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Abstract

Transformer-based Diffusion Probabilistic Models (DPMs) have shown more po-
tential than CNN-based DPMs, yet their extensive computational requirements
hinder widespread practical applications. To reduce the computation budget of
transformer-based DPMs, this work proposes the Efficient Diffusion Transformer
(EDT) framework. The framework includes a lightweight-design diffusion model
architecture, and a training-free Attention Modulation Matrix and its alternation
arrangement in EDT inspired by human-like sketching. Additionally, we propose a
token relation-enhanced masking training strategy tailored explicitly for EDT to
augment its token relation learning capability. Our extensive experiments demon-
strate the efficacy of EDT. The EDT framework reduces training and inference
costs and surpasses existing transformer-based diffusion models in image synthesis
performance, thereby achieving a significant overall enhancement. With lower
FID, EDT-S, EDT-B, and EDT-XL attained speed-ups of 3.93x, 2.84x, and 1.92x
respectively in the training phase, and 2.29x, 2.29x, and 2.22x respectively in
inference, compared to the corresponding sizes of MDTv2. Our code is available
at here.

1 Introduction

Figure 1: Illustration of the alternation process of local and global attention during sketching.

Numerous studies [1, 2, 3, 4, 5] and practical applications [6, 7, 8] have validated the effectiveness
of Diffusion Probabilistic Models (DPMs), establishing them as a mainstream method in image
generation. In past years, predominant works [1, 2, 3, 4, 9, 10, 11] have advanced diffusion models
by incorporating a convolutional UNet-like [12] architecture as their backbone. On the other hand,
transformers [13] have achieved significant milestones in both natural language processing [14,
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15] and computer vision [16, 17, 18, 19], prompting recent attempts to integrate these powerful
transformer-based architectures into diffusion models with considerable success. For instance, U-
ViT [20], an early work in diffusion leveraging ViT-based transformers, surpassed the contemporary
CNN-based U-Net DPMs in class-conditional image generation on ImageNet, demonstrating their
potential. Similarly, diffusion transformer (DiT) [21], which employs transformers as its backbone
instead of the traditional U-Net backbone in latent diffusion models (LDM) [11], has shown excellent
scalability. Further, masked diffusion transformer (MDT) [22] observes that DPMs often struggle to
learn the relations among object parts in an image. To solve this, MDT introduces a masking training
scheme to enhance the DPMs’ ability to relation learning among object semantic parts in an image.
MDT established a SOTA of class-condition image synthesis on the ImageNet.

While transformer-based DPMs offer scalability and a higher performance ceiling than their CNN
counterparts, they also require more computational resources. For instance, in each inference step,
DiT-XL-2 consumes 118 GFLOPs and U-ViT-H requires 133 GFLOPs. This computational demand
escalates with increasing time steps or token length, limiting their practical application. Despite their
computational inefficiency, few studies have explored enhancing the efficiency of transformer-based
DPMs. Therefore, the trade-off between computation and performance underscores the importance
of designing a lightweight model architecture that maintains excellent performance.

To improve the computational efficiency of transformers in DPMs, we introduced a comprehensive
optimization framework named Efficient Diffusion Transformer (EDT). Specifically, we developed
a lightweight diffusion transformer architecture based on a comprehensive computation analysis.
Moreover, we devised the Attention Modulation Matrix (AMM) and its alternation arrangement in
EDT inspired by human-like sketching. AMM, functioning as a plug-in, can be seamlessly integrated
into diffusion transformers to enhance image synthesis performance significantly without requiring
additional training. Additionally, we introduced a novel token relation-enhanced masking training
strategy tailored for EDT to enhance its relation learning capability.

Lightweight-design diffusion transformer Based on the empirical analysis of the number of tokens,
token dimensions, and the FLOPs, we propose two principles to design the lightweight diffusion
transformer, and redesign and incorporate the down-sampling, up-sampling, and long skip connection
modules into diffusion transformers. The utilization of down-sampling module can reduce FLOPs, but
harms performance, since the token merging operation in down-sampling and long skip connections
modules leads to the loss of token information. To mitigate this loss, we enhance the key features by
introducing token information enhancement and positional encoding supplement.

Attention Modulation Matrix The mind stores visual structures as a top-down hierarchy passing
from general shape to the relationships between parts down to the detailed features of individual
parts [23, 24]. Based on this storage structure in the mind, humans tend to follow a coarse-to-fine
drawing strategy [25]. The logical structure of sketching of humans tends to first form a general
framework (using global attention), then gradually refine local details (using local attention) driven by
the global perspective (using global attention) shown in Figure 1. Inspired by the sketching process,
we integrate the alternation process of local and global attention to EDT, and propose Attention
Modulation Matrix (AMM) to modulate from the default global attention in self-attention mechanisms
to local attention. AMM, functioning as a plug-in, which can be seamlessly integrated into diffusion
transformers, enhancing image synthesis performance without necessitating additional training.

Token relation-enhanced masking training strategy The token compression in down-sampling
modules may cause token information loss. Learning the relations among tokens can help token
down-sampling modules compress tokens effectively. And it has been confirmed that masking training
can enhance the DPMs’ ability to learn relations among object parts in images [22]. We propose a
novel masking training strategy to enhance the relation learning among tokens. Specifically, the full
tokens are fed into EDT and the tokens masking is executed in down-sampling modules. This forces
models to learn token relations before some of the tokens are masked. We compare our masking
training method to the counterpart in MDT, both implemented on EDT. Our masking training method
achieves better generation.

We summarize the contributions of our work: 1. We develop an Efficient Diffusion Transformer (EDT)
framework and design a lightweight diffusion transformer architecture based on a comprehensive
computation analysis. 2. Inspired by human sketching, we design EDT with an alternation process
between global attention and location attention. Moreover, to the best of our knowledge, we introduce
Attention Modulation Matrix for the first time, which improves the detail of generated images of
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pre-trained diffusion transformers without any extra training cost. 3. We propose a novel token
masking training strategy to enhance the token relation learning ability of EDT. 4. EDT has reached
a new SOTA and achieves faster training and inference speed compared to existing representative
works DiT and MDTv2. We conduct a series of exploratory experiments and ablation studies to
analyze and summarize the key factors affecting the performance of EDT.

2 Method

2.1 Preliminaries

We briefly review several fundamental concepts necessary to understand classifier-free guidance
class-condition diffusion models [11]. The primary objective of diffusion models is to learn a
diffusion process that constructs a probability distribution for a specific dataset, subsequently enabling
the sampling of new images. Given a classifier-free guidance class-condition diffusion model
ϵθ (xt, c), the model can generate images of specific class c from Gaussian noise over multiple
denoising time steps. The model operates through two main processes: the forward and reverse
processes. The forward process simulates training data xt to be denoised at time step t, by adding
Gaussian noise ϵt ∼ N (0, I) to the original data x0. This process is mathematically described by
q(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt) I), where ᾱt denotes a hyperparameter. The reverse process

samples noise-reduced data xt−1 based on noise data xt and class-condition c. The reverse process
is represented as pθ(xt−1 | xt, c) = N (xt−1|µθ (xt, c) ,Σθ (xt, c)), where µθ and Σθ are the
statistics of pθ. By optimizing the variational lower-bound of the log-likelihood [26] pθ(x0) and
reparameterizing µθ as a noise prediction network ϵθ, the model can be trained using simple mean-
squared error between the predicted noise ϵθ (xt, c) and the ground truth ϵt sampled Gaussian noise:
Lθ(xt, c, ϵt) = ∥ϵθ (xt, c)− ϵt∥22. Additionally, ϵθ (xt, c) is a standard class-condition model; when
c = ∅, it functions as an unconditional model. To allow the controllability of class-condition guidance,
the prediction of models is further derived as ϵ̂θ (xt, c) = ϵθ (xt, ∅) + ω · (ϵθ (xt, c)− ϵθ (xt, ∅)) ,
where ω ≥ 1 is class-condition guidance intensity.

