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ABSTRACT

With the growing prominence of the Mixture of Experts (MoE) architecture in
developing large-scale foundation models, we investigate the Hierarchical Mixture
of Experts (HMoE), a specialized variant of MoE that excels in handling complex
inputs and improving performance on targeted tasks. Our investigation highlights
the advantages of using varied gating functions, moving beyond softmax gating
within HMoE frameworks. We theoretically demonstrate that applying tailored
gating functions to each expert group allows HMoE to achieve robust results,
even when optimal gating functions are applied only at select hierarchical levels.
Empirical validation across diverse scenarios supports these theoretical claims.
This includes large-scale multimodal tasks, image classification, and latent domain
discovery and prediction tasks, where our modified HMoE models show great
performance improvements.

1 INTRODUCTION

In recent years, the integration of mixture-of-experts (MoE) within large-scale foundation models has
markedly advanced the machine learning field (Jiang et al., 2024; Fedus et al., 2022; Riquelme et al.,
2021; Zhou et al., 2022; Mustafa et al., 2022). MoE architectures, known for their ability to efficiently
handle diverse and complex datasets, have facilitated significant improvements in model performance
without a proportional increase in computational demand. They address bottlenecks associated with
traditional deep learning architectures by dynamically allocating resources to parts of the model for
which they are most relevant (Yuksel et al., 2012; Shazeer et al., 2017). The Hierarchical Mixture of
Experts (HMoE) model (Fritsch et al., 1996) is a special type of MoE architecture that is characterized
by a layered structure of decision modules and expert networks that operate in tandem to refine
decision-making at each level, optimizing the allocation of computational resources and enhancing
specialization for complex tasks. Unlike the standard MoE, which typically involves a single gating
network directing inputs to various expert networks, HMoE introduces multiple layers of gating
mechanisms and experts. This hierarchical design divides the problem space recursively, allowing
different experts to specialize in subspaces of the input space, leading to enhanced flexibility and
model generalization (Jiang & Tanner, 1999; Azran & Meir, 2004).

Figure 1 compares HMoE and standard MoE in processing multimodal input data. The hierarchical
structure of HMoE makes it particularly effective at handling complex inputs, such as data that can
be divided into semantically meaningful subgroups. This recursive partitioning enables HMoE to
select features and specialize in various segments of the input space more effectively, especially in
high-dimensional data scenarios (Peralta & Soto, 2014). The unique capability of HMoE to handle
complex datasets makes it particularly valuable across a range of applications. Historically, HMoE
has been applied on image classification (Irsoy & Alpaydın, 2021), speech recognition (Peng et al.,
1996; Zhao et al., 1994), and complex decision-making tasks (Jeremiah et al., 2013; Moges et al.,
2016). However, there is a notable lack of recent studies on HMoE in the literature, partly due to its
more complex structure as compared to standard MoE. For instance, while standard MoE requires
the selection of a single gating function, HMoE necessitates the choice of multiple gating functions,
introducing additional hyperparameters and therefore greater complication in model specification.
Given the increasing complexity of input data in the modern era, such as multiple modalities or
subgroups defined by ambiguous latent domains, there is a growing demand for models that can
deliver accurate and individualized predictions for each subgroup. Therefore, it is worthwhile to study
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Figure 1: Comparison of HMoE and standard MoE in managing multimodal input: MoE excels at processing
homogeneous inputs. However, it faces challenges with more intricate structures, such as inputs that can be
split into subgroups or those with inherently hierarchical configurations. By contrast, HMoE improves upon
this by decomposing tasks into subproblems and directing subsets of data to specialized groups of experts. This
approach allows for more granular specialization and enhances the model’s capability to handle complex inputs.

HMoE, which can leverage the intrinsic information within complex input structures and achieve
superior performance on corresponding tasks.

In this paper, we investigate distinct selections of gating functions within HMoE and their impact
on overall performance. This is a critical issue and will lay the groundwork for future research in
this relatively unstudied domain. It is important to note that expert specialization, as discussed in
Dai et al. (2024), is a critical problem that involves understanding how quickly an expert becomes
specialized in specific tasks or aspects of the data. To address this, we conduct a comprehensive
analysis of the convergence behavior of experts within two-level HMoE models, using three different
combinations of the conventional softmax gating (Jordan & Jacobs, 1994) and the Laplace gating
as suggested in Han et al. (2024). Our theoretical analysis reveals that employing Laplace gating
at both levels of the HMoE framework accelerates expert convergence and significantly improves
performance relative to baseline. We further validate this through extensive empirical evaluations
across diverse scenarios, demonstrating HMoE’s effectiveness on complex datasets, such as those
with inherent hierarchies or clustered data that can be partitioned into subgroups. By incorporating the
three aforementioned combinations of gating functions, our experiments confirm that using Laplace
gating at both levels consistently improves performance across multiple downstream tasks compared
to the standard softmax gating baseline. Additionally, we observe that different combinations of
Laplace and softmax gating can also noticeably enhance results, leading to better and more robust
performance by offering a broader selection of gating function combinations. These findings highlight
the practical benefits of selecting appropriate gating functions to enhance HMoE’s capabilities.

Notations. We let [n] stand for the set {1, 2, . . . , n} for any n ∈ N. Next, for any set S, we
denote |S| as its cardinality. For any vector v ∈ Rd and α := (α1, α2, . . . , αd) ∈ Nd, we let
vα = vα1

1 vα2
2 . . . vαd

d , |v| := v1 + v2 + . . . + vd and α! := α1!α2! . . . αd!, while ∥v∥ stands for
its L2-norm value. For any two positive sequences (an)n≥1 and (bn)n≥1, we write an = O(bn)
or an ≲ bn if there exists C > 0 such that an ≤ Cbn for all n ∈ N. Meanwhile, the notation
an = OP (bn) indicates that an/bn is stochastically bounded. Lastly, for any two probability density
functions p, q dominated by the Lebesgue measure µ, we denote h2(p, q) = 1

2

∫
(
√
p−√

q)2dµ as
their squared Hellinger distance and V (p, q) = 1

2

∫
|p− q|dµ as their Total Variation distance.

2 THEORETICAL CONTRIBUTIONS AND METHODS

We conduct a convergence analysis of expert estimation in the two-level Gaussian HMoE under three
settings of alternatively using the Softmax gating and Laplace gating in the two levels of the model.
Our goal is to find which gating combination would induce the fastest expert estimation rate.

2.1 SOFTMAX-SOFTMAX HMOE

We begin by considering the scenario when the two-level Gaussian HMoE is equipped with the
Softmax gating in both levels. More specifically, let us assume that an i.i.d. sample of size n:
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(X1, Y1), (X2, Y2), . . . , (Xn, Yn) in Rd × R, whereXi is an input and Yi is a response variable, is
generated from that model whose conditional density function is given by

pSS
G∗

(y|x) :=
k∗
1∑

i1=1

σ((a∗
i1)

⊤x+ b∗i1)

k∗
2∑

i2=1

σ((ω∗
i2|i1)

⊤x+ β∗
i2|i1)π(y|(η

∗
i1i2)

⊤x+ τ∗i1i2 , ν
∗
i1i2).

(1)
Above, the abbreviation SS stands for “Softmax-Softmax”, indicating that the softmax gating is used
in both levels of the Gaussian HMoE. Next, we define

G∗ :=

k∗
1∑

i1=1

exp(b∗i1)

k∗
2∑

i2=1

exp(β∗
i2|i1)δ(a∗

i1
,ω∗

i2|i1
,τ∗

i1i2
,η∗

i1i2
,ν∗

i1i2
)

as a corresponding mixing measure, i.e., a weighted sum of Dirac measures δ, where
(b∗i1 ,a

∗
i1
, β∗

i2|i1 ,ω
∗
i2|i1 , τ

∗
i1i2

,η∗
i1i2

, ν∗i1i2) are true yet unknown parameters in the parameter space
Θ ⊆ R×Rd×R×Rd×Rq ×R+. Additionally, k∗1 denotes the number of mixtures in the two-level
Gaussian HMoE, whereas k∗2 is the number of experts in each mixture. For any integer k ∈ N and
real-valued vector (vi)ki=1, we denote by σ(vi) := exp(vi)/

∑k
j=1 exp(vj) the softmax function.

Meanwhile, π(·|µ, ν) is an univariate Gaussian density function with mean µ and variance ν.

Recall that expert specialization is an essential problem in the MoE literature where we explore how
fast an expert specializes in some tasks or some aspects of the data (Dai et al., 2024; Krishnamurthy
et al., 2023), which can be captured through the convergence analysis of expert estimation.

Maximum likelihood estimation (MLE). To estimate the unknown parameters, or equivalently the
unknown mixing measure G∗, we utilize the maximum likelihood method (van de Geer, 2000). For
simplicity, we assume that the value of k∗1 is known as the analysis would become unnecessarily
complicated otherwise. At the same time, the value of k∗2 remains unknown. Then, we over-specify
the true model (1) by considering an MLE within a class of mixing measures with at most k∗1k2
components, where k2 > k∗2 , as follows:

ĜSS
n := argmax

G∈Gk∗
1 ,k2

(Θ)

1

n

n∑
i=1

log(pSS
G (Yi|Xi)), (2)

in which Gk∗
1 ,k2

(Θ) :=
{
G =

∑k∗
1

i1=1 exp(bi1)
∑k′

2
i2=1 exp(βi2|i1)δ(ai1

,ωi2|i1 ,ηi1i2
,τi1i2

,νi1i2
) : k

′
2 ∈

[k2], (bi1 ,ai1 , βi2|i1 ,ωi1i2 , τi1i2 ,ηi1i2 , νi1i2) ∈ Θ
}
.

Assumptions. For the sake of theory, we make some following standard assumptions on the data as
well as the model parameters throughout this paper:

(A.1) We assume that the parameter space Θ is compact and the input space X is bounded to
guarantee the MLE convergence.

(A.2) In order that the Gaussian HMoE is identifiable, that is, pSS
G (y|x) = pSS

G∗
(y|x) for almost every

(x, y) implies G ≡ G∗, the softmax gating value must not be invariant to parameter translation.
Therefore, we let a∗

k∗
1
= 0d, b

∗
k∗
1
= 0 and ω∗

k∗
2 |i1

= 0d, β
∗
k∗
2 |i1

= 0 for any i1 ∈ [k∗1 ].

(A.3) For any i1 ∈ [k∗1 ], let (η∗
i11

, τ∗i11, ν
∗
i11

), . . . , (η∗
i1k∗

2
, τ∗i1k∗

2
, ν∗i1k∗

2
) be distinct parameters so that

the Gaussian distributions associated with the same parent node are different from each other.

(A.4) To ensure that the gating depend on the input, we assume at least one among gating parameters
in the first level a∗

1, . . . ,a
∗
k∗
1

(resp. those in the second level ω∗
1, . . . ,ω

∗
k∗
1
) is different from zero.

Now, we investigate the convergence behavior of the density estimation pSS
Ĝn

to the true density pSS
G∗

in Theorem 1 whose proof can be found in Appendix F.

Theorem 1. Given an MLE ĜSS
n defined in equation (2), the corresponding density estimation pSS

Ĝn

converges to the true density pSS
G∗

under the Hellinger distance h at following rate:

P(EX [h(pSS
ĜSS

n

(·|X), pSS
G∗

(·|X))] > C1

√
log(n)/n) ≲ exp(−c1 log n),

where C1 and c1 are universal constants.
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Theorem 1 indicates that the rate for estimating the true conditional density of the Gaussian
HMoE is of parametric order ÕP (n

−1/2). Consequently, if we are able to construct a loss
function among parameters denoted by, for example, L(Ĝn, G∗) , and establish the bound
L(Ĝn, G∗) ≲ EX [h(pSS

ĜSS
n

(·|X), pSS
G∗

(·|X))], then we will obtain the parameter estimation rates

L(Ĝn, G∗) = ÕP (n
−1/2), which leads to our desired rates for estimating experts. However, while

such Hellinger bound has been well studied under the setting of one-level Gaussian MoE Ho et al.
(2022); Nguyen et al. (2023), it has remained elusive for the hierarchical setting. In the following
paragraph, we will point out fundamental obstacles for deriving that bound.

Challenges. Our main technique for deriving the parameter estimation rates is to decompose
the density estimation and the true density, i.e. pSS

ĜSS
n

(y|x) − pSS
G∗

(y|x), into a combination of

linearly independent terms by applying the Taylor expansion to the function u(x;a,ω,η, τ, ν) :=
exp(a⊤x) exp(ω⊤x)π(y|η⊤x+ τ, ν) with respect to its parameters. In previous works (Ho et al.,
2022; Nguyen et al., 2023), it is well-known that there is an interaction between the mean parameter
τ and variance ν of the Gaussian density via the partial differential equation (PDE) ∂u

∂ν = 1
2 · ∂2u

∂τ2 .
Such PDE induces several linearly dependent terms in the aforementioned decomposition, thereby
leading to significantly slow rates for estimating those parameters. In this paper, we discover that the
first-level gating parameter a also interacts with the second-level parameters ω, ν, τ , that is,

∂u

∂η
=

∂2u

∂a∂τ
,

∂u

∂a
=

∂u

∂ω
. (3)

To the best of our knowledge, these intrinsic interactions have not been noted before in the literature.
Therefore, we have to take the solvability of the unforeseen system of poylnomial equations (4) into
account to capture that interaction.

System of polynomial equations. For each m ≥ 2, we define rSS(m) as the smallest natural number
r such that the following system does not have any non-trivial solutions for the unknown variables
(pi2 , q1i2 , q2, q3i2 , q4i2 , q5i2)

m
i2=1

m∑
i2=1

∑
(α1,α2,α3,α4,α5)∈ISS

ρ1,ρ2

1

α!
· p2i2q

α1
1i2
qα2
2 qα3

3i2
qα4
4i2

qα5
5i2

= 0, 1 ≤ |ρ1|+ ρ2 ≤ r, (4)

where ISS
ρ1,ρ2

:= {(α1,α2,α3, α4, α5) ∈ Rd × Rd × Rd × R× R+ : α1 +α2 +α3 = ρ1, |α3|+
α4 + 2α5 = ρ2}. Here, a solution is categorized as non-trivial if all the values of pi2 are different
from zero and at least one among q4i2 is non-zero. Note that rSS(m) is a monotonically increasing
function. However, finding the exact value of rSS(m) is a demanding problem in the field of algebraic
geometry (Sturmfels, 2002). Thus, we provide in Lemma 1 (whose proof is in Appendix G) some
specific values of rSS(m) when m is small, while those for larger m are left for future development.

Lemma 1. For any d ≥ 1, we have that rSS(2) = 4 and rSS(3) = 6, while we conjecture that
rSS(m) ≥ 7 for m ≥ 4.

Voronoi loss. To precisely characterize the convergence rate of parameter estimation, it is necessary
to capture the number of fitted parameters approaching each individual true parameter in both levels
of Gaussian HMoE. For that purpose, let us introduce the concept of Voronoi cells (Manole & Ho,
2022). In particular, given an arbitrary mixing measure G ∈ Gk∗

1k2
(Θ), we distribute its atoms across

the Voronoi cells {Vj1(G), j1 ∈ [k∗1 ]} and {Vj2|j1(G), j1 ∈ [k∗1 ], j2 ∈ [k∗2 ]} generated by the atoms
of G∗, where

Vj1 ≡ Vj1(G) := {i1 ∈ [k∗1 ] : ∥ai1 − a∗
j1∥ ≤ ∥ai1 − a∗

ℓ1∥,∀ℓ1 ̸= j1},
Vj2|j1 ≡ Vj2|j1(G) := {i2 ∈ [k2] : ∥ζi2|j1 − ζ

∗
j2|j1∥ ≤ ∥ζi2|j1 − ζ

∗
ℓ2|j1∥,∀ℓ2 ̸= j2},

with ζi2|j1 := (ωi2|j1 ,ηj1i2 , τj1i2 , νj1i2) and ζ∗j2|j1 := (ω∗
j2|j1 ,η

∗
j2|j1 , τ

∗
j1j2

, ν∗j1j2). Note that when

the MLE Ĝn is sufficiently close to its true counterpart G∗, since the value of k∗1 is known, we have
|Vj1(Ĝn)| = 1 for any j1 ∈ [k∗1 ], meaning that each parameter a∗j1 is fitted by exactly one parameter.
On the other hand, as k∗2 is unknown and we over-specify it by a larger value k2, a Voronoi cell Vj2|j1
could have more than one element. Furthermore, the cardinality of Vj2|j1 is exactly the number of

4
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fitted parameters converging to ζ∗j2|j1 . For instance, |Vj2|j1 | = 2 indicates that ζ∗j2|j1 is fitted by two
parameters. Now, we define a Voronoi loss function based on the Voronoi cells as follows:

L(r1,r2,r3)(G,G∗) :=

k∗
1∑

j1=1

∣∣∣ ∑
i1∈Vj1

exp(bi1)− exp(b∗j1)
∣∣∣+ k∗

1∑
j1=1

∑
i1∈Vj1

exp(bi1)∥∆ai1j1∥

+

k∗
1∑

j1=1

∑
i1∈Vj1

exp(bi1)

[ ∑
j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βi2|j1)
(
∥∆ωi2j2|j1∥+ ∥∆ηj1i2j2∥+ |∆τj1i2j2 |+ |∆νj1i2j2 |

)
+

∑
j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βi2|j1)
(
∥∆ωi2j2|j1∥

2 + ∥∆ηj1i2j2∥
r1(|Vj2|j1 |) + |∆τj1i2j2 |r2(|Vj2|j1 |)

+|∆νj1i2j2 |r3(|Vj2|j1 |)
)]

+

k∗
1∑

j1=1

∑
i1∈Vj1

exp(bi1)

k∗
2∑

j2=1

∣∣∣ ∑
i2∈Vj2|j1

exp(βi2|j1)− exp(β∗
j2|j1)

∣∣∣, (5)

where r1, r2, r3 : N → N are some integer-valued functions and we denote ∆ai1j1 := ai1 − a∗
j1

,
∆ωi2j2|j1 := ωi2|j1 −ωj2|j1 , ∆ηj1i2j2 := ηj1i2 −η

∗
j1j2

, ∆τj1i2j2 := τj1i2 − τ∗j1j2 and ∆νj1i2j2 :=
νj1i2 − ν∗j1j2 . Given the above loss function, we are ready to characterize the convergence behavior
of expert estimation in the following theorem.
Theorem 2. The following Hellinger lower bounds hold true for any G ∈ Gk∗

1 ,k2(Θ):

EX [h(pSS
G (·|X), pSS

G∗
(·|X))] ≳ L( 1

2 r
SS ,rSS , 12 r

SS)(G,G∗).

As a result, we obtain that L( 1
2 r

SS ,rSS , 12 r
SS)(Ĝ

SS
n , G∗) = ÕP (n

−1/2).

Proof of Theorem 2 is in Appendix E. The above results together with the formulation of the Voronoi
loss L( 1

2 r
SS ,rSS , 12 r

SS) in equation (5) implies that

(i) Exact-specified parameters: The rates for estimating exact-specified parameters
a∗
j1
,ω∗

j2|j1 ,η
∗
j1j2

, τ∗j1j2 , ν
∗
j1j2

which are approached by exactly one fitted parameter, i.e. their Voronoi
cells have only one element |Vj1 | = |Vj2|j1 | = 1, are parametric on the sample size n, standing at the
order ÕP (n

−1/2). Additionally, the gating bias parameters exp(b∗j1) and exp(β∗
j2|j1) also share the

same parametric estimation rates.

(ii) Over-specified parameters: For over-specified parameters ω∗
j2|j1 ,η

∗
j1j2

, τ∗j1j2 , ν
∗
j1j2

which
are fitted by more than one parameter, i.e. |Vj2|j1 | > 1, their estimation rates are not ho-
mogeneous. In particular, the rates for estimating ω∗

j2|j1 are of order ÕP (n
−1/4). At the

same time, those for η∗
j1j2

, τ∗j1j2 , ν
∗
j1j2

depend on their number of fitted parameters |Vj2|j1 | and
the solvability of the polynomial equation system in equation (4), standing at the orders of
ÕP (n

−1/rSS(|Vj2|j1 |)), ÕP (n
−1/2rSS(|Vj2|j1 |)), ÕP (n

−1/rSS(|Vj2|j1 |)), respectively. For instance,
when |Vj2|j1 | = 3, these rates become ÕP (n

−1/6), ÕP (n
−1/12), ÕP (n

−1/6), which are signifi-
cantly slower than those for exact-specified parameters. These slow rates occur due to the interactions
mentioned in the “Challenges” paragraph.

