T+ 555

0<|p1l+p2 < 27’J2|]1}

U{frf"exp(( s ) Te)exp((as)T@)p) > (ylw)
S (@) T+ B )
{w"’eXp(( )T 2)pg (ylz), exp((al,) @)l > (ylz), exp((al,) z)pg (ylz)

L1 € k1,0 < 1yl <2}

g1 € kil g2 € (R3], 0 < 9] < 2}

is linearly independent, we obtain that ¢, i, o, ps = ©islj1p = Njuy = Xy, = 0 forall jy € [k7],
g2 € [k3],0 < |py| + p2 < QTfTJ 0 < || <2and 0 < |v| < 1, which is a contradiction. As a
consequence, we obtain the inequality in equation (I2)). Hence, the proof is completed.
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E.2 WHEN type = SL

When type = SL, the corresponding Voronoi loss function is L 1,5z sz 1,5z) (Gn,Gy) = Loy
where we define

*
1

Loy = Z exp(b}, ) — exp(b Z exp(by )| Aaj, || + Z exp(b} )

Jj1=1 j1=1 J1=1

g [ Z Z exp Bg\ﬂl (”AwlzjzblH + ”AnhlszH + ‘A ]112J2| + |A J112J2‘)

32:Vijg 141 |=192€V50 15,

SL
2 Tigliy SL
+ Z Z eXp Z2|J1 (HAwlsz\Jl” + ”An?lizj?H >+ |A7—j71i2j2|7‘]2m
J2: |V_72|_71|>112€V]2|91
92|J1 N
1AV E) [+ Z exp(b Z Y ey, - e8| G1)
J1=1 J2=1 12€V72\71

Step 1 - Taylor expansion: In this step, we use the Taylor expansion to decompose the term

k1
Qun = |>_ exp((aj,) @ +b5,) | PEE (ylz) — p2E (yl@)).
Jji=1
Prior to that, let us denote
SL,
Py " (yle) - Z o o(=llwdy, =@l + 8L )Tl ) TE T v,
J2=1i2€V5, 5,
k3
SL, * * *
Dy, *(y|w) = Z ( ”wh\h w||+ﬁj2|j1)ﬁ(y|(nj1j2) w+7—]1]2’y]1j2)
Jj2=1

Then, the quantity @,, is divided into three terms as

Qu =" exp(tf}) [exp((a},) @) " (yl) — exp((a},) @) (yl)]

Jj1=1

Ky
= D exp(0},) [exp((af,) "@) — exp((aj,) @) P (ylx)

ji=1
ki
+ 3 (exol},) - exp(b},)) exp((a},) ) [0 (gle) - pEE (yl2)
Ji=1
=A, - B,+C,. (32)

Step 1A - Decompose A, : We continue to decompose A,,:

ki exp(b? )
Ani= D i [Anji1 + Anji2 + Anji 3,
T ey, — el + 8,
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in which

Z S exp(Bi) [exp(-llwlyy, — ) exp((al) @)yl ,) Te + i, )

J2=1i2€V5, 5,

*

* \ T *
—exp(—|wi, ;, — 2l exp((a],) "@)m(yl(n],;,) " + 7400 V) |

—Z S exp(B) | exp(—llwly, — @) - exp(— e, ;, — i)

J2=142€Vj, |5,

SL,
x exp((af,) "&)p " (y] ),
k3
Augis= 2 (20 (L) —exp(8,5,)) expl(—llwi,y;, — )
J2=1 i2€Vj,15,

*

x [exp((a,) @) m(yl(m ;) T ® + 75, V5 ) — exp((al) T2)p) " (yl ).

Based on the cardinality of the Voronoi cells V;, ;,, we proceed to divide the term A,, ;, ; into two
parts as

Agi= 3 S () [en(-llwly, - @l)exp((al) @)yl ) T+ )

321 Vjg 15, =126 V5515,

*

o eXp( ||w]2|J1 .CI}H) exp((al’;-l)Tw)w(y|(77;1j2) x+ 7—J1]2’ ]172):|

Y Y en(B) [ exp(-lwly, @l exp((al) T@)m (I ,) T+ 7 V)
32:Vijg 131 1>192€Vi5 5,
— exp(— e}, s, — ) exp((a},) T @)w (vl (), 1.) @+ 70 )
= Anji11+ Ay

Let us denote F(z;w) := exp(—|lw — x|) and £(n,7) = n"x + 7. By means of the first-order
Taylor expansion, A,, j, 1,1 can be represented as

exp )
An,jl,Ll = Z Z Z 12“1 Aw;’;jzul)al (Aa‘?l)a2 (A’r’?lizjz)as (ATjTi’izjz)a4

2aoa|
Jo: |V]2|]1| 112€V]2‘]1 \a\ 1

8‘0‘1|F W T 8\03\4-044-"-2(1577 )
BT (z; wjz\h) eXp((aﬂ) w)m(y‘(nﬁjz) T+ 75y ]1]2) + Rppa(x)

n a5 00403
x (ij1i2j2) x

2(1—|a)

. alallF * * \ T
= Z Z Z Sn7j2‘j171117p17p2 ~xPr BT (w;wj2|j1)exp((aj1) :B)

52 Vg 1y 1= e [=0 [y [+-po =0V 1— o |

apz
8§p2 (y|(n3132) z+ Tyuz’ 7112) + Rng 1( )

where R,, 1 1(x) is a Taylor remainder such that R,, 1,1 (x)/La, — 0 as n — oo, and

exp(ﬁi"“ ) n o n \o n a:
Sn7j2‘j1>0417P1>P2 = Z Z 2(!5;!]1 (A 1232\31) I(Aaﬁ) Q(Anjﬂz»jz) s

) - .
12€Vj, 15, (@2,a3,a4,0a5 )EIp1 o

X (AT} 50) (AVS 50,

for any (v, pq, p2) # (04,04,0) and j; € [kF], j2 € [k3] in which

SL

p1.92 = {(ag,ag,a4,a5) S Rd X Rd X Rd XR:ap+ az = P |a3| + ay + 2a5 = pg}
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For each (j1, j2) € [k}] x [k3], by applying the Taylor expansion of order 5% (|V}, ;, |) := Tf;fjl,
the term A,, j, 1,2 can be rewritten as

SL

SL
Tizli1 (15, ~leeal) Jletl p
. — L. P T L gk * T
An,]1,172 = E , E : E : Sn,]z|]17a1,017P2 Z T (w7wj2\j1)exp((a’gl) iL')

J2:1Vjy15, [>1 a1|=1 |pg | +py=0V1—|a|
8”277

X D eyl "

z+ TJ1J2’ ]1]2) + R" 1 2< )

where R, 1 2(x) is a Taylor remainder such that Ry, 1 2(x)/ L2, — 0 asn — oco.
Next, we rewrite the term A,, ;, » as follows:

S e [ep(lwlhy, - @) - ep(—lw,y, — )] exp((al) ) (gle)

32: V515, =1 02€ V55 15
SL,
+ ) > exp(BL;) [exp(—l\w&h — a||) — exp(—|lw},;, — wll)] exp((a},) "@)p; " (y|z)
32:Vig15, 1>192€Vj5 15
c=Anjy 21+ Ay 22
By applying the first-order Taylor expansion, we have

An7j1,271: Z Z Z eXp 72‘31 A Zh\]l)w

Ja2: |V12|11| 142€Vj, 5, |]|=1

ol¥l .
X S (@ w3, exp((a)) @il " (yla) + o2 (@),

RIS . N SLon
= D X Tadthe gy @@y exp((al) @)l (lx) + Rao (@),
72:Vis i1 =1 [%]=1

where R,, 2 1(x) is a Taylor remainder such that R,, 5 1(x)/La, — 0 as n — oo, and

Z exp(ﬁgm) (Aw?