In this work, we employ a classifier-free guidance class-condition diffusion transformer architecture
operating on latent space. The pre-trained variational autoencoder (VAE) model [26] from LDM [11]
remains frozen and is used to encode/decode the image/latent tokens.

2.2 Lightweight-design diffusion transformer

Transformer-based diffusion probabilistic models (DPMs) have demonstrated greater scalability and
superior performance compared to CNN-based DPMs [20, 21, 22]. However, these models also entail
significant computational overhead during both the training and inference phases. In response, we
design a lightweight diffusion transformer architecture in this section. We undertake a computational
complexity analysis of the transform-based diffusion model. Based on the empirical analysis of
the number of tokens, token dimensions, FLOPs, and the number of parameters, we establish two
design principles: (1) reducing the number of tokens to decrease the FLOPs in the self-attention
module through the down-sampling module; (2) ensuring that the FLOPs of each EDT stage post a
down-sampling module are significantly reduced compared to the stages prior to the down-sampling
module, to effectively lower the overall FLOPs.

Building on the aforementioned design principles, we have redesigned and incorporated the down-
sampling, up-sampling, and long skip connection modules into the transformer-based diffusion
model, successfully achieving a reduction in FLOPs and increased inference speed. For instance,
in comparison to DiT-S [21], our smaller version model EDT-S achieves an inference speed of 5.5
steps per second, versus 2.7 steps per second for DiT-S, effectively doubling the speed. Figure 2
illustrates the architecture of our lightweight-designed diffusion transformer. The model includes
three EDT stages in the down-sampling phase, viewed as an encoding process where tokens are
progressively compressed, and two EDT stages in the up-sampling phase, viewed as a decoding
process where tokens are gradually reconstructed. These five EDT stages are interconnected through
down-sampling, up-sampling, and long skip connection modules. Note that each EDT stage comprises
several consecutive transformer blocks. For more details on the computational complexity analysis
and model design, please refer to Appendix A.2. It is important to note that the down-sampling and
up-sampling phases can be viewed as encoding and decoding processes, respectively, aligning with
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Figure 2: The architecture of lightweight-design diffusion transformer.

Figure 3: The design of down-sampling, long skip connection and up-sampling modules.

the conceptualization of drawing pictures in human sketching. These phases are crucial and will be
further discussed in the following Section 2.3 and Section 2.4.

While we have successfully reduced the FLOPs of the model, the token merging operation in the
down-sampling and long skip connection modules inevitably leads to a loss of token information,
including the positional encoding and contextual data essential for class-condition generation of
images. To mitigate this loss of token information, we propose two improvements, as illustrated in
Figure 3: token information enhancement and positional encoding supplement.

Token information enhancement We enhance the contextual information required for class-condition
generation by employing Adaptive Layer Normalization (AdaLN) before the token merging process.
AdaLN adjusts the output by learning scaling factors γ and bias coefficients β, which can scale,
negate, or shut off the features [27]. By utilizing AdaLN, we modulate the tokens based on class
conditions and time steps before merging, thereby preserving more contextual information and
minimizing the loss of token information. As depicted in Figure 3, class-condition information is
integrated by the γ and β of AdaLN in both the down-sampling and long skip connection modules.

Positional encoding supplement We restore the absolute positional encoding of tokens following
the token merging process. As illustrated in Figure 3, after merging the tokens, we add the absolute
positional encoding to the merged tokens at the end of both the down-sampling and long skip
connection modules.

2.3 Making EDT “sketch” like a human

The lightweight design of EDT might compromise the quality of image synthesis. To enhance the
detail fidelity in generated images, we have refined the decoding process (up-sampling phase) of EDT
by imitating the process of human sketching. We begin by examining how attention shifts during the
act of sketching by humans. Human cognition stores visual structures as a top-down hierarchy passing
from general shape to the relationships between parts down to the detailed features of individual
parts [23, 24]. This hierarchical structuring of visual information in the brain makes humans tend
to follow a coarse-to-fine strategy in sketching [25]. As shown in Figure 1, the process of human

4



Figure 4: The position of Attention Modulation Matrix (local attention) in an EDT stage in the
up-sampling phase.

sketching tends to first form a general framework (using global attention), then gradually refine local
details [24, 28] (using local attention) hinted by the global perspective (using global attention). Even
when concentrating on a local detail, humans do not become completely detached from the overall
framework. Therefore, humans periodically shift attention back to a global view to scrutinize the
local detail and further fine-tune it [29, 30]. This process reflects the alternation of global and local
attention in the human brain when sketching.

Inspired by the sketching process, we aim to integrate the alternation process of local attention and
global attention to EDT. In the current series of diffusion transformers [20, 22, 21], only default
global attention mechanisms are employed, which may lead to poor generation of local details.
Therefore, we introduce the Attention Modulation Matrix (AMM) to enhance focus on local details.
Moreover, to mimic the alternation process in the EDT, we alternately incorporate the AMM into the
lightweight-design transformer diffusion architecture.

2.3.1 Integrating local attention into the up-sampling phase of EDT

To imitate the alternation between global and local attention like the act of humans drawing, we
integrate local attention into the up-sampling phase of EDT by introducing Attention Modulation
Matrix (AMM). In this section, we concentrate on imitating the alternation process of attention. A
detailed discussion of AMM is deferred to Section 2.3.2. We align the decoding process of EDT
with the humans drawing pictures. Consequently, we incorporate local attention (AMM) into the
decoding process (up-sampling phase) of EDT. Figure 4 illustrates the placement of AMM (local
attention) in an EDT stage. As depicted in Figure 4(a), we alternately configure EDT blocks with and
without the AMM, thereby mimicking the alternation between global and local attention observed in
drawing activities. The EDT block with AMM is shown in Figure 4(b). As shown in Figure 4(c), the
AMM is integrated into the self-attention module. The AMM and the global attention score matrix
are combined via a Hadamard product to modulate global attention into local attention.

2.3.2 Attention modulation matrix

We develop the Attention Modulation Matrix (AMM) to modulate the default global attention in
self-attention mechanisms into local attention, which imitates the local attention of humans during the
act of drawing. Humans typically concentrate on either the actively engaged parts or the most salient
aspects of a visual scene [31]. When drawing a specific local region of an image, areas closer to the
region of interest tend to exhibit stronger contextual relations and thus warrant increased attention.
Conversely, areas further from the region of interest generally show weaker contextual relations and
can be allocated less attention. Thus, we articulate the principle: for a local region, the strength of
attention on contextual relations within a specific region is inversely related to the distance between
the local region and the specific region. In the self-attention mechanism, we regard the attention
score between tokens as an indicator of the strength of attention on contextual relations between
regions. Similarly, we aim to modulate the strength of attention based on the distance among tokens
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on the image. Based on this concept, we have developed the Attention Modulation Matrix (AMM),
functioning as a plug-in, which can be seamlessly integrated into diffusion transformers, significantly
enhancing image synthesis performance without necessitating additional training.

