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Abstract

Directed evolution, a cornerstone of protein op-
timization, is to harness natural mutational pro-
cesses to enhance protein functionality. Exist-
ing Machine Learning-assisted Directed Evolu-
tion (MLDE) methodologies typically rely on
data-driven strategies and often overlook the pro-
found domain knowledge in biochemical fields.
In this paper, we introduce a novel Knowledge-
aware Reinforced Language Model (KnowRLM)
for MLDE. An Amino Acid Knowledge Graph
(AAKG) is constructed to represent the intricate
biochemical relationships among amino acids.
We further propose a Protein Language Model
(PLM)-based policy network that iteratively sam-
ples mutants through preferential random walks
on the AAKG using a dynamic sliding window
mechanism. The novel mutants are actively sam-
pled to fine-tune a fitness predictor as the reward
model, providing feedback to the knowledge-
aware policy. Finally, we optimize the whole
system in an active learning approach that mimics
biological settings in practice. KnowRLM stands
out for its ability to utilize contextual amino acid
information from knowledge graphs, thus attain-
ing advantages from both statistical patterns of
protein sequences and biochemical properties of
amino acids. Extensive experiments demonstrate
the superior performance of KnowRLM in more
efficiently identifying high-fitness mutants com-
pared to existing methods.
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1. Introduction
Proteins play a pivotal role in numerous biological processes,
and their study is fundamental to advancing our understand-
ing of life sciences. Deep learning, a subset of machine
learning, has been extensively applied in the field of protein
research, including function annotation (Xu et al., 2021),
3D structure prediction (Jumper et al., 2021), amino acid
sequence generation, and protein engineering (Anishchenko
et al., 2021). The incorporation of deep learning techniques
has substantially improved both the accuracy and efficiency
of protein research.

Directed evolution (Arnold, 1998; Smith & Petrenko, 1997;
Winter et al., 1994), a commonly used technique in pro-
tein engineering, aims to refine and optimize the protein
functions of interest by mimicking the process of natural
selection (Packer & Liu, 2015). The essence of this tech-
nique lies in screening and optimizing protein sequences to
achieve improved biological performance, such as catalytic
efficiency (Toyao et al., 2019), thermal stability (Tian et al.,
2010), or drug affinity (Hie et al., 2020). Conventionally, re-
searchers rely on random or unsupervised sampling methods
to generate a range of protein mutants and then select those
with desired traits (Wu et al., 2019). This approach is often
labor-intensive and time-consuming, with a key challenge
of effective exploration of the complex and astronomical
protein sequence space to identify optimal mutants.

The rapid development of machine learning technologies
has provided new momentum for protein directed evolution.
Machine learning’s capacity to process and analyze vast
quantities of biological data is particularly beneficial for
unraveling complex protein sequence-function relationships.
For example, researchers use clustering to find informative
mutants (Qiu et al., 2021). More recently, reinforcement
learning (RL) has been leveraged in the realm of directed
evolution. It enables effective navigation in the protein
sequence space, optimizing search strategies to discover
mutations that yield the desired performance. A prime ex-
ample of this application is EvoPlay (Wang et al., 2023),
which draws inspirations from the AlphaZero self-play re-
inforcement learning framework. This method enhances
search efficiency while simultaneously reducing experimen-
tal workload, showcasing RL’s potential in protein design.
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However, existing methods focus on algorithmic optimiza-
tion to achieve specific biological functions, and rely on a
data-driven trial-and-error mechanism, which may be ineffi-
cient to capture all necessary biochemical details in complex
protein research tasks. For example, data-driven amino acid
mutations might disregard critical aspects like chemical
properties, size, and charge, all of which can profoundly
influence protein stability and functionality. For protein
evolution, understanding amino acid biochemical properties
is crucial for predicting how proteins respond to specific mu-
tations. Neglecting these intricate biological nuances in the
learning process might fail to achieve anticipated biological
activity or show instability in practical applications.

In this paper, we propose a Knowledge-aware Reinforced
Language Model (KnowRLM) for protein directed evolu-
tion, which encodes complex biochemical rules and rela-
tionships directly into the decision process in reinforcement
learning. First of all, we build an Amino Acid Knowledge
Graph (AAKG), describing the critical biochemical features
of amino acids and their intrinsic connections. Then we pro-
pose a knowledge-aware policy network based on protein
language models to predict mutation sites and types through
preferential random walks on the AAKG. In particular, we
introduce a dynamic sliding window mechanism into the
walk strategy, adjusting the scope of amino acid exploration
adaptively. We implement the reward model as a fitness
predictor of mutants to provide pesudo rewards for policy
optimization. Moreover, the reward model is iteratively fine-
tuned in an active learning manner to improve its predictive
capability. The last reward model will be employed as the
ultimate fitness predictor to sample the optimal mutants.
The contributions of this paper are summarized as follows:

• We construct the first amino acid knowledge graph that
maintains domain knowledge and models structured
connections between amino acids.