(iii) Expert estimation: Recall that expert specialization is an essential problem where we learn
how fast an expert specializes in some tasks or some aspects of the data. Therefore, it is important to
understand the convergence behavior of the expert estimation, particularly its data-dependent term
(η∗

j1j2
)⊤x. According to the Cauchy-Schwarz inequality, we have

|(η̂SS,n
i1i2

)⊤x− (η∗
j1j2)

⊤x| ≤ ∥η̂SS,n
i1i2

− η∗
j1j2∥ · ∥x∥, (6)

where η̂SS,n
i1i2

is an MLE of η∗
j1j2

. Since the input space is bounded and from the estimation rate
of η∗

j1j2
in the above two remarks, we deduce that (η∗

j1j2
)⊤x admits an estimation rate of order

ÕP (n
−1/2) when |Vj2|j1 | = 1 or ÕP (n

−1/rSS(|Vj2|j1 |)) when |Vj2|j1 | > 1. Note that the latter
rate is significantly slow since the term rSS(|Vj2|j1 |) grows as the number of fitted experts |Vj2|j1 |
increases.
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2.2 SOFTMAX-LAPLACE HMOE

Moving to this section, we study the effects of replacing the softmax gating in the second level with
the Laplace gating on the convergence of expert estimation under the Gaussian HMoE. In particular,
the conditional density function in equation (1) becomes

pSL
G∗

(y|x) :=
k∗
1∑

i1=1

σ((a∗
i1)

⊤x+ b∗i1)

k∗
2∑

i2=1

σ(−∥ω∗
i2|i1 − x∥+ β∗

i2|i1)π(y|(η
∗
i1i2)

⊤x+ τ∗i1i2 , ν
∗
i1i2),

(7)
where the abbreviation SL stands for “Softmax-Laplace”. Additionally, the MLE under this setting,
denoted by ĜSL

n , is determined similarly to that in equation (2). The main difference between the
density pSL

G∗
(y|x) from its counterpart pSS

G∗
(y|x) is the Laplace gating function σ(−∥ω∗

i2|i1 − x∥+
β∗
i2|i1) in the second level. Due to this gating change, the interaction between parameters a and ω

via the PDE ∂u
∂a = ∂u

∂ω in equation (3) no longer holds true, while others still exist. As a consequence,
we only need to consider a simpler (fewer variables) system of polynomial equations than that in
equation (4). More specifically, for each m ≥ 2, we define rSL(m) as the smallest natural number
r such that the following system does not have any non-trivial solutions for the unknown variables
(pi2 , q2, q3i2 , q4i2 , q5i2)

m
i2=1:

m∑
i2=1

∑
(α2,α3,α4,α5)∈ISL

ρ1,ρ2

1

α!
· p2i2q

α2
2 qα3

3i2
qα4
4i2

qα5
5i2

= 0, 1 ≤ |ρ1|+ ρ2 ≤ r, (8)

where ISL
ρ1,ρ2

:= {(α2,α3, α4, α5) ∈ Rd ×Rd ×R×R+ : α2 +α3 = ρ1, |α3|+α4 +2α5 = ρ2}.
Here, a solution is called non-trivial if all the values of pi2 are different from zero and at least one
among q4i2 is non-zero. This system has been considered in Nguyen et al. (2023) where they show
that rSL(2) = 4 and rSL(3) = 6. We observe that the function rSL admits identical behavior to
the function rSS in Lemma 1 at some particular points. Nevertheless, it is challenging to make an
explicit comparison between these two functions, which requires further technical tools in algebraic
geometry Sturmfels (2002) to be developed.

Next, note that we can achieve the density estimation rate EX [h(pSL
ĜSL

n

(·|X), pSL
G∗

(·|X))] =

ÕP (n
−1/2) using similar arguments for Theorem 1 (see Appendix F). Thus, we will present only the

convergence of parameter and expert estimation under the setting of this section in Theorem 3.
Theorem 3. The following Hellinger lower bounds hold true for any G ∈ Gk∗

1 ,k2
(Θ):

EX [h(pSL
G (·|X), pSL

G∗
(·|X))] ≳ L( 1

2 r
SL,rSL, 12 r

SL)(G,G∗).

As a result, we obtain that L( 1
2 r

SL,rSL, 12 r
SL)(Ĝ

SL
n , G∗) = ÕP (n

−1/2).

Proof of Theorem 3 is in Appendix E. From the above results, it can be seen that the parameter
and expert estimation when using the softmax gating and Laplace gating in the first and second
levels of the Gaussian HMoE share the same convergence behavior as those when using the softmax
gating in both levels in Theorem 2. In particular, by arguing analogously to equation (6), we get
that the data-dependent term of expert (η∗

j1j2
)⊤x has an estimation rate of order ÕP (n

−1/2) when

|Vj2|j1 | = 1 or ÕP (n
−1/rSL(|Vj2|j1 |)) when |Vj2|j1 | > 1. Thus, we can see that substituting the

softmax gating with the Laplace gating in the second level is not enough to accelerate the expert
estimation rate (see Table 1). This is because the interaction ∂u

∂η = ∂2u
∂a∂τ between η and other

parameters in equation (3) still occurs under the setting of softmax-Laplace gating Gaussian HMoE.

2.3 LAPLACE-LAPLACE HMOE

In this section, we consider the two-level Gaussian HMoE equipped with the Laplace gating in both
levels. More specifically, the conditional density function in equation (7) turns into

pLL
G∗

(y|x) :=
k∗
1∑

i1=1

σ(−∥a∗
i1 − x∥+ b∗i1)

k∗
2∑

i2=1

σ(−∥ω∗
i2|i1 − x∥+ β∗

i2|i1)π(y|(η
∗
i1i2)

⊤x+ τ∗i1i2 , ν
∗
i1i2),

(9)
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where the abbreviation LL stands for “Laplace-Laplace”. Furthermore, the definition of the MLE
under this setting, denoted by ĜLL

n , is determined similarly to that in equation (2). Under this setting,
the first-level softmax gating σ((a∗

i1
)⊤x+ b∗i1) used in previous sections is replaced with the Laplace

gating σ(−∥a∗
i1
− x∥+ b∗i1), leading to the disappearance of the interaction ∂u

∂η = ∂2u
∂a∂τ between η

and other parameters mentioned in equation (3). Therefore, we only need to cope with ∂u
∂ν = 1

2 ·
∂2u
∂τ2 as

in Ho et al. (2022). Consequently, it is sufficient to take account of the following system of polynomial
equations with substantially fewer variables than those in equations (4) and (8). In particular, for
each m ≥ 2, we define rLL(m) as the smallest natural number r such that the following system does
not have any non-trivial solutions for the unknown variables (pi2 , q4i2 , q5i2)

m
i2=1:

m∑
i2=1

∑
(α4,α5)∈ILL

ρ

1

α!
· p2i2q

α4
4i2

qα5
5i2

= 0, 1 ≤ ρ ≤ r, (10)

where ILL
ρ := {(α4, α5) ∈ R× R+ : α4 + 2α5 = ρ}. Here, a solution is called non-trivial if all the

values of pi2 are different from zero and at least one among q4i2 is non-zero. The above system has
been studied in Ho & Nguyen (2016) which show that rLL(2) = 4 and rLL(3) = 6. These values
are similar to those of the aforementioned functions rSS and rSL.

As demonstrated in Appendix F, we also obtain the convergence rate of density estimation
EX [h(pLL

ĜLL
n

(·|X), pLL
G∗

(·|X))] = ÕP (n
−1/2) under this setting. Given that result, we are ready to

investigate the impacts of using the Laplace gating in both levels on the convergence behavior of
parameter and expert estimation in the below theorem.
Theorem 4. The following Hellinger lower bounds hold true for any G ∈ Gk∗

1 ,k2
(Θ):

EX [h(pLL
G (·|X), pLL

G∗
(·|X))] ≳ L(2,rLL, 12 r

LL)(G,G∗).

As a result, we obtain that L(2,rLL, 12 r
LL)(Ĝ

LL
n , G∗) = ÕP (n

−1/2).

Proof of Theorem 4 is in Appendix E. From the formulation of the loss function L(2,rLL, 12 r
LL) in

equation (5), we observe that all the parameter estimations share the same convergence behavior as
those under the previous two settings, except for the estimation of η∗

j1j2
which enjoys a convergence

rate of order ÕP (n
−1/2) when |Vj2|j1 | = 1 or ÕP (n

−1/4) when |Vj2|j1 | > 1. By employing the
same arguments as in equation (6), we deduce that the data-dependent term of expert (η∗

j1j2
)⊤x also

admits these rates. Compared to those when using the softmax gating in either level or both levels,
the expert estimation rates when using the Laplace gating in both levels are improved significantly as
they no longer depend on the term rLL(|Vj2|j1 |) (see Table 1). This rate acceleration occurs since
the interaction ∂u

∂η = ∂2u
∂a∂τ between η and other parameters mentioned in equation (3) does not exist

under this setting. As a result, we claim that the convergence of expert estimation under the two-level
Gaussian HMoE is benefited the most when equipped with the Laplace gating in both levels.

Table 1: Summary of estimation rates for the data-dependent term (η∗
j1j2

)⊤x in experts. Below,
experts are called exact-specified when |Vj2|j1 | = 1 and over-specified when |Vj2|j1 | > 1.

Gating Softmax-Softmax Softmax-Laplace Laplace-Laplace
Expert
estima-
tion rates

Exact-specified ÕP (n
−1/2) ÕP (n

−1/2) ÕP (n
−1/2)

Over-specified ÕP (n
−1/rSS(|Vj2|j1 |)) ÕP (n

−1/rSL(|Vj2|j1 |)) ÕP (n
−1/4)

3 EXPERIMENTS

In this section, we empirically demonstrate the effects of employing various combinations of gating
functions in HMoE to validate our theoretical findings and discuss empirical insights. First, we show
that HMoE outperforms standard MoE and other alternatives, particularly in cases with inherent
subgroups or multilevel structures, where HMoE excels. We then conduct comprehensive ablation
studies to analyze the impact of different gating function combinations and perform case studies
across various scenarios. Beyond performance improvements, these experiments provide valuable
insights into how different gating function combinations influence the distribution of input modules,
offering explanations for the performance variations observed with different gating configurations.
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Table 2: Comparison of HMoE-based methods (gray) and baselines, utilizing vital signs and clinical notes of
MIMIC-IV (Johnson et al., 2020). The best results are highlighted in bold font, and the second-best results are
underlined. All results are averaged across 5 random experiments.

MulT MAG TFN HAIM MISTS MoE HMoE

48-IHM
AUROC 75.56 ± 0.34 79.36 ± 0.25 79.12 ± 0.56 78.87 ± 0.00 77.23 ± 0.82 83.13 ± 0.36 85.59 ± 0.44

F1 38.65 ± 0.25 40.87 ± 0.17 40.96 ± 0.37 39.78 ± 0.00 45.98 ± 0.49 46.82 ± 0.28 47.57 ± 0.32

LOS
AUROC 82.12 ± 0.98 81.94 ± 0.36 81.65 ± 0.43 82.46 ± 0.00 80.34 ± 0.61 83.76 ± 0.59 86.26 ± 0.61

F1 73.16 ± 0.51 72.78 ± 0.22 73.89 ± 0.52 72.75 ± 0.00 73.22 ± 0.43 74.32 ± 0.44 76.07 ± 0.29

25-PHE
AUROC 70.41 ± 0.44 71.17 ± 0.36 72.26 ± 0.27 63.57 ± 0.00 71.49 ± 0.59 73.87 ± 0.71 73.81 ± 0.51

F1 32.33 ± 0.62 32.86 ± 0.19 34.24 ± 0.14 42.80 ± 0.00 33.29 ± 0.23 35.96 ± 0.23 35.64 ± 0.18

HMoE Implementation. We implement the two-level HMoE module, inspired by Lepikhin et al.
(2020). Algorithm 1 in Appendix outlines the procedure, which employs a recursive computation
strategy to process inputs in a coarse-to-fine manner. The inputs are first partitioned by the outer
dispatcher, followed by the inner dispatcher, into subgroups, which are then sent to specialized groups
and experts for independent processing. The outputs from the experts are recursively combined using
inner and outer combination tensors to produce the final output. Gating losses from both levels are
integrated and scaled to regularize training, promoting balanced expert utilization.

3.1 PRIMARY RESULTS

HMoE Improves Multimodal Fusion. We first evaluate the effectiveness of HMoE on the MIMIC-
IV dataset, a comprehensive database containing records from nearly 300k patients admitted to a
medical center between 2008 and 2019, focusing on a subset of 73,181 ICU stays. We integrated
diverse patient modalities, including vital signs (time series), clinical notes, and CXR (chest X-ray
images). Our tasks of interest in the MIMIC dataset include 48-hour in-hospital mortality prediction
(48-IHM), 25-type phenotype classification (25-PHE), and length-of-stay (LOS) prediction. The
baselines include: (1) the Multimodal Transformer (MulT), which models modality interactions
(Tsai et al., 2019); (2) the Multimodal Adaptation Gate (MAG), which addresses consistency and
differences across modalities (Rahman et al., 2020); (3) the early fusion method Tensor Fusion
Network (TFN) (Zadeh et al., 2017); (4) the HAIM data pipeline (Soenksen et al., 2022), specifically
designed for integrating multimodal data from MIMIC-IV; (5) MISTS, a cross-attention approach
combined with irregular sequence modeling (Zhang et al., 2023); and (6) multimodal fusion using
MoE (Han et al., 2024). The data is first processed by modality-specific encoders, with the obtained
modality embeddings then fed into 12 stacked HMoE modules with residual connections to produce
the outcome. Details of the building blocks are provided in the appendix. Table 2 presents the
outcomes of integrating time series, clinical notes, and CXR data into various prediction tasks. The
HMoE (Laplace-Laplace) outperforms the baselines in most scenarios, often by a significant margin.
While the MoE-based fusion method (Han et al., 2024) has proven effective in multimodal fusion, the
inherent hierarchical structure of the HMoE module further enhances its ability to process multimodal
inputs, allowing for more specialized expert assignment and improved performance.

HMoE Enhances Clinical Latent Domain Discovery. Many datasets in high-stakes applications
can be categorized into different latent domains. For instance, in clinical prediction tasks, patients can
be grouped based on latent domains such as age, medical history, treatment, and symptoms. Training
a generic model on heterogeneous patient data is often less effective than using a domain-specific
model, as demonstrated by the SLDG method proposed by Wu et al. (2024). However, SLDG assigns
a fixed classifier to each domain without considering the interactions between them. Moreover, it
relies heavily on a separate hierarchical clustering process, which is separated from model training
and limits input data to low-dimensional forms like short time series, failing to utilize a broader range
of patient modalities. We extend this framework by evaluating HMoE for latent domain modeling
tasks, using the HMoE module as a substitute for domain-specific classifiers. The HMoE module
partitions inputs based on the similarity-driven top-k routing mechanism, allowing tokens from each
patient sample to be shared across multiple inner and outer experts simultaneously. In addition to
MIMIC-IV, we also evaluated our methods on the eICU dataset (Pollard et al., 2018), which covers
over 139k patients admitted to ICUs across the United States between 2014 and 2015. We followed
the experimental settings used by Wu et al. (2024). For predictive tasks, we tested our method
on readmission prediction and mortality prediction, and included representative baselines: Oracle
(trained directly on the target test data), Base (trained solely on the source training data), as well as
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Table 3: We apply HMoE to multi-domain and multi-modal patient data. HMoE delivers customized predictions
for each group, while effectively accounting for the interactions and uniqueness of each group. This approach
greatly improves results compared to current state-of-the-art methods.

Dataset eICU MIMIC-IV
Task Readmission Mortality Readmission Mortality

Metric AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC
Oracle 21.92 ± 0.15 67.72 ± 0.42 27.14 ± 0.06 83.87 ± 0.57 28.21 ± 0.34 69.31 ± 0.53 42.83 ± 0.48 89.82 ± 0.75
Base 10.41 ± 0.12 51.01 ± 0.31 23.02 ± 0.24 80.31 ± 0.43 23.70 ± 0.23 66.54 ± 0.41 37.40 ± 0.20 86.10 ± 0.64

DANN 13.50 ± 0.09 53.79 ± 0.19 24.47 ± 0.08 80.82 ± 0.27 24.68 ± 0..09 67.31 ± 0.33 38.01 ± 0.17 87.34 ± 0.39
MLDG 10.41 ± 0.07 52.54 ± 0.43 22.41 ± 0.12 79.73 ± 0.39 20.50 ± 0.14 63.72 ± 0.29 35.98 ± 0.31 85.72 ± 0.68

IRM 13.62 ± 0.13 53.78 ± 0.22 25.18 ± 0.09 80.09 ± 0.47 24.23 ± 0.21 66.80 ± 0.22 38.72 ± 0.19 87.59 ± 0.43
SLDG 18.57 ± 0.10 62.30 ± 0.46 26.79 ± 0.16 82.44 ± 0.19 27.41 ± 0.10 69.02 ± 0.40 41.56 ± 0.12 89.85 ± 0.59
HMoE 19.39 ± 0.05 63.61 ± 0.23 26.60 ± 0.08 81.92 ± 0.28 27.82 ± 0.24 69.13 ± 0.21 42.23 ± 0.32 89.47 ± 0.18

HMoE-M - - - - 27.97 ± 0.18 69.19 ± 0.26 42.47 ± 0.35 89.65 ± 0.13

(a) (b)
Figure 2: We evaluate the impact of using different gating function combinations in HMoE and compare it with
standard MoE on (a) CIFAR-10 and (b) ImageNet. First, we present the results of one-layer MoE models (left
side of each figure), where the model contains only the module of that specific setting. For the one-layer results,
we use Tiny-ImageNet as a substitute for the full ImageNet. Next, we integrate these MoE modules into the
state-of-the-art Vision MoE model (right) (Ruiz et al., 2021) and compare the performance on the full datasets.

domain generalization methods that require domain IDs: DANN (Ganin et al., 2016) and MLDG
(Li et al., 2018), and those that do not require IDs: IRM (Arjovsky et al., 2019). Table 3 presents
the results for both datasets. Among all the tested methods, HMoE with the Softmax-Laplace gating
combination achieved the best overall performance on both tasks. Given HMoE’s advantage in
processing multimodal inputs, we further added clinical notes and CXR modalities to the MIMIC-IV
dataset (HMoE-M in Table 3), which led to additional performance improvements thanks to the joint
benefit of customized modeling and the inclusion of extra modality information.

3.2 QUANTATITIVE ANALYSIS

Combinations of Different Gating Mechanisms. Figure 2 compares the performance of different
gating function combinations on the commonly used CIFAR-10 and ImageNet datasets. We first
evaluate a single module (i.e., a one-layer MoE model) on CIFAR-10 and Tiny-ImageNet, followed
by integrating these modules into the Vision-MoE framework (Riquelme et al., 2021): in the Vision
Transformer (ViT) models, we selectively replace an even number of FFN layers with targeted
MoE layers and test the models on the full datasets. The performance gap between different gating
functions is more pronounced in the one-layer MoE models due to the amplified effect of the module
differences, while the difference becomes smaller after incorporating them into Vision MoE. The
results show that the Laplace-Laplace gating combination achieves the best performance, while
the combination of Laplace and Softmax gating also yields competitive results. Overall, HMoE
demonstrates its potential to enhance the capacity of image classification models.

Multimodal Routing Distributions. We then analyze how modality tokens are distributed across
different experts and groups. Figure 3 displays the distribution of three modality tokens in the
best-performing HMoE block for corresponding tasks from the MIMIC-IV dataset. The HMoE
module consists of two expert groups, each containing four experts. The results are taken from the
final HMoE block of the trained model, using the first batch of data. Most vital signs and clinical
notes tokens are routed to expert group 1, while CXR tokens are predominantly routed to expert group
2. For tasks (a) and (b), vital signs and clinical notes contribute more heavily to the overall HMoE
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(a) In-Hospital Mortality
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(b) Length-of-Stay
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(c) Phenotyping
Figure 3: Token distribution (time series, CXR, clinical notes) of HMoE blocks of a multimodal transformer.
We present the best-performing gating combinations for three tasks evaluated on MIMIC-IV, where the HMoE
block comprises 2 outer expert groups, each containing 4 inner experts. Expert IDs 1 to 4 (left section of each
figure) represent token distributions from expert group 1, and expert IDs 5 to 8 (middle section) represent token
distributions from expert group 2. The right section shows the relative weights assigned to each expert group.