T P! 12]2\]1) )

nj2ji,p T
12€Vj, |5,

for any js € [k3] and ¢ # 0g.

Meanwhile, we employ the second-order Taylor expansion to A,, j, 2 o:

2
ol¥l SL.
Avgiaz= 30 D0 Tupinw g @ i) ol(a)) @0 o) + Rua(e),
J2:Vjg 151 |>1 19b]=1

where R,, 2 2(x) is a Taylor remainder such that R,, 2 2(x)/La, — 0 asn — 0.

As a result, the term A,, can be rewritten as

SL
P PSE 26SE jay))
ey U Sy s
A, = n,j2|j1,01,P1,02
oo S e(=lwy ;= @l + 8515 Lo 1oy ey —ovi-faa)
ol p or2y

x P Hw (m;w;ﬂjl)exp((a;l)—rm)@(y‘(n;ljz) T + T]1]27 1112) + R” 1 1( ) + Rn,l,Q(m)

LI . N "
Y T aow @ @i exp((@f) T @)pn " (ylz) — Roza (@) ~ Rupoal@)),
[4|=0
(33)

where Sy jy|ji,a1.py 02 = Tnigalinp = Zmevjzm eXp(ﬁinzljl) exp(ﬂj |71 ) for any jo € [k3] where
(a17 P> PQ) = (0d7 Od; O) and ¢ =0
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Step 1B - Decompose B,,: By invoking the first-order Taylor expansion, we decompose the term B,,
defined in equation (32) as

K
= > ew®]) Y (Aa},)7 - exp((a],) "@)plk (y]2) + Rus(@), (34

=1 lvI=1
where R, 3(x) is a Taylor remainder such that R,, 5(x)/La, — 0 as n — oo.

It can be seen from the decomposition in equations (32), (33)) and (34)) that A,,, B,, and C, can be
treated as a linear combination of elements from the following set union:

6|041‘F " « ap271' * . * . *
{mpl : m(m;wj2|j1)eXp((ajl)Tm)@(yKnj]jz) T+ 7] Vi)t a1 € (K], Ja € k3],

0<|a1|<r]2|]1’O<‘p1|+p2<2( 32‘]1 |a1)}

vl T w < a' SL,n T
{ dw® ( ]2|Jl)e p(( ) )ph (ylz) c €KY e € k3], 0 < o] < 2}

Zj§:1eXP( ([ bl — x| +5] |]1)
~ * SL,n ~ *\T N, SL
U {a7 exp((a},) ") " (i), @ exp(aj,) T@)pEE (ylw) s 1 € ki), 0 < Iy <1}
Step 2 - Non-vanishing coefficients: In this stage, we illustrate that not all the coefficients in the

representation of A,,/Lsy,, B, /Lay, and C,, /L, go to zero as n — oo. Suppose that all of them
approach zero, then we examine the coefficients associated with the term

* exp((aj, )T )piL "(y|z) in C,, /L2y, we have
£2 Z ‘exp ) —exp(b;,)| — 0. (35)
no i

* \ T * *
. F(CC w]2|J1)eXp((a' ) m)ﬂ-(y‘(n]’l]é) :]3 +TJ1J27 J1J2) in An/ﬁzn,we get that

ijzl exp(—||lw* 5191 —z| JFBJ \jl)

Z exp(b Z ‘ exp Bmh) — exp(ﬁ}‘z‘jl) — 0. (36)

J1=1 J2=1 92€Vj, 5,

3\‘11\1:'(:8 w* )eX n\T * V¥

i p((@}) ") (yl(m5,5,) " T + 75 Vi)

. w1 le]];* J1J2 Jij2 j1J2 in An/£2n for jl c
i exp(=llwr, ; — x|+ 85 ;)

(k3] j2 € (k3] : [Vjy)5, | = L and oq = eq,, Where eq,y == (0,...,0, 1 ,0,...,0) € N,

~—
. u-th
Wwe receive
n *
£2 Z exp Z Z exp(ﬂi2|j1)le2|Jl B wj2|j1||1 — 0.
n * .
Ji=1 Jze[kz]i\V.jgw.jl\zllzevnm

Note that since the norm-1 is equivalent to the norm-2, then we can replace the norm-1 with
the norm-2, that is,

£2 ZexP > > (B why, = @l = 0. G7)

J1=1 J2€[k§]:WJ'2\J'1‘:1 12€V5, 15,
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F(x; wml)exp((a;)%) g W55, T+ 775,07, 5,)

S expl—llw,, —all+ By,
(k7). 2 € [k3] : |VJ2|]1|—1andp2—1 we have that

in A,/Ls, for j; €

£2 Z exp(b Z exp(B7, 1, )72 — Thja| = 0. (38)

n=1 Jze[kﬁi\vjzm‘:l

© * *
wplF(w w]2‘] )exp((a .’B) gfig (y|(n]1]2) w+T]1j2? j1j2)

Zj;:l exp(—[|w; pli — x| + 85 i)
[k7],j2 € [k‘;] : Vjas:| = 1, p1 = €qu and po = 1, we have that

f)T

in An/ﬁgn for j; €

o Seott) X ¥ entulin. oo o

Jji=1 J2€[k§]=|vj2|j1|:1 12€Vj, 5,

F(a; wml)exp((a;l) @) Gems (| (m5,5,) " ® + 75400 V)

S expl—llwy,, — @l + By,
(k7). 2 € [k3] : |VJ2|]1|—1andp2—2 we have that

in An/ﬁgn for J1 €

£2 Z exp Z exp(ﬁ;lﬂh)w;}ljz - J1J2| — 0. (40)
n

Ji=1 ]26[k§]:|Vj2|j1|:1

o x7 exp((a;I)Tm)péi (y|x) in Bn/ﬁgn for j1 € [k}] and ¥ = eq,,, We obtain

Zexp )lal, —al, || = 0. (41)

Jj1=1

Jeeq | * * *
8&‘:7101}?(3: w]2|J1 ) exp((a, )T:B)ﬂ(y|(’l7jlj2) T + lejz ’ VJ1]2)

T
S exp(—llwiy, — el + 8,
(k7] 72 € [k;] [Visljr| > 1and a; = Qed,u, we receive that

in An/ﬁgn for Jj1 €

o Sewtn) XS ewl)lely, -l o0 @

=1 Jze[ké‘]il"jzu1|>1i2€ij\jl

Putting the above limits together with the formulation of the loss Lo, in equation (31), we deduce
that