• We introduce a knowledge-aware policy that considers
the physicochemical properties of amino acids during
the exploration phase in reinforcement learning.

• We demonstrate the critical role of domain knowledge
in enhancing MLDE efficiency, offering new insights
for protein directed evolution.

2. Related Works
Machine Learning-assisted Directed Evolution (MLDE).
MLDE represents a novel strategy in protein engineering,
facilitating the computational screening of all mutant se-
quences. This process hinges on iteratively optimizing pre-
diction and sampling phases: the former learning from la-
beled data to map the fitness landscape of sequences, and
the latter leveraging model predictions to guide sequence se-
lection in experimental iterations (Hie & Yang, 2022). The

ftMLDE (Wittmann et al., 2021) approach demonstrated
its effectiveness by employing an enriched training set,
highlighting the significance of selecting highly informa-
tive data for navigating the protein fitness landscape. The
CLADE (Qiu et al., 2021) method combined unsupervised
hierarchical clustering with supervised learning to efficiently
explore the mutational space. CLADE2.0(Qiu & Wei, 2022)
was further refined through the incorporation of multiple
evolutionary scoring metrics and evolution-driven cluster
sampling. The TS-DE strategy(Yu et al., 2018) utilized
Thompson sampling coupled with a simplistic Bayesian
linear model. AFP-DE (Qin et al., 2023) harnessed PLMs
to facilitate active sampling and fine-tuning, progressively
augmenting both the sampling efficacy and the model per-
formance throughout iterative cycles.

Protein Language Models (PLMs). Protein language mod-
els (Devlin et al., 2018; Vig et al., 2020) have made sig-
nificant strides in bioinformatics and computational biol-
ogy. These models, drawing parallels with natural language
processing (NLP) techniques, parse and predict protein
sequence characteristics, offering new insights into pro-
tein structure and function understanding. A Transformer
model (Rao et al., 2021) was proposed to capture advanced
structural properties of proteins, including the spatial prox-
imity of amino acids in 3D structures and functional regions
like binding sites. The ESM model (Verkuil et al., 2022), an
advanced protein language model, was designed to under-
stand and predict protein structure and function by capturing
evolutionary relationships among protein sequences. ESM-
1v (Meier et al., 2021) learns intrinsic patterns and rules
within protein sequences, showcasing the application po-
tential of PLMs in biological research. LM-GVP (Wang
et al., 2022a) employs Transformer blocks alongside a graph
network extracted from the three-dimensional structure of
proteins. PromptProtein (Wang et al., 2022b) leverages
prompt-guided multi-task pretraining to amalgamate diverse
aspects of protein structure at various levels. SaProt (Su
et al., 2023)introduces an innovative vocabulary that seam-
lessly combines residue tokens with structural tokens.

Reinforcement Learning (RL). Reinforcement learning
has been successfully implemented in diverse fields to en-
hance existing design methodologies, as indicated in stud-
ies (Schaff et al., 2019; Yu et al., 2018). EvoPlay (Wang
et al., 2023) introduced a self-play reinforcement learning
framework based on AlphaZero, utilizing simulated single-
point mutations and a synergy of policy-value neural net-
works with Monte Carlo tree search to guide the optimiza-
tion of protein sequences. ChemRLformer (Ghugare et al.,
2023) devised an RL-based molecular design algorithm
to identify high-value small molecules within an expansive
search space. TCRPPO (Chen et al., 2023) developed a Prox-
imal Policy Optimization (PPO) based approach (Schulman
et al., 2017) to tailor T-Cell Receptor (TCR) optimization
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for any given peptide. However, RL methods that overlook
domain knowledge may deviate during exploration, with
certain amino acid substitutions seemingly beneficial for
functionality but potentially detrimental to protein stabil-
ity. To mitigate this, we propose the integration of expert
knowledge into RL to efficiently yield high-fitness mutants.

3. Task Formulation and Preliminary
3.1. Formulation of Directed Evolution

A protein can be conceptualized as a sequence of amino
acid tokens, represented as X = [x1, . . . , xN ] within the
protein space X. Here, each x denotes one of the twenty
distinct amino acids in nature, and N denotes the length of
the protein sequence. The objective of directed evolution
is to ascertain the optimal amino acid sequence X∗ that ex-
hibits the pinnacle of biological fitness within the expansive
protein space. Mathematically, this is formulated as:

X∗ = argmax
X∈X

F(X), (1)

where F(·) denotes the sequence-to-fitness prediction func-
tion. For a target protein sequence X , the mutation space
at n distinct sites (with n < N ) proliferates to encompass
20n unique sequences, each a potential candidate for the
optimal sequence. The crux of directed evolution lies in
efficiently traversing this vast mutation space to pinpoint the
global optimum. This is conventionally achieved through se-
quential queries in biological fitness experiments. However,
the substantial financial and resource implications of these
experiments necessitate an economical query strategy. From
a mathematical standpoint, this translates to the learning
of the function F(·) utilizing the smallest possible set of
annotated data points.