(a) (b) (c)

Figure 4: (a) Distribution of top clinical events across expert IDs under heterogeneous versus homogeneous
gating functions. (b)/(c) Performance variations as the number of inner/outer experts increases.

prediction, particularly in task (b). However, for task (c), CXR tokens play a more significant role,
contributing almost as much as vital signs, despite being present in smaller quantities. Additionally,
due to the load-balancing loss applied during training, the total token count is nearly uniformly
distributed among experts, with minimal token dropping because of exceeding capacity limits.

Distribution of Clinical Events. Given that the number of clinical event categories is much larger
than the number of modalities, it is more intuitive to visualize the impact of different gating function
combinations on the distribution of clinical events. Figure 4 (a) illustrates the routing distribution
for the most commonly observed clinical events using the best-performing Softmax-Laplace gating
combination of HMoE in latent domain discovery, compared to the Softmax gating function. The
results indicate that the Softmax-Laplace combination promotes greater diversification in routing
clinical event samples to experts while encouraging expert sharing across different categories. We
further conduct ablation studies by varying the number of inner and outer experts in the best-
performing HMoE across four tasks, as shown in Figure 4 (b) and (c), where their number of outer
and inner experts is fixed at 2 and 4, respectively. The results demonstrate that increasing the
number of experts has a positive impact on performance, particularly for inner experts, though this
improvement comes with an increase in computational demands.

4 DISCUSSIONS AND LIMITATIONS

In this work, we explored diverse gating function combinations beyond Softmax in a two-level
hierarchical mixture of experts (HMoE). Our theoretical analysis demonstrated that using Laplace
gating in HMoE improves convergence behavior, and employing Laplace gating at both levels
significantly optimizes performance. We validated this theoretical finding on multiple real-world tasks,
while also showcasing the effectiveness of HMoE in handling complex inputs, such as multimodal
and multidomain data. However, the enhanced ability to process complex inputs comes with increased
computational demands, which is a key limitation of HMoE. For future work, we plan to explore
techniques like pruning to reduce computational costs in large-scale multimodal tasks and to identify
more suitable downstream applications for HMoE.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our empirical results, we provide comprehensive descriptions of the
data, preprocessing steps, and implementation details in Appendices B, C, and D. Additionally, the
code is included in the supplementary materials for submission. All datasets utilized in this study are
publicly accessible online, though access to the MIMIC-IV and eICU datasets requires an additional
approval process following their regulations.
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Supplement to “On Expert Estimation in Hierarchical Mixture of
Experts: Beyond Softmax Gating Functions”

In this supplementary material, we first introduce some related works to this paper in Appendix A.
The dataset information, preprocessing procedures, and implementation details can be found in
Appendices B, C, and D, respectively. Next, we provide the proof for the convergence of expert
estimation in Appendix E, while that for the convergence of density estimation is presented in Ap-
pendix F. Then, we continue to streamline the proof of Lemma 1 in Appendix G before investigating
the identifiability of the Gaussian HMoE in Appendix H.

A RELATED WORKS

MoE (Jacobs et al., 1991; Xu et al., 1994) has gained significant popularity for managing complex
tasks since its introduction three decades ago. Unlike traditional models that reuse the same parameters
for all inputs, MoE selects distinct parameters for each specific input. This results in a sparsely
activated layer, enabling a substantial scaling of model capacity without a corresponding increase
in computational cost. Recent studies (Shazeer et al., 2017; Fedus et al., 2022; Mustafa et al.,
2022; Zhou et al., 2023; Shen et al., 2023; Han et al., 2024) have demonstrated the effectiveness
of integrating MoE with cutting-edge models across a diverse range of tasks. Nie et al. (2021);
Zhou et al. (2022); Puigcerver et al. (2023) have also tackled key challenges such as accuracy and
training instability. With the growing prevalence of MoE, the HMoE architecture has also been
utilized to enhance model generalization performance in complex data structures. For instance, Ng &
McLachlan (2007) leveraged HMoE to more effectively manage hierarchical data, thereby improving
classification accuracy in medical datasets. Similarly, Peralta & Soto (2014) introduced regularized
HMoE models with embedded local feature selection, which enhanced model performance in high-
dimensional scenarios. Due to its ability to assign input partitions to specialized experts, HMoE
is particularly well-suited for multi-modal or multi-domain applications (Zhao et al., 2021). Prior
research has demonstrated that HMoE can ensure robust generalization capabilities (Azran & Meir,
2004). However, existing studies have primarily assessed HMoE in small-scale experiments and have
not shown its effectiveness in large-scale real-world settings.

While MoE has been widely employed to scale up large models, its theoretical foundations have
remained relatively underdeveloped. First of all, Mendes & Jiang (2011) studied the maximum
likelihood estimator for parameters of the MoE with each expert being a polynomial regression
model. In particular, they investigated the convergence rate of the estimated density to the true
density under the Kullback-Leibler (KL) divergence and gave some insights on how many experts
should be chosen. Next, Ho et al. (2022) conducted a similar convergence analysis for input-free
gating Gaussian MoE but using the Hellinger distance for the density estimation problem instead
of the KL divergence. Additionally, they utilized the generalized Wasserstein distance to capture
the parameter estimation rates which were negatively affected by the algebraic interactions among
parameters. Nguyen et al. (2023) then generalized these results to a more popular setting known as
softmax gating Gaussian MoE. Rather than leveraging the generalized Wasserstein distance for the
parameter estimation problem, they proposed novel Voronoi-based loss functions which were shown
to characterize the parameter estimation rates more accurately. Recently, Han et al. (2024) advocated
using a new Laplace gating function which induced faster convergence rates than the softmax gating
functions due to a reduced number of parameter interactions. However, to the best of our knowledge,
a comprehensive convergence analysis for HMoE has remained elusive in the literature.

B DATASET INFORMATION

B.1 MIMIC-IV

MIMIC-IV (Johnson et al., 2020) is a comprehensive database containing records from nearly 300,000
patients admitted to a medical center between 2008 and 2019, focusing on a subset of 73,181 ICU
stays. We linked core ICU records, including lab results and vital signs, with corresponding chest
X-rays (Johnson et al., 2019b), radiological notes (Johnson et al., 2023), and electrocardiogram
(ECG) data (Gow et al., 2022) recorded during the same ICU stay.
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Tasks of Interest. We design an in-hospital mortality prediction task (referred to as 48-IHM) to
assess our method’s capability in forecasting short-term patient deterioration. Additionally, accurately
predicting patient discharge times is vital for improving patient outcomes and managing hospital
resources efficiently Bertsimas et al. (2022), leading us to implement the length-of-stay (LOS) task.
Both the 48-IHM and LOS tasks are framed as binary classification problems, utilizing a 48-hour
observation window (for patients staying at least 48 hours in the ICU) to predict in-hospital mortality
(48-IHM) and patient discharge (without death) within the subsequent 48 hours (LOS). Moreover,
recognizing the presence of specific acute care conditions in patient records is key for several clinical
goals, such as forming cohorts for studies and identifying comorbidities Agarwal et al. (2016).
Traditional approaches, which often rely on manual chart reviews or billing codes, are increasingly
being complemented by machine learning models Harutyunyan et al. (2019). Automating this process
demands high-accuracy classifications, which drives the development of our 25-type phenotype
classification (25-PHE) task. This multilabel classification problem involves predicting one of 25
acute care conditions using data from the entire ICU stay. We summarize the details of these tasks
below:

• 48-IHM: This is a binary classification task where we aim to predict in-hospital mortality
based on data collected during the first 48 hours of ICU admission, applicable only to
patients who remained in the ICU for at least 48 hours.

• LOS: The length-of-stay task is structured similarly to 48-IHM. For patients who stayed
in the ICU for a minimum of 48 hours, the objective is to predict whether they will be
discharged (without death) within the next 48 hours.

• 25-PHE: This multilabel classification task involves predicting one of 25 acute care condi-
tions Elixhauser (2009); Lovaasen & Schwerdtfeger (2012), such as congestive heart failure,
pneumonia, or shock, at the conclusion of each patient’s ICU stay. Since the original task
was developed for diagnoses based on ICD-9 codes, and MIMIC-IV includes both ICD-9
and ICD-10 codes, we convert diagnoses coded in ICD-10 using the conversion database
from Butler (2007).

Evaluation. We concentrated on patients with complete data across all modalities, which yielded
a dataset of 8,770 ICU stays for the 48-IHM and LOS tasks, and 14,541 stays for the 25-PHE task.
To assess the performance of the single-label tasks, 48-IHM and LOS, we utilize the F1-score and
AUROC as our evaluation metrics. For the 25-PHE task, following prior research (Zhang et al., 2023;
Lin et al., 2019; Arbabi et al., 2019), we rely on macro-averaged F1-score and AUROC as the primary
measures of evaluation. For the multimodal fusion task, we allocated 70% data for training, while
the remaining 30% was evenly divided between validation and testing. For clinical latent domain
discovery, similar to Wu et al. (2024), we segment the dataset into four temporal groups: 2008-2010,
2011-2013, 2014-2016, and 2017-2019. Each group is then divided into training, validation, and
testing sets, following a 70%, 10%, and 20% split, respectively. Patients admitted after 2014 are
treated as the target test data, while all earlier patients are used as the source training data.

B.2 EICU

The eICU dataset (Pollard et al., 2018) includes over 200,000 visits from 139,000 patients admitted
to ICUs in 208 hospitals across the United States. The data was gathered between 2014 and 2015.
The 208 hospitals are categorized into four regions based on their geographic location: Midwest,
Northeast, West, and South. We define our cohorts by excluding visits from patients younger than 18
or older than 89, as well as visits exceeding 10 days in length or containing fewer than 3 or more than
256 timestamps. Additionally, we omit visits shorter than 12 hours, since predictions are made 12
hours post-admission.

Tasks of Interest. For the readmission task using the eICU dataset, our goal is to predict whether
a patient will be readmitted within 15 days after discharge. Similar to the MIMIC-IV dataset, the
mortality prediction task focuses on determining whether a patient will pass away following discharge.

Evaluation. The eICU dataset is divided into four regional groups: Midwest, Northeast, West, and
South. Each region is further split into 70% for training, 10% for validation, and 20% for testing. To
assess the performance gap between regions, we compare the backbone model’s performance when
trained on data from the same region versus data from other regions, as proposed by Wu et al. (2024).
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The region with the largest performance gap (Midwest) is selected as the target test data, while the
remaining regions (Northeast, West, and South) are used as the source training data. To compare with
baselines from Wu et al. (2024), we use the same evaluation metrics: Area Under the Precision-Recall
Curve (AUPRC) and the Area Under the Receiver Operating Characteristic Curve (AUROC) scores.

B.3 IMAGE CLASSIFICATION DATASETS

CIFAR-10. CIFAR-10 Krizhevsky et al. (2009) is a well-known dataset in computer vision, commonly
used for object recognition tasks. It contains 60,000 color images, each with a resolution of 32x32
pixels, representing one of 10 object categories (“plane,” “car,” “bird,” “cat,” “deer,” “dog,” “frog,”
“horse,” “ship,” “truck”), with 6,000 images per class.

ImageNet. We use the ImageNet database from ILSVRC2012 (Russakovsky et al., 2015), where
the task is to classify images into 1,000 distinct categories, using a vast dataset of over 1.2 million
training images and 150,000 validation and test images sourced from the ImageNet database.

Tiny-ImageNet. The Tiny-ImageNet is a smaller, more manageable subset of the ImageNet dataset.
It contains 100,000 images and 200 classes selected from full ImageNet dataset. All images are
resized to 64×64 pixels to reduce computational demands.

C DATA PREPROCESSING FOR CLINICAL TASKS

During preprocessing, we selected 30 relevant lab and chart events from each patient’s ICU records to
capture vital sign measurements. For chest X-rays, we employed a pre-trained DenseNet-121 model
(Cohen et al., 2022), which had been fine-tuned on the CheXpert dataset (Irvin et al., 2019), to extract
1024-dimensional image embeddings. Additionally, we used the BioClinicalBERT model (Alsentzer
et al., 2019) to generate 768-dimensional embeddings for the radiological notes.

Time Series. We selected 30 time-series events for analysis, as outlined in (Soenksen et al., 2022).
This included nine vital signs: heart rate, mean/systolic/diastolic blood pressure, respiratory rate,
oxygen saturation, and Glasgow Coma Scale (GCS) verbal, eye, and motor response. Additionally,
21 laboratory values were incorporated: potassium, sodium, chloride, creatinine, urea nitrogen,
bicarbonate, anion gap, hemoglobin, hematocrit, magnesium, platelet count, phosphate, white blood
cell count, total calcium, MCH, red blood cell count, MCHC, MCV, RDW, platelet count, neutrophil
count, and vancomycin. Each time series value was standardized to have a mean of 0 and a standard
deviation of 1, based on values from the training set. We use the Transformer as an encoder for time
series data.

Chest X-Rays. To integrate medical imaging into our analysis, we use the MIMIC-CXR-JPG module
(Johnson et al., 2019a) available through Physionet (Goldberger et al., 2000), which contains 377,110
JPG images derived from the DICOM-based MIMIC-CXR database (Johnson et al., 2019b). As
described in Soenksen et al. (2022), each image is resized to 224 × 224 pixels, and we extract
embeddings from the final layer of the DenseNet121 model. To identify X-rays taken during the
patient’s ICU stay, we match subject IDs from MIMIC-CXR-JPG with the core MIMIC-IV database
and then filter the X-rays to those captured between the ICU admission and discharge times.

Clinical Notes To incorporate text data, we use the MIMIC-IV-Note module (Johnson et al., 2023),
which includes 2,321,355 deidentified radiology reports for 237,427 patients. These reports can
be linked to patients in the main MIMIC-IV dataset using a similar matching method as employed
for chest X-rays. It is important to note that we were unable to access intermediate clinical notes
(i.e., notes recorded by clinicians during the patient’s stay), as they have not yet been made publicly
available. We extract note embeddings using the Bio-Clinical BERT model (Alsentzer et al., 2019).

D IMPLEMENTATION DETAILS

D.1 MODEL ARCHITECTURE

Once embeddings from each input modality or domain are generated, we address the issue of
irregularity in the data. To do this, we use a discretized multi-time attention (mTAND) module
(Shukla & Marlin, 2021), which applies a time attention mechanism (Kazemi et al., 2019) to convert
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Algorithm 1 Computation Procedure for the 2-Level Hierarchical MoE Module

1: Input: x ∈ RB×N×D; batch size B, sequence length N , embedding dimension D, number of outer/inner
experts Eo/Ei, capacity per outer/inner expert Co, Ci, dispatch tensor D, combine tensor C

2: Do,Co,Lo = Gateouter(x) ▷ compute outer dispatch, outer combine tensors, and outer gating loss
3: x

(e,b,c,d)
outer =

∑
n D

(b,n,e,c)
o · x(b,n,d) ▷ dispatch inputs to outer experts using dispatch tensor

4: Di,Ci,Li = Gateinner(xouter) ▷ compute inner dispatch, inner combine tensors, and inner gating loss
5: x

(eo,ei,b,ci,d)
experts =

∑
co

D
(eo,b,co,ei,ci)
i · x(eo,b,co,d)

outer ▷ dispatch inputs to the inner experts
6: yexperts = Experts(xexperts) ▷ expert processing
7: y

(eo,b,n,d)
outer =

∑
ei,ci

C
(eo,b,co,ei,ci)
i · y(eo,ei,b,ci,d)

experts ▷ combine inner expert outputs

8: y(b,n,d) =
∑

e,c C
(b,n,e,c)
o · y(e,b,c,d)

outer ▷ combine outer expert outputs
9: L = λ(Lo + Li) ▷ compute total loss

10: Return: y,L

irregularly sampled observations into discrete time intervals. This approach has been employed in
previous works such as (Zhang et al., 2023; Han et al., 2024). The mTAND module transforms the
irregular sequences into fixed-length representations, which are then passed into the MoE fusion
layer with a residual connection. This fusion layer comprises multi-head self-attention followed
by the HMoE module. In total, there are 12 MoE fusion layers, and the output from this layer is
optimized using task-specific loss and load imbalance loss. We apply a dropout rate of 0.1 and use
the Adam optimizer with a learning rate of 1e-4 and a weight decay of 1e-5. All models are trained
for 100 epochs. For the multimodal experiment, we use a batch size of 2, while for the latent domain
discovery experiment, the batch size is set to 256.

D.2 HMOE MODULE

The detailed implementation procedure of the two-level HMoE module of the MoE fusion layer can
be found in Algorithm 1. We have also provided Python code as part of the supplementary material.

E PROOFS FOR CONVERGENCE OF EXPERT ESTIMATION

Proof of Theorems 2, 3 and 4. Overview. We will focus on establishing the following inequality:

inf
G∈Gk∗

1 ,k2
(Θ)

EX [h(ptypeG (·|X), ptypeG∗
(·|X))]/L(r1,r2,r3)(G,G∗) > 0,

where the value of (r1, r2, r3) varies with the variable type ∈ {SS, SL,LL}. Note that the Hellinger
distance h is lower bounded by the Total Variation distance V , that is, h ≥ V , it suffices to demonstrate
that

inf
G∈Gk∗

1 ,k2
(Θ)

EX [V (ptypeG (·|X), ptypeG∗
(·|X))]/L(r1,r2,r3)(G,G∗) > 0. (11)

To this end, we first show that

lim
ε→0

inf
G∈Gk∗

1 ,k2
(Θ):L(r1,r2,r3)(G,G∗)≤ε

EX [V (ptypeG (·|X), ptypeG∗
(·|X))]/L(r1,r2,r3)(G,G∗) > 0. (12)

The proof of this result will be presented later. Now, suppose that it holds true, then there exists a
positive constant ε′ that satisfies

inf
G∈Gk∗

1 ,k2
(Θ):L1(G,G∗)≤ε′

EX [V (ptypeG (·|X), ptypeG∗
(·|X))]/L(r1,r2,r3)(G,G∗) > 0.

Thus, it suffices to establish the following inequality:

inf
G∈Gk∗

1 ,k2
(Θ):L1(G,G∗)>ε′

EX [V (ptypeG (·|X), ptypeG∗
(·|X))]/L(r1,r2,r3)(G,G∗) > 0. (13)

Assume by contrary that the inequality (13) does not hold true, then we can seek a sequence of mixing
measures G′

n ∈ Gk∗
1 ,k2(Θ) that satisfy L1(G

′
n, G∗) > ε′ and

lim
n→∞

EX [V (ptypeG′
n
(·|X), ptypeG∗

(·|X))]/L(r1,r2,r3)(G
′
n, G∗) = 0.
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Thus, we deduce that EX [V (ptypeG′
n
(·|X), ptypeG∗

(·|X))] → 0 as n → ∞. Since Θ is a compact set,
we can substitute the sequence (G′

n) by one of its subsequences that converges to a mixing measure
G′ ∈ Gk∗

1 ,k2(Θ). Recall that L(r1,r2,r3)(G
′
n, G∗) > ε′, then we deduce that L(r1,r2,r3)(G

′, G∗) > ε′.
By employing the Fatou’s lemma, it follows that

0 = lim
n→∞

EX [V (ptypeG′
n
(·|X), ptypeG∗

(·|X))]/L(r1,r2,r3)(G
′
n, G∗)

≥ 1

2

∫
lim inf
n→∞

∣∣∣ptypeG′
n
(y|x)− ptypeG∗

(y|x)
∣∣∣2 d(x, y).

Thus, we obtain that ptypeG′ (y|x) = ptypeG∗
(y|x) for almost surely (x, y). According to Proposition 1,

we get that G′ ≡ G∗, which yields that L(r1,r2,r3)(G
′, G∗) = 0. This result contradicts the fact that

L(r1,r2,r3)(G
′, G∗) > ε′ > 0. Hence, we obtain the result in equation (13), which together with the

inequality (12) leads to the conclusion in equation (11).

Now, we are going back to the proof of the inequality (12).