Formally, given a sequence of N × N tokens and its corresponding attention score matrix A ∈
RN2×N2

, we take two arbitrary tokens as an example to illustrate the formulation. The two arbitrary
tokens are denoted as Tokeni, Tokenr and their attention score air, where air ∈ A. The coordinates
of Tokeni and Tokenr correspond to the (xi, yi) and(xr, yr) in the original N × N tokens grid,
where i = Nxi + yi and r = Nxr + yr. The distance between these two tokens can be calculated by

Euclidean distance dir =

√
(xi − xr)

2
+ (yi − yr)

2, and we can derive the token distance matrix

D ∈ RN2×N2

. We aim to modulate the global attention into local attention by multiplying the
attention score matrix to the AMM, which is generated based on the token distance matrix D. The
modulation matrix generation function F is designed with adherence to two principles: (1) the
generation function should be monotonically decreasing within the interval [0, dmax], ensuring that
the modulation matrix elements are inversely correlated with distance, where dmax = (N − 1)

√
2

is the furthest distance, which is the distance between two diagonal opposite tokens; (2) the output
range of this function should be limited to avoid significantly altering the original distribution of
the attention score matrix. Based on the two principles, we utilize the monotonically decreasing
interval in cosine function, cos (fdir), dir ∈ [0, dmax], where the monotonically decreasing interval
can be flexibly adjusted by adjusting its period T or frequency f . According to the dmax, we set
T = 4dmax and f = 2π

T . Further, we employ cos (fdir) as the exponent of the Euler’s number e,
thereby smoothing the values of the modulation matrix elements. We obtain the final modulation
matrix generation function F (dir) = kecos(fdir), which can flexibly scale the function value to
[k, ke] by scaling factor k. We empirically set k = 0.5 and the output range within [ 12 ,

e
2 ], which

allows the modulation matrix elements to appropriately adjust the attention scores. In addition, we
define an effective radius R for local attention to exclude the interactions of tokens that occur over
tokens with far distances. For each token pair, we only modulate the attention scores with distance
dir ≤ R, where R is the effective radius for local attention. We set R =

√
(N − 1)2 + 4 based

on experiments regarding the hyper-parameters of the AMM, detailed in Appendix A.3.3. And
those dir > R, their attention scores are set to zero, indicating that tokens far from the region of
interest exert less influence. Thus, we have the Attention Modulation Matrix M ∈ RN2×N2

, where
mir ∈ M is defined as:

mir =

{
F (dir) , dir ≤ R

0, dir > R
(1)

The modulated attention score element is a′ir = air ∗mir, where a′ir ∈ A′, and A′ is the modulated
attention score matrix. Further details about the entire process and an illustration of AMM can be
found in Appendix A.3.1.

2.4 Token relation-enhanced masking training strategy

The ability to learn relations among object parts in images is crucial for image generation, as
highlighted in MDT [22]. However, the down-sampling process in EDT inevitably leads to the loss of
token information. Establishing relations among tokens can alleviate performance degradation caused
by the loss of token information. To enhance the relation-learning ability in EDT, we introduce a
relation-enhanced masking training strategy. Before detailing the proposed masking training strategy,
we first explore the integration of MDT into EDT. Figure 5 (a) shows the masking training strategy of
MDT. In MDT, the training loss L contains two parts as shown in Eqn. 2.

L = Lfull + Lmasked = Lθ(xt, c, ϵt) + Lθ(mask ∗ xt, c, ϵt) (2)

Lfull is the loss when the input consists of the full token input, the Lmasked is the loss when the
input consists of the remained tokens after masking, and mask is a matrix to mask tokens randomly.

However, our analysis reveals that the masking training method used in MDT excessively focuses on
masked region reconstruction at the expense of diffusion training, potentially leading to a degradation
in image generation performance. Additionally, our evaluation of MDT is observed a conflict between
the training objectives of Lfull and Lmasked. Specifically, as Lfull decreases, Lmasked increases,
and vice versa, demonstrating the conflicting nature of these training objectives. To mitigate this
conflict and allow the model to focus on the diffusion generation task, as shown in Figure 5 (b), we
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Figure 5: Token relation-enhanced masking training strategy. MDT is fed the remained tokens after
token masking into models. EDT is fed full tokens into shallow EDT blocks, and the operation of
token masking is performed in down-sampling modules.

design the token relation-enhanced masking training strategy, which feeds full tokens into shallow
blocks and postpones the token masking operation to occur within the down-sampling modules. This
strategy is designed to facilitate learning relationships among tokens and reduce the loss of token
information without the issues arising from conflicting training objectives. When training, the masked
tokens are unseen to the EDT blocks following the operation of masking, which forces the EDT
blocks before the operation of masking to learn the relations among tokens. As the relations among
tokens are learned, the key information in each token is dispersed and stored across various tokens.
This avoids reliance on certain tokens and reduces the loss of token information from compression
in down-sampling. Figure 3(a) shows, with a red arrow in the down-sampling module, the specific
point at which token masking is performed. After passing through the down-sampling modules, the
EDT stages in up-sampling phase generate images solely relying on the remained tokens. The loss
function of EDT with token relation-enhanced masking training strategy is shown in Eqn. 3, where
the token masking operation is executed in the down-sampling modules.

L = Lfull + Lmasked = Lθ(xt, c, ϵt) + Lθ(xt, c,mask, ϵt) (3)

We discover that EDT is particularly well-suited for masking training due to its up-sampling modules,
which inherently are used for the reconstruction of tokens. Unlike MDT, which requires an additional
interpolator module for reconstructing masked tokens, EDT eliminates the need for such a module,
thereby reducing unnecessary training overhead associated with an interpolator compared to MDT.
For a more detailed analysis, please refer to Appendix A.4.1.

3 Experiment

3.1 Implementation Details

Models: We develop three different sizes of EDT including small (EDT-S), base (EDT-B) and extra
large (EDT-XL), each using a patch size of two. Details regarding token dimensions, head numbers,
and parameter counts are provided in Table 5 of Appendix A.2.2. Training and evaluation: The
training dataset is ImageNet [32] with 256×256 and 512×512 resolution. For a fair comparison,
we follow the training settings of MDTv2 [33]. EDT uses the Adan [34] optimizer with a global
batch size of 256 and without weight decay. The learning rate linearly decreases from 1e-3 to 5e-5
over 400k iterations. Masking training strategy: We set the mask ratio 0.4 ∼ 0.5 in the first
down-sampling module, and 0.1 ∼ 0.2 in the second. The investigation of mask ratio refers to
Appendix A.4.2. GPUs: Training is conducted on eight L40 48GB GPUs, while the speed test
for inference is performed on a single L40 48GB GPU. Evaluation metrics: Common metrics
such as Fre’chet Inception Distance (FID) [35], sFID [36], Inception Score (IS) [37], Precision, and
Recall [38] are used to assess the model performance. The training speed is evaluated by iterations
per second, and inference speed is assessed by steps per second using a batch size of 256 in FP32.
For fair comparison, we follow [21, 33] and employ the TensorFlow evaluation suite from ADM [4],
reporting FID-50K results with 250 DDIM [10] sampling steps. These metrics are reported by default
without the classifier-free guidance.

7



Table 1: The comparison with existing SOTA methods on class-conditional image generation without
classifier-free guidance on ImageNet 256×256. We report the training speed (T-speed), inference
speed (I-speed), and memory consumption (Mem.) of inference. The EDT* denotes the EDT without
our proposed token relation-enhanced masking training strategy.

Model Cost↓
(Iter×BS)

Params.
(M)

T-speed
(iter/s) GFLOPs↓ I-Speed

(step/s)
Mem.
(MB) FID↓

DiT-S[21] 400K×256 32.90 12.50 6.06 2.70 4296 68.40
SD-DiT-S[39] 400K×256 32.90 - - - - 48.39
EDT-S*(our) 400K×256 38.30 13.20 2.66 5.50 4268 38.73
MDTv2-S[33] 400K×256 33.10 2.25 6.07 2.40 4902 39.50
EDT-S (our) 400K×256 38.30 8.86 2.66 5.50 4268 34.27

DiT-B[21] 400K×256 130.30 4.30 23.01 1.11 8978 43.47
SD-DiT-B[39] 400K×256 130.30 - - - - 28.62
EDT-B*(our) 400K×256 152.00 5.80 10.20 2.20 8584 23.19
MDTv2-B[33] 400K×256 130.80 1.42 23.02 0.96 9212 19.55
MDTv2-B[33] 1600K×256 130.80 1.42 23.02 0.96 9212 13.60
EDT-B(our) 400K×256 152.00 4.03 10.20 2.20 8584 19.18
EDT-B(our) 1000K×256 152.00 4.03 10.20 2.20 8584 13.58

ADM[4] 1980k×256 554.00 - 1120.00 - - 10.94
LDM-4[11] 178k×1200 400.00 - 104.00 - - 10.56
DiT-XL[21] 400K×256 674.80 0.93 118.64 0.25 17538 19.47
SD-DiT-XL[39] 1300K×256 740.60 - - - - 9.01
EDT-XL*(our) 400K×256 698.40 1.49 51.83 0.51 14486 10.48
MDTv2-XL[33] 400K×256 675.80 0.51 118.69 0.23 23436 7.70
EDT-XL(our) 400K×256 698.40 0.98 51.83 0.51 14486 7.52

Table 2: The comparison with existing transformer-based models on class-conditional image
generation without classifier-free guidance on ImageNet 512×512.