3.2. Reinforcement Learning-based Directed Evolution

Preliminary of Reinforcement Learning. Reinforce-
ment Learning tackles sequential decision-making prob-
lems by learning from interaction and feedback sequences.
Generally, the problem to be solved is described by a
Markov Decision Process (MDP), which is characterized
by a tuple 〈S,A,E,r,γ〉. Here, S represents the state space
and A symbolizes the action space. The function E :
S × A × S′ → [0, 1], acts as the transition function. The
function r : S × A → R, is the reward function, and γ
denotes the discount rate. The goal of RL is to develop
a solution, denoted as a policy πθ(at|st), that effectively
maps states to actions, i.e., making the right decision in each
state. The optimization objective is:

θ∗ = argmax
θ

Eτ∼p(τ |θ)

[
T∑

t=0

γtr(st, at)

]
, (2)

where θ∗ denotes the optimal paramatrisation of the policy,
and st ∈ S, at ∈ A. The probability distribution over
trajectories, denoted as p(τ |θ), is induced by the policy πθ

and the transition function E.

Directed Evolution as Markov Decision Process. We
model the directed evolution process of a protein sequence
as a sequence of mutation decisions.

State Space Each state st ∈ S is a mutant sequence of the
protein. A protein sequence is delineated as an ordered array
of its constituent amino acids, which can be represented as
st = [xt

1, x
t
2, . . . , x

t
N ] at step t (where t = 0, . . . , T ). The

initial state s0 in this context is defined as the wild-type
protein. A state st is terminal (denoted as sT ) if it reaches
the maximum step limit T . In this formulation, the state s
can be exchangeable with the protein sequence X in Eq.(1).

Action Space The action consists of two parts, i.e., at =
(p̂t, x̂t), where p̂t is the position to mutate and x̂t is an
amino acid candidate. The policy first needs to decide
where to mutate, i.e., p̂t, then decide what to mutate, i.e.,
x̂t. E(st+1|st, at) denotes the probability of transitioning
to the next state st+1 at timestep t + 1 from state st with
action at. In our paper, the transition refers to mutation
from one protein sequence to another.

Reward Function The reward function quantifies the fit-
ness score for each instance of protein mutation. More
specifically, the reward value r(st, at) is derived following
the execution of action at (representing a specific muta-
tion) in state st, leading to the new state st+1. Here, we
let r(st, at) = F(st+1), where the function F maps the
extent of this change to the corresponding reward value.
This mapping function plays a pivotal role in quantitatively
assessing the impact of each mutational action within our
reinforcement learning framework.

The RL strategy aims to maximize the expected accumulated
scalar rewards over the course of the entire mutation process.
This sequential approach allows for a comprehensive evalu-
ation of the mutation process, focusing on the cumulative
impact of successive actions rather than isolated end results.
Considering Eq.(1) and Eq.(2), it is discernible that the ob-
jective of identifying an optimal solution in reinforcement
learning aligns congruently with the aim of ascertaining
the optimal protein sequence in directed evolution. This
alignment permits the conceptualization of the objective
function F(X) in directed evolution as analogous to the
reward function r(st, at) in the context of reinforcement
learning. Within this framework, each potential solution X
is analogous to executing an action at in a given state st.
Consequently, the endeavor to discover the optimal solution
in directed evolution is akin to the pursuit of an optimal
policy in reinforcement learning, thereby facilitating the
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Figure 1. Illustration of the amino acid knowledge graph (AAKG). We construct AAKG by leveraging AAontology (Breimann et al.,
2023), which encompasses a multitude of properties, enabling us to infer intricate relationships among amino acids.

establishment of the following equivalence relation:

minℓ(F(X)) ≃ argmax
θ

Eτ∼p(τ |θ)

[
T∑

t=0

γtr(st, at)

]
,

(3)
where ℓ(·) is the loss function to optimize the Eq.(1).

To ensure comprehensive understanding and facilitate ease
of reference throughout this paper, we include a detailed
table of symbols and their definitions in Appendix A.

4. Methodology
This section introduces KnowRLM for directed evolution,
encompassing the following processes. First, we construct
a knowledge graph of amino acids based on their proper-
ties, capturing intricate and interconnected relationships
among amino acids. Building upon this, we then propose a
Knowledge-Aware Policy to predict mutated sites and types
through preferential random walks on the AAKG. Last, the
reward model (i.e., a fitness predictor of mutants) provides
feedback to KAP. We optimize KnowRLM in an active learn-
ing manner, with the identified mutants being annotated by
an oracle and used to finetune the fitness predictor.