J2|.71 Pl
o et >[ DORNED DI CAMI (ES N R L
n

ji=1 J2:[Vjy 41 [>102€V55 15,

SL

Jz\Jl
+ AV}, 52 )1 # 0,

which also suggests that

SL

SL. Tigliy

. S e b”l)[ Y Y e (laa)l s - a1
n

Jji1=1 J2:| V141 |>192€V555,

~SL

Tioli1
+ ‘A J112]2| 12“1 + |A ]112]2| 2 )] 7L> O’
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as n — 0o. Thus, we can find indices j7 € [k{] and j3 € [k3] : [V

SL
1 N Tiglit
. Z eXp(ﬁZ\j;)(Hag‘ —aj. || G + th njl*j;” 2
22€V 515F
n * 7’79*1].* n
1T = T |2 s — Vi ) 70 @
WLOG, we may assume that j; = j5 = 1. By considering the coefficients of the terms
P2
:BplF(:IJ w]2|] )exp((a;fl)T )ggﬁg(m(n]ljz) $+TJ1J2’VJ1J2) . .
= in A, /Loy, for j1 = jo =1, we
Zj§:1 eXp(_ijé| H +BJ2|J1)

have exp(b7) Sy 111,04,p,,0:/L2n — 0, or equivalently,

1 eXp(ﬂZ\l)
) vl (AaM)*2 (AT )98
Lon Z Z 29 aglasloglavs! ( (11) ( 771@21)
i2€V1)1 (az,a3,04,05)€Z5E

X (ATlniﬂ)M (Ayﬁél)af’ — 0. 44)
By dividing the left hand side of equation by that of equation [@3), we get

exp(B7,)1) 5
Zizevlu Z(ag,a37a47a5)61 L 2Q5a2!a;f(lxl4!(x5! : (Aa?)a2 (An,,ll’igl)as (AT{;zl)O“l (Ay?’igl)ao

P1:P2

SL SL
T SL "1
iacvny BB ) (1A + | Ang, 172 + AT, T+ Ar, )

— 0.

(45)

Let us define M, := max{[|Aal||, |AnT,: |V, 1AT |, AV, 112 i € Vi1 }, and B, ==
maxi,ey, |, exp(ﬁgll). Since the sequence exp(ﬁi’;ll) /B, is bounded, we can replace it by its
subsequence which has a positive limit p?, := limy, . exp( B/ B,,- Note that at least one among
the limits pi must be equal to one. Next, let us define

(Aa})/ M, — qo, (An?@l)/ﬂn — Q34>
(AT],1) My = Quiy,  (AV7,1)/2My = g5,
Note that at least one among g2, g3, , 4i, , 5, Must be equal to either 1 or —1.

By dividing both the numerator and the denominator of the term in equation (@3) by Bnﬂlnpl ez ,

we obtain the system of polynomial equations:

1
Qo O3 4 Q5 SL
> Y oo PROSORaLGL = 0. 1< e+ e < i
2€V11 (a2,a3,004, 0‘5)€I§1Lp2

According to the definition of the term rls‘f, the above system does not have any non-trivial solutions,

which is a contradiction. Consequently, at least one among the coefficients in the representation of
Ay /Loy, By /Lay, and C,, /Lo, must not converge to zero as n — oo.

Step 3 - Application of the Fatou’s lemma. In this stage, we show that all the coefficients in the

formulations of A,,/Lay,, By /Loy and C,, /Lo, go to zero as n — oo. Denote by m,, the maximum

of the absolute values of those coefficients, the result from Step 2 induces that 1/m,, /4 oco. By

employing the Fatou’s lemma, we have

Ex [V(pgh (1X), peZ (1X)] _ /1. . pgE (yle) — pe (yle)]
> im inf

0= 1
o n—00 2my, Loy,

n—oo mpLon

d(zx,y).
Thus, we deduce that

pes (ylw) — pg” (ylz)|
anﬁgn

— 0,

which results in @, /[mnL2,] — 0 as n — oo for almost surely (x, y).
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Next, we denote

' '
eXp(bjl )Sn7j2\j1,a1,P1,P2 eXp(bjl )Tn7j2\j1,¢

M Lon - ¢j2|j170¢17P17P27 My Lom = Pialjr >
explby)(Bap)T ey ) —exp(by)
mn£2n J157Y 0 mn£2n X1

with a note that at least one among them is non-zero. Then, the decomposition of @, in equation (32))
indicates that

An . . n
lim = lim — lim + lim
n—o00 My Lon n—o0 MpLoy n—oo mpla, n—o00 myLony
in which
SL SL
ki k3 Tiglin 251 ~leal) Hleal p
i E E § § . LpPr T (e
nli)rrgo m 2 S”»J2|]17°¢17P17P2 T w1 (w’wj2|j1)
P i=15=1 Laa|=1py [+p=0V1—|ou|

or2r

X exp((ajl)T )8€p2 (y|(nJ1]2) T+ TJ1J2’ Jlj?

LI

Z Pzl w0 (w;w;;\jl)
[¥|=0

1

sL,
x exp((aj,) @),

(yle) | —
! ]zk_lexm s, 5, —all + 83,0

lim = E E A~ xY exp x)pt (y|x),

n— o0 mn 2n ji=1|y|=1 o (( ) ) ° (y| )

lim exX |: SLx X)) — SL T i| .
. mn on J; 1: le p ) p]1 (y| ) pG* (y‘ )

Since the set

21 € [kl g2 € [k3),

| | P
{ OE (07t expl(a]) TV ZEE G0 T+ 75 )

ijzl exp(—|lw; hlin x| +ﬁj \Jl)

0 < Jeus| <7355,0 < |pa| +p2 <2005, — Iall)}

{ L (25w, ) exp((af,) T@)pSl (ye)
Z]’f:l exp(—|lw; Jzlin —z| +BJ Ial)
U {27 exp((a,) T2)pEE (i), exp((as,) T@)pS (), exp((aj,) @)t (yle)

1 € k)0 < v < 2}

g1 € k1], g2 € [k3],0 < |9 < 2}

is linearly independent, we obtain that ¢, 5, a1 ,p, .02 = ‘szljl,w = Aj, ~ = X;j; = 0forall j; € [k}],
Jo € (K310 < lou| < v5E 0 < [py| 4 p2 < 205E — |au]). 0 < || < 2and 0 < || < L,
which is a contradiction. As a consequence, we obtain the inequality in equation (T2). Hence, the
proof is completed.
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E.3 WHEN type = LL

When type = LL, the corresponding Voronoi loss function is £(277.LL7%7.LL)(G”, G.) = L3, where
we define

k1

Lan = Z exp(b},) — exp(b Z exp(by, )| Aaj, || + Z exp(b

Jj1=1 Jj1=1 Ji=1

: [ Z Z exp BZ;\JI)(”AwQJzUlH + ”Anhlzsz + ‘A J112]2| + |A J112J2‘)