Model T-speed
(iter/s) GFLOPs↓ FID↓ IS↑ sFID↓

DiT-S 2.26 31.42 85.21 23.68 13.53
MDTv2-S 0.53 31.46 51.16 29.94 8.57
EDT-S(our) 1.63 13.25 51.84 29.92 7.86

3.2 Comparison with SOTA transformer-based diffusion methods

To validate the enhancements in speed and generation performance of EDT, we conducted compar-
isons with both classical methods [4, 11, 21] and recent advancements [33, 39, 40].

Experiment on ImageNet 256×256 The result of image generation without classifier-free guidance
is shown in Table 1. Our comparisons across three different sizes demonstrate that EDT consistently
achieves the best FID scores: EDT-S scored an FID of 34.2, EDT-B scored 19.1, and EDT-XL scored
7.5. Notably, EDT also showed significant reductions in GFLOPs compared to the second-best
MDTv2 across all sizes (2.66 GFLOPs vs. 6.07 GFLOPs, 10.2 GFLOPs vs. 23.02 GFLOPs, 51.83
GFLOPs vs. 118.69 GFLOPs). Moreover, EDT exhibited the lowest memory consumption during
inference across all three sizes, underscoring the efficiency of our lightweight design. We further
investigated the training speed of EDT. Given that both EDT and MDTv2 incorporate additional
training strategies, we specifically compared the training speeds of these two models. Additionally,
we assessed the training speed of EDT without the masking training strategy (denoted as EDT*)
against other methods. In both scenarios, EDT trained faster than the baseline models. For example,
EDT-XL* achieved a training speed of 1.49 iter/s, compared to 0.93 iter/s for DiT-XL. In comparison
to MDTv2-XL, which trained at 0.51 iter/s, EDT-XL was nearly twice as fast at 0.98 iter/s. We further
perform the experiment on the image generation with classifier-free guidance. The result is shown
in Table 13 of Appendix A.5.1. Under the same training cost, EDT-S-G achieves the lowest FID score
compared to MDTv2-S-G (9.89 vs. 15.62). Overall, these findings confirm that EDT significantly
enhances both the speed and performance of image synthesis. Additionally, the training cost of EDT
is efficient. We include a training cost analysis of EDT in Appendix A.2.3.
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Experiment on ImageNet 512×512 As shown in Table 2, we train DiT-S, MDTv2-S and EDT-S on
ImageNet 512×512 for 60 epochs. Under the same training cost, both MDTv2-S and EDT-S achieve
better FID scores than DiT-S (51.16 vs. 85.21, 51.84 vs. 85.21). In terms of training speed and
inference overhead, EDT-S is 3.07 and 2.37 times faster than MDTv2-S respectively. This indicates
that EDT achieves competitive image generation performance with lower resource overhead.

Table 3: Results on various models with (w) AMM and without (w/o) AMM. These models are
trained for 400k iterations by default. We evaluate models using FID scores.

Model W/o AMM W AMM Model W/o AMM W AMM

EDT-S* 50.90 38.73 EDT-S 46.90 34.27
EDT-B* 33.19 23.19 EDT-B 26.30 19.18
EDT-XL* 14.92 10.48 EDT-XL 12.80 7.52

DiT-S 67.16 63.11 MDTv2-S 39.02 31.89
DiT-XL 18.48 14.73 DiT-XL-7000k 9.62 3.75

3.3 Ablation Study

3.3.1 Attention Modulation Matrix

Figure 6: EDT-XL with AMM achieves more realistic visual effects. Area A: There are some blue
stains on the panda’s arm. Area B: An unreasonable gray area. Area C: Black smoke in the red fog.
Area D: Unrealistic eyes of the fox. Area E: Fish with an odd shape. The parrot image generated by
EDT-XL without AMM is realistic. And the parrot image generated by EDT-XL with AMM remains
equally realistic. The add of AMM does not negatively affect the original quality.

Quantitative analysis We demonstrate the effectiveness and broad applicability of AMM across
various models by comparing the FID scores between models with AMM and without AMM in
Table 3. Extensive results show that the pre-trained models with AMM consistently outperform
models without AMM, thereby verifying the generality and effectiveness of AMM. For instance,
MDTv2-S with AMM achieves a better FID score than MDTv2-S without AMM (31.89 vs. 39.02).
Using AMM enhances the FID of DiT-XL from 18.48 to 14.73. EDT-XL also has a lower FID score
of 7.52 compared to EDT-XL without AMM of an FID score of 12.8.

Qualitative analysis We demonstrate the effectiveness of AMM by comparing the synthesis images
from EDT-XL and DiT-XL with and without the AMM. As shown in Figure 6, the red boxes highlight
the unrealistic regions in the images generated by EDT-XL without AMM. In the corresponding
regions of the images generated by EDT-XL with AMM, the results appear more realistic. Moreover,
the parrot image generated by EDT-XL without AMM is realistic and the parrot image generated by
EDT-XL with AMM still remains equally realistic. This visual analysis demonstrates the effectiveness
of the AMM plugin. Please refer to A.3, and A.5.2 for more analysis about AMM. While AMM is
effective, there is potential for improvement. Please refer to A.6 for details regarding its limitations.

3.3.2 Lightweight-design diffusion transformer

We investigate the effectiveness of the key components in our proposed diffusion transformer architec-
ture. We denote the token information enhancement as TIE and the positional encoding supplement
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Table 4: The ablation study of the key components of the lightweight-design and masking training
strategy of EDT. The experiment is conducted on the small-size EDT model (W/o AMM).

Model TIE PES masking training
strategy of MDT

masking training
strategy of EDT FID↓ IS↑

Baseline ✗ ✗ ✗ ✗ 53.90 29.29
A ✗ ✓ ✗ ✗ 52.76 29.38
B ✓ ✗ ✗ ✗ 52.13 30.60
C ✓ ✓ ✗ ✗ 50.90 31.02

D ✓ ✓ ✓ ✗ 49.60 33.11
E ✓ ✓ ✗ ✓ 46.90 35.40

as PES in Table 4. Model A incorporates TIE without PES, with an FID score of 52.8. Model B
integrates PES without TIE, with an FID score of 52.1. Model C represents EDT-S*, and utilizes
both components, with an FID score of 50.9. Upon comparing Models A and C, we observed that
the usage of token information enhancement leads to an improved FID score, decreasing from 52.8
to 50.9. Similarly, the comparison between Models B and C demonstrates that the addition of a
positional encoding supplement also results in a better FID score, reducing from 52.1 to 50.9. The
experimental results confirm the effectiveness of both components in enhancing model performance.

3.3.3 Token relation-enhanced masking training strategy

We investigate the effectiveness of the token relation-enhanced masking training strategy and compare
it with the training strategy used in MDT in Table 4. Model C does not employ any masking training
strategy, with an FID score of 50.9 and an IS score of 31.0. Model D, a small-size EDT trained using
the masking strategy of MDT, with an FID score of 49.6 and an IS score of 33.1. Model D shows
only a slight improvement compared to Model C. Model E is a small-size EDT trained with the
masking strategy of EDT, with an FID score of 46.9 and an IS score of 35.4. Model E achieved the
best performance in terms of both FID and IS. This result suggests that the masking training strategy
of EDT successfully improves performance by enhancing the learning ability of token relations.