Proof of the inequality (12) Suppose that the inequality (12) does not hold, then we can find a
sequence of mixing measures (Gn) in Gk∗

1 ,k2(Θ) that satisfies L(r1,r2,r3)(Gn, G∗) → 0 and

EX [V (ptypeGn
(·|X), ptypeG∗

(·|X))]/L(r1,r2,r3)(Gn, G∗) → 0, (14)

as n → ∞. For each j1 ∈ [k∗1 ], let Vn
j1

:= Vj1(Gn) be a Voronoi cell of Gn generated by the j1-th
components of G∗. As the Voronoi loss Vn

j1
has only one element and our arguments are asymptotic,

we may assume WLOG that Vn
j1

= Vj1 = {j1} for any j1 ∈ [k∗1 ]. Then, the Voronoi loss becomes

L(r1,r2,r3)(Gn, G∗) =

k∗
1∑

j1=1

∣∣∣ exp(bnj1)− exp(b∗j1)
∣∣∣+ k∗

1∑
j1=1

exp(bnj1)∥∆a
n
j1∥+

k∗
1∑

j1=1

exp(bnj1)

×

[ ∑
j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

(
∥∆ωn

i2j2|j1∥+ ∥∆ηn
j1i2j2∥+ |∆τnj1i2j2 |+ |∆νnj1i2j2 |

)
+

∑
j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

(
∥∆ωn

i2j2|j1∥
2 + ∥∆ηn

j1i2j2∥
r1 + |∆τnj1i2j2 |

r2

+ |∆νnj1i2j2 |
r3
)]

+

k∗
1∑

j1=1

exp(bnj1)

k∗
2∑

j2=1

∣∣∣ ∑
i2∈Vj2|j1

exp(βn
i2|j1)− exp(β∗

j2|j1)
∣∣∣. (15)

Since L(r1,r2,r3)(Gn, G∗) → 0 as n → ∞, it follows that exp(bnj1) → exp(b∗j1), a
n
j1

→ a∗
j1

,
exp(βn

i2|j1) → exp(β∗
j2|j1), ω

n
i2|j1 → ω∗

j2|j1 , ηn
j1i2

→ η∗
j1j2

, τnj1i2 → τ∗j1j2 and νnj1i2 → ν∗j1j2 for all
j1 ∈ [k∗1 ], j2 ∈ [k∗2 ] and i2 ∈ Vj2|j1 .

Subsequently, we consider three different settings where the variable type takes the value in the set
{SS, SL,LL} in Appendices E.1, E.2 and E.3, respectively. In each appendix, the proof will be
divided into three main stages.
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E.1 WHEN type = SS

When type = SS, the corresponding Voronoi loss function is L( 1
2 r

SS ,rSS , 12 r
SS)(Gn, G∗) = L1n

where we define

L1n :=

k∗
1∑

j1=1

∣∣∣ exp(bnj1)− exp(b∗j1)
∣∣∣+ k∗

1∑
j1=1

exp(bnj1)∥∆a
n
j1∥+

k∗
1∑

j1=1

exp(bnj1)

×

[ ∑
j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

(
∥∆ωn

i2j2|j1∥+ ∥∆ηn
j1i2j2∥+ |∆τnj1i2j2 |+ |∆νnj1i2j2 |

)

+
∑

j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

(
∥∆ωn

i2j2|j1∥
2 + ∥∆ηn

j1i2j2∥
rSS
j2|j1
2 + |∆τnj1i2j2 |

rSS
j2|j1

+ |∆νnj1i2j2 |
rSS
j2|j1
2

)]
+

k∗
1∑

j1=1

exp(bnj1)

k∗
2∑

j2=1

∣∣∣ ∑
i2∈Vj2|j1

exp(βn
i2|j1)− exp(β∗

j2|j1)
∣∣∣. (16)

Step 1 - Taylor expansion: In this stage, we aim to decompose the term

Qn :=

 k∗
1∑

j1=1

exp((a∗
j1)

⊤x+ b∗j1)

 [pSS
Gn

(y|x)− pSS
G∗

(y|x)]

into a combination of linearly independent terms using the Taylor expansion. For that purpose, let us
denote

pSS,n
j1

(y|x) :=
k∗
2∑

j2=1

∑
i2∈Vj2|j1

σ((ωn
i2|j1)

⊤x+ βn
i2|j1)π(y|(η

n
j1i2)

⊤x+ τnj1i2 , ν
n
j1i2),

pSS,∗
j1

(y|x) :=
k∗
2∑

j2=1

σ((ω∗
j2|j1)

⊤x+ β∗
j2|j1)π(y|(η

∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2).

Then, it can be checked that the quantity Qn is divided as

Qn =

k∗
1∑

j1=1

exp(bnj1)
[
exp((an

j1)
⊤x)pSS,n

j1
(y|x)− exp((a∗

j1)
⊤x)pSS,∗

j1
(y|x)

]

−
k∗
1∑

j1=1

exp(bnj1)
[
exp((an

j1)
⊤x)− exp((a∗

j1)
⊤x)

]
pSS
Gn

(y|x)

+

k∗
1∑

j1=1

(
exp(bnj1)− exp(b∗j1)

)
exp((a∗

j1)
⊤x)

[
pSS,n
j1

(y|x)− pSS
Gn

(y|x)
]

: = An −Bn + Cn. (17)

Step 1A - Decompose An: Using the same techniques for decomposing Qn, we can decompose An

as follows:

An :=

k∗
1∑

j1=1

exp(bnj1)∑k∗
2

j′2=1 exp((ω
∗
j′2|j1

)⊤x+ β∗
j′2|j1

)
[An,j1,1 +An,j1,2 +An,j1,3],
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where

An,j1,1 :=

k∗
2∑

j2=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp((ωn

i2|j1)
⊤x) exp((an

j1)
⊤x)π(y|(ηn

j1i2)⊤x+ τnj1i2 , ν
n
j1i2)

− exp((ω∗
j2|j1)

⊤x) exp((a∗
j1)

⊤x)π(y|(η∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2)

]
,

An,j1,2 :=

k∗
2∑

j2=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp((ωn

i2|j1)
⊤x)− exp((ω∗

j2|j1)
⊤x)

]
× exp((an

j1)
⊤x)pSS,n

j1
(y|x),

An,j1,3 :=

k∗
2∑

j2=1

( ∑
i2∈Vj2|j1

exp(βn
i2|j1)− exp(β∗

j2|j1)
)
exp((ω∗

j2|j1)
⊤x)

× [exp((a∗
j1)

⊤x)π(y|(η∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2)− exp((an

j1)
⊤x)pSS,n

j1
(y|x)].

Based on the cardinality of the Voronoi cells Vj2|j1 , we continue to divide the term An,j1,1 into two
parts as

An,j1,1 =
∑

j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp((ωn

i2|j1)
⊤x) exp((an

j1)
⊤x)π(y|(ηn

j1i2)⊤x+ τnj1i2 , ν
n
j1i2)

− exp((ω∗
j2|j1)

⊤x) exp((a∗
j1)

⊤x)π(y|(η∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2)

]
,

+
∑

j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp((ωn

i2|j1)
⊤x) exp((an

j1)
⊤x)π(y|(ηn

j1i2)⊤x+ τnj1i2 , ν
n
j1i2)

− exp((ω∗
j2|j1)

⊤x) exp((a∗
j1)

⊤x)π(y|(η∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2)

]
: = An,j1,1,1 +An,j1,1,2.

Let ξ(η, τ) = η⊤x + τ . By applying the first-order Taylor expansion, the term An,j1,1,1 can be
rewritten as

An,j1,1,1 =
∑

j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

∑
|α|=1

exp(βn
i2|j1)

2α5α!
(∆ωn

i2j2|j1)
α1(∆an

j1)
α2(∆ηn

j1i2j2)
α3(∆τnj1i2j2)

α4

× (∆νnj1i2j2)
α5xα1+α2+α3 exp((ω∗

j2|j1)
⊤x) exp((a∗

j1)
⊤x)

∂|α3|+α4+2α5π

∂ξ|α3|+α4+2α5
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2)

+Rn,1,1(x)

=
∑

j2:|Vj2|j1 |=1

2∑
|ρ1|+ρ2=1

Sn,j2|j1,ρ1,ρ2
· xρ1 · exp((ω∗

j2|j1)
⊤x) exp((a∗

j1)
⊤x)

× ∂ρ2π

∂ξρ2
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2) +Rn,1,1(x),

where Rn,1,1(x) is a Taylor remainder satisfying Rn,1,1(x)/L1n → 0 as n → ∞, and

Sn,j2|j1,ρ1,ρ2
:=

∑
i2∈Vj2|j1

∑
(α1,α2,α3,α4,α5)∈ISS

ρ1,ρ2

exp(βn
i2|j1)

2α5α!
(∆ωn

i2j2|j1)
α1(∆an

j1)
α2(∆ηn

j1i2j2)
α3

× (∆τnj1i2j2)
α4(∆νnj1i2j2)

α5 ,

for any (ρ1, ρ2) ̸= (0d, 0) and j1 ∈ [k∗1 ], j2 ∈ [k∗2 ] in which

ISS
ρ1,ρ2

:= {(α1,α2,α3, α4, α5) ∈ Rd × Rd × Rd × R : α1 +α2 +α3 = ρ1, |α3|+ α4 + 2α5 = ρ2}.
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For each (j1, j2) ∈ [k∗1 ] × [k∗2 ], by applying the Taylor expansion of order rSS(|Vj2|j1 |) := rSS
j2|j1 ,

we can represent the term An,j1,1,2 as

An,j1,1,2 =
∑

j2:|Vj2|j1 |>1

2rSS
j2|j1∑

|ρ1|+ρ2=1

Sn,j2|j1,ρ1,ρ2
· xρ1 · exp((ω∗

j2|j1)
⊤x) exp((a∗

j1)
⊤x)

× ∂ρ2π

∂ξρ2
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2) +Rn,1,2(x),

where Rn,1,2(x) is a Taylor remainder such that Rn,1,2(x)/L1n → 0 as n → ∞.

Subsequently, we rewrite the term An,j1,2 as follows:∑
j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp((ωn

i2|j1)
⊤x)− exp((ω∗

j2|j1)
⊤x)

]
exp((an

j1)
⊤x)pSS,n

j1
(y|x)

+
∑

j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp((ωn

i2|j1)
⊤x)− exp((ω∗

j2|j1)
⊤x)

]
exp((an

j1)
⊤x)pSS,n

j1
(y|x)

: = An,j1,2,1 +An,j1,2,2.

By means of the first-order Taylor expansion, we have

An,j1,2,1 =
∑

j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

∑
|ψ|=1

exp(βn
i2|j1)

ψ!
(∆ωn

i2j2|j1)
ψ

× xψ exp((ω∗
j2|j1)

⊤x) exp((an
j1)

⊤x)pSS,n
j1

(y|x) +Rn,2,1(x),

=
∑

j2:|Vj2|j1 |=1

∑
|ψ|=1

Tn,j2|j1,ψ · xψ exp((ω∗
j2|j1)

⊤x) exp((an
j1)

⊤x)pSS,n
j1

(y|x) +Rn,2,1(x),

where Rn,2,1(x) is a Taylor remainder such that Rn,2,1(x)/L1n → 0 as n → ∞, and

Tn,j2|j1,ψ :=
∑

i2∈Vj2|j1

exp(βn
i2|j1)

ψ!
(∆ωn

i2j2|j1)
ψ,

for any j2 ∈ [k∗2 ] and ψ ̸= 0d.

At the same time, we apply the second-order Taylor expansion to An,j1,2,2:

An,j1,2,2 =
∑

j2:|Vj2|j1 |>1

2∑
|ψ|=1

Tn,j2|j1,ψ · xψ exp((ω∗
j2|j1)

⊤x) exp((an
j1)

⊤x)pSS,n
j1

(y|x) +Rn,2,2(x),

where Rn,2,2(x) is a Taylor remainder such that Rn,2,2(x)/L1n → 0 as n → ∞.

As a result, the term An can be rewritten as

An =

k∗
1∑

j1=1

k∗
2∑

j2=1

exp(bnj1)∑k∗
2

j′2=1 exp((ω
∗
j′2|j1

)⊤x+ β∗
j′2|j1

)

[ 2rSS
j2|j1∑

|ρ1|+ρ2=1

Sn,j2|j1,ρ1,ρ2
· xρ1 · exp((ω∗

j2|j1)
⊤x)

× exp((a∗
j1)

⊤x)
∂ρ2π

∂ξρ2
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2) +Rn,1,1(x) +Rn,1,2(x)

−
2∑

|ψ|=0

Tn,j2|j1,ψ · xψ exp((ω∗
j2|j1)

⊤x) exp((an
j1)

⊤x)pSS,n
j1

(y|x)−Rn,2,1(x)−Rn,2,2(x)

]
,

(18)

where Sn,j2|j1,ρ1,ρ2
= Tn,j2|j1,ψ =

∑
i2∈Vj2|j1

exp(βn
i2|j1) − exp(β∗

j2|j1) for any j2 ∈ [k∗2 ] where
(α1,ρ1, ρ2) = (0d,0d, 0) and ψ = 0d.
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Step 1B - Decompose Bn: By invoking the first-order Taylor expansion, the term Bn defined in
equation (17) can be rewritten as

Bn =

k∗
1∑

j1=1

exp(bnj1)
∑
|γ|=1

(∆an
j1)
γ · xγ exp((a∗

j1)
⊤x)pSS

Gn
(y|x) +Rn,3(x), (19)

where Rn,3(x) is a Taylor remainder such that Rn,3(x)/L1n → 0 as n → ∞.

From the decomposition in equations (17), (18) and (19), we realize that An, Bn and Cn can be
viewed as a combination of elements from the following set union:{

xρ1 · exp((ω∗
j2|j1)

⊤x) exp((a∗
j1)

⊤x)
∂ρ2π

∂ξρ2
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2) : j1 ∈ [k∗1 ], j2 ∈ [k∗2 ],

0 ≤ |ρ1|+ ρ2 ≤ 2rSS
j2|j1

}

∪

{
xψ exp((ω∗

j2|j1)
⊤x) exp((an

j1
)⊤x)pSS,n

j1
(y|x)∑k∗

2

j′2=1 exp((ω
∗
j′2|j1

)⊤x+ β∗
j′2|j1

)
: j1 ∈ [k∗1 ], j2 ∈ [k∗2 ], 0 ≤ |ψ| ≤ 2

}

∪
{
xγ exp((a∗

j1)
⊤x)pSS,n

j1
(y|x), xγ exp((a∗

j1)
⊤x)pSS

Gn
(y|x) : j1 ∈ [k∗1 ], 0 ≤ |γ| ≤ 1

}
.

Step 2 - Non-vanishing coefficients: In this stage, we show that not all the coefficients in the
representation of An/L1n, Bn/L1n and Cn/L1n go to zero as n → ∞. Assume that all of them
approach zero, then by looking into the coefficients associated with the term

• exp((a∗
j1
)⊤x)pSS,n

j1
(y|x) in Cn/L1n, we have

1

L1n
·

k∗
1∑

j1=1

∣∣∣ exp(bnj1)− exp(b∗j1)
∣∣∣ → 0. (20)

•
exp((ω∗

j2|j1)
⊤x) exp((a∗

j1
)⊤x)π(y|(η∗

j1j2
)⊤x+ τ∗j1j2 , ν

∗
j1j2

)∑k∗
2

j′2=1 exp((ω
∗
j′2|j1

)⊤x+ β∗
j′2|j1

)
in An/L1n, we get that

1

L1n
·

k∗
1∑

j1=1

exp(bnj1)

k∗
2∑

j2=1

∣∣∣ ∑
i2∈Vj2|j1

exp(βn
i2|j1)− exp(β∗

j2|j1)
∣∣∣ → 0. (21)

•
xψ exp((ω∗

j2|j1)
⊤x) exp((an

j1
)⊤x)pSS,n

j1
(y|x)∑k∗

2

j′2=1 exp((ω
∗
j′2|j1

)⊤x+ β∗
j′2|j1

)
in An/L1n for j1 ∈ [k∗1 ], j2 ∈ [k∗2 ] :

|Vj2|j1 | = 1 and ψ = ed,u where ed,u := (0, . . . , 0, 1︸︷︷︸
u-th

, 0, . . . , 0) ∈ Nd, we receive

1

L1n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)∥ω

n
i2|j1 − ω

∗
j2|j1∥1 → 0.

Note that since the norm-1 is equivalent to the norm-2, then we can replace the norm-1 with
the norm-2, that is,

1

L1n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)∥ω

n
i2|j1 − ω

∗
j2|j1∥ → 0. (22)
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•
exp((ω∗

j2|j1)
⊤x) exp((a∗

j1
)⊤x)∂

ρ2π
∂ξρ2 (y|(η

∗
j1j2

)⊤x+ τ∗j1j2 , ν
∗
j1j2

)∑k∗
2

j′2=1 exp((ω
∗
j′2|j1

)⊤x+ β∗
j′2|j1

)
in An/L1n for j1 ∈

[k∗1 ], j2 ∈ [k∗2 ] : |Vj2|j1 | = 1 and ρ2 = 1, we have that

1

L1n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |=1

exp(βn
j2|j1)|τ

n
j1j2 − τ∗j1j2 | → 0. (23)

•
xρ1 exp((ω∗

j2|j1)
⊤x) exp((a∗

j1
)⊤x)∂

ρ2π
∂ξρ2 (y|(η

∗
j1j2

)⊤x+ τ∗j1j2 , ν
∗
j1j2

)∑k∗
2

j′2=1 exp((ω
∗
j′2|j1

)⊤x+ β∗
j′2|j1

)
in An/L1n for

j1 ∈ [k∗1 ], j2 ∈ [k∗2 ] : |Vj2|j1 | = 1, ρ1 = ed,u and ρ2 = 1, we have that

1

L1n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
j2|j1)∥η

n
j1i2 − η

∗
j1j2∥ → 0. (24)

•
exp((ω∗

j2|j1)
⊤x) exp((a∗

j1
)⊤x)∂

ρ2π
∂ξρ2 (y|(η

∗
j1j2

)⊤x+ τ∗j1j2 , ν
∗
j1j2

)∑k∗
2

j′2=1 exp((ω
∗
j′2|j1

)⊤x+ β∗
j′2|j1

)
in An/L1n for j1 ∈

[k∗1 ], j2 ∈ [k∗2 ] : |Vj2|j1 | = 1 and ρ2 = 2, we have that

1

L1n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |=1

exp(βn
j2|j1)|ν

n
j1j2 − ν∗j1j2 | → 0. (25)

• xγ exp((a∗
j1
)⊤x)pSS

Gn
(y|x) in Bn/L1n for j1 ∈ [k∗1 ] and γ = ed,u, we obtain

1

L1n
·

k∗
1∑

j1=1

exp(bnj1)∥a
n
j1 − a

∗
j1∥ → 0. (26)

•
xψ exp((ω∗

j2|j1)
⊤x) exp((an

j1
)⊤x)pSS,n

j1
(y|x)∑k∗

2

j′2=1 exp((ω
∗
j′2|j1

)⊤x+ β∗
j′2|j1

)
in An/L1n for j1 ∈ [k∗1 ], j2 ∈ [k∗2 ] :

|Vj2|j1 | > 1 and ψ = 2ed,u, we receive that

1

L1n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)∥ω

n
i2|j1 − ω

∗
j2|j1∥

2 → 0. (27)

Combine the above limits together with the loss L1n in equation (16), it yields that

1

L1n
·

k∗
1∑

j1=1

exp(bnj1)

[ ∑
j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

(
∥∆ηn

j1i2j2∥
rSS
j2|j1
2 + |∆τnj1i2j2 |

rSS
j2|j1

+ |∆νnj1i2j2 |
rSS
j2|j1
2

)]
̸→ 0,

which indicates that

1

L1n
·

k∗
1∑

j1=1

exp(bnj1)

[ ∑
j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

(
∥∆ωn

i2j2|j1∥
rSS
j2|j1 + ∥∆an

j1∥
rSS
j2|j1

+ ∥∆ηn
j1i2j2∥

rSS
j2|j1
2 + |∆τnj1i2j2 |

rSS
j2|j1 + |∆νnj1i2j2 |

rSS
j2|j1
2

)]
̸→ 0,
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as n → ∞. Therefore, there exist indices j∗1 ∈ [k∗1 ] and j∗2 ∈ [k∗2 ] : |Vj∗2 |j∗1 | > 1 such that

1

L1n
·

∑
i2∈Vj∗2 |j∗1

exp(βn
i2|j∗1

)
(
∥ωn

i2|j∗1
− ω∗

j∗2 |j∗1
∥r

SS
j∗2 |j∗1 + ∥an

j∗1
− a∗

j∗1
∥r

SS
j∗2 |j∗1 + ∥ηn

j∗1 i2
− η∗

j∗1 j
∗
2
∥

rSS
j∗2 |j∗1

2

+ |τnj∗1 i2 − τ∗j∗1 j∗2 |
rSS
j∗2 |j∗1 + |νnj∗1 i2 − ν∗j∗1 j∗2 |

rSS
j∗2 |j∗1

2

)
̸→ 0. (28)

WLOG, we may assume that j∗1 = j∗2 = 1. By examining the coefficients of the terms
xρ1 exp((ω∗

j2|j1)
⊤x) exp((a∗

j1
)⊤x)∂

ρ2π
∂ξρ2 (y|(η

∗
j1j2

)⊤x+ τ∗j1j2 , ν
∗
j1j2

)∑k∗
2

j′2=1 exp((ω
∗
j′2|j1

)⊤x+ β∗
j′2|j1

)
in An/L1n for j1 = j2 = 1,

we have exp(bn1 )Sn,1|1,0d,ρ1,ρ2
/L1n → 0, or equivalently,

1

L1n
·

∑
i2∈V1|1

∑
(α1,α2,α3,α4,α5)∈ISS

ρ1,ρ2

exp(βn
i2|1)

2α5α!
· (∆ωn

1i21)
α1(∆an

1 )
α2(∆ηn

1i21)
α3

× (∆τn1i21)
α4(∆νn1i21)

α5 → 0. (29)

By dividing the left hand side of equation (29) by that of equation (28), we get∑
i2∈V1|1

∑
(α1,α2,α3,α4,α5)∈ISS

ρ1,ρ2

exp(βn
i2|1)

2α5α! · (∆ωn
1i21

)α1(∆an
1 )
α2(∆ηn

1i21
)α3(∆τn1i21)

α4(∆νn1i21)
α5

∑
i2∈V1|1

exp(βn
i2|1)

(
∥∆ωn

1i21
∥r

SS
1|1 + ∥∆an

1∥
rSS
1|1 + ∥∆ηn

1i2i
∥

rSS
1|1
2 + |∆τn1i21|

rSS
1|1 + |∆νn1i21|

rSS
1|1
2

) → 0.