4.1. Amino Acid Knowledge Graph

Domain knowledge is crucial for protein analysis. Existing
knowledge sources either do not contain amino acid-level
information, such as ProteinKG25 (Zhang et al., 2022), or
lack structured relations, such as AAontology (Breimann
et al., 2023). To fill this gap, we construct an amino acid-
centric knowledge graph (AAKG). Figure 1 illustrates the
construction process of AAKG.

Specifically, based on AAontology, we identify various prop-
erties for each amino acid to construct AAKG, comprising
two levels: instance and class, colored yellow and red re-
spectively. At the class level, we have delineated amino acid
classes. To forge intra-amino acid connections, we elected
to also model the property at the class level. At the instance
level, the 20 amino acids are instantiated as entities of the

amino acid class, while various physicochemical properties
of amino acids, such as polarity and volume, are instanti-
ated as entities of the property class. Different amino acid
entities can establish indirect relations through property enti-
ties. Entities are assigned to their respective classes through
rdf :type, indicated by red dotted arrows. Furthermore, as
illustrated by the blue arrows, we establish inter-entity rela-
tionships through object properties, signifying the specific
numerical values pertaining to the amino acids’ properties.

With properties as intermediates, we establish connections
between amino acid entities. To do so, we measure the
physicochemical similarity between amino acid entities
based on the absolute average difference in all properties,
and use the ranking of similarity as their edge weight d(·)
in AAKG:

d(x, x′) =

Z∑
z=1

|Kz(x)−Kz(x
′)|, (4)

where Z represents the number of amino acid properties,
K represents the value of a property. The values of Z
and Kz(·) are determined according to AAOntology. This
provides a detailed and structured representation of amino
acid properties in the knowledge graph, depicting intricate
connections among amino acids.

4.2. Knowledge-Aware Policy

The knowledge-aware policy aims to sample the optimal
mutants with the highest fitness, which is achieved by pre-
dicting mutation sites and mutated amino acid types using
PLMs and AAKG, as shown in Figure 2.

Mutation Site Prediction. Given a wild-type protein se-
quence, similar to EvoPlay, at each timestep t, we conduct
single-site mutation. We begin by employing a PLM fol-
lowed by a multi-layer perception (MLP) to predict the most
likely mutation site of the n candidate sites:

p̂t = MLP(P(st)), (5)

where P denotes the PLM for protein embedding. Note
that these predictions are not traditional category labels but
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Figure 2. The proposed KnowRLM method consists of two main components: a knowledge-aware policy network and a reward model.
Starting from a wild-type protein sequence, we first employ a protein language model (PLM) followed by a multi-layer perception (MLP)
to predict the mutation site. The predicted site is then masked and suggested with other amino acids. Subsequently, the suggested amino
acids are fed into the PLM to obtain their embeddings, which are utilized for performing preferential random walks on the AAKG to
sample potentially optimal mutants. Finally, these mutants are evaluated using a reward model to calculate their fitness values and provide
feedback to the knowledge-aware policy network. The above procedure is iteratively conducted in an active learning manner.

rather form a part of the policy. Once the mutation site
is identified, the original amino acid at the position p̂t is
masked, leading to a temporary state:

sMASK
t+1 = [x1, . . . ,[MASK]p̂t

, . . . , xN ] .

Amino Acid Type Prediction. After determining the mu-
tation site p̂t, we then consider the appropriate amino acid
mutant. The process of amino acid mutation is conceptual-
ized as navigating from one amino acid node to another on
the AAKG.

Specifically, to align the statistical regularities in the PLM
with the physicochemical properties in the AAKG, we uti-
lize the position-sensitive amino acid embeddings from the
PLM as node embeddings in the AAKG. That is, [MASK]p̂t

is substituted with each of the 20 amino acids, denoted as
xi with i ∈ {1, · · · , 20}, converting sMASK

t+1 into sit+1:

sit+1 =
[
x1, . . . , x

i, . . . , xN

]
, (6)

which is then fed into the PLM model to generate the em-
bedding of amino acid xi at position p̂t: hxi = P(sit+1)[p̂t].