4 Conclusions

In this work, we propose the Efficient Diffusion Transformer (EDT) framework, which includes a
lightweight-design of diffusion transformer, a training-free Attention Modulation Matrix (AMM)
inspired by human-like sketching, and the token relation-enhanced masking training strategy. Our
lightweight-design reduces the number of tokens through down-sampling to lower computational costs.
We redesigned down-sampling module and masking training strategy to address token information
loss caused by the reduction of tokens. During inference, we introduce local attention through AMM,
further enhancing image generation performance. Extensive experiments demonstrate that the EDT
surpasses existing SOTA methods in both inference speed and image synthesis performance.

5 Related Work

Diffusion Probabilistic Models: Denoising diffusion probabilistic models (DDPM) [1], have marked
a significant advancement in generative models. DDPM improves image generation by progressively
reducing noise. ADM [4] innovates further by introducing a classifier-guided approach to refine
the balance between image diversity and fidelity. Subsequent developments include a classifier-free
method [9], which increases the flexibility of diffusion models by eliminating classifier constraints.
DiT [21] replacing U-Net with transformer in LDM [11], achieving superior scalability. However,
transformers-based models are computationally intensive. Efficient Diffusion: Various methods have
been developed to enhance the efficiency of diffusion models. DDIM [10] redefines the diffusion
process as non-Markovian, speeding up-sampling by removing dependencies on sequential time steps
in DDPM [1]. LDM [11] reduces computational demands by transforming high-resolution images
into a latent space for diffusion, thus balancing complexity with image detail. Current research in
lightweight diffusion transformers is limited but offers potential for further efficiency improvements
in diffusion model technologies. For more related work, please refer to Appendix A.1.
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A Appendix

The appendix is structured as follows. In Appendix A.2, we provide a computational complexity
analysis of DiT and the lightweight architecture design of EDT. In Appendix A.3, we show the
computational process of the AMM and explore the usage methods of AMM, hyper-parameters. In
Appendix A.4, we analyze the loss changes of different masking training strategies and explore the
selection of mask ratio. In Appendix A.5, we report additional experimental results and visualization
of generated images by EDT-XL-2000k. Appendix A.6 discusses the limitations.

A.1 Related Work

Diffusion Probabilistic Models In the field of generative models, diffusion models have achieved
significant success. The Denoising diffusion probabilistic model (DDPM) [1] is the most classic
denoising diffusion model, which generates new images by gradually removing noise from the noising
data. NCSN [2] guides the data from low to high probability density areas by predicting the gradient
of the data distribution. SDE [3] considers the noise addition and removal process as continuous
and uses stochastic differential equations to guide the data generation process, theoretically unifying
DDPM and NCSN and providing a new perspective for generative models. ADM [4] introduces a
classifier-guided mode, using classifier gradients to guide the diffusion model’s generation process,
balancing the diversity and fidelity of generated images. Building on ADM, [9] proposes a classifier-
free guidance method, removing the constraints of the classifier and significantly enhancing the
flexibility of conditional diffusion generation. Compared to earlier works based on the U-Net
backbone, models based on the Transformers backbone achieved better results. U-ViT [20] adds
U-Net’s skip connections to ViT [41] for diffusion generation in the pixel space, showcasing the
broad prospects for diffusion transformers. DiT [21] replaces the U-Net backbone with ViT based on
LDM [11], surpassing previous U-Net-based performances and showing good scalability. However,
due to the intensive computational nature of transformers, integrating them effectively into diffusion
models still presents significant challenges.

Efficient Diffusion Several methods have been proposed previously to improve the inference effi-
ciency of diffusion models. DDIM [10] defines the diffusion process as a non-Markov process, thus
eliminating the dependency on adjacent time steps in the reverse process of DDPM[1], achieving
faster sampling speeds. LDM [11] compresses images from high-resolution pixel space to latent
space and performs diffusion generation in latent space, achieving a balance between computational
complexity and image detail. [42] introduces a method of gradual distillation for unconditional and
classifier-guided diffusion models, which optimizes higher iteration counts into lower ones. Building
on the work of [42], [43] proposes a two-stage distillation method for classifier-free guided diffusion
models. Studies [22, 44] improves the training speed of DiT [21] by masking inputs. HDiT [40]
introduces an hourglass-structured diffusion transformer for generating high-resolution images, which
requires 70% fewer inference FLOPs in pixel space compared to DiT [21], but since HDiT operates in
pixel space with high input and output resolution, it still demands substantial computational resources.
ToddlerDiffusion [45] proposes a novel approach that extends the diffusion framework into modality
space, decomposing the complex task of RGB image generation into simpler, interpretable stages.
Currently, research on lightweight diffusion transformers is relatively sparse, but it is orthogonal to
the methods in [10, 42, 43]. Building on existing research, lightweight diffusion transformers will
further enhance the efficiency of diffusion models, which is one of the core contributions of this
paper.

A.2 Computational analysis and lightweight design

We preset two lightweight design rules: (1) to reduce the FLOPs in the self-attention module, we
decrease the number of tokens by token down-sampling; (2) to guarantee the total FLOPs significant
reduction, the FLOPs of the EDT blocks after down-sampling should be significantly reduced
compared to the EDT blocks before down-sampling. Utilizing the down-sampling module is key to
achieving these two design rules.

We first analyze the applicable scenarios of conventional down-sampling modules in Appendix A.2.1.
In Appendix A.2.2, we improve the down-sampling module to adapt to our scenario of latent diffusion
models. Then, in Appendix A.2.3, the training costs of EDT, DiT, and MDT are reported.
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Table 5: The model details of EDT across three different sizes.

Model Params. Number
of blocks

Blocks in
each stage

Dimensions
in each stage

Heads in
each stage

EDT-S/2 32.2M+6.1M 12 [2,2,2,3,3] [312,416,
520,416,312]

[6,8,
10,8,6]

EDT-B/2 128M+24.1M 12 [2,2,2,3,3] [624,832,
1040,832,624]

[12,16,
20,16,12]

EDT-XL/2 644M+54.4M 28 [6,4,4,7,7] [936,1248,
1560,1248,936]

[18,24,
30,24,18]

A.2.1 Applicable scenarios of the conventional down-sampling module

Firstly, we review the conventional down-sampling module. We have a token sequence of shape
N ×N , where n is the number of tokens (n = N2). The dimension of token is denoted by d. The
number of heads in multi-head attention is h, and D denotes the dimension of a head. Conventional
down-sampling module [46, 47, 48] reduces the number of tokens by a factor of k2 and increase
the token dimensions by a factor of k at the same time, where k is down-sampling factor (k ≥ 2).
Large down-sampling factor k will cause too many tokens to be merged, harming performance.
Therefore, k is generally equal to 2. That means, in a N ×N token sequence, we reduce the number
of tokens n by down-sampling adjacent 2 tokens into one. Then we obtain a N

2 × N
2 token sequence

with fewer tokens and the token dimensions increase to 2d from d. Table 6 shows FLOPs analysis of
a DiT block. The total FLOPs F is 2n2d+ 12nd2 + 6d2 and the number of parameters P is 18d2 in
a DiT block.

Now we analyze how much can down-sampling module reduce FLOPs , and its applicable scenarios.
To facilitate derivation and calculation, we set j = n

d , where j is the proportional coefficient between
the number of tokens and the dimension of token. We explore the relationship between proportional
coefficient j and FLOPs drop ratio ρ after using conventional down-sampling.

In Figure 7, before down-sampling, the total FLOPs of a DiT block F is 2j2d3 +12jd3 +6d2, where
n = N2 and j = n

d . After feeding tokens into conventional down-sampling, the number of tokens n′

is n
4 and token dimensions d′ is 2d. Then feeding these tokens into a DiT block, the total FLOPs of

the DiT block becomes F ′ = 2n′2d′+12n′d′2+6d′2 = n2d
4 +12nd2+24d2 = j2d3

4 +12jd3+24d2

and the number of parameters in the DiT block is P ′ = 72d2.