(30)

Let us define Mn := max{∥∆ωn
1i21

∥, ∥∆an
1∥, ∥∆ηn

1i21
∥1/2, ∥∆τn1i21∥, ∥∆νn1i21∥

1/2 : i2 ∈ V1|1},
and βn := maxi2∈V1|1 exp(β

n
i2|1). Since the sequence exp(βn

i2|1)/βn is bounded, we can replace it
by its subsequence which has a positive limit p2i2 := limn→∞ exp(βn

i2|1)/βn. Note that at least one
among the limits p2i2 must be equal to one. Next, let us define

(∆ωn
1i21)/M → q1i2 (∆an

1 )/Mn → q2, (∆ηn
1i21)/Mn → q3i2 ,

(∆τn1i21)/Mn → q4i2 , (∆νn1i21)/2Mn → q5i2 .

Note that at least one among q1i2 , q2, q3i2 , q4i2 , q5i2 must be equal to either 1 or −1.

By dividing both the numerator and the denominator of the term in equation (30) by βnM
|ρ1|+ρ2

n ,
we obtain the system of polynomial equations:∑

i2∈V1|1

∑
(α1,α2,α3,α4,α5)∈ISS

ρ1,ρ2

1

α!
· p2i2q

α1
1i2
qα2
2 qα3

3i2
qα4
4i2

qα5
5i2

= 0, 1 ≤ |ρ1|+ ρ2 ≤ rSS
1|1 .

According to the definition of the term rSS
1|1 , the above system does not have any non-trivial solutions,

which is a contradiction. Consequently, at least one among the coefficients in the representation of
An/L1n, Bn/L1n and Cn/L1n must not converge to zero as n → ∞.

Step 3 - Application of the Fatou’s lemma. In this stage, we show that all the coefficients in the
formulations of An/L1n, Bn/L1n and Cn/L1n go to zero as n → ∞. Denote by mn the maximum
of the absolute values of those coefficients, the result from Step 2 induces that 1/mn ̸→ ∞. By
employing the Fatou’s lemma, we have

0 = lim
n→∞

EX [V (pSS
Gn

(·|X), pSS
G∗

(·|X))]

mnL1n
≥

∫
lim inf
n→∞

|pSS
Gn

(y|x)− pSS
G∗

(y|x)|
2mnL1n

d(x, y).

Thus, we deduce that

|pSS
Gn

(y|x)− pSS
G∗

(y|x)|
2mnL1n

→ 0,

which results in Qn/[mnL1n] → 0 as n → ∞ for almost surely (x, y).
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Next, we denote

exp(bnj1)Sn,j2|j1,ρ1,ρ2

mnL1n
→ ϕj2|j1,ρ1,ρ2

,
exp(bnj1)Tn,j2|j1,ψ

mnL1n
→ φj2|j1,ψ,

exp(bnj1)(∆a
n
j1
)γ

mnL1n
→ λj1,γ ,

exp(bnj1)− exp(b∗j1)

mnL1n
→ χj1

with a note that at least one among them is non-zero. Then, the decomposition of Qn in equation (17)
indicates that

lim
n→∞

Qn

mnL1n
= lim

n→∞

An

mnL1n
− lim

n→∞

Bn

mnL1n
+ lim

n→∞

Cn

mnL1n
,

in which

lim
n→∞

An

mnL1n
=

k∗
1∑

j1=1

k∗
2∑

j2=1

[ 2rSS
j2|j1∑

|ρ1|+ρ2=0

Sn,j2|j1,ρ1,ρ2
· xρ1 exp((ω∗

j2|j1)
⊤x)

× exp((a∗
j1)

⊤x)
∂ρ2π

∂ξρ2
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2)−

2∑
|ψ|=0

φj2|j1,ψ · xψ exp((ω∗
j2|j1)

⊤x)

× exp((a∗
j1)

⊤x)pSS,∗
j1

(y|x)

]
1∑k∗

2

j′2=1 exp((ω
∗
j′2|j1

)⊤x+ β∗
j′2|j1

)
,

lim
n→∞

Bn

mnL1n
=

k∗
1∑

j1=1

∑
|γ|=1

λj1,γ · xγ exp((a∗
j1)

⊤x)pSS
G∗

(y|x),

lim
n→∞

Cn(x)

mnL1n
=

k∗
1∑

j1=1

χj1 exp((a
∗
j1)

⊤x)
[
pSS,∗
j1

(y|x)− pSS
G∗

(y|x)
]
.

Since the set

{
xρ1 exp((ω∗

j2|j1)
⊤x) exp((a∗

j1
)⊤x)∂

ρ2π
∂ξρ2 (y|(η

∗
j1j2

)⊤x+ τ∗j1j2 , ν
∗
j1j2

)∑k∗
2

j′2=1 exp((ω
∗
j′2|j1

)⊤x+ β∗
j′2|j1

)
: j1 ∈ [k∗1 ], j2 ∈ [k∗2 ],

0 ≤ |ρ1|+ ρ2 ≤ 2rSS
j2|j1

}

∪

{
xψ exp((ω∗

j2|j1)
⊤x) exp((a∗

j1
)⊤x)pSS,∗

j1
(y|x)∑k∗

2

j′2=1 exp((ω
∗
j′2|j1

)⊤x+ β∗
j′2|j1

)
: j1 ∈ [k∗1 ], j2 ∈ [k∗2 ], 0 ≤ |ψ| ≤ 2

}

∪
{
xγ exp((a∗

j1)
⊤x)pSS

G∗
(y|x), exp((a∗

j1)
⊤x)pSS,∗

j1
(y|x), exp((a∗

j1)
⊤x)pSS

G∗
(y|x)

: j1 ∈ [k∗1 ], 0 ≤ |γ| ≤ 2
}

is linearly independent, we obtain that ϕj2|j1,ρ1,ρ2
= φj2|j1,ψ = λj1,γ = χj1 = 0 for all j1 ∈ [k∗1 ],

j2 ∈ [k∗2 ], 0 ≤ |ρ1| + ρ2 ≤ 2rSS
j2|j1 , 0 ≤ |ψ| ≤ 2 and 0 ≤ |γ| ≤ 1, which is a contradiction. As a

consequence, we obtain the inequality in equation (12). Hence, the proof is completed.
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E.2 WHEN type = SL

When type = SL, the corresponding Voronoi loss function is L( 1
2 r

SL,rSL, 12 r
SL)(Gn, G∗) = L2n

where we define

L2n :=

k∗
1∑

j1=1

∣∣∣ exp(bnj1)− exp(b∗j1)
∣∣∣+ k∗

1∑
j1=1

exp(bnj1)∥∆a
n
j1∥+

k∗
1∑

j1=1

exp(bnj1)

×

[ ∑
j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

(
∥∆ωn

i2j2|j1∥+ ∥∆ηn
j1i2j2∥+ |∆τnj1i2j2 |+ |∆νnj1i2j2 |

)

+
∑

j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

(
∥∆ωn

i2j2|j1∥
2 + ∥∆ηn

j1i2j2∥
rSL
j2|j1
2 + |∆τnj1i2j2 |

rSL
j2|j1

+ |∆νnj1i2j2 |
rSL
j2|j1
2

)]
+

k∗
1∑

j1=1

exp(bnj1)

k∗
2∑

j2=1

∣∣∣ ∑
i2∈Vj2|j1

exp(βn
i2|j1)− exp(β∗

j2|j1)
∣∣∣. (31)

Step 1 - Taylor expansion: In this step, we use the Taylor expansion to decompose the term

Qn :=

 k∗
1∑

j1=1

exp((a∗
j1)

⊤x+ b∗j1)

 [pSL
Gn

(y|x)− pSL
G∗

(y|x)].

Prior to that, let us denote

pSL,n
j1

(y|x) :=
k∗
2∑

j2=1

∑
i2∈Vj2|j1

σ(−∥ωn
i2|j1 − x∥+ βn

i2|j1)π(y|(η
n
j1i2)

⊤x+ τnj1i2 , ν
n
j1i2),

pSL,∗
j1

(y|x) :=
k∗
2∑

j2=1

σ(−∥ω∗
j2|j1 − x∥+ β∗

j2|j1)π(y|(η
∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2).

Then, the quantity Qn is divided into three terms as

Qn =

k∗
1∑

j1=1

exp(bnj1)
[
exp((an

j1)
⊤x)pSL,n

j1
(y|x)− exp((a∗

j1)
⊤x)pSL,∗

j1
(y|x)

]

−
k∗
1∑

j1=1

exp(bnj1)
[
exp((an

j1)
⊤x)− exp((a∗

j1)
⊤x)

]
pSL
Gn

(y|x)

+

k∗
1∑

j1=1

(
exp(bnj1)− exp(b∗j1)

)
exp((a∗

j1)
⊤x)

[
pSL,n
j1

(y|x)− pSL
Gn

(y|x)
]

: = An −Bn + Cn. (32)

Step 1A - Decompose An: We continue to decompose An:

An :=

k∗
1∑

j1=1

exp(bnj1)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
[An,j1,1 +An,j1,2 +An,j1,3],
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in which

An,j1,1 :=

k∗
2∑

j2=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp(−∥ωn

i2|j1 − x∥) exp((a
n
j1)

⊤x)π(y|(ηn
j1i2)⊤x+ τnj1i2 , ν

n
j1i2)

− exp(−∥ω∗
j2|j1 − x∥) exp((a

∗
j1)

⊤x)π(y|(η∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2)

]
,

An,j1,2 :=

k∗
2∑

j2=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp(−∥ωn

i2|j1 − x∥)− exp(−∥ω∗
j2|j1 − x∥)

]
× exp((an

j1)
⊤x)pSL,n

j1
(y|x),

An,j1,3 :=

k∗
2∑

j2=1

( ∑
i2∈Vj2|j1

exp(βn
i2|j1)− exp(β∗

j2|j1)
)
exp(−∥ω∗

j2|j1 − x∥)

× [exp((a∗
j1)

⊤x)π(y|(η∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2)− exp((an

j1)
⊤x)pSL,n

j1
(y|x)].

Based on the cardinality of the Voronoi cells Vj2|j1 , we proceed to divide the term An,j1,1 into two
parts as

An,j1,1 =
∑

j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp(−∥ωn

i2|j1 − x∥) exp((a
n
j1)

⊤x)π(y|(ηn
j1i2)⊤x+ τnj1i2 , ν

n
j1i2)

− exp(−∥ω∗
j2|j1 − x∥) exp((a

∗
j1)

⊤x)π(y|(η∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2)

]
,

+
∑

j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp(−∥ωn

i2|j1 − x∥) exp((a
n
j1)

⊤x)π(y|(ηn
j1i2)⊤x+ τnj1i2 , ν

n
j1i2)

− exp(−∥ω∗
j2|j1 − x∥) exp((a

∗
j1)

⊤x)π(y|(η∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2)

]
: = An,j1,1,1 +An,j1,1,2.

Let us denote F (x;ω) := exp(−∥ω − x∥) and ξ(η, τ) = η⊤x + τ . By means of the first-order
Taylor expansion, An,j1,1,1 can be represented as

An,j1,1,1 =
∑

j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

∑
|α|=1

exp(βn
i2|j1)

2α5α!
(∆ωn

i2j2|j1)
α1(∆an

j1)
α2(∆ηn

j1i2j2)
α3(∆τnj1i2j2)

α4

× (∆νnj1i2j2)
α5xα2+α3

∂|α1|F

∂ωα1
(x;ω∗

j2|j1) exp((a
∗
j1)

⊤x)
∂|α3|+α4+2α5π

∂ξ|α3|+α4+2α5
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2) +Rn,1,1(x)

=
∑

j2:|Vj2|j1 |=1

1∑
|α1|=0

2(1−|α1|)∑
|ρ1|+ρ2=0∨1−|α1|

Sn,j2|j1,α1,ρ1,ρ2
· xρ1 · ∂

|α1|F

∂ωα1
(x;ω∗

j2|j1) exp((a
∗
j1)

⊤x)

× ∂ρ2π

∂ξρ2
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2) +Rn,1,1(x),

where Rn,1,1(x) is a Taylor remainder such that Rn,1,1(x)/L2n → 0 as n → ∞, and

Sn,j2|j1,α1,ρ1,ρ2
:=

∑
i2∈Vj2|j1

∑
(α2,α3,α4,α5)∈ISL

ρ1,ρ2

exp(βn
i2|j1)

2α5α!
(∆ωn

i2j2|j1)
α1(∆an

j1)
α2(∆ηn

j1i2j2)
α3

× (∆τnj1i2j2)
α4(∆νnj1i2j2)

α5 ,

for any (α1,ρ1, ρ2) ̸= (0d,0d, 0) and j1 ∈ [k∗1 ], j2 ∈ [k∗2 ] in which

ISL
ρ1,ρ2

:= {(α2,α3, α4, α5) ∈ Rd × Rd × Rd × R : α2 +α3 = ρ1, |α3|+ α4 + 2α5 = ρ2}.
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For each (j1, j2) ∈ [k∗1 ] × [k∗2 ], by applying the Taylor expansion of order rSL(|Vj2|j1 |) := rSL
j2|j1 ,

the term An,j1,1,2 can be rewritten as

An,j1,1,2 =
∑

j2:|Vj2|j1 |>1

rSL
j2|j1∑

|α1|=1

2(rSL
j2|j1

−|α1|)∑
|ρ1|+ρ2=0∨1−|α1|

Sn,j2|j1,α1,ρ1,ρ2
· xρ1 · ∂

|α1|F

∂ωα1
(x;ω∗

j2|j1) exp((a
∗
j1)

⊤x)

× ∂ρ2π

∂ξρ2
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2) +Rn,1,2(x),

where Rn,1,2(x) is a Taylor remainder such that Rn,1,2(x)/L2n → 0 as n → ∞.

Next, we rewrite the term An,j1,2 as follows:∑
j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp(−∥ωn

i2|j1 − x∥)− exp(−∥ω∗
j2|j1 − x∥)

]
exp((an

j1)
⊤x)pSL,n

j1
(y|x)

+
∑

j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp(−∥ωn

i2|j1 − x∥)− exp(−∥ω∗
j2|j1 − x∥)

]
exp((an

j1)
⊤x)pSL,n

j1
(y|x)

: = An,j1,2,1 +An,j1,2,2.

By applying the first-order Taylor expansion, we have

An,j1,2,1 =
∑

j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

∑
|ψ|=1

exp(βn
i2|j1)

ψ!
(∆ωn

i2j2|j1)
ψ

× ∂|ψ|F

∂ωψ
(x;ω∗

j2|j1) exp((a
n
j1)

⊤x)pSL,n
j1

(y|x) +Rn,2,1(x),

=
∑

j2:|Vj2|j1 |=1

∑
|ψ|=1

Tn,j2|j1,ψ · ∂
|ψ|F

∂ωψ
(x;ω∗

j2|j1) exp((a
n
j1)

⊤x)pSL,n
j1

(y|x) +Rn,2,1(x),

where Rn,2,1(x) is a Taylor remainder such that Rn,2,1(x)/L2n → 0 as n → ∞, and

Tn,j2|j1,ψ :=
∑

i2∈Vj2|j1

exp(βn
i2|j1)

ψ!
(∆ωn

i2j2|j1)
ψ,

for any j2 ∈ [k∗2 ] and ψ ̸= 0d.

Meanwhile, we employ the second-order Taylor expansion to An,j1,2,2:

An,j1,2,2 =
∑

j2:|Vj2|j1 |>1

2∑
|ψ|=1

Tn,j2|j1,ψ · ∂
|ψ|F

∂ωψ
(x;ω∗

j2|j1) exp((a
n
j1)

⊤x)pSL,n
j1

(y|x) +Rn,2,2(x),

where Rn,2,2(x) is a Taylor remainder such that Rn,2,2(x)/L2n → 0 as n → ∞.

As a result, the term An can be rewritten as

An =

k∗
1∑

j1=1

k∗
2∑

j2=1

exp(bnj1)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)

[ rSL
j2|j1∑

|α1|=0

2(rSL
j2|j1

−|α1|)∑
|ρ1|+ρ2=0∨1−|α1|

Sn,j2|j1,α1,ρ1,ρ2

× xρ1 · ∂
|α1|F

∂ωα1
(x;ω∗

j2|j1) exp((a
∗
j1)

⊤x)
∂ρ2π

∂ξρ2
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2) +Rn,1,1(x) +Rn,1,2(x)

−
2∑

|ψ|=0

Tn,j2|j1,ψ · ∂
|ψ|F

∂ωψ
(x;ω∗

j2|j1) exp((a
n
j1)

⊤x)pSL,n
j1

(y|x)−Rn,2,1(x)−Rn,2,2(x)

]
,

(33)

where Sn,j2|j1,α1,ρ1,ρ2
= Tn,j2|j1,ψ =

∑
i2∈Vj2|j1

exp(βn
i2|j1)−exp(β∗

j2|j1) for any j2 ∈ [k∗2 ] where
(α1,ρ1, ρ2) = (0d,0d, 0) and ψ = 0d.
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Step 1B - Decompose Bn: By invoking the first-order Taylor expansion, we decompose the term Bn

defined in equation (32) as

Bn =

k∗
1∑

j1=1

exp(bnj1)
∑
|γ|=1

(∆an
j1)
γ · xγ exp((a∗

j1)
⊤x)pSL

Gn
(y|x) +Rn,3(x), (34)

where Rn,3(x) is a Taylor remainder such that Rn,3(x)/L2n → 0 as n → ∞.

It can be seen from the decomposition in equations (32), (33) and (34) that An, Bn and Cn can be
treated as a linear combination of elements from the following set union:{

xρ1 · ∂
|α1|F

∂ωα1
(x;ω∗

j2|j1) exp((a
∗
j1)

⊤x)
∂ρ2π

∂ξρ2
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2) : j1 ∈ [k∗1 ], j2 ∈ [k∗2 ],

0 ≤ |α1| ≤ rSL
j2|j1 , 0 ≤ |ρ1|+ ρ2 ≤ 2(rSL

j2|j1 − |α1|)

}

∪

{
∂|ψ|F
∂ωψ

(x;ω∗
j2|j1) exp((a

n
j1
)⊤x)pSL,n

j1
(y|x)∑k∗

2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
: j1 ∈ [k∗1 ], j2 ∈ [k∗2 ], 0 ≤ |ψ| ≤ 2

}

∪
{
xγ exp((a∗

j1)
⊤x)pSL,n

j1
(y|x), xγ exp((a∗

j1)
⊤x)pSL

Gn
(y|x) : j1 ∈ [k∗1 ], 0 ≤ |γ| ≤ 1

}
.