Identifying the mutant type of amino acids is achieved by
navigating from one amino acid node to another in AAKG.
The conventional random walk algorithm capable of path
finding neglects the prior knowledge information (Pearson,
1905). Hence, we introduce a preferential random walk
strategy. To measure the transition probability from one
node to an adjacent one, we employ the cosine similarity
between the embeddings of the two nodes. Our strategy is
to find the new replacement within the neighbourhood of
the amino acid xi specified by the AAKG. Mathematically,

the preferential random walk can be expressed as:

x̂t = argmax
{xj |d(xi,xj)<µ}

cos(hxi , hxj ), (7)

where d(·) is defined as Eq.(4), µ represents a hyperpa-
rameter threshold. By integrating the PLM with AAKG in
this manner, we can empower the policy network to make
well-informed action at = (p̂t, x̂t), leading to the state

st+1 = [x1, . . . , x̂t, . . . , xN ] (8)

where x̂t locates in the p̂t position of the protein sequence.

Dynamic Sliding Window Mechanism. In the context of
mutation processes, there is a tendency to mutate towards
amino acids with similar properties, which may lead to
convergence to the local optima. To counteract this and
encourage RL exploration, we introduce a dynamic sliding
window mechanism in the preferential random walk strategy,
as shown in Figure 3. This algorithm serves as a nuanced
complement to the preferential random walk, facilitating a
broader investigation of the protein space. To achieve this,
Eq. (7) can be rewritten as:

x̂t = argmax
d(xi,xj)∈[wl,wr]

cos(hxi , hxj ), (9)

where [wl, wr] represents the starting position of the slid-
ing window. The window position is dynamically adjusted
based on the fitness outcomes of mutations. If a mutation
results in an increase in fitness,

wl = max(w1, wl − δ), wr = max(w2, wr − δ), (10)
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Figure 3. Dynamic sliding window mechanism in our preferential random walk strategy. The initial window is located as shown in (b),
and the node V is the origin of amino acids. When mutations lead to an increase in fitness, the window will slide toward the origin, as
shown in (a), enabling the exploration of amino acids with similar properties. However, if consecutive mutations fail to increase fitness,
the window will slide away from the origin, as shown in (c). This allows the policy network to explore amino acids with significantly
different properties, thereby enhancing the potential to discover globally optimal solutions.

where δ is a small increment, w1, w2 are the lower bounds
of the left and right endpoints respectively. If multiple
consecutive mutations result in negligible changes,

wl = min(w3, wl + δ), wr = min(w4, wr + δ), (11)

where w3, w4 are the upper bounds of the left and right
endpoints respectively. The window size can be adjusted
adaptively. This sliding window mechanism is pivotal to bal-
ance exploration and exploitation in reinforcement learning.
It dynamically adjusts the scope of amino acid exploration
based on the evolving fitness landscape, ensuring that the
model does not prematurely converge on suboptimal solu-
tions and continues to explore diverse potential mutations.

4.3. Optimize Policy Function with Pseudo Reward

The policy optimization process involves iteratively adjust-
ing the policy network parameters to maximize accumulated
rewards

∑T
t=0 rt. It is worth noting that the reward function

rt is implemented by a fitness predictor, which provides a
pseudo-assessment of the fitness of mutants. This process
plays a crucial role in aligning the model’s output with the
specific goals of the directed evolution task, ensuring that
each successive iteration yields a protein sequence more
aligned with the desired characteristics. In our approach,
the policy function includes a mutation site prediction mod-
ule (composed of the trainable PLM P and MLP) and a
mutation type prediction module (implemented via prefer-
ential random walk and is parameter-free), as presented in
Section 4.2. The policy function is then optimized by maxi-
mizing the expected return, as in Eq. (2), through the policy
gradient algorithm:

∇θJ(θ) =

Eτ∼p(τ |θ)

[
T∑

t=0

(
T∑

t′=t

γt′−trt′

)
∇θ log πθ (at | st)

]
.

(12)

4.4. Finetune Reward Function with Annotated Mutants

The reward function rt (i.e., the fitness predictor F) is fine-
tuned within an active learning framework. This approach
iteratively samples protein sequences through the policy
network, followed by annotating the fitness of these sam-
ples by an oracle. Each round of sampling and annotation
contributes to the accumulating dataset used for training the
fitness predictor. Hence, it is characterized by a continuous
cycle of sampling, annotating, and training, allowing the
model to progressively refine its predictive capabilities. The
optimization of the predictor F involves adjusting its pa-
rameters to minimize the regression loss function in Eq.(3),

ℓ =
1

D

D∑
d=1

|F(Xd; η)− y(Xd)| . (13)

Herein, y(Xd) is the annotated fitness value of the protein
Xd with in the training dataset, with d ∈ {1, · · · , D}.

The specific details of KnowRLM are included in Appendix
B. Within the framework of active learning, we elucidate
the process of optimizing the model and exploring variants
through iterative cycles of reinforcement learning.