Comparing DiT blocks after and before the down-sampling module, the FLOPs drop is ▽F =

F − F ′ = 7j2d3

4 − 18d2. We calculate the relationship between the FLOPs drop ratio ρ = ▽F
F and

the proportional coefficient j :

ρ =
▽F

F

=
7j2d3

4 − 18d2

2j2d3 + 12jd3 + 6d2

=
7j2d− 72

8j2d+ 48jd+ 24

<
7j2d

8j2d+ 48jd

=
7j

8j + 48

=
7

8 + 48
j

(4)

The Eqn.4 shows that 7j
8j+48 is the upper limit of the FLOPs drop ratio ρ and proportional to j.

Significant reductions in FLOPs can be achieved through down-sampling, only when the
number of tokens n is larger than the token dimensions d, namely j > 1. For instance, when
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Table 6: FLOPs in a DiT block

Module Operator Input Shape Params Output Shape FLOPs

AdaLN fc 1× d d× 6d 1× 6d 6d2

Attention

Att-kqv 1× n× d d× 3d 1× n× 3d 3nd2

K@Q K: 1× h× n×D
Q: 1× h×D × n

- 1× h× n× n
(d = hD)

dn2

Att@V Att: 1× h× n× n
V: 1× h× n×D

- 1× h× n×D
(d = hD)

dn2

fc 1× n× d d× d 1× n× d nd2

FFN fc1 1× n× d d× 4d 1× n× 4d 4nd2

fc2 1× n× 4d 4d× d 1× n× d 4nd2

Total 1× n× d 18d2 1× n× d 2n2d+ 12nd2 + 6d2

Figure 7: Input shape and FLOPs of DiT block before and after the conventional down-sampling
module.

j = 6 (or n = 6d), the FLOPs drop ratio ρ is about 50%; and when j = 1 (or n = d), the FLOPs
drop ratio ρ is about 12.5%.

However, in our application scenarios of latent diffusion transformer, where n
d = j < 1 , the FLOPs

drop ratio ρ is smaller than 12.5%. Only using conventional down-sampling in our scenarios of latent
diffusion transformers can hardly reduce the computational complexity of the DiT blocks. So it does
not meet the design rule (2): the FLOPs of the blocks after down-sampling should be significantly
reduced compared to the blocks before down-sampling, to guarantee the total FLOPs reduction.

A.2.2 Redesign the down-sampling module

Now, we redesign the down-sampling to make the architecture meet rule (2).

According to Appendix A.2.1, before the down-sampling module, the total FLOPs of a DiT block is
F = 2n2d+ 12nd2 + 6d2 = 2j2d3 + 12jd3 + 6d2. And after the down-sampling module, the total
FLOPs of a DiT block after down-sampling is F ′ = n2d

4 + 12nd2 + 24d2. Among the three items
of F and F ′, the second term 12nd2 predominates due to d > n. However, this term isn’t affected
by the down-sampling process. This results from the conventional down-sampling module, which
reduces the number of tokens by a factor of k2 and increases the token dimensions by a factor of k at
the same time, namely 12nd2 = 12× n

k2 × (kd)2

To reduce the second item 12nd2, we should redesign the process of down-sampling module: we
reduce the number of tokens by down-sampling factor k = 2 and increase the token dimensions by
a factor of r at the same time, where r is token dimension expansion coefficient and 1 < r < k.
This design makes the second item reduce, namely 12× n

k2 × (rd)2 < 12nd2, and the total FLOPs

F ′ = rn2d
8 + 3nr2d2 + 6r2d2 = rj2d3

8 + 3jr2d3 + 6r2d2 in the blocks after our down-sampling
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module. The FLOPs drop ratio ρ is:

ρ =
▽F

F
=

F − F ′

F
= 1− F ′

F

= 1−
rn2d
8 + 3nr2d2 + 6r2d2

2n2d+ 12nd2 + 6d2

= 1− rn2 + 24ndr2 + 48dr2

16n2 + 96nd+ 48d

= 1−
rj + 24r2 + 48r2

n

16j + 96 + 48
n

≈ 1− rj + 24r2

16j + 96

= r

(
1

r
− j + 24r

16j + 96

)
> r

(
1

r
− j + 48

16j + 96

)
= r

(
1

r
− 1

16− 672
j+48

)

≥ r

(
1

r
− 1

16− 672
1+48

)
= 1− 0.43r

(5)

In Eqn.5, ρ = 1− rj+24r2

16j+96 shows that the FLOPs drop ratio ρ is inversely proportional to the token
dimension expansion coefficient r and 1− 0.43r is the lower bound of ρ. We can adjust the FLOPs of
the DiT block after down-sampling by adjusting the token dimension expansion coefficient r. When
r is within the range [1, k] and k = 2, the FLOPs drop ratio ρ falls within the interval [0.57, 0.14]. To
make the number of parameters in EDT network approximate to that in other works (DiT and MDT),
we set r ≈ 1.25. Namely, after a down-sampling, we reduce the number of tokens by a factor of
4 and increase the token dimensions by a factor of 1.25 at the same time. This leads to about 47%
FLOPs drop ratio of the block after down-sampling compared to that before down-sampling, which
meets the requirement of rule (2).

Table 5 shows three different sizes of EDT. The number of blocks is consistent with that in the DiT
network of the corresponding size. The number of parameters in the EDT network is also approximate
to that in DiT. Our parameters consist of two parts, one is the EDT blocks parameter, and the other is
the sampling module and long-skip connection module. In the table, the number of parameters is
written as the sum of these two parts.

Figure 2 illustrates the architecture of our lightweight-designed diffusion transformer. The model
includes three EDT stages in the down-sampling phase, viewed as an encoding process where tokens
are progressively compressed, and two EDT Stages in the up-sampling phase, viewed as a decoding
process where tokens are gradually reconstructed. These five EDT stages are interconnected through
down-sampling, up-sampling, and long skip connection modules. The ‘blocks in each stage’ in
Table 5 displays how many blocks there are in the corresponding EDT stage.

A.2.3 Training costs

On ImageNet, we estimated the training cost of EDT, MDTv2, and DiT on a 48GB-L40 GPU in
Table 7, using a batch size of 256 and FP32 precision. EDT achieves the best performance with a low
training cost. GPU days refer to the days required for training the models on a single L40 GPU.

A.3 Exploring Attention Modulation Matrix

During the sketching process, humans alternately use global attention and local attention. Therefore,
we design Attention Modulation Matrix (AMM), to introduce local attention into the self-attention
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Table 7: Training cost of EDT, MDTv2, and DiT on ImageNet

Model Resolution Epochs Cost (Images) GPU days GFLOPs↓ FID

EDT-S* 256×256 80 102M 2.75 2.66 38.73
DiT-S 256×256 80 102M 2.96 6.06 68.40
MDTv2-S 256×256 80 102M 16.47 6.07 39.50

EDT-B 256×256 80 102M 9.19 10.20 19.18
DiT-B 256×256 80 102M 8.62 23.01 43.47
MDTv2-B 256×256 80 102M 26.17 23.02 19.55

EDT-XL 256×256 80 102M 37.79 51.83 7.52
DiT-XL 256×256 80 102M 39.82 118.64 19.47
MDTv2-XL 256×256 80 102M 72.62 118.69 7.70

EDT-S 512×512 60 77M 19.02 13.25 51.84
DiT-S 512×512 60 77M 12.26 31.42 85.21
MDTv2-S 512×512 60 77M 51.96 31.46 51.16

Figure 8: The process of modulating the attention score matrix and the changes in tensor shape.

module which uses global attention by default. Appendix A.3.1 shows the process of modulating the
attention score matrix and the changes in tensor shape. In Appendix A.3.2, we explore the usage and
arrangement of AMM in models. In Appendix A.3.3, we explore the settings of the hyper-parameters
of AMM. The computational cost of AMM is discussed in Appendix A.3.4.