Step 2 - Non-vanishing coefficients: In this stage, we illustrate that not all the coefficients in the
representation of An/L2n, Bn/L2n and Cn/L2n go to zero as n → ∞. Suppose that all of them
approach zero, then we examine the coefficients associated with the term

• exp((a∗
j1
)⊤x)pSL,n

j1
(y|x) in Cn/L2n, we have

1

L2n
·

k∗
1∑

j1=1

∣∣∣ exp(bnj1)− exp(b∗j1)
∣∣∣ → 0. (35)

•
F (x;ω∗

j2|j1) exp((a
∗
j1
)⊤x)π(y|(η∗

j1j2
)⊤x+ τ∗j1j2 , ν

∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
in An/L2n, we get that

1

L2n
·

k∗
1∑

j1=1

exp(bnj1)

k∗
2∑

j2=1

∣∣∣ ∑
i2∈Vj2|j1

exp(βn
i2|j1)− exp(β∗

j2|j1)
∣∣∣ → 0. (36)

•
∂|α1|F
∂ωα1

(x;ω∗
j2|j1) exp((a

n
j1
)⊤x)π(y|(η∗

j1j2
)⊤x+ τ∗j1j2 , ν

∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
in An/L2n for j1 ∈

[k∗1 ], j2 ∈ [k∗2 ] : |Vj2|j1 | = 1 and α1 = ed,u where ed,u := (0, . . . , 0, 1︸︷︷︸
u-th

, 0, . . . , 0) ∈ Nd,

we receive

1

L2n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)∥ω

n
i2|j1 − ω

∗
j2|j1∥1 → 0.

Note that since the norm-1 is equivalent to the norm-2, then we can replace the norm-1 with
the norm-2, that is,

1

L2n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)∥ω

n
i2|j1 − ω

∗
j2|j1∥ → 0. (37)
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•
F (x;ω∗

j2|j1) exp((a
∗
j1
)⊤x)∂

ρ2π
∂ξρ2 (y|(η

∗
j1j2

)⊤x+ τ∗j1j2 , ν
∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
in An/L2n for j1 ∈

[k∗1 ], j2 ∈ [k∗2 ] : |Vj2|j1 | = 1 and ρ2 = 1, we have that

1

L2n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |=1

exp(βn
j2|j1)|τ

n
j1j2 − τ∗j1j2 | → 0. (38)

•
xρ1F (x;ω∗

j2|j1) exp((a
∗
j1
)⊤x)∂

ρ2π
∂ξρ2 (y|(η

∗
j1j2

)⊤x+ τ∗j1j2 , ν
∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
in An/L2n for j1 ∈

[k∗1 ], j2 ∈ [k∗2 ] : |Vj2|j1 | = 1, ρ1 = ed,u and ρ2 = 1, we have that

1

L2n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
j2|j1)∥η

n
j1i2 − η

∗
j1j2∥ → 0. (39)

•
F (x;ω∗

j2|j1) exp((a
∗
j1
)⊤x)∂

ρ2π
∂ξρ2 (y|(η

∗
j1j2

)⊤x+ τ∗j1j2 , ν
∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
in An/L2n for j1 ∈

[k∗1 ], j2 ∈ [k∗2 ] : |Vj2|j1 | = 1 and ρ2 = 2, we have that

1

L2n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |=1

exp(βn
j2|j1)|ν

n
j1j2 − ν∗j1j2 | → 0. (40)

• xγ exp((a∗
j1
)⊤x)pSL

Gn
(y|x) in Bn/L2n for j1 ∈ [k∗1 ] and γ = ed,u, we obtain

1

L2n
·

k∗
1∑

j1=1

exp(bnj1)∥a
n
j1 − a

∗
j1∥ → 0. (41)

•
∂|α1|F
∂ωα1

(x;ω∗
j2|j1) exp((a

∗
j1
)⊤x)π(y|(η∗

j1j2
)⊤x+ τ∗j1j2 , ν

∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
in An/L2n for j1 ∈

[k∗1 ], j2 ∈ [k∗2 ] : |Vj2|j1 | > 1 and α1 = 2ed,u, we receive that

1

L2n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)∥ω

n
i2|j1 − ω

∗
j2|j1∥

2 → 0. (42)

Putting the above limits together with the formulation of the loss L2n in equation (31), we deduce
that

1

L2n
·

k∗
1∑

j1=1

exp(bnj1)

[ ∑
j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

(
∥∆ηn

j1i2j2∥
rSL
j2|j1
2 + |∆τnj1i2j2 |

rSL
j2|j1

+ |∆νnj1i2j2 |
rSL
j2|j1
2

)]
̸→ 0,

which also suggests that

1

L2n
·

k∗
1∑

j1=1

exp(bnj1)

[ ∑
j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

(
∥∆an

j1∥
rSL
j2|j1 + ∥∆ηn

j1i2j2∥
rSL
j2|j1
2

+ |∆τnj1i2j2 |
rSL
j2|j1 + |∆νnj1i2j2 |

rSL
j2|j1
2

)]
̸→ 0,
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as n → ∞. Thus, we can find indices j∗1 ∈ [k∗1 ] and j∗2 ∈ [k∗2 ] : |Vj∗2 |j∗1 | > 1 such that

1

L2n
·

∑
i2∈Vj∗2 |j∗1

exp(βn
i2|j∗1

)
(
∥an

j∗1
− a∗

j∗1
∥r

SL
j∗2 |j∗1 + ∥ηn

j∗1 i2
− η∗

j∗1 j
∗
2
∥

rSL
j∗2 |j∗1

2

+ |τnj∗1 i2 − τ∗j∗1 j∗2 |
rSL
j∗2 |j∗1 + |νnj∗1 i2 − ν∗j∗1 j∗2 |

rSL
j∗2 |j∗1

2

)
̸→ 0. (43)

WLOG, we may assume that j∗1 = j∗2 = 1. By considering the coefficients of the terms
xρ1F (x;ω∗

j2|j1) exp((a
∗
j1
)⊤x)∂

ρ2π
∂ξρ2 (y|(η

∗
j1j2

)⊤x+ τ∗j1j2 , ν
∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
in An/L2n for j1 = j2 = 1, we

have exp(bn1 )Sn,1|1,0d,ρ1,ρ2
/L2n → 0, or equivalently,

1

L2n
·

∑
i2∈V1|1

∑
(α2,α3,α4,α5)∈ISL

ρ1,ρ2

exp(βn
i2|1)

2α5α2!α3!α4!α5!
· (∆an

1 )
α2(∆ηn

1i21)
α3

× (∆τn1i21)
α4(∆νn1i21)

α5 → 0. (44)

By dividing the left hand side of equation (44) by that of equation (43), we get∑
i2∈V1|1

∑
(α2,α3,α4,α5)∈ISL

ρ1,ρ2

exp(βn
i2|1)

2α5α2!α3!α4!α5!
· (∆an

1 )
α2(∆ηn

1i21
)α3(∆τn1i21)

α4(∆νn1i21)
α5

∑
i2∈V1|1

exp(βn
i2|1)

(
∥∆an

1∥
rSL
1|1 + ∥∆ηn

1i2i
∥

rSL
1|1
2 + |∆τn1i21|

rSL
1|1 + |∆νn1i21|

rSL
1|1
2

) → 0.

(45)

Let us define Mn := max{∥∆an
1∥, ∥∆ηn

1i2i
∥1/2, ∥∆τn1i21∥, ∥∆νn1i21∥

1/2 : i2 ∈ V1|1}, and βn :=

maxi2∈V1|1 exp(β
n
i2|1). Since the sequence exp(βn

i2|1)/βn is bounded, we can replace it by its
subsequence which has a positive limit p2i2 := limn→∞ exp(βn

i2|1)/βn. Note that at least one among
the limits p2i2 must be equal to one. Next, let us define

(∆an
1 )/Mn → q2, (∆ηn

1i21)/Mn → q3i2 ,

(∆τn1i21)/Mn → q4i2 , (∆νn1i21)/2Mn → q5i2 .

Note that at least one among q2, q3i2 , q4i2 , q5i2 must be equal to either 1 or −1.

By dividing both the numerator and the denominator of the term in equation (45) by βnM
|ρ1|+ρ2

n ,
we obtain the system of polynomial equations:∑

i2∈V1|1

∑
(α2,α3,α4,α5)∈ISL

ρ1,ρ2

1

α2!α3!α4!α5!
· p2i2q

α2
2 qα3

3i2
qα4
4i2

qα5
5i2

= 0, 1 ≤ |ρ1|+ ρ2 ≤ rSL
1|1 .

According to the definition of the term rSL
1|1 , the above system does not have any non-trivial solutions,

which is a contradiction. Consequently, at least one among the coefficients in the representation of
An/L2n, Bn/L2n and Cn/L2n must not converge to zero as n → ∞.

Step 3 - Application of the Fatou’s lemma. In this stage, we show that all the coefficients in the
formulations of An/L2n, Bn/L2n and Cn/L2n go to zero as n → ∞. Denote by mn the maximum
of the absolute values of those coefficients, the result from Step 2 induces that 1/mn ̸→ ∞. By
employing the Fatou’s lemma, we have

0 = lim
n→∞

EX [V (pSL
Gn

(·|X), pSL
G∗

(·|X))]

mnL2n
≥

∫
lim inf
n→∞

|pSL
Gn

(y|x)− pSL
G∗

(y|x)|
2mnL2n

d(x, y).

Thus, we deduce that

|pSL
Gn

(y|x)− pSL
G∗

(y|x)|
2mnL2n

→ 0,

which results in Qn/[mnL2n] → 0 as n → ∞ for almost surely (x, y).
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Next, we denote

exp(bnj1)Sn,j2|j1,α1,ρ1,ρ2

mnL2n
→ ϕj2|j1,α1,ρ1,ρ2

,
exp(bnj1)Tn,j2|j1,ψ

mnL2n
→ φj2|j1,ψ,

exp(bnj1)(∆a
n
j1
)γ

mnL2n
→ λj1,γ ,

exp(bnj1)− exp(b∗j1)

mnL2n
→ χj1

with a note that at least one among them is non-zero. Then, the decomposition of Qn in equation (32)
indicates that

lim
n→∞

Qn

mnL2n
= lim

n→∞

An

mnL2n
− lim

n→∞

Bn

mnL2n
+ lim

n→∞

Cn

mnL2n
,

in which

lim
n→∞

An

mnL2n
=

k∗
1∑

j1=1

k∗
2∑

j2=1

[ rSL
j2|j1∑

|α1|=1

2(rSL
j2|j1

−|α1|)∑
|ρ1|+ρ2=0∨1−|α1|

Sn,j2|j1,α1,ρ1,ρ2
· xρ1

∂|α1|F

∂ωα1
(x;ω∗

j2|j1)

× exp((a∗
j1)

⊤x)
∂ρ2π

∂ξρ2
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2)−

2∑
|ψ|=0

φj2|j1,ψ · ∂
|ψ|F

∂ωψ
(x;ω∗

j2|j1)

× exp((a∗
j1)

⊤x)pSL,∗
j1

(y|x)

]
1∑k∗

2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
,

lim
n→∞

Bn

mnL2n
=

k∗
1∑

j1=1

∑
|γ|=1

λj1,γ · xγ exp((a∗
j1)

⊤x)pSL
G∗

(y|x),

lim
n→∞

Cn(x)

mnL2n
=

k∗
1∑

j1=1

χj1 exp((a
∗
j1)

⊤x)
[
pSL,∗
j1

(y|x)− pSL
G∗

(y|x)
]
.

Since the set

{
xρ1 ∂|α1|F

∂ωα1
(x;ω∗

j2|j1) exp((a
∗
j1
)⊤x)∂

ρ2π
∂ξρ2 (y|(η

∗
j1j2

)⊤x+ τ∗j1j2 , ν
∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
: j1 ∈ [k∗1 ], j2 ∈ [k∗2 ],

0 ≤ |α1| ≤ rSL
j2|j1 , 0 ≤ |ρ1|+ ρ2 ≤ 2(rSL

j2|j1 − |α1|)

}

∪

{
∂|ψ|F
∂ωψ

(x;ω∗
j2|j1) exp((a

∗
j1
)⊤x)pSL,∗

j1
(y|x)∑k∗

2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
: j1 ∈ [k∗1 ], j2 ∈ [k∗2 ], 0 ≤ |ψ| ≤ 2

}

∪
{
xγ exp((a∗

j1)
⊤x)pSL

G∗
(y|x), exp((a∗

j1)
⊤x)pSL,∗

j1
(y|x), exp((a∗

j1)
⊤x)pSL

G∗
(y|x)

: j1 ∈ [k∗1 ], 0 ≤ |γ| ≤ 2
}

is linearly independent, we obtain that ϕj2|j1,α1,ρ1,ρ2
= φj2|j1,ψ = λj1,γ = χj1 = 0 for all j1 ∈ [k∗1 ],

j2 ∈ [k∗2 ], 0 ≤ |α1| ≤ rSL
j2|j1 , 0 ≤ |ρ1| + ρ2 ≤ 2(rSL

j2|j1 − |α1|), 0 ≤ |ψ| ≤ 2 and 0 ≤ |γ| ≤ 1,
which is a contradiction. As a consequence, we obtain the inequality in equation (12). Hence, the
proof is completed.
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E.3 WHEN type = LL

When type = LL, the corresponding Voronoi loss function is L(2,rLL, 12 r
LL)(Gn, G∗) = L3n where

we define

L3n :=

k∗
1∑

j1=1

∣∣∣ exp(bnj1)− exp(b∗j1)
∣∣∣+ k∗

1∑
j1=1

exp(bnj1)∥∆a
n
j1∥+

k∗
1∑

j1=1

exp(bnj1)

×

[ ∑
j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

(
∥∆ωn

i2j2|j1∥+ ∥∆ηn
j1i2j2∥+ |∆τnj1i2j2 |+ |∆νnj1i2j2 |

)
+

∑
j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

(
∥∆ωn

i2j2|j1∥
2 + ∥∆ηn

j1i2j2∥
2 + |∆τnj1i2j2 |

rLL
j2|j1

+ |∆νnj1i2j2 |
rLL
j2|j1
2

)]
+

k∗
1∑

j1=1

exp(bnj1)

k∗
2∑

j2=1

∣∣∣ ∑
i2∈Vj2|j1

exp(βn
i2|j1)− exp(β∗

j2|j1)
∣∣∣. (46)

Step 1 - Taylor expansion: In this step, we use the Taylor expansion to decompose the term

Qn :=

 k∗
1∑

j1=1

exp(−∥a∗
j1 − x∥+ b∗j1)

 [pLL
Gn

(y|x)− pLL
G∗

(y|x)].

Prior to that, let us denote

pLL,n
j1

(y|x) :=
k∗
2∑

j2=1

∑
i2∈Vj2|j1

σ(−∥ωn
i2|j1 − x∥+ βn

i2|j1)π(y|(η
n
j1i2)

⊤x+ τnj1i2 , ν
n
j1i2),

pLL,∗
j1

(y|x) :=
k∗
2∑

j2=1

σ(−∥ω∗
j2|j1 − x∥+ β∗

j2|j1)π(y|(η
∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2).

Then, the quantity Qn is divided into three terms as

Qn =

k∗
1∑

j1=1

exp(bnj1)
[
exp(−∥an

j1 − x∥)p
LL,n
j1

(y|x)− exp(−∥a∗
j1 − x∥)p

LL,∗
j1

(y|x)
]

−
k∗
1∑

j1=1

exp(bnj1)
[
exp(−∥an

j1 − x∥)− exp(−∥a∗
j1 − x∥)

]
pLL
Gn

(y|x)

+

k∗
1∑

j1=1

(
exp(bnj1)− exp(b∗j1)

)
exp(−∥a∗

j1 − x∥)
[
pLL,n
j1

(y|x)− pLL
Gn

(y|x)
]

: = An −Bn + Cn. (47)

Step 1A - Decompose An: We continue to decompose An:

An :=

k∗
1∑

j1=1

exp(bnj1)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
[An,j1,1 +An,j1,2 +An,j1,3],
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in which

An,j1,1 :=

k∗
2∑

j2=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp(−∥ωn

i2|j1 − x∥) exp(−∥an
j1 − x∥)π(y|(η

n
j1i2)⊤x+ τnj1i2 , ν

n
j1i2)

− exp(−∥ω∗
j2|j1 − x∥) exp(−∥a∗

j1 − x∥)π(y|(η
∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2)

]
,

An,j1,2 :=

k∗
2∑

j2=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp(−∥ωn

i2|j1 − x∥)− exp(−∥ω∗
j2|j1 − x∥)

]
× exp(−∥an

j1 − x∥)p
LL,n
j1

(y|x),

An,j1,3 :=

k∗
2∑

j2=1

( ∑
i2∈Vj2|j1

exp(βn
i2|j1)− exp(β∗

j2|j1)
)
exp(−∥ω∗

j2|j1 − x∥)

× [exp(−∥a∗
j1 − x∥)π(y|(η

∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2)− exp(−∥an

j1 − x∥)p
LL,n
j1

(y|x)].

Firstly, we separate the term An,j1,1 into two parts based on the cardinality of the Voronoi cells Vj2|j1
as

An,j1,1 =
∑

j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp(−∥ωn

i2|j1 − x∥) exp(−∥an
j1 − x∥)π(y|(η

n
j1i2)

⊤x+ τnj1i2 , ν
n
j1i2)

− exp(−∥ω∗
j2|j1 − x∥) exp(−∥a∗

j1 − x∥)π(y|(η
∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2)

]
,

+
∑

j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp(−∥ωn

i2|j1 − x∥) exp(−∥an
j1 − x∥)π(y|(η

n
j1i2)

⊤x+ τnj1i2 , ν
n
j1i2)

− exp(−∥ω∗
j2|j1 − x∥) exp(−∥a∗

j1 − x∥)π(y|(η
∗
j1j2)

⊤x+ τ∗j1j2 , ν
∗
j1j2)

]
: = An,j1,1,1 +An,j1,1,2.

By denoting F (x;ω) := exp(−∥ω − x∥) and employing the first-order Taylor expansion, we can
represent An,j1,1,1 as

An,j1,1,1 =
∑

j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

∑
|α|=1

exp(βn
i2|j1)

2α5!α!
(∆ωn

i2j2|j1)
α1(∆an

j1)
α2(∆ηn

j1i2j2)
α3(∆τnj1i2j2)

α4

× (∆νnj1i2j2)
α5xα3

∂|α1|F

∂ωα1
(x;ω∗

j2|j1)
∂|α2|F

∂aα2
(x;a∗

j1)
∂|α3|+α4+2α5π

∂ξ|α3|+α4+2α5
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2) +Rn,1,1(x)

=
∑

j2:|Vj2|j1 |=1

1∑
|α1|+|α2|+|α3|=0

2(1−|α1|−|α2|−|α3|)∑
ρ=0∨1−|α1|−|α2|−|α3|

Sn,j2|j1,α1,α2,α3,ρ · x
α3

∂|α1|F

∂ωα1
(x;ω∗

j2|j1)

× ∂|α2|F

∂aα2
(x;a∗

j1)
∂|α3|+ρπ

∂ξ|α3|+ρ
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2) +Rn,1,1(x),

where Rn,1,1(x, y) is a Taylor remainder such that Rn,1,1(x, y)/L3n → 0 as n → ∞, and

Sn,j2|j1,α1,α2,α3,ρ :=
∑

i2∈Vj2|j1

∑
α4+2α5=ρ

exp(βn
i2|j1)

2α5α!
(∆ωn

i2j2|j1)
α1(∆an

j1)
α2(∆ηn

j1i2j2)
α3

× (∆τnj1i2j2)
α4(∆νnj1i2j2)

α5 ,

for any (α1,α2,α3, ρ) ̸= (0d,0d,0d, 0), j1 ∈ [k∗1 ] and j2 ∈ [k∗2 ].
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For each (j1, j2) ∈ [k∗1 ] × [k∗2 ], by invoking the Taylor expansion of order rLL(|Vj2|j1 |) := rLL
j2|j1 ,

the term An,j1,1,2 can be represented as

An,j1,1,2 =
∑

j2:|Vj2|j1 |>1

rLL
j2|j1∑

|α1|+|α2|+|α3|=0

2(rLL
j2|j1

−|α1|−|α2|−|α3|)∑
ρ=0∨1−|α1|−|α2|−|α3|

Sn,j2|j1,α1,α2,α3,ρ · x
α3

× ∂|α1|F

∂ωα1
(x;ω∗

j2|j1)
∂|α2|F

∂aα2
(x;a∗

j1)
∂|α3|+ρπ

∂ξ|α3|+ρ
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2) +Rn,1,2(x, y),

where Rn,1,2(x, y) is a Taylor remainder such that Rn,1,2(x, y)/L3n → 0 as n → ∞.