5. Experimental Results
5.1. Experimental Settings

Datasets. Our study utilized two widely recognized pub-
lic datasets, GB1 (Wu et al., 2019) and PhoQ (Podgornaia
& Laub, 2015), to assess the effectiveness of the proposed
KnowRLM method. The GB1 dataset represents the domain
B1 of protein G, a critical component in numerous biological
processes. This dataset is renowned for its complexity and
is extensively used to benchmark MLDE methods. It com-
prises a comprehensive array of 149,361 annotated mutants,
derived from a possible 160,000 combinations, concentrated
around four critical mutation sites: V39, D40, G41, and V54.
This dataset’s intricate fitness landscape, with numerous
local optima and a majority of mutants displaying fitness
values below the wild-type GB1, provides a rigorous testing
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Table 1. Performance comparison across varying sample sizes on the GB1 dataset.

Sample size 192 288 384

Evaluation metric max mean NDCG max mean NDCG max mean NDCG

MLDE 0.650 0.183 0.767 0.680 0.217 0.794 0.684 0.203 0.789
ftMLDE(EVmutation) 0.725 0.233 0.791 0.770 0.280 0.814 0.935 0.414 0.833
ftMLDE(Transformer) 0.761 0.239 0.792 0.814 0.298 0.819 0.932 0.416 0.813

CLADE 0.785 0.309 0.801 0.802 0.303 0.803 0.835 0.458 0.857
CLADE2.0 0.886 0.376 0.808 0.903 0.419 0.858 0.935 0.491 0.879

EvoPlay 0.837 0.433 0.826 0.834 0.457 0.839 0.840 0.460 0.847
KnowRLM 0.931 0.494 0.851 0.972 0.534 0.862 0.972 0.562 0.884

Table 2. Performance comparison across varying sample sizes on the PhoQ dataset.

Sample size 192 288 384

Evaluation metric max mean NDCG max mean NDCG max mean NDCG

MLDE 0.309 0.069 0.753 0.364 0.087 0.775 0.361 0.095 0.791
ftMLDE(EVmutation) 0.297 0.072 0.754 0.431 0.114 0.807 0.436 0.115 0.804
ftMLDE(Transformer) 0.346 0.073 0.756 0.414 0.108 0.802 0.422 0.117 0.815

CLADE 0.319 0.070 0.759 0.441 0.089 0.762 0.467 0.089 0.777
CLADE2.0 0.345 0.118 0.781 0.383 0.125 0.779 0.399 0.148 0.814

EvoPlay 0.443 0.119 0.782 0.444 0.135 0.786 0.474 0.143 0.804
KnowRLM 0.486 0.129 0.821 0.532 0.152 0.816 0.658 0.157 0.819

ground for MLDE methodologies. The fitness values in this
dataset primarily gauge the binding efficacy of various GB1
mutants to the antibody IgG-Fc. Complementary to GB1,
the PhoQ dataset focuses on a different protein, featuring
140,517 annotated data points out of 160,000 potential mu-
tants across four mutation sites: A284, V285, S288, and
T289. The fitness value in this dataset is indicative of the
phosphatase or kinase activity of various PhoQ mutants.
This dataset allows for the exploration of another dimension
of protein functionality, diversifying the scope of our study.
Due to the unsuccessful expression of certain protein mu-
tants in the biological experiments used to construct these
datasets, it suggests that these mutants may not adhere to
the fundamental principles of proteins and might not exist in
the physical world. Consequently, some mutants lack fitness
values. To address this issue, we implemented a strategy
that imposes a higher penalty on mutants lacking fitness
values, thereby discouraging such mutations.

Evaluation Metrics. The evaluation of the MLDE method-
ologies in this study employs a multifaceted approach to en-
sure a comprehensive assessment of the model performance.
Normalized Discounted Cumulative Gain (NDCG) (Wang
et al., 2013) serves as a principal metric due to its relevance
in ranking-related problems, which is analogous to selecting
high-fitness mutants among a pool of candidates. NDCG
evaluates the correlation between the predicted and actual

fitness values of mutants. Beyond NDCG, evaluating the
model’s effectiveness involves analyzing both the mean and
maximum fitness values of a combined set, which includes
both the samples generated during the sampling process and
the top-ranking mutants identified in the prediction phase.
These metrics collectively offer a comprehensive view of
the model’s capabilities, encompassing not only its ability
to identify the highest fitness mutants (maximum value) but
also the overall fitness level across the entire set of mutants
considered (mean value).

We performed an extensive comparative analysis of our
approach relative to five sophisticated baseline methodolo-
gies, including MLDE(Wu et al., 2019), ftMLDE(Wittmann
et al., 2021), CLADE(Qiu et al., 2021), CLADE2.0(Qiu
& Wei, 2022) and EvoPlay(Wang et al., 2023). Spe-
cific baseline configurations and implementation details
are provided in the Appendix C. Our code is available at
https://github.com/HICAI-ZJU/KnowRLM.