J2:|Vijg14q [=12€ V555,

LL
+ Z Z exp Z2|Jl (HAwlzh\Jl ||2 + ”Anhzz]z H2 + |A 3112]2| szl

J2: |v72|11 [>1 7’2€vﬂzlj1

leJl *
+ ‘A ]112]2 ) + Z eXp Z ‘ exp ﬁlz\]&) o eXp(ﬁszl) : (46)
Jji=1 Ja=1 1i2€Vj, 5
Step 1 - Taylor expansion: In this step, we use the Taylor expansion to decompose the term
1
* * LL LL
> exp(—|laj, — | +b5,) | pE- (ylm) — p&- (y|z)).
Jj1=1
Prior to that, let us denote
LL,
Py, " (yle) = Z > ol=llwny, = @l + B )T Wl ) T+ T, v,
J2=1i2€V5,)5,
s
LL,
Pj, *(y|w) = Z ( ||w]2|]1 :13” +5;2\j1)7r(y|(n;1j2) i +T]1J2’VJ*1J2)
j2=1
Then, the quantity (), is divided into three terms as
- LL, LL
Qn=>_ exp(b},) [exp(*lla?l —|)p;," (yl2) — exp(—|laj, — z|)pj; ’*(ylw)}
Jji=1
_ b “la™ — — —lla* — LL
exp(b},) [exp(—|aj, — ) —exp(—laj, — =|)] pc, (y|)
jl*l
* * LL,
+ Z exp(,) — exp(b;,) exp(~|aj, — @) [p}"" (v]@) - pE- (y])
Jji=1
=A,—-B,+C,. (47)

Step 1A - Decompose A,,: We continue to decompose A,,:

i+ Ao+ Ap o]
= [An i1+ Anjy2 + Any sl
im1 2 exp(=llwy, ; — 2l +8)5)

34



Under review as a conference paper at ICLR 2025

in which

n,j1,1 + Z Z eXp 12|_]1) |:€Xp( ||w12\]1 - 33”) exp(_lla’jl 53||)7T(y|(77?112)—|—w + T]1127 _;leg)

J2=1102€Vj,15,

—exp(=lwj,;, — @l exp(=llaj, — x| (yl(n],;,) '@ + 77,5, V}‘m)},

n,j1,2 * Z Z eXp 22|J1 [exp( ||w12\j1_a:”)_exp(_Hsz”l $H):|

J2=102€V5,15,

LL,
x exp(—|laj, —z|)p;; " (y|z),
k3

Angeai= 3 (0 exp(Bhy) — exp(Byy,,) ) exp(—lwl, . — @)

J2=1  i2€Vj 5,

% LL,
x [exp(~laj, — )7 (yl(n],;,) @ + 75,0 v5,5,) — exp(=llaf, —z|)p;"" (ylz)].

Firstly, we separate the term A,, j, 1 into two parts based on the cardinality of the Voronoi cells V;, ;,
as

Aji= XY el expl—lwly, — al) exp(—llal, — el @ + )
jzz\ij‘jJ:l’i2€Vj2|_71

*

—exp(=lwj,;, — zl) exp(=llaj, — )7 (yl(n],;,) " + 77,5, v Jm)}

+ Z Z eXp 12|_]1 |:eXp( ||w12\]1 - sc||)exp(—|\a?1 - mH)ﬂ'(yK’f]le) w+7—112’ Jnﬂz)
J2:|Vijg14q [>112€V55 15,

— exp(—|lw},;, — «l)) exp(—=|laj, — ) (y|(n},;,) "= + 75, v fm)]
=An i1+ Anjiie

By denoting F'(x;w) := exp(—||w — x||) and employing the first-order Taylor expansion, we can
represent A, j, 1.1 as

exp(fB ZI
. _ 2 Jl n o n oo n a3 n [}
Anjiani= ) > D gy (AW (Bag ) (A )™ (AT )
Jo: |V]2|]1| 112€V]2‘]1 \a\ 1
Pleal . glezl Hlas|+aat2as o

X (A0 ) s

Hw1 L5 Wi, dacz T a]l a£|a3|+o¢4+2a5 <y|(nj1jz) w+TJ1J2’ Jljz) + R 1, 1(x)

1 2(1—|oa|—|oz|—|eus]|) o |
oy S I
= n,j2|j1,01,a2,a3,p D1 » ¥l
J2:| Vg5, [=1 len [+ ez |+ |=0 p=0V1—|ca1|— |2 | —|es]
[ as|+
lezl g L Oleslter

W(w;ajl)m(y\(n;p) T+ 7],

Ji1j2’ J1J2) + Rna 1( )

where R, 1 1(x,y) is a Taylor remainder such that R, 1 1(x,y)/Ls, — 0 asn — oo, and

exp(ﬂf‘j )
Snislinerascss = D, D —amep (AWl )% (A )% (A, )

12€VJ2‘J1 as2a5=p

X (AT ) (A%,

Jit2j2 J11272

for any (alaa27a37p) 7& (0d30d70d70)7.j1 S [kﬂ and j2 € [k;]
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For each (j1, j2) € [k{] x [k3], by invoking the Taylor expansion of order " (|V},;,[) == r}.17 .
the term A,, j, 12 can be represented as

LL
Tjzli1 2(T32\J1 leea| =[] —]exs])

. — L. . P
An,]1,172 = E , E § : Sn,m\h,al,ama&ﬁ x

J2:|Vjy15, |>1 |aa[+|ez|+]as|=0 p=0V1-|a1|—|a2|—|as]

dlelp . ollp dlesltey
X D1 (w;w.jZIjl) daz (z; a]l £|a3|+p (y|(nj1jz) w+TJ1J2’ Jl]2) +R"12(w y)

where Ry, 1 2(x, y) is a Taylor remainder such that R,, 1 2(x,y)/Ls, — 0 asn — oo.

Secondly, we rewrite the term A,, ;, 2 as follows:

LL,
S e [exp(—lwhy, - @) - exp(—llw,;, — )] exp(—laf, — @l)p) " (vie)
j21‘vj2\j1|:1i2€vjz\j1
, LL,
> e8| exp(— Wiy, — @) = exp(—llwl;, — @) exp(~la, — @l)pk " (y]2)

32:Vig15, 1>112€Vj5 5
t=Anji21+ Anji 22

According to the first-order Taylor expansion, we have

Anjioi= Y > > i wl (AW )%

J2: |V12|31| 112€VJ2\J1 "’M 1

a‘w‘F * n LL n
X W(w;wj2|jl)eXP(—Hajl - -’BH)PJl (ylz) + Rn21(2,y),

Il L.
= D X Tathw gy @ @h) oxp(=laj, = xl)pi" " vle) + Ruza(@,y),
Jo: ‘V32\31| 1"‘/"‘ 1

where R, 2 1(x,y) is a Taylor remainder such that R,, » 1 (x,y)/Ls, — 0 as n — oo, and

TﬂdzUlﬂ/’ =

)

exp(ﬁg‘jl)

b
D, — - (Bep)
12€V55 5,

for any js € [k3] and ¢ # 0g.