Secondly, we rewrite the term An,j1,2 as follows:∑
j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp(−∥ωn

i2|j1 − x∥)− exp(−∥ω∗
j2|j1 − x∥)

]
exp(−∥an

j1 − x∥)p
LL,n
j1

(y|x)

+
∑

j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

[
exp(−∥ωn

i2|j1 − x∥)− exp(−∥ω∗
j2|j1 − x∥)

]
exp(−∥an

j1 − x∥)p
LL,n
j1

(y|x)

: = An,j1,2,1 +An,j1,2,2.

According to the first-order Taylor expansion, we have

An,j1,2,1 =
∑

j2:|Vj2|j1 |=1

∑
i2∈Vj2|j1

∑
|ψ|=1

exp(βn
i2|j1)

ψ!
(∆ωn

i2j2|j1)
ψ

× ∂|ψ|F

∂ωψ
(x;ω∗

j2|j1) exp(−∥an
j1 − x∥)p

LL,n
j1

(y|x) +Rn,2,1(x, y),

=
∑

j2:|Vj2|j1 |=1

∑
|ψ|=1

Tn,j2|j1,ψ · ∂
|ψ|F

∂ωψ
(x;ω∗

j2|j1) exp(−∥an
j1 − x∥)p

LL,n
j1

(y|x) +Rn,2,1(x, y),

where Rn,2,1(x, y) is a Taylor remainder such that Rn,2,1(x, y)/L3n → 0 as n → ∞, and

Tn,j2|j1,ψ :=
∑

i2∈Vj2|j1

exp(βn
i2|j1)

ψ!
(∆ωn

i2j2|j1)
ψ,

for any j2 ∈ [k∗2 ] and ψ ̸= 0d.

Meanwhile, we apply the second-order Taylor expansion to An,j1,2,2:

An,j1,2,2 =
∑

j2:|Vj2|j1 |>1

2∑
|ψ|=1

Tn,j2|j1,ψ · ∂
|ψ|F

∂ωψ
(x;ω∗

j2|j1) exp(−∥an
j1 − x∥)p

LL,n
j1

(y|x) +Rn,2,2(x, y),

where Rn,2,2(x, y) is a Taylor remainder such that Rn,2,2(x, y)/L3n → 0 as n → ∞.

Combine the above results together, we can illustrate the term An as

An =

k∗
1∑

j1=1

k∗
2∑

j2=1

exp(bnj1)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)

[ rLL
j2|j1∑

|α1|+|α2|+|α3|=0

2(rLL
j2|j1

−|α1|−|α2|−|α3|)∑
ρ=0∨1−|α1|−|α2|−|α3|

Sn,j2|j1,α1,α2,α3,ρ

× xα3
∂|α1|F

∂ωα1
(x;ω∗

j2|j1)
∂|α2|F

∂aα2
(x;a∗

j1)
∂|α3|+ρπ

∂ξ|α3|+ρ
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2) +Rn,1,1(x, y) +Rn,1,2(x, y)

−
2∑

|ψ|=0

Tn,j2|j1,ψ · ∂
|ψ|F

∂ωψ
(x;ω∗

j2|j1) exp(−∥an
j1 − x∥)p

LL,n
j1

(y|x)−Rn,2,1(x, y)−Rn,2,2(x, y)

]
,

(48)

where Sn,j2|j1,α1,α2,α3,ρ = Tn,j2|j1,ψ =
∑

i2∈Vj2|j1
exp(βn

i2|j1) − exp(β∗
j2|j1) for any j1 ∈ [k∗1 ],

j2 ∈ [k∗2 ], (α1,α2,α3, ρ) = (0d,0d,0d, 0) and ψ = 0d.
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Step 1B - Decompose Bn: By invoking the first-order Taylor expansion, we decompose the term Bn

defined in equation (47) as

Bn =

k∗
1∑

j1=1

exp(bnj1)
∑
|γ|=1

(∆an
j1)
γ · ∂

|γ|F

∂aγ
(x;a∗

j1)p
LL
Gn

(y|x) +Rn,3(x, y) (49)

where Rn,3(x, y) is a Taylor remainder such that Rn,3(x, y)/L3n → 0 as n → ∞.

Putting the decomposition in equations (47), (48) and (49) together, we realize that An, Bn and Cn

can be treated as a linear combination of elements from the following set union:{
xα3 ∂|α1|F

∂ωα1
(x;ω∗

j2|j1)
∂|α2|F
∂aα2

(x;a∗
j1
)∂

|α3|+ρπ
∂ξ|α3|+ρ (y|(η∗

j1j2
)⊤x+ τ∗j1j2 , ν

∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
: j1 ∈ [k∗1 ], j2 ∈ [k∗2 ],

0 ≤ |α1|+ |α2|+ |α3| ≤ 2rLL
j2|j1 , 0 ≤ ρ ≤ 2(rLL

j2|j1 − |α1| − |α2| − |α3|)

}

∪

{
∂|ψ|F
∂ωψ

(x;ω∗
j2|j1) exp(−∥an

j1
− x∥)pLL,n

j1
(y|x)∑k∗

2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
: j1 ∈ [k∗1 ], j2 ∈ [k∗2 ], 0 ≤ |ψ| ≤ 2

}

∪
{
∂|γ|F

∂aγ
(x;a∗

j1)p
LL,n
j1

(y|x), ∂|γ|F

∂aγ
(x;a∗

j1)p
LL
Gn

(y|x) : j1 ∈ [k∗1 ], 0 ≤ |γ| ≤ 1

}
.

Step 2 - Non-vanishing coefficients: In this step, we demonstrate that not all the coefficients in the
representation of An/L3n, Bn/L3n and Cn/L3n converge to zero as n → ∞. Assume by contrary
that all of them go to zero. Then, we look into the coefficients associated with the term

• exp(−∥a∗
j1
− x∥)pLL,n

j1
(y|x) in Cn/L3n, we have

1

L3n
·

k∗
1∑

j1=1

∣∣∣ exp(bnj1)− exp(b∗j1)
∣∣∣ → 0. (50)

•
F (x;ω∗

j2|j1)F (x;a∗
j1
)π(y|(η∗

j1j2
)⊤x+ τ∗j1j2 , ν

∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
in An/L3n, we get that

1

L3n
·

k∗
1∑

j1=1

exp(bnj1)

k∗
2∑

j2=1

∣∣∣ ∑
i2∈Vj2|j1

exp(βn
i2|j1)− exp(β∗

j2|j1)
∣∣∣ → 0. (51)

•
∂|α1|F
∂ωα1

(x;ω∗
j2|j1)F (x;a∗

j1
)π(y|(η∗

j1j2
)⊤x+ τ∗j1j2 , ν

∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
in An/L3n for j1 ∈ [k∗1 ], j2 ∈

[k∗2 ] : |Vj2|j1 | = 1 andα1 = ed,u where ed,u := (0, . . . , 0, 1︸︷︷︸
u-th

, 0, . . . , 0) ∈ Nd, we receive

that

1

L3n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)∥ω

n
i2|j1 − ω

∗
j2|j1∥1 → 0.

Note that since the norm-1 is equivalent to the norm-2, then we can replace the norm-1 with
the norm-2, that is,

1

L3n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
i2|j1)∥ω

n
i2|j1 − ω

∗
j2|j1∥ → 0. (52)
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• xα3

F (x;ω∗
j2|j1)F (x;a∗

j1
)∂

|α3|π
∂ξ|α3| (y|(η∗

j1j2
)⊤x+ τ∗j1j2 , ν

∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
in An/L3n for j1 ∈

[k∗1 ], j2 ∈ [k∗2 ] : |Vj2|j1 | = 1 and α3 = ed,u, we have that

1

L3n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |=1

∑
i2∈Vj2|j1

exp(βn
j2|j1)∥η

n
j1i2 − η

∗
j1j2∥ → 0. (53)

• ∂|γ|F
∂aγ (x;a∗

j1
)pLL

Gn
(y|x) in Bn/L3n for j1 ∈ [k∗1 ] and γ = ed,u, we obtain

1

L3n
·

k∗
1∑

j1=1

exp(bnj1)∥a
n
j1 − a

∗
j1∥ → 0. (54)

•
∂|α1|F
∂ωα1

(x;ω∗
j2|j1)F (x;a∗

j1
)π(y|(η∗

j1j2
)⊤x+ τ∗j1j2 , ν

∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
in An/L3n for j1 ∈ [k∗1 ], j2 ∈

[k∗2 ] : |Vj2|j1 | > 1 and α1 = 2ed,u, we receive that

1

L3n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)∥ω

n
i2|j1 − ω

∗
j2|j1∥

2 → 0. (55)

•
xα3F (x;ω∗

j2|j1)F (x;a∗
j1
)∂

|α3|π
∂ξ|α3| (y|(η∗

j1j2
)⊤x+ τ∗j1j2 , ν

∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
in An/L3n for j1 ∈

[k∗1 ], j2 ∈ [k∗2 ] : |Vj2|j1 | > 1 and α3 = 2ed,u, we have that

1

L3n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2∈[k∗
2 ]:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)∥η

n
j1i2 − η

∗
j1j2∥

2 → 0. (56)

Combine the above limits and the formulation of the loss L3n in equation (46), we deduce that

1

L3n
·

k∗
1∑

j1=1

exp(bnj1)
∑

j2:|Vj2|j1 |>1

∑
i2∈Vj2|j1

exp(βn
i2|j1)

(
|∆τnj1i2j2 |

rLL
j2|j1 + |∆νnj1i2j2 |

rLL
j2|j1
2

)
̸→ 0.

This indicates that there exist indices j∗1 ∈ [k∗1 ] and j∗2 ∈ [k∗2 ] : |Vj∗2 |j∗1 | > 1 such that

1

L3n
·

∑
i2∈Vj∗2 |j∗1

exp(βn
i2|j∗1

)
(
|∆τnj∗1 i2j∗2 |

rLL
j∗2 |j∗1 + |∆νnj∗1 i2j∗2 |

rLL
j∗2 |j∗1

2

)
̸→ 0. (57)

WLOG, we may assume that j∗1 = j∗2 = 1. Then, considering the coefficients of the term
F (x;ω∗

j2|j1)F (x;a∗
j1
)∂

ρπ
∂ξρ (y|(η

∗
j1j2

)⊤x + τ∗j1j2 , ν
∗
j1j2

) in An/L3n where j1 = j2 = 1, we get
exp(bn1 )Sn,1|1,0d,0d,0d,ρ/L3n → 0, or equivalently,

1

L3n
·

∑
i2∈V1|1

∑
α4+2α5=ρ

exp(βn
i2|1)

2α5α4!α5!
· (∆τn1i21)

α4(∆νn1i21)
α5 → 0. (58)

Next, we divide the left hand side of equation (57) by that of equation (58), and get that∑
i2∈V1|1

∑
α4+2α5=ρ

exp(βn
i2|1)

2α5α4!α5!
· (∆τn1i21)

α4(∆νn1i21)
α5∑

i2∈V1|1
exp(βn

i2|1)
(
|∆τn1i21|

rLL
1|1 + |∆νn1i21|

rLL
1|1
2

) → 0. (59)

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Let us define Mn := max{∥∆τn1i21∥, ∥∆νn1i21∥
1/2 : i2 ∈ V1|1}, and βn := maxi2∈V1|1 exp(β

n
i2|1).

Since the sequence exp(βn
i2|1)/βn is bounded, we can replace it by its subsequence which has a

positive limit p2i2 := limn→∞ exp(βn
i2|1)/βn. Note that at least one among the limits p2i2 must be

equal to one. Next, let us define

(∆τn1i21)/Mn → q4i2 , (∆νn1i21)/2Mn → q5i2 .

Note that at least one among q4i2 , q5i2 must be equal to either 1 or −1.

By dividing both the numerator and the denominator of the term in equation (45) by βnM
ρ

n, we
obtain the system of polynomial equations:∑

i2∈V1|1

∑
α4+2α5=ρ

1

α4!α5!
· p2i2q

α4
4i2

qα5
5i2

= 0, 1 ≤ ρ ≤ rLL
1|1 .

According to the definition of the term rLL
1|1 , the above system does not have any non-trivial solutions,

which is a contradiction. Consequently, at least one among the coefficients in the representation of
An/L3n, Bn/L3n and Cn/L3n must not approach zero as n → ∞.

Step 3 - Application of the Fatou’s lemma. In this stage, we show that all the coefficients in the
formulations of An/L3n, Bn/L3n and Cn/L3n go to zero as n → ∞. Denote by mn the maximum
of the absolute values of those coefficients, the result from Step 2 induces that 1/mn ̸→ ∞.

By employing the Fatou’s lemma, we have

0 = lim
n→∞

EX [V (pLL
Gn

(·|X), pLL
G∗

(·|X))]

mnL3n
≥

∫
lim inf
n→∞

|pLL
Gn

(y|x)− pLL
G∗

(y|x)|
2mnL3n

d(x, y).

Thus, we deduce that

|pLL
Gn

(y|x)− pLL
G∗

(y|x)|
2mnL3n

→ 0,

which results in Qn/[mnL3n] → 0 as n → ∞ for almost surely (x, y).

Next, we denote
exp(bnj1)Sn,j2|j1,α1,α2,α3,ρ

mnL3n
→ ϕj2|j1,α1,α2,α3,ρ,

exp(bnj1)Tn,j2|j1,ψ

mnL3n
→ φj2|j1,ψ,

exp(bnj1)(∆a
n
j1
)γ

mnL3n
→ λj1,γ ,

exp(bnj1)− exp(b∗j1)

mnL3n
→ χj1

with a note that at least one among them is non-zero. Then, the decomposition of Qn in equation (47)
indicates that

lim
n→∞

Qn

mnL3n
= lim

n→∞

An

mnL3n
− lim

n→∞

Bn

mnL3n
+ lim

n→∞

Cn

mnL3n
,

in which

lim
n→∞

An

mnL3n
=

k∗
1∑

j1=1

k∗
2∑

j2=1

[
2∑

|α|=0

ϕj2|j1,α1,α2,α3,ρ · x
α3

∂|α1|F

∂ωα1
(x;ω∗

j2|j1)
∂|α2|F

∂aα2
(x;a∗

j1)

× ∂|α3|+ρπ

∂ξ|α3|+ρ
(y|(η∗

j1j2)
⊤x+ τ∗j1j2 , ν

∗
j1j2)

−
2∑

|ψ|=0

φj2|j1,ψ · ∂
|ψ|F

∂ωψ
(x;ω∗

j2|j1) exp(−∥a∗
j1 − x∥)p

LL,∗
j1

(y|x)

]
1∑k∗

2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
,

lim
n→∞

Bn

mnL3n
=

k∗
1∑

j1=1

∑
|γ|=1

λj1,γ · ∂
|γ|F

∂aγ
(x;a∗

j1)p
LL
G∗

(y|x),

lim
n→∞

Cn

mnL3n
=

k∗
1∑

j1=1

χj1 exp(−∥a∗
j1 − x∥)

[
pLL,∗
j1

(y|x)− pLL
G∗

(y|x)
]
.
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Since the set{
xα3 ∂|α1|F

∂ωα1
(x;ω∗

j2|j1)
∂|α2|F
∂aα2

(x;a∗
j1
)∂

|α3|+ρπ
∂ξ|α3|+ρ (y|(η∗

j1j2
)⊤x+ τ∗j1j2 , ν

∗
j1j2

)∑k∗
2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
: j1 ∈ [k∗1 ],

j2 ∈ [k∗2 ], 0 ≤ |α1|+ |α2|+ |α3| ≤ rLL
j2|j1 , 0 ≤ ρ ≤ 2(rLL

j2|j1 − |α1| − |α2| − |α3|

}

∪

{
∂|ψ|F
∂ωψ

(x;ω∗
j2|j1) exp((a

∗
j1
)⊤x)pLL,∗

j1
(y|x)∑k∗

2

j′2=1 exp(−∥ω∗
j′2|j1

− x∥+ β∗
j′2|j1

)
: j1 ∈ [k∗1 ], j2 ∈ [k∗2 ], 0 ≤ |ψ| ≤ 2

}

∪
{
xγ exp((a∗

j1)
⊤x)pLL

G∗
(y|x), exp((a∗

j1)
⊤x)pLL,∗

j1
(y|x), exp((a∗

j1)
⊤x)pLL

G∗
(y|x)

: j1 ∈ [k∗1 ], 0 ≤ |γ| ≤ 2
}

is linearly independent, we obtain that ϕj2|j1,α1,α2,α3,ρ = φj2|j1,ψ = λj1,γ = χj1 = 0 for all
j1 ∈ [k∗1 ], j2 ∈ [k∗2 ], 0 ≤ |α1| + |α2| + |α3| ≤ rLL

j2|j1 , 0 ≤ ρ ≤ 2(rLL
j2|j1 − |α1| − |α2| − |α3|),

0 ≤ |ψ| ≤ 2 and 0 ≤ |γ| ≤ 1, which is a contradiction. As a consequence, we obtain the inequality
in equation (12). Hence, the proof is completed.

F PROOFS FOR CONVERGENCE OF DENSITY ESTIMATION

Proof of Theorem 1. To streamline the arguments for this proof, it is necessary to define some
notations that will be used in the sequel. First of all, let Ptype

k∗
1 ,k2

(Θ) stand for the set of conditional
density functions w.r.t mixing measures in Gk∗

1 ,k2
(Θ) where type ∈ {SS, SL,LL}, that is,

Ptype
k∗
1 ,k2

(Θ) := {ptypeG (y|x) : G ∈ Gk∗
1 ,k2

(Θ)}.

Additionally, we also define

P̃type
k∗
1 ,k2

(Θ) := {ptype(G+G∗)/2
(y|x) : G ∈ Gk∗

1 ,k2
(Θ)},

P̃type,1/2
k∗
1 ,k2

(Θ) := {(ptype(G+G∗)/2
)1/2(y|x) : G ∈ Gk∗

1 ,k2(Θ)}.

Next, for each δ > 0, we define the L2-ball centered around the regression function ptypeG∗
and

intersected with the set P̃type,1/2
k∗
1 ,k2

(Θ) as

P̃type,1/2
k∗
1 ,k2

(Θ, δ) :=
{
p1/2 ∈ P̃type,1/2

k∗
1 ,k2

(Θ) : h(p, ptypeG∗
) ≤ δ

}
.

Following the suggestion from Geer et. al. van de Geer (2000), we utilize the following integral to
capture the size of the above L2-ball:

JB(δ, P̃type,1/2
k∗
1 ,k2

(Θ, δ)) :=

∫ δ

δ2/213
H

1/2
B (t, P̃type,1/2

k∗
1 ,k2

(Θ, t), ∥ · ∥L2) dt ∨ δ, (60)

where the term HB(t, P̃type,1/2
k∗
1 ,k2

(Θ, t), ∥ · ∥L2) denotes the bracketing entropy van de Geer (2000) of

P̃type,1/2
k∗
1 ,k2

(Θ, t) under the L2-norm, and t ∨ δ := max{t, δ}.

Let us recall the statement of Theorem 7.4 in van de Geer (2000) with adapted notations to our paper
as follows:

Lemma 2 (Theorem 7.4, van de Geer (2000)). Let Ψ(δ) ≥ JB(δ, P̃type,1/2
k∗
1 ,k2

(Θ, δ)) be such that
Ψ(δ)/δ2 is a non-increasing function of δ. Then, for some universal constant c and for some sequence
(δn) such that

√
nδ2n ≥ cΨ(δn), the following inequality holds for all δ ≥ δn:

P
(
EX [h(ptype

Ĝtype
n

(·|X), ptypeG∗
(·|X))] > δ

)
≤ c exp

(
−nδ2

c2

)
.
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Proof overview. Given that the expert functions are Lipschitz continuous, we begin with showing
that the following bound holds for any 0 < ε ≤ 1/2:

HB(ε,Ptype
k∗
1 ,k2

(Θ), h) ≲ log(1/ε), (61)

which yields that

JB(δ, P̃type,1/2
k∗
1 ,k2

(Θ, δ)) =

∫ δ

δ2/213
H

1/2
B (t, P̃type,1/2

k∗
1 ,k2

(Θ, t), ∥ · ∥L2) dt ∨ δ

≤
∫ δ

δ2/213
H

1/2
B (t,Ptype

k∗
1 ,k2

(Θ, t), h) dt ∨ δ

≲
∫ δ

δ2/213
log(1/t)dt ∨ δ. (62)

Let Ψ(δ) = δ · [log(1/δ)]1/2, then it can be checked that Ψ(δ)/δ2 is a non-increasing function of
δ. Moreover, the result in equation (62) implies that Ψ(δ) ≥ JB(δ, P̃type,1/2

k∗
1 ,k2

(Θ, δ)). By choosing

δn =
√
log(n)/n, we have that

√
nδ2n ≥ cΨ(δn) for some universal constant c. Then, the conclusion

of this theorem is achieved according to Lemma 2. Consequently, it is sufficient to derive the
bracketing entropy bound in equation (61).