5.2. Main Results

Performance Comparison. To evaluate KnowRLM, we
conducted a comparative analysis with several state-of-the-
art (SOTA) baselines on the GB1 and PhoQ datasets. The
performance of all methods is presented in Table 1 and Ta-
ble 2. Our findings, as detailed in two tables, show that
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Table 3. Results of ablation study on the AAKG
max mean NDCG

GB1

192 Know 0.931 0.494 0.851
No-Know 0.768 0.403 0.816

288 Know 0.972 0.534 0.862
No-Know 0.887 0.508 0.818

384 Know 0.972 0.562 0.884
No-Know 0.930 0.504 0.816

PhoQ

192 Know 0.486 0.129 0.821
No-Know 0.447 0.126 0.793

288 Know 0.532 0.152 0.816
No-Know 0.447 0.138 0.814

384 Know 0.658 0.157 0.819
No-Know 0.446 0.143 0.819

MLDE, which often yields sequences with low fitness due
to its reliance on random sampling, performed the least
effectively among the methods tested. Conversely, meth-
ods like ftMLDE (EVmutation), ftMLDE (Transformer),
and CLADE, CLADE2.0, EvoPlay, which respectively use
prior information, hierarchical clustering, evolution score
and Monte Carlo Tree in their models, mitigated this is-
sue to varying degrees. Simultaneously, we delved into the
impact of Sampling Rounds. Our observations revealed
that KnowRLM requires only one or two rounds to sur-
pass most other methods, significantly reducing the cost
and time associated with annotating mutant varieties. Sam-
ple sizes of 196, 288, and 384 were indicative of one, two,
and three rounds of reinforcement learning, respectively. In
these settings, KnowRLM consistently outperformed the
comparative methods. Additionally, it was observed that
on relatively simpler datasets, such as GB1, the efficacy
of KnowRLM did not significantly diminish despite a re-
duction in the number of training samples. This not only
highlights its effectiveness but also presents a promising so-
lution for scenarios characterized by a scarcity of biological
experimental data.

Sampling Result Analysis. The ftMLDE model posits that
the abundance of high-fitness mutants within the training
dataset can augment predictive performance. In the GB1
and PhoQ datasets, 92% of mutants exhibit fitness values
below 1% of the global maximum, highlighting the diffi-
culty and importance of efficiently identifying high-fitness
mutants during sampling. This influences the global land-
scape prediction for GB1 and PhoQ significantly. However,
our findings suggest that, in addition to high-fitness mu-
tants, mutants exhibiting a diverse range of fitness are also
crucial. These diverse mutants play a pivotal role in en-
hancing the understanding of the global fitness landscape.
Existing methods rely heavily on the final prediction stage,
often failing to identify high-fitness and diverse mutants
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Figure 4. Evaluating the performance of 384 mutants sampled from
the GB1 and PhoQ datasets.
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Figure 5. Analysis of the mutation process. The vertical axis repre-
sents the number of steps per trajectory, while the horizontal axis
indicates the number of trajectories. A policy with AAKG can
complete trajectories in fewer steps, i.e., it can more efficiently
identify the variants with higher fitness than the wide-type protein.

during sampling, leading to extensive and time-consuming
biological experiments. KnowRLM addresses this issue
effectively. As shown in Figure 4, by comparing the mean
and maximum fitness values of 384 samples, we demon-
strate KnowRLM’s superior sampling performance on both
datasets. Particularly in the GB1 dataset, KnowRLM demon-
strated superior performance compared to the reinforcement
learning method Evoplay, exhibiting 1.53 and 2.46 times the
maximum and average fitness values, respectively. Further-
more, it also showed notable improvement in the context
of the PhoQ dataset. Meanwhile, as illustrated in Figure 5,
we have visualized the advantages of knowledge-enhanced
strategies in identifying variants. Compared to strategies
without knowledge enhancement, these approaches require
fewer actions to discover variants with high adaptability.
Most often, they succeed in finding such variants within
one or two actions. Additionally, the maximum number of
actions required is significantly lower in comparison.

5.3. Ablation Study

We conducted an ablation experiment to investigate the im-
pact of the knowledge graph module on the effectiveness
of the reinforcement learning algorithm. To assess the sig-
nificance of AAKG in the RL framework, we executed our
approach without the utilization of AAKG in the policy
section. Instead, the PLM was employed to fill in masked
mutation sites and determine the mutated amino acids. The
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Table 4. Ablation experiments on dynamic sliding windows on the
GB1 dataset