Meanwhile, we apply the second-order Taylor expansion to A,, j, 2 o:

2
ol L.
Anjizz = D D Tujaliw g @5 exp(=llaf, —2)py" W) + Ru2a2(2,v),
J2:| Vg4, [>1 1|=1

where R, 2 2(x, y) is a Taylor remainder such that R,, 2 2(x,y)/Lsn — 0 asn — oo.
Combine the above results together, we can illustrate the term A,, as

LL
ik 2(rEF, —lou|~|eu|~e))

ki k3 n
exp(b7 )
n = Z Z k3 Z E : S7l,j2\j17¢11,¢12,01370

j1=1jo=1 Zjé:l exp(—||lw?* YA —z| +5 \jl) |y |+ aa|+|as|=0 p=0V1—|o|—|as|—|as]
o gl p gleal glesl+o
5 ' Ve (prat )"
w1 »Ehli ) gg e I gglas]tp

(y|(’r’;(1]2) m+7—]1]27 ]1J2)+Rn11($ y)+R7112($ y)

BIKANa . N Lim
= 2 Tuglivas gy (T Why) exp(=llaj, = @l)pi" " (ylw) = Ruza(@.) = Ruza(.y)|,
|4|=0
(48)

where Sy j, |j1.on.cz.05.0 = Tnjalingp = Zhevjz\h Xp(ﬁinﬂjl) exp(B] |J1) for any j1 & [k{],

g2 € [k3], (a1, a2, a3, p) = (04,04,04,0) and tp = 0
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Step 1B - Decompose B,,: By invoking the first-order Taylor expansion, we decompose the term B,,
defined in equation 7)) as

L ledba
Bp= ) exp(by) > (Aaj,)7 ——=(:a])pg; (y]2) + R s(x,y) (49)

=1 [v|=1
where R, 3(x,y) is a Taylor remainder such that R,, 3(x,y)/Ls, — 0asn — oo.

Putting the decomposition in equations (7)), (48) and (@9) together, we realize that A,,, B,, and C,,
can be treated as a linear combination of elements from the following set union:

ey | =y |eeg|+p
{wQS aawllF (w7w;2|J1)86ai‘2F (m’a’* )35\23\4»‘2— (y|(77;1]2) m+7—j1j2,1/j1j2) .

k*
2 exp(=llwy,;, —zll+ 85,

g1 € [k1], j2 € [K3],

0 < o]+ |aa| + |as] < 21"”‘] ,0<p<20t .72|.71 lay| — || — a3|)}

|| LL,
{%J(w W) exp(—lal — 2] )pEE ()

i .
> exp(=llwl, ; — =l + 85 ;)

Rledia . n g
0 { G @i "l G s o) < € k) 0 < bl < 1

g1 € (k1) g2 € [Rs], 0 < o] < 2}

da”

Step 2 - Non-vanishing coefficients: In this step, we demonstrate that not all the coefficients in the
representation of A,,/Ls,,, B, /L3y, and C,, /L3, converge to zero as n — oo. Assume by contrary
that all of them go to zero. Then, we look into the coefficients associated with the term

. eXp(—Ha;f1 — :13||)pflL "(y|x) in Cy, /L3y, we have

Z ‘exp (b7,) —exp(b},)| — 0. (50)
Jji=1

£3n

*

F(a; w32|J1)F(w aj,)m (y|<77]u2) T AT V)

k3
szl exp(— ||wjé| — x| "’5] \11)

in A, /Ls,, we get that

kI ks
1 1 2 .
Lo > exp(b) D ‘ > o8y, —exp(B,,)| = 0. D
"oji=1

J2=1 2€Vj,)5,

gleal
dm‘mlF(:C wj |71 )F(:B a ) (y|(’r’j1j2)T T+T J1J2’ J*ljz)

. in Ay, /Lsy, for j; € [k7], 72 €
k* n n 10
> exp(=llwy, ; — =l + 85 ;)
(k3] : V), | = 1and oy = eq,, Where eq, = (0,...,0, 1 ,0,...,0) € N, we receive
u-th
that

cg Z exp(by,) Y > (B el — @y b = 0.
n

Jji=1 J2€[k3]:|Vjy 141 =1 12€V5015,

Note that since the norm-1 is equivalent to the norm-2, then we can replace the norm-1 with
the norm-2, that is,

I
1 : n "
Lan > exp(b},) > Y B )lwh ), — @l = 0. (52)

J1=1 J2€[k3): Vg5, =1 92€ V5515,
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L oxn0lesln * *
F((B w]2|J1)F(:B’a' >8§\‘13\ (y|(77j1j2) T +TJ1]2’V3112)

o A3

G in A,/Ls, for j; €

B exp(—|wyy, — al + Byp)
(k1,72 € [k3] : [V),15,] = 1 and a3 = eq, ., We have that

o 3" et > 2 e — w0 )
"=t Jz€[k§]¢|Vj2|j1|:1izerz\.n
. aél‘f(w a’ )p&t (ylx) in By, /Ly for ji € [ki] and v = eq,,, we obtain
TR
o Z exp(by,)||a}, —aj || — 0. (54)
Jji=1
OLE (2w ) F(a;a, )m( -
Cl G2 yl (7} T+ T V)
. Ow>l ]I:*Ul Jij2 122 Vv in Ap/Lan for j1 € [K1],ja €
jézzl exp(—||wj A z| +ﬂj \Jl)

(k3] : |V]-2|]-1| > 1and oy = 2e4,,, we receive that

LYoty Y Y ewlel, w0 69
n

=1 JQG[kS]:lvsz1|>1i2€vj2\j1

x& glesln * *
3F(a} wJ2|]1)F(m a ) 5‘03\( |(nj1jz) m+TJ1J2’ J1J2)

Zj§:1eXP( w3 bl — x| + B85 i)
(K1), J2 € [k3] - [Vj,15,] > 1 and a3 = 2e4,,,, We have that

in An/ﬁgn for j; €

o Seos) XX eall im0 69

71=1 Jze[ki]i\vmmbliZGijm

Combine the above limits and the formulation of the loss L3, in equation (46), we deduce that

LL
Tiali1
£3n Z eXp ) Z Z eXp l2‘]1 (|A7-711272| ]2‘“ + ‘A ]112]2| 2 ) 7L> O

Ji=1 32:Vjg 151 1>182€V55 15

This indicates that there exist indices ji € [k7] and j3 € [k3] : [Vjy

LL
1 T T35
= eXP(ﬁZW('ATmzj* T |Avg, e T ) 7 0. 7
3n ZQGV 515F
WLOG, we may assume that j7 = j5 = 1. Then, considering the coefficients of the term

F(z;wi, ) F(x; aj, )(%p (y|(nh]2) T + 755,V ,) in Ay /Ly, wWhere j1 = j2 = 1, we get
exp(b} )Sn,1\1,0d70d70d7/;/£3n — 0, or equivalently,
eXp(Bln 1) n « n a
Z Z Wj@lr! (AT, 1) (A1) — 0. (58)

i2€V1 |1 aat2a5=p

Next, we divide the left hand side of equation (57) by that of equation (38), and get that
exp(B7%)1)
Zi2ev1\1 Za4+20¢, =p 2a—5a4'20|t1 a (ATE;21)(X4 (Ayﬁzl)as

1\1
Zizevm exp( z2|1)(|AT1121| T AT )

— 0. (59)
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Let us define M, := max{||Ar]} , |, ||A1/{;21||1/2 tiy € Vipi},and B, = maxi,ey, , exp(ﬁgu).
Since the sequence exp(ﬁgll) /f3,, is bounded, we can replace it by its subsequence which has a
positive limit p?, := lim,, o0 exp(B7,|,)/5,, Note that at least one among the limits p7, must be
equal to one. Next, let us define

(ATlnigl)/Mn — Q4iy, ( lz 1)/2M — (5iy-
Note that at least one among g4, , 5;, must be equal to either 1 or —1.