Proof for the bound (61). To begin with, we provide an upper bound for the Gaussian density
function π(y|η⊤x+ τ, ν). In particular, since the input space X and the parameter space Θ are both
bounded, we can find some constant κ, ℓ, u > 0 such that −κ ≤ η⊤x+ τ ≤ κ and ℓ ≤ ν ≤ u. Then,
it can be validated that

π(y|η⊤x+ τ, ν) =
1√
2πν

exp
(
− (y − (η⊤x+ τ))2

2ν

)
≤ 1√

2πℓ
,

for any |y| < 2κ. On the other hand, for |y| ≥ 2κ, since (y−(η⊤x+τ))2

2ν ≥ y2

8u , we have that

π(y|η⊤x+ τ, ν) ≤ 1√
2πℓ

exp
(
− y2

8u

)
.

Therefore, we deduce that π(y|η⊤x+ τ, ν) ≤ M(y|x), where

M(y|x) =

{
1√
2πℓ

exp
(
− y2

8u

)
, for |y| ≥ 2κ,

1√
2πℓ

, for |y| < 2κ.

Next, let 0 < τ ≤ ε and {π1, . . . , πN} be the τ -cover under the L∞-norm of the set Ptype
k∗
1 ,k2

(Θ) where

N := N(τ,Ptype
k∗
1 ,k2

(Θ), ∥ · ∥L∞) stands for the τ -covering number of the norm space (Ptype
k∗
1 ,k2

(Θ), ∥ ·
∥L∞). Equipped with the brackets of the form [Li, Ui] where

Li(y|x) := max{πi(y|x)− τ, 0},
Ui(y|x) := max{πi(y|x) + τ,M(y|x)},

for all i ∈ [N ], we can validate that Ptype
k∗
1 ,k2

(Θ) ⊂ ∪N
i=1[Li, Ui], and Ui(y|x) − Li(y|x) ≤

min{2τ,M}. Those results yield that

∥Ui − Li∥L1 =

∫
(Ui(y|x)− Li(y|x))d(x, y) ≤

∫
2τd(x, y) = 2τ,

From the definition of the bracketing entropy, we have

HB(2τ,Ptype
k∗
1 ,k2

(Θ), ∥ · ∥L1) ≤ logN = logN(τ,Ptype
k∗
1 ,k2

(Θ), ∥ · ∥L∞). (63)

Therefore, it suffices to provide an upper bound for the covering number N . Indeed, let us denote
∆ := {(b,a) ∈ R×Rd : (b,a, β,ω, τ,η, ν) ∈ Θ} and Ω := {(β,ω, τ,η, ν) ∈ R×Rd×R×Rd×
R+ : (b,a, β,ω, τ,η, ν) ∈ Θ}. As Θ is a compact set, so are ∆ and Ω. Thus, we can find τ -covers
∆τ and Ωτ for ∆ and Ω, respectively. Furthermore, it can be validated that

|∆τ | ≤ OP (τ
−(d+1)k∗

1 ), |Ωτ | ≤ OP (τ
−(2d+3)k∗

1k2).

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

For each mixing measure G =
∑k∗

1
i1=1 exp(bi1)

∑k2

i2=1 exp(βi2|i1)δ(ai1
,ωi2|i1 ,ηi1i2

,τi1i2
,νi1i2

) ∈
Gk∗

1 ,k2
(Θ), we consider two other mixing measures G′ and G defined as

G′ :=

k∗
1∑

i1=1

exp(bi1)

k2∑
i2=1

exp(βi2|i1)δ(ai1 ,ωi2|i1 ,ηi1i2
,τ i1i2 ,νi1i2 )

,

G :=

k∗
1∑

i1=1

exp(bi1)

k2∑
i2=1

exp(βi2|i1)δ(ai1 ,ωi2|i1 ,ηi1i2
,τ i1i2 ,νi1i2 )

.

Above, (βi2|i1 ,ωi2|i1 ,ηi1i2 , τ i1i2 , νi1i2) ∈ Ωτ such that (βi2|i1 ,ωi2|i1 ,ηi1i2 , τ i1i2 , νi1i2) is the
closest to (βi2|i1 ,ωi2|i1 ,ηi1i2 , τi1i2 , νi1i2) in that set, while (bi1 ,ai1) ∈ ∆τ is the closest to (bi1 ,ωi)
in that set.

Now, we begin bounding the term ∥ptypeG − ptypeG′ ∥L∞ . For brevity, we will consider only the case
when type = SS, while the other two cases when type = SL and type = LL can be argued in a
similar fashion.

When type = SS: Let us define

pSS
i1 (x) :=

k2∑
i2=1

σ((ωi2|i1)
⊤x+ βi2|i1)π(y|(ηi1i2)

⊤x+ τi1i2 , νi1i2),

pSS
i1 (x) :=

k2∑
i2=1

σ((ωi2|i1)
⊤x+ βi2|i1)π(y|(ηi1i2)

⊤x+ τ i1i2 , νi1i2).

Then, we have

∥pSS
G − pSS

G′ ∥L∞ =

k∗
1∑

i1=1

σ
(
(ai1)

⊤x+ bi1
)
· ∥pSS

i1 − pSS
i1 ∥L∞ ≤

k∗
1∑

i1=1

∥pSS
i1 − pSS

i1 ∥L∞ . (64)

Next, we need to bound the terms pSS
i1

(x)− pSS
i1 (x) using the triangle inequality

∥pSS
i1 − pSS

i1 ∥L∞ ≤ ∥pSS
i1 − p̃SS

i1 ∥L∞ + ∥p̃SS
i1 − pSS

i1 ∥L∞ , (65)

where we define

p̃SS
i1 (x) :=

k2∑
i2=1

σ((ωi2|i1)
⊤x+ βi2|i1)π(y|(ηi1i2)

⊤x+ τ i1i2 , νi1i2).

Firstly, we have

∥pSS
i1 − p̃SS

i1 ∥L∞ ≤
k2∑

i2=1

σ((ωi2|i1)
⊤x+ βi2|i1)

× ∥π(y|(ηi1i2)
⊤x+ τi1i2 , νi1i2)− π(y|(ηi1i2)

⊤x+ τ i1i2 , νi1i2)∥L∞

≤
k2∑

i2=1

∥π(y|(ηi1i2)
⊤x+ τi1i2 , νi1i2)− π(y|(ηi1i2)

⊤x+ τ i1i2 , νi1i2)∥L∞

≲
k2∑

i2=1

(
∥ηi1i2 − ηi1i2∥+ |τi1i2 − τ i1i2 |+ |νi1i2 − νi1i2 |

)
≲ τ. (66)
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Secondly, since X is a bounded set, we may assume that ∥x∥ ≤ B for any x ∈ X . Then, it follows
that

∥p̃SS
i1 − pSS

i1 ∥L∞ ≤
k2∑

i2=1

∣∣∣σ((ωi2|i1)
⊤x+ βi2|i1)− σ((ωi2|i1)

⊤x+ βi2|i1)
∣∣∣

× ∥π(y|(ηi1i2)
⊤x+ τ i1i2 , νi1i2)∥L∞

≲
k2∑

i2=1

[
∥ωi2|i1 − ωi2|i1∥ · |x∥+ |βi2|i1 − βi2|i1 |

]

≤
k2∑

i2=1

(
τB + τ

)
≲ τ. (67)

From the results in equations (64), (65), (66) and (67), we deduce that

∥pSS
G − pSS

G′ ∥L∞ ≲ τ. (68)

Furthermore, we have

∥pSS
G′ − pSS

G
∥L∞ =

k∗
1∑

i1=1

|σ((ai1)
⊤x+ bi1)− σ((ai1)

⊤x+ bi1)| · ∥π(y|(ηi1i2)
⊤x+ τ i1i2 , νi1i2)∥L∞

≲
k∗
1∑

i1=1

(
∥ai1 − ai1∥ · ∥x∥+ |bi1 − bi1 |

)

≤
k∗
1∑

i1=1

(τB + τ) ≲ τ. (69)

According to the triangle inequality and the results in equations (68), (69), we have

∥pSS
G − pSS

G
∥L∞ ≤ ∥pSS

G − pSS
G′ ∥L∞ + ∥pSS

G′ − pSS
G

∥L∞ ≲ τ.

By definition of the covering number, we deduce that

N(τ,Ptype
k∗
1 ,k2

(Θ), ∥ · ∥L2(µ)) ≤ |∆τ | × |Ωτ |

≤ OP (τ
−(d+1)k∗

1 )×OP (τ
−(2d+3)k∗

1k2)

≤ OP (τ
−(d+1)k∗

1−(2d+3)k∗
1k2). (70)

Combine the result in equation (63) with that in (70), we arrive at

HB(2τ,Ptype
k∗
1 ,k2

(Θ), ∥ · ∥L1) ≲ log(1/τ).

Let τ = ε/2, then it follows that

HB(ε,Ptype
k∗
1 ,k2

(Θ), ∥.∥L1) ≲ log(1/ε).

Finally, due to the inequality between the Hellinger distance and the L1-norm h ≤ ∥ ·∥L1 , we achieve
the conclusion that

HB(ε,Ptype
k∗
1 ,k2

(Θ), h) ≲ log(1/ε).

Hence, the proof is completed.

G PROOF OF LEMMA 1

Firstly, let us recall the system of polynomial equations given in equation (4):
m∑

i2=1

∑
α∈ISS

ρ1,ρ2

p2i2 q
α1
1i2
qα2
2i2
qα3
3i2

qα4
4i2

qα5
5i2

α1! α2! α3! α4!α5!
= 0, 1 ≤ |ρ1|+ ρ2 ≤ r, (71)
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where ISS
ρ1,ρ2

= {α = (α1,α2,α3, α4, α5) ∈ Nd × Nd × Nd × N × N : α1 + α2 + α3 =

ρ1, α4 + 2α5 = ρ2 − |α3|}.

When m = 2: By observing a portion of the above system when ρ1 = 0d, which is given by
m∑

i2=1

∑
α4+2α5=ρ2

p2i2 qα4
4i2

qα5
5i2

α4! α5!
= 0, ρ2 = 1, 2, . . . , r. (72)

Proposition 2.1 in Ho & Nguyen (2016) shows that the smallest r ∈ N such that the system (72) does
not admit any non-trivial solutions when m = 2 is r = 4. Note that a solution of the system 72 is
called non-trivial in Ho & Nguyen (2016) if all the values of pi2 are different from zero, whereas at
least one among q4i2 is non-zero. This definition of non-trivial solutions totally aligns with ours for
the system (71). Therefore, we have r̄(m) ≤ 4, and it suffices to prove that r̄(m) > 3.

Indeed, when r = 3, we demonstrate that the system (71) admits a non-trivial solution: pi2 = 1,
q1i2 = q2i2 = q3i2 = 0d for all i2 ∈ [m], q41 = 1, q42 = −1, q51 = q52 = − 1

2 . Since
q1i2 = q2i2 = q3i2 = 0d, this solution clearly satisfies the equations associated with ρ1 ̸= 0d. Thus,
we only need to verify those with ρ1 = 0d, which are given by

m∑
j=1

p2i2q4i2 = 0,

m∑
i2=1

p2i2

(1
2
q24i2 + q5i2

)
= 0,

m∑
i2=1

p2i2

( 1

3!
q34i2 + q4i2q5i2

)
= 0.

By simple calculations, we can check that pi2 = 1, q41 = 1, q42 = −1, q51 = q52 = − 1
2 satisfies the

above equations. Hence, we obtain that r̄(m) > 3, leading to r̄(m) = 4.

When m = 3: Note that r̄(m) is a monotonically increasing function of m. Therefore, it follows
from the previous result that r̄(m) > r̄(2) = 4, or equivalently, r̄(m) ≥ 5. Additionally, according
to Proposition 2.1 in Ho & Nguyen (2016), we deduce that r̄(m) ≤ 6 based on the reduced system in
equation (72). Thus, we only need to show that r̄(m) > 5.

Indeed, we show that the following is a non-trivial solution of the system (71) when r = 5:
pi2 = 1, q1i2 = q2i2 = q3i2 = 0d, ∀i2 ∈ [m],

q41 =

√
3

3
, q42 = −

√
3

3
, q43 = 0,

q51 = q52 = −1

6
, q53 = 0.

Since q1i2 = q2i2 = q3i2 = 0d, this solution clearly satisfies the equations associated with ρ1 ̸= 0d.
Thus, we only need to verify those with ρ1 = 0d, which are given by

m∑
j=1

p2i2q4i2 = 0,

m∑
i2=1

p2i2

(1
2
q24i2 + q5i2

)
= 0,

m∑
i2=1

p2i2

( 1

3!
q34i2 + q4i2q5i2

)
= 0,

m∑
i2=1

p2i2

( 1

4!
q44i2 +

1

2!
q24i2q5i2 +

1

2!
q25i2

)
= 0,

m∑
i2=1

p2i2

( 1

5!
q54i2 +

1

3!
q34i2q5i2 +

1

2!
q4i2q

2
5i2

)
= 0.
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By simple calculations, it can be validated that pi2 = 1, q41 =
√
3
3 , q42 = −

√
3
3 , q43 = 0, q51 =

q52 = − 1
6 , q53 = 0 satisfies the above equations. Hence, we conclude r̄(m) > 5, meaning that

r̄(m) = 6.

H IDENTIFIABILITY OF THE GAUSSIAN HMOE

Proposition 1. For each type ∈ {SS, SL,LL}, suppose that the equation ptypeG (y|x) = ptypeG∗
(y|x)

holds true for almost surely (x, y), then we get that G ≡ G∗.

Proof of Proposition 1. In this proof, we will consider only the case when type = SS as other cases
can be done similarly.

To start with, let us write the equation pSS
G (y|x) = pSS

G∗
(y|x) explicitly as follows:

k∗
1∑

i1=1

σ
(
(ai1)

⊤x+ bi1

) k2∑
i2=1

σ
(
(ωi2|i1)

⊤x+ βi2|i1

)
π(y|(ηi1i2)

⊤x+ τi1i2 , νi1i2)

=

k∗
1∑

i1=1

σ
(
(a∗

i1)
⊤x+ b∗i1

) k∗
2∑

i2=1

σ
(
(ω∗

i2|i1)
⊤x+ β∗

i2|i1

)
π(y|(η∗

i1i2)
⊤x+ τ∗i1i2 , ν

∗
i1i2). (73)

Then, it follows from the identifiability of the location-scale Gaussian mixtures (Teicher, 1960; 1961)
that the number of components and the weight set of the mixing measure G equal to those of its
counterpart G∗, i.e. k2 = k∗2 and{

σ
(
(ai1)

⊤x+ bi1

)
· σ

(
(ωi2|i1)

⊤x+ βi2|i1

)
: i1 ∈ [k∗1 ], i2 ∈ [k∗2 ]

}

=

{
σ
(
(a∗

i1)
⊤x+ b∗i1

)
· σ

(
(ω∗

i2|i1)
⊤x+ β∗

i2|i1

)
: i1 ∈ [k∗1 ], i2 ∈ [k∗2 ]

}
,

for almost every x. WLOG, we may assume that

σ
(
(ai1)

⊤x+ bi1

)
· σ

(
(ωi2|i1)

⊤x+ βi2|i1

)
= σ

(
(a∗

i1)
⊤x+ b∗i1

)
· σ

(
(ω∗

i2|i1)
⊤x+ β∗

i2|i1

)
,

(74)

for almost every x, for any i1 ∈ [k∗1 ], i2 ∈ [k∗2 ]. Due to the assumptions that ωk∗
2 |i1 = ω∗

k∗
2 |i1

= 0d

and βk∗
2 |i1 = β∗

k∗
2 |i1

= 0, we have that

σ
(
(ai1)

⊤x+ bi1

)
= σ

(
(a∗

i1)
⊤x+ b∗i1

)
, (75)

for almost every x, for any i1 ∈. Since the σ function is invariant to translations, then it follows from
the equation (75) that

ai1 = a∗
i1 + a

bi1 = b∗i1 + b,

for some a ∈ Rd and b ∈ R. Moreover, due to the assumption that ak∗
1
= a∗

k∗
1

and bk∗
1
= b∗k∗

1
= 0,

we get a = 0d and b = 0. This leads to ai1 = a∗
i1

and bi1 = b∗i1 for any i1 ∈ [k∗1 ]. Those results
together with equation (74) yield that

σ
(
(ωi2|i1)

⊤x+ βi2|i1

)
= σ

(
(ω∗

i2|i1)
⊤x+ β∗

i2|i1

)
,

for almost every x, for any i1 ∈ [k∗1 ], i2 ∈ [k∗2 ]. By employing the previous arguments, we also
obtain that

ωi2|i1 = ω∗
i2|i1 ,

βi2|i1 = β∗
i2|i1 .

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Then, the equation (73) can be rewritten as

k∗
1∑

i1=1

exp(bi1)

k∗
2∑

i2=1

exp(βi2|i1) exp
(
(ai1 + ωi2|i1)

⊤x
)
π(y|(ηi1i2)

⊤x+ τi1i2 , νi1i2)

=

k∗
1∑

i1=1

exp(b∗i1)

k∗
2∑

i2=1

exp(c∗i2|i1) exp
(
(a∗

i1 + ω
∗
i2|i1)

⊤x
)
π(y|(η∗

i1i2)
⊤x+ τ∗i1i2 , ν

∗
i1i2). (76)

for almost every x ∈ X .

Next, we denote P1, P2, . . . , Pm1
as a partition of the index set [k∗1 ], where m1 ≤ k∗1 , such that

exp(bi1) = exp(b∗i′1
) for any i1, i

′
1 ∈ Pj and j1 ∈ [m1]. On the other hand, when i1 and i′1 do not

belong to the same set Pj1 , we let exp(bi1) ̸= exp(b∗i′1
).

Similarly, for each i1 ∈ [k∗1 ], we also define Q1|i1 , Q2|i1 , . . . , Qm2|i1 as a partition of the index set
[k∗2 ], where m2 ≤ k∗2 , such that exp(βi2|i1) = exp(β∗

i′2|i1
) for any i2, i

′
2 ∈ Qj2|i1 and j2 ∈ [m2].

Conversely, when i2 and i′2 do not belong to the same set Qj2|i1 , we let exp(βi2|i1) ̸= exp(β∗
i′2|i1

).

Thus, we can represent equation (76) as
m1∑
j1=1

∑
i1∈Pj1

exp(bi1)

m2∑
j2=1

∑
i1∈Qj2|i1

exp(βi2|i1) exp
(
(ai1 + ωi2|i1)

⊤x
)
π(y|(ηi1i2)

⊤x+ τi1i2 , νi1i2)

=

m1∑
j1=1

∑
i1∈Pj1

exp(b∗i1)

m2∑
j2=1

∑
i1∈Qj2|i1

exp(β∗
i2|i1) exp

(
(a∗

i1 + ω
∗
i2|i1)

⊤x
)
π(y|(η∗

i1i2)
⊤x+ τ∗i1i2 , ν

∗
i1i2),

for almost every x ∈ X . Recall that we have bi1 = b∗i1 , ai1 = a∗
i1

, ωi2|i1 = ω∗
i2|i1 and βi2|i1 =

β∗
i2|i1 , for any i1 ∈ [k∗1 ] and i2 ∈ [k∗2 ], then the above result leads to{(

(ηi1i2)
⊤x+ τi1i2 , νi1i2

)
: i1 ∈ Pj1 , i2 ∈ Qj2|i1

}
≡

{(
(η∗

i1i2)
⊤x+ τ∗i1i2 , ν

∗
i1i2

)
: i1 ∈ Pj1 , i2 ∈ Qj2|i1

}
,

for any j1 ∈ [m1] and j2 ∈ [m2]. Consequently, we obtain that

G =

m1∑
j1=1

∑
i1∈Pj1

exp(bi1)

m2∑
j2=1

∑
i1∈Qj2|i1

exp(βi2|i1)δ(ai1
,ωi2|i1 ,ηi1i2

,τi1i2
,νi1i2

)

=

m1∑
j1=1

∑
i1∈Pj1

exp(b∗i1)

m2∑
j2=1

∑
i1∈Qj2|i1

exp(β∗
i2|i1)δa∗

i1
,ω∗

i2|i1
,η∗

i1i2
,τ∗

i1i2
,ν∗

i1i2
)

≡ G∗.

Hence, the proof is totally completed.
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