A.3.1 The process of modulating the attention

The process of modulating the attention score matrix and the changes in tensor shape are shown in
Figure 8. Image can be split into N2 patches and each token is the feature of a patch. Each token
(patch) corresponds to a rectangular area of the image and has a corresponding 2-D coordinate (x, y)
in the image grid. We calculate an Euclidean distance value d for each pair of tokens, resulting
in a distance matrix D, which is an N2 × N2 tensor. Based on the distance matrix, we generate
modulation values m via the modulation matrix generation function F (d), which assigns lower
modulation values to tokens that are farther apart. These modulation values form an Attention
Modulation Matrix (AMM), another N2×N2 tensor. Importantly, we integrate the AMM into the
pre-trained EDT without any additional training. The attention modulation matrix is calculated
when the model is instantiated. During inference, the modulated attention score matrix is obtained
by performing a Hadamard product between the attention modulation matrix and the attention score
matrix.
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Table 8: Comparison of adding AMM into EDT-S* during training versus inference on ImageNet
256× 256.

Model adding AMM
when training

adding AMM
when inference FID↓ IS↑

A ✗ ✗ 50.9 31.0
B ✓ ✓ 52.1 30.3
C ✗ ✓ 38.7 36.4

Table 9: Performance of EDT-S* with varying insertion points of AMM on ImageNet 256× 256.

Model AMM in
encoder

AMM in
decoder

Alternately
inserting FID↓ IS↑

A ✗ ✗ ✗ 50.9 31.0
B ✓ ✓ ✓ 60.4 24.9
C ✗ ✓ ✗ 44.4 35.1
D ✗ ✓ ✓ 38.7 36.4

A.3.2 When and where to use AMM in EDT

This section empirically discusses and demonstrates how to use AMM through experiments.

Just adding AMM into the pre-trained model when inference Table 8 shows when to use AMM
in EDT. Model A is a pre-trained EDT-S* without AMM, getting an FID score of 50.8. Model B,
which is added AMM from initialization and then trained, achieves an FID score of 52.1. Model C
gains an FID score of 38.7, which is the model that added AMM to model A. The results show that
using AMM during training will lead to poorer performance, and just adding AMM to the pre-trained
model can greatly improve performance.

Alternately inserting AMM into the decoder of EDT We view the process of drawing pictures as a
decoding process. So we think the decoder of EDT should be aligned with the act of humans drawing
pictures. This inspires us where to place AMM in EDT. Namely, the alternation of attention range
between global and local in drawing acts of humans should be imitated in the decoder of EDT. The
AMM should be alternately or discontinuously inserted into the blocks of decoder.

To demonstrate the inspiration, in Figure 9, we try to compare Model A: pre-trained EDT-S* without
AMM; Model B: alternately inserting AMM into encoder and decoder of pre-trained EDT-S*; Model
C: consecutively inserting AMM into decoder of pre-trained EDT-S*; and Model D: alternately
inserting AMM into the decoder of pre-trained EDT-S*. As shown in Table 9, Model D which is
alternately inserted AMM into decoder of pre-trained EDT-S*, gets the lowest FID score.

When integrating AMM into a pre-trained model, the best arrangement of AMM in blocks varies
across different models. Identifying the optimal placement and configuration of AMM requires
testing and adjusting to realize its full potential.

A.3.3 The determination of hyper-parameter

Table 10 shows the determination of hyper-parameter about the effective radius of local attention
R ∈ [0, dmax], where dmax =

√
2(N − 1) is the farthest distance in a N × N token grid. In the

table, when R =
√
(N − 1)2 + 4, EDT-S* achieves the lowest FID and highest Prec. So we set

R =
√
(N − 1)2 + 4 in all sizes of model.
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Figure 9: Different arrangement forms of AMM in EDT and their corresponding FID scores.

Table 10: Exploring the value of the effective radius of local attention in EDT-S* for 256 × 256
resolution.

R FID50K↓ IS↑ sFID↓ Prec.↑ Recall↑
no AMM 50.9 31.0 13.3 0.427 0.604√
2(N − 1) 38.9 36.6 9.3 0.472 0.626√
(N − 1)2 + 4 38.7 36.4 9.3 0.473 0.623√
(N − 1)2 + 1 39.0 36.5 9.3 0.474 0.621

N-1 39.1 36.2 9.2 0.472 0.628
3N/4 41.0 35.4 9.6 0.483 0.604
N/2 47.4 32.1 11.7 0.495 0.583
N/4 72.0 23.9 23.6 0.476 0.516
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A.3.4 The computational cost of AMM

The addition of AMM introduces minimal computational costs. Firstly, AMM can be incorporated
into a pre-trained model without requiring additional fine-tuning, resulting in no additional training
costs. Secondly, the increased computational cost of AMM during inference is negligible. For
instance, in the last block of EDT-XL, the attention score matrix and the Attention Modulation
Matrix are both 18×256×256 tensors. The computational cost of the Hadamard product between
the attention score matrix and AMM is only 1.18M FLOPs for multiplication calculations, out of a
total of 2819.3M FLOPs for the block. This amounts to merely 0.04% of the total FLOPs, making
the computational cost of AMM negligible. In our experiments, we added 4 AMM modules to a
pre-trained DiT-XL model, and the FID score decreased from 18 to 14.

A.4 Discussion about token relation-enhanced masking training strategy

A.4.1 Analysis of the loss of EDT and MDT

Figure 10: Comparing the loss changes of different masking training strategies.

In Figure 10, we separately applied the masking training strategies of MDT and EDT to train EDT-S
and extracted Lmasked and Lfull values at the 300k ∼ 305k and 300k ∼ 400k training iterations.
The left-top of the figure depicts the loss changes when using MDT’s masking training strategy.
As Lfull decreases, Lmasked increases, and vice versa, illustrating the conflict between these two
losses. This conflict arises because Lmasked in MDT causes the model to focus on masked token
reconstruction while ignoring diffusion training. As shown in the bottom-left of the figure, both the
Lfull and Lmasked hardly decreased during the 300k to 400k training iterations. The right side of the
figure shows the loss changes when using EDT’s masking training strategy. The Lmasked and Lfull

exhibit synchronized changes, and the loss values continuously decrease during the 300k to 400k
training iterations.

A.4.2 The determination of the mask ratio

We explore the mask ratio of our masking training strategy. There are two down-sampling modules in
EDTs. So we have two positions to implement token masking. As shown in Table 11, we determine
the masking ratio in the first down-sampling module by training EDT-S. The best masking ratio in
the first down-sampling module is 0.4 ∼ 0.5.
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Table 11: Mask Ratio in the first down-sampling module.

Mask Ratio FID50K↓ IS↑ sFID↓ Prec.↑ Recall↑
0.1 ∼ 0.2 51.3 31.1 13.7 0.434 0.612
0.2 ∼ 0.3 48.6 33.5 13.2 0.441 0.631
0.3 ∼ 0.4 47.3 34.9 13.2 0.442 0.622
0.4 ∼ 0.5 46.4 34.1 11.7 0.449 0.621
0.5 ∼ 0.6 48.8 33.4 13.5 0.431 0.623

Table 12: Mask Ratio in the second down-sampling module. (Based on the 0.4 ∼ 0.5 mask ratio in
the first down-sampling module)

Mask Ratio FID50K↓ IS↑ sFID↓ Prec.↑ Recall↑
0.1 ∼ 0.2 45.4 34.8 13.2 0.440 0.621
0.2 ∼ 0.3 46.2 34.6 13.5 0.441 0.619
0.3 ∼ 0.4 46.5 34.7 13.2 0.438 0.620
0.4 ∼ 0.5 47.2 34.4 13.4 0.432 0.620

Table 13: The comparison with existing SOTA methods on class-conditional image generation with
classifier-free guidance on ImageNet 256×256 (CFG=2 in EDT; according to DiT and MDTv2, their
optimal CFG settings are 1.5 and 3.8, respectively).