By dividing both the numerator and the denominator of the term in equation (@3] by Bnﬂz, we
obtain the system of polynomial equations:

1 2 a4 Qs
Z Z aulas! p12q4242q512 =0, l=<p< r1|1
iQEVUI as+2as5=p 405
According to the definition of the term T1| 1» the above system does not have any non-trivial solutions,

which is a contradiction. Consequently, at least one among the coefficients in the representation of
A, /L3y, By /L3y, and Cy, /L3, must not approach zero as n — oo.

Step 3 - Application of the Fatou’s lemma. In this stage, we show that all the coefficients in the
formulations of A,,/Ls,,, By /Lsy, and Cy, /L3, go to zero as n — oco. Denote by m,, the maximum
of the absolute values of those coefficients, the result from Step 2 induces that 1/m,, /4 oc.

By employing the Fatou’s lemma, we have

E X X LL (y|lx) — pLE (y|x
0= Tim x [V (p&h (1X), pg" (1 X)] > /hmmf Ipc: (ylz) — pe:, (vl )Id(%y)'
n—o00 mpLsn n— o0 2mn, L3n
Thus, we deduce that
pi @) —peiGlz)l
2mn£3n ’
which results in Q,,/[my,Lsn] — 0 as n — oo for almost surely (x, y).
Next, we denote
exp(b?)S,, .14 ) exp(b" )T, .14
p( ]1) n,jz2|j1,001,002,03,p N ¢j2\j1 st p( jl) "»]2\]171/’ N (Pjgljl "
mnﬁ?)n ’ ’ Y mn£3n ’
exp(b?l)(Aa;’I)7 Y exp(b?l) — exp(b;'fl) ‘
mn£3n e mn£3n 7

with a note that at least one among them is non-zero. Then, the decomposition of @),, in equation (47)
indicates that

lee ] leez|
A S S S g OIE
100 My Lan Jz2|j1,01,02,03,p St IR PV a2 [ 1

j1=1j2=1 L |a|=0
glesl+o
* *
X S s y\(njm) T+ TS Gy Vi)
ag 3|+p

- 22: Pialjip 88[1/;7'5(%;“’;2\]‘1) exp(—||a§1 - m”)ijlL *(y$)] 5 *1
oo S exp(—lw, — el + 8,
o
) B, E o E
nh_)rrgo i Ls = Z Z Ajr oy &T(fﬂ JI)PG (ylz),
I =l y=1

LL,*
—ZMWPWMWW%(WF%wW}

Ji=1
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Since the set

gleal . gleal . glesl+e
{ = awlaf (33, w;2|j1) ai‘2F (:B, af ) 85'13”7’: (y|(n;1j2) z+ TJl]27 V]*1]2)

T tJ1 € [kf]a
'271 exp(—|lw; Jhlin z| +ﬁ] \31)

Jo € [k3],0 < |ay| + |ea| + |as| < rml,o <p<20t ml la] — Jea| — |a3|}

5lwl * LL,
{"awf(w swi o exp((ag,) Te)pg " (yl2)
PR N N
j§=1 eXp(_ijéul :L‘H +6 |.71)
LL,
U {w“’ exp((a},) "@)ps" (ylz), exp((a},) @)p; " (ylz), exp((a],) z)pg" (y|x)

L1 € k1,0 < | <2}

g1 € kil g2 € [k3],0 < 9] < 2}

is linearly independent, we obtain that ¢J2|J1,a170¢27a3,P Cjoljrp = /\jl,, = x;, = 0 for all
g1 € [ki], j2 € [k3], 0 < leu| + o] + [ag| < rif; . 0 < p < 2(rf0 — leu| = |ee| — |ag)),
0 < |¢| <2and 0 < || < 1, which is a contradiction. As a consequence, we obtain the inequality
in equation (12). Hence, the proof is completed. O

F PROOFS FOR CONVERGENCE OF DENSITY ESTIMATION

Proof of Theorem[l] To streamline the arguments for this proof, it is necessary to define some
notations that will be used in the sequel. First of all, let Ptyp ., (©) stand for the set of conditional

density functions w.r.t mixing measures in Gy ,(©) where type € {95, 5L, LL}, that s,
P}izl/plfz( ) == {pd"(ylx) : G € Gz 1, (O)}.
Additionally, we also define
PLE(©) = (Pl a)a012) : G € Guss (O},
Pt *(0) = Ay 2) " Wl) : G € Gk (©)}:

Next, for each § > 0, we define the L?-ball centered around the regression function p/
type 1/2(())

¢
YP¢ and

intersected with the set P, as

P,z%%f;“(e §) = {p/* € PL2(©) < o p2) < 0}

Following the suggestion from Geer et. al. [van de Geer| (2000), we utilize the following integral to
capture the size of the above L2-ball:

)
Tp(0, P %(,6)) = / / H? (6, P (©,0), | - ll2) de v 6, (60)
§2/213

where the term Hp(t, P,?ip ;21/ *(0,1), || - l2) denotes the bracketing entropy van de Geer| (2000) of

P,i?f’,:;l/Q(@, t) under the L?-norm, and ¢ VV § := max{t,d}.

Let us recall the statement of Theorem 7.4 in|van de Geer (2000) with adapted notations to our paper
as follows:

Lemma 2 (Theorem 7.4, van de Geer (2000)). Let W(8) > Jp(8, P,2%:"/*(©,4)) be such that

U (8)/62 is a non-increasing function of 8. Then, for some universal constant ¢ and for some sequence
(8,,) such that \/né2 > c¥(3,,), the following inequality holds for all § > §,,:

P(Ex[h(p@g;( 1X), pPe (-1 X))] > 5) < cexp (‘5) )
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Proof overview. Given that the expert functions are Lipschitz continuous, we begin with showing
that the following bound holds for any 0 < ¢ < 1/2:

Hp(e, P27, (0), h) < log(1/e), (61)
which yields that

5
T30, P (©,6)) = /6/ HY (1, P 2(©,1), | - =) dt v
5
g/ HY?(t, P (0,1),h) dt v §
62/213

s
S / log(1/t)dt Vv o. (62)
52/213

Let U(8) = 0 - [log(1/5)]'/2, then it can be checked that ¥(§)/6? is a non-increasing function of
§. Moreover, the result in equation (62) implies that ¥(§) > J5(6, P,?ip ,521/ *(©,4)). By choosing

8, = /log(n)/n, we have that \/nd2 > c¢¥(4,,) for some universal constant c. Then, the conclusion
of this theorem is achieved accordlng to Lemma [2] Consequently, it is sufficient to derive the
bracketing entropy bound in equation (61).