max mean NDCG

192

Non dynamic 0.831 0.472 0.826
Original 0.931 0.494 0.851

w1 ↑ w2 ↑ w3 w4 0.958 0.470 0.813
w1 w2 w3 ↓ w4 ↓ 0.951 0.496 0.815

w1 ↑ w2 ↓ w3 ↓ w4 ↓ 0.945 0.500 0.820

288

Non dynamic 0.862 0.492 0.859
Original 0.972 0.534 0.862

w1 ↑ w2 ↑ w3 w4 0.958 0.510 0.828
w1 w2 w3 ↓ w4 ↓ 0.963 0.544 0.857

w1 ↑ w2 ↓ w3 ↓ w4 ↓ 0.971 0.553 0.860

384

Non dynamic 0.862 0.513 0.826
Original 0.972 0.551 0.878

w1 ↑ w2 ↑ w3 w4 0.971 0.543 0.853
w1 w2 w3 ↓ w4 ↓ 0.965 0.559 0.869

w1 ↑ w2 ↓ w3 ↓ w4 ↓ 0.973 0.581 0.892

findings, as presented in Table 3, demonstrate that across
various numbers of reinforcement learning iterations, the
integration of a knowledge graph invariably leads to an
improvement in performance. This effect is especially pro-
nounced under scenarios characterized by a constrained
number of reinforcement learning cycles and a shortage of
annotated protein data. This finding underscores the critical
role of the knowledge graph in enhancing the policy network
to effectively navigate the protein mutation space.

We also conducted ablation experiments on the dynamic
window strategy to investigate the impact of this module on
our algorithm. As shown in Table 4, when the sliding win-
dow mechanism was disabled, a significant decline in model
performance was observed. This finding strongly supports
the critical role of the sliding window strategy in enhancing
the effectiveness of the model. Furthermore, we explored
the effects of modifying the dynamic window parameters
(w1, w2, w3 and w4) through additional tests, focusing on
the GB1 dataset. Our experiments indicate that changing
these parameters within a considered reasonable range does
not substantially affect performance. However, it is note-
worthy that extreme modifications to these parameters can
deviate the results from our initial objectives, leading to a
decline in performance. This underscores the importance
of maintaining a balanced configuration of dynamic win-
dow parameters to preserve model efficiency and accuracy.
Specific window parameters are detailed in Appendix C.

6. Conclusion and Future Work
This study demonstrates the significant potential of inte-
grating knowledge graphs with reinforcement learning for
protein directed evolution. Our proposed KnowRLM show-

cases an improved capability to identify high-fitness mutants
efficiently, reducing the number of required experimental
rounds and associated costs. Looking ahead, we antici-
pate that more sophisticated amino acid knowledge graphs
can be proposed, potentially incorporating more dynamic
and expansive biological data. Additionally, we can use a
richer knowledge graph to assist in processing more com-
plex mutations and explore its applicability in diverse pro-
tein engineering scenarios, aiming to broaden the horizons
of computational biology and biotechnological innovation.
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A. Definitions of symbols
To ease reading and facilitate understanding of our KnowRLM, in Table 5, we summarize the symbols and notations
employed throughout the paper.

Table 5. Definitions of symbols used in this paper.
Symbol Description
i, j the index number, i, j ∈ [1, 20]
X a protein sequence
N the number of amino acids in a protein sequence

xi, xj the i-th and j-th amino acid in nature
y the ground-truth fitness value of a protein sequence
D the total number of protein samples in the training set

F(·) the sequence-to-fitness prediction function.
Z the number of amino acid properties
K the value of a property
P a PLM model that generates the protein embedding
X the protein space
S the state space
A the action space
E the probability of transitioning to the next state
st state at time t in S
at action at time t in A
τ the trajectory of actions
πθ the policy that maps states to actions, also be written πθ(at|st), parameterized by θ

p(τ |θ) the probability distribution over trajectories
r(st, at) the reward value following the execution of action at in state st
d(x, x′) the edge weight between the amino acid x and x′

ℓ(·) the collective name for the loss function
J(·) the optimization objective function of the policy function

B. Algorithm definition
We provide a pseudo code of KnowRLM as follows so that the readers can easily understand the whole learning procedure.

Algorithm 1 KnowRLM for Directed Evolution
Input: AAKG, Initial policy network and reward model;
Output: The fitness predictor F , Sampled mutant set Q;
Initialize Q = ∅, the rounds of active learning M , the maximum steps of optimizing policy T ;
for m = 1, . . . ,M do

for t = 1, . . . T do
Predict mutation sites by p̂t = MLP(P(st))
Predict mutated amino acid type by x̂t = argmax

d(xi,xj)∈[wl,wr]

cos(hxi , hxj )

Optimize the policy network by ∇θJ(θ) = Eτ∼p(τ |θ)

[∑T
t=0

(∑T
t′=t γ

t′−trt′
)
∇θ log πθ (at | st)

]
end
Collect and annotate the high-reward mutants Qm

Q = Q∪Qm

Finetune the reward model with Q by ℓ = 1
D

∑D
d=1 |F(Xd; η)− y(Xd)|, D = |Q|

end
F = Final reward model