Model Cost↓
(Iter×BS) GFLOPs↓ FID↓

DiT-S-G 400K×256 6.06 21.03
MDTv2-S-G 400K×256 6.07 15.62
EDT-S-G(our) 400K×256 2.66 9.89
ADM-G[4] 1980k×256 1120.00 4.59
LDM-4-G[11] 178k×1200 104.00 3.60
DiT-XL-G 400K×256 118.64 5.50
DiT-XL-G[21] 7000K×256 118.64 2.27
MDTv2-XL-G[33] 4600K×256 118.69 1.58
EDT-XL-G(our) 400K×256 51.83 4.65
EDT-XL-G(our) 1000K×256 51.83 4.30
EDT-XL-G(our) 2000K×256 51.83 3.54

At the base of 0.4 ∼ 0.5 mask ratio in the first down-sampling module, we then determine the mask
ratio in the second down-sampling module as shown in Table 12. According to the results, the best
masking ratio in the second down-sampling module is 0.1 ∼ 0.2, at the base of 0.4 ∼ 0.5 mask ratio
in the first down-sampling module.

A.5 Additional Results

A.5.1 Image generation with classifier-free guidance on ImageNet 256×256

The result of image generation with classifier-free guidance on ImageNet 256×256 is shown in
Table 13. Under the same training cost, EDT-S-G achieves the lowest FID score compared to MDTv2-
S-G (9.89 vs. 15.62). EDT-XL-G achieves a good balance in training cost, inference GFLOPs, and
image generation performance.

A.5.2 Comprehensive evaluation of AMM

Using AMM under different iterations We report the FID of EDT* with and without AMM under
different iterations in Table 14. The results show that all EDTs* with AMM obtain lower FID.
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Table 14: FID of EDTs* under different iterations on Imagenet 256× 256.

EDT-S* EDT-B* EDT-XL*
Iterations no AMM AMM no AMM AMM no AMM AMM

50k 96.4 80.8 79.5 64.8 50.1 45.8
100k 64.5 58.5 46.0 40.4 23.7 21.3
150k 58.2 51.0 39.7 32.6 17.9 15.3
200k 55.8 47.0 37.3 29.0 15.6 12.6
250k 53.3 44.0 35.5 26.9 14.6 11.4
300k 52.4 42.0 34.2 25.1 14.1 10.7
350k 51.2 40.1 33.5 24.2 14.5 10.6
400k 50.9 38.7 33.2 23.2 14.9 10.5

Table 15: Results on various models across different sizes with (w) AMM and without (w/o) AMM
on ImageNet.

Model Resolution FID↓ IS↑ sFID↓ Prec.↑ Recall ↑
EDT-S*(w/o) 256× 256 50.9 31.0 13.3 0.427 0.604
EDT-S* 256× 256 38.7 36.4 9.2 0.474 0.620
EDT-S(w/o) 256× 256 46.9 35.4 13.5 0.442 0.624
EDT-S 256× 256 34.3 42.6 13.1 0.501 0.612

EDT-S(w/o) 512× 512 55.7 28.9 12.8 0.513 0.586
EDT-S 512× 512 51.8 29.9 7.9 0.563 0.572

EDT-B*(w/o) 256× 256 33.2 50.0 10.5 0.512 0.648
EDT-B* 256× 256 23.2 62.3 8.9 0.573 0.624

EDT-B(w/o) 256× 256 26.3 64.5 10.3 0.544 0.659
EDT-B 256× 256 19.2 74.4 9.9 0.586 0.639

EDT-XL*(w/o) 256× 256 14.9 96.5 8.0 0.617 0.667
EDT-XL* 256× 256 10.5 117.8 9.9 0.663 0.637

EDT-XL(w/o) 256× 256 12.8 111.7 8.2 0.627 0.685
EDT-XL 256× 256 7.5 142.4 7.4 0.684 0.648

DiT-XL/2(w/o) 256× 256 18.5 71.3 6.1 0.641 0.632
DiT-XL/2 256× 256 14.7 83.9 10.5 0.720 0.511

More types of evaluation indicators on EDT with AMM The Table 15 shows more types of
evaluation indicators comparing EDTs without AMM and with AMM. EDTs* means the EDT models
that don’t use masking training strategy. In the table, when using AMM, the FID, IS and Precision are
all improved. Furthermore, AMM is versatile and can be adapted to various diffusion transformers.
For instance, the performance of DiT-XL is improved by AMM (18.5 FID vs. 14.7 FID).

Figure 11: DiT-XL-400k with AMM achieves more realistic visual effects.
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Qualitative analysis on DiT-XL with AMM We conduct qualitative analysis on DiT with and
without AMM in Figure 11, which demonstrates AMM can also improve the local details of the
synthesis images of DiT. The red boxes highlight the unrealistic areas in the images generated by
DiT-XL without AMM. In the corresponding areas of the images generated by DiT-XL with AMM,
the results appear more realistic. Area A: The otter lacks a mouth. Area B: The red panda’s mouth
is slightly distorted. Area C: The parrot’s beak is not sharp enough. Area D: There are black
stains on the right side of the hot air balloon. Area E: The fox’s eyes are white. The steam image
generated by DiT-XL without AMM is realistic. And the steam image generated by DiT-XL with
AMM remains equally realistic. The addition of AMM does not negatively affect the original quality.
The effectiveness of AMM on DiT-XL further demonstrates the universal applicability of AMM.

Figure 12: Visualization of images generated by the EDT-XL-2000K.
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A.5.3 Visualization

More visualized examples of EDT-XL-2000k generated images are shown in Figure 12. The sampling
step is 250.

A.6 Limitations

In this work, we propose the Efficient Diffusion Transformer (EDT) framework, which includes a
lightweight-design of diffusion transformer, a training-free Attention Modulation Matrix (AMM), and
its alternation arrangement in EDT inspired by human-like sketching and the token relation-enhanced
masking training strategy. EDT effectively improves the training and inference speed of diffusion
transformers. Notably, AMM is a new approach to improving diffusion models, with many aspects
still worth exploring. When integrating AMM into a pre-trained model, the insertion and arrangement
of AMM in blocks differ across various models. Thus, identifying the optimal placement and
configuration of AMM requires testing to unlock its full potential. Moreover, the generation function
of AMM still has room for improvement and deserves further exploration. For example, in addition to
directly scaling attention scores by AMM, we can convert global attention into local attention during
inference through methods like: (1) using attention window to exclude the interactions of tokens with
far distance; (2) or scaling the attention based on token distance before the operation of softmax in
attention modules. It is encouraged to further explore the idea of AMM, which incorporates local
attention into transformers during inference, to improve other transformer-based models.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please refer to the abstract and Sections 1. We introduce the problem our
work solved and the contributions we made in both the abstract and final paragraph of the
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We discuss the limitations of this work in Appendix A.6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Please refer to Section 3.3, Appendix A.3 and Appendix A.4.1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Section 3.1 for the training details. Please refer to Section 3.2,
Section 3.3 and Appendix A.5 for experimental results. And we will release the code and
checkpoints.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the data used is from public available dataset (ImageNet). Please refer to
Section 3.1. And we will release code and checkpoints.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Appendix A.3.3 and Appendix A.4.2 for hyperparameter
selection. Please refer to Section 3.1 for the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The training procedure for the proposed and baseline models takes a consider-
able amount of time. It is infeasible to perform enough repeated experiments to calculate
the statistical significance. Therefore, error bars are not reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Section 3.1 and Appendix A.2.3.

29



Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute
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• At submission time, remember to anonymize your assets (if applicable). You can either
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