Proof for the bound (6I). To begin with, we provide an upper bound for the Gaussian density
function 7(y|n "« + 7, v). In particular, since the input space X" and the parameter space © are both
bounded, we can find some constant x, £, u > 0 such that —x < "z + 7 < k and £ < v < u. Then,
it can be validated that

1 y—(nTx+7))32 1
W(y|nT$+T’ V)= \/%QXP(_( (772V ) ) = 27l

(y=(n"az+7))*
2v

Y

for any |y| < 2k. On the other hand, for |y| > 2k, since > %, we have that

1 y

T

T T+ < - -2,
(yln m,v) < ol exp( 8u>

Therefore, we deduce that 7(y|n" = + 7,v) < M (y|z), where

2
- exp u), for |y| > 2k,
M(y|x) = { var ( ®

NeTTR for |y| < 2.
Next, let0 < 7 < e and {71, ..., 7y} be the T-cover under the L°°-norm of the set Ptype (©) where
N := N(r, P,z‘?’),; (©),] - || ) stands for the T-covering number of the norm space (Pté{f’kez (©),]| -

|| o< ). Equipped with the brackets of the form [L;, U;] where

L;(y|lx) := max{m;(y|x) — 7,0},
Ui(yle) := max{m;(y|x) + 7, M (y|z)},

for all i € [N], we can validate that Ptypcf (©) c UN,[L;, U], and U;(y|lz) — Li(y|lx) <
min{27, M }. Those results yield that

1Ui = Lill .+ = /(Ui(ylw) — Li(y|z))d(z, y) < /QTd(-’c,y) =27,
From the definition of the bracketing entropy, we have
Hp(2r, P2 (0), [ - [[11) < log N =log N(r, P2, (©), || - [l =) (63)

Therefore it suffices to provide an upper bound for the covering number /N. Indeed, let us denote
={(b,a) ERxR?: (b,a,B,w,7,n,v) € Orand Q := {(B,w,7,n,v) € RxRI xR x R% x
i (bya,B,w,7,m,v) € O}. As © is a compact set, so are A and 2. Thus, we can find 7-covers

AT and Q.. for A and €, respectively. Furthermore, it can be validated that

[Ar| < Op(r V), [0 < Op(r- IR,
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.. k3
For each mixing measure G = Z“ 1exp(bs,) ZZZ 1 exp(ﬁmil)5(%1,wiglil7ni1i277,i11,271,i11,2) €

Grr k, (©), we consider two other mixing measures G’ and G defined as

ki k2
/. . n _ _ _ _
= § exp(b;, ) E eXp(/Biz|i1)6(ai1,wi2ul,mli277'i1i27w1i2)7
11=1 12=1
ko
: : eXp : : eXp 12|741)5(a117“)12\11777111277'11127’/1112)
i1=1 12=1

Above, (ﬁzz\il ) ai2|i1 7ﬁ1'11'2 y Tiyizs viliQ) € (27 such that (51’2|i1 ’ aiﬂh ’ ﬁilig » Tivizs ﬁi1i2) is the
closest to (B, i, Wiy iy s Miyiy» Tirias Viyin) in that set, while (b;,, @;,) € A is the closest to (b;, , w;)
in that set.

Now, we begin bounding the term |[p{y”® — p4”°|| .. For brevity, we will consider only the case

when type = S5, while the other two cases when type = SL and type = LL can be argued in a
similar fashion.

When type = S'S: Let us define

ko
Ss T T
Py () = Z o(Wiy)iy) @+ Biy)i)TY(Miy2,) T+ Tivins Virin)s
io=1
k2
_SS _ = — _ _
Piy ( ) = Z U((wi2|i1)Tm + BiQ‘il)ﬂ(y‘(niliQ)Tm + Titias Viliz)'
ia=1
Then, we have
kY 1
lpg® = p27 e~ =Y o (@) @ +bi,) - [p5° =55 < D 955 =57 . (64)
7,1:1 i1:1

Next, we need to bound the terms p5' () — P (x) using the triangle inequality

PSS =B e < P55 = B35 lee + 175 — D55 |l o, (65)
where we define
k2
ﬁis( ) = Z U((wz‘2|z‘1)T$ + Biz\h)w(y‘(ﬁilig)—rw + Tivins Vigiz)-
ig=1

Firstly, we have

||pzsls —p“SHLoo < Z le‘ll (B + 5i2|i1)
12=1

T — \T.. = =
X ||7T(y|(ni1i2) T+ Tiqrias Vi1i2) - W(y\(mm) T+ Tiriay Vi1i2)||L°°

ko
Z y| nuzz w+Ti1i2’Vi1i2) _ﬂ-(yl(ﬁhiz)—rw+?i1i2>pi1i2)||l/°°

2
<S> <||7lm2 —Miyin | | Tivio = Tivia| + |Viras *E'mo ST (66)
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Secondly, since X’ is a bounded set, we may assume that ||z|| < B for any € X". Then, it follows
that

155 — B3, (Wig)ir) "® + Biggir) — 0 (@iy)0,) " + 3@%)
19=1
X ||7r(y‘(ﬁi1i2)—rm + ?iliz’ﬁiliQ)”Loo
ko
S [Iwistis = @iagia - 121+ 1Biy iy = B
in=1
k2
<3 (TB n T) < 67)
ig=1
From the results in equations (64), (63), (66) and (67), we deduce that
Ipg® = P& llL= S 7. (68)
Furthermore, we have
ki
e = P2l = > lo((@i) T@ +biy) = o (@) T + )| - |7 (y| (iyi,) @ + Tii Vi) | £
=1
kl
<> (lai =@l - el + b, ~ i)
=1
1
<Y (*B+71) ST (69)
=1

According to the triangle inequality and the results in equations (68)), (69), we have
Ip&° = p22 Nl < 19&° — P&7 e + P& — P27l S 7.
By definition of the covering number, we deduce that
N7, P, (0,11 lz2u) < 1A7] % Q|

< Op(r~ @R 5 Op (7= (2d+3)kik2)

< OP(T—(d+1)k{—(2d+3)k1k2)_ (70)
Combine the result in equation (63)) with that in (70), we arrive at

Hi (27, P (0), - I|2t) < log(1/7).
Let 7 = €/2, then it follows that
Hp (e, P, (0), |l-llp1) < log(1/e).

Finally, due to the inequality between the Hellinger distance and the L*-norm i < || - || .1, we achieve
the conclusion that

HB(Ev ,Pli?z,)ljg (@)a h) S log(l/s).

Hence, the proof is completed. O

G PROOF OF LEMMA[I]

Firstly, let us recall the system of polynomial equations given in equation (@):

m

2 : 2 : pzz q122 q222 q322 q412 q522 =0 1< |p1| + P2 <r (71)
| leve! ’ - -’
i»=1a€zss, ai! as! as! aglas!
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where I;,gfm = {a = (a1, 2, a3,a4,05) € NI x NI x N x NxN: a; +ay +az =

p1, Qa+ 205 = p2 — |asl}.

When m = 2: By observing a portion of the above system when p; = 04, which is given by

oY Emedmo0 p=12.n 72)

! a4! a5!

i2=1 ag+2a5=p2
Proposition 2.1 in|Ho & Nguyen| (2016) shows that the smallest € N such that the system does
not admit any non-trivial solutions when m = 2 is r = 4. Note that a solution of the system [72]is
called non-trivial in|Ho & Nguyen|(2016) if all the values of p;, are different from zero, whereas at
least one among g4, is non-zero. This definition of non-trivial solutions totally aligns with ours for
the system (71). Therefore, we have #(m) < 4, and it suffices to prove that #(m) > 3.

Indeed, when r = 3, we demonstrate that the system admits a non-trivial solution: p;, = 1,
Q1, = Q2i, = G3;, = Og foralliy € [m], g1 = 1, g2 = —1, g51 = ¢s2 = —3. Since
41;, = 42;, = q3;, = 04, this solution clearly satisfies the equations associated with p; # 04. Thus,
we only need to verify those with p; = 04, which are given by

m
ZP?Z qai, =0,
j=1

< 1
Z pi, (5%%1‘2 + QSiz) =0,

ia=1
“ 1
Z i, (ngh + Q4i2Q5i2) =0.
ia=1 :
By simple calculations, we can check that p;, =1, qu1 = 1, qu2 = —1, ¢51 = q52 = f% satisfies the

above equations. Hence, we obtain that 7(m) > 3, leading to #(m) = 4.

When m = 3: Note that #(m) is a monotonically increasing function of m. Therefore, it follows
from the previous result that #(m) > 7(2) = 4, or equivalently, 7(m) > 5. Additionally, according
to Proposition 2.1 in[Ho & Nguyen| (2016), we deduce that 7(m) < 6 based on the reduced system in
equation (72). Thus, we only need to show that 7(m) > 5.

Indeed, we show that the following is a non-trivial solution of the system when r = 5:
Pio =1, Qui, = 4o, = d3i, = 0, Viz € [m)],
V3 V3

5 = 5 = 07
3 q42 q43

qa1 = 37

451 = qs2 = —=, (53 = 0.

6 )
Since qy;, = qo;, = q3;, = 04, this solution clearly satisfies the equations associated with p; # 0g.
Thus, we only need to verify those with p; = 04, which are given by

m
Z p?2(I4i2 = Oa
=1

i 1
Z P, (5(131'2 + 56, ) =0,

i2=1
% 2 1 3
Z Diy (5%12 + Q445 G5i, | = 0,
in=1 ’
m
1 1
2 4 2
Z i, (Eq;;iz + 5%1‘2%1'2 + E(]mz =0,

=1

)
)
i)
)

- 2 1 5 1 3 1 2
Z pi, (5(1412 + 5%1‘2%@ + 91 W42 95iz ) = 0.

i2=1
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By simple calculations, it can be validated that p;, = 1, g41 = ?, Qa2 = —@, qa3 = 0, g51 =
Q52 = f%, gs3 = 0 satisfies the above equations. Hence, we conclude 7(m) > 5, meaning that

7(m) = 6.

H IDENTIFIABILITY OF THE GAUSSIAN HMOE

Proposition 1. For each type € {SS,SL, LL}, suppose that the equation pg’pe (ylx) = pté’fe(y\m)

holds true for almost surely (x,y), then we get that G = G.,.

Proof of Proposition[l] In this proof, we will consider only the case when type = SS as other cases
can be done similarly.

To start with, let us write the equation pg® (y|z) = p2° (y|x) explicitly as follows:
1 ka2
Z U((ah)Tx + bll) Z U((wighl)Tx + 6i2|i1)ﬂ-<y‘(ni1i2)—rm + Ti1i27”i1i2)

=1 in=1

*

k3 3
=S (@) e +01) Y (@) o+ By, ) lh) e+ T ). O3)

i1:1 ’Lgil

Then, it follows from the identifiability of the location-scale Gaussian mixtures (Teicher, |1960;/1961)
that the number of components and the weight set of the mixing measure GG equal to those of its
counterpart G, i.e. ko = k3 and

{U((ail)—rw + bil) 'U<(Wi2\i1)Tw + 5i2|z'1) tiy € [ki], iz € [k;}}

_ {a((a;)w +87,) o (Wi T@+ Bl ) i € (R3] iz € [k;]},
for almost every . WLOG, we may assume that

U((ail)TfB + bn) : U((wizm)Tm + ﬁizm) = a((a;)Tm + b;) : a((w;;‘il)T:c + B;zlil)’

(74)
for almost every x, for any i1 € [k7],i2 € [k3]. Due to the assumptions that wy|;, = wz*m =04
and fz);, = By);, = 0, we have that

0((ai1)Tw+bi1) = a((afl)Ta:—i—bfl), (75)

for almost every «, for any ¢; €. Since the ¢ function is invariant to translations, then it follows from
the equation ((73)) that

a;, =a; +a
bi, =b; +0,
for some a € R? and b € R. Moreover, due to the assumption that ag: = a;‘;T and by; = bz,f =0,

we geta = 04 and b = 0. This leads to a;, = a;, and b;, = bj, for any i; € [ki]. Those results
together with equation yield that

U((wigm)Tfﬂ + /Bizlil) = U((WZHI)T’JU + Bz;m)’

for almost every x, for any i; € [k7],i2 € [k3]. By employing the previous arguments, we also
obtain that
wi2‘i1 = w:2|i17

BiQ‘il = B;;lil .
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Then, the equation (IE[) can be rewritten as

Zexp ) Zexp (Biajir) ex (@i, +w3yfi0) @) Tl (11,1,) 7@ + Tisias Vi)
1 =1

’Lz 1
ky k3
_ * * * * T * *
= Z exp(b;, ) Z exp(cy, |, ) exp ((ail +wi,) 113)77(?/|(77i1i2) T+ T, Vi) (76)
i1=1 ip=1

for almost every x € X.

Next, we denote Py, Py, ... Pm1 as a partition of the index set [k]], where m; < ki, such that
exp(b;, ) = exp(b, ) for any i1,4} € P; and j; € [m4]. On the other hand, when ¢; and 7} do not

belong to the same set P;, , welet exp(b;, ) # exp(bzl)

Similarly, for each i; € [k]], we also define Q1);,, Q2)i, ;- - - @moi, as a partition of the index set
[k3], where my < k3, such that exp(f;,};,) = exp(ﬁzz‘il) for any iz, iy € Qj,);, and ja € [ma).
Conversely, when i3 and i do not belong to the same set Q;, |, » We let exp(8;,;, ) 7# eXp(ﬁ;‘Zm ).

Thus, we can represent equation (76) as

mi m2
Z Z exp(bil) Z Z exp(/BiQ\il) €xp ((ail + wi2|i1 )Tw>ﬂ—(y|(ni1i2)—rm + Tirins Vi1i2)

Jj1=1 ilEle jg:lilerzm
my mo
* *
=3 Y e Y > e e (0l +wl) @) wlulm ) T+ T i),
n=liiePy J2=111€Qj45 )y
for almost every x € X. Recall that we have b;, = b}, a;, = aj, wi,|;, = w;‘il and fBi,;, =

for any iy € [k}] and i2 € [k3], then the above result leads to

zz\z ’
T . .
{((77¢1¢2) T+ Ti1i27Vi1i2> S lea'LQ S sz\il}
= {((n:le) T +7—1122’ 2*112> 11 € Pj17i2 S Qj2|i1}a

for any j; € [m4] and jo € [ms]. Consequently, we obtain that

mi mo
G= Z Z exp(bil) Z Z exp(ﬂi2|i1)5(‘“17""i2\i17’7i1712’Til'izv”il'iz)

n=liely, j2:1i1€Q72\i1
= Z Z eXp Z Z eXp l2|11 6 11’wzg\ll’771112’71112’”1112)
n=lieply, J2=141€Q 4,
=G,.
Hence, the proof is totally completed. O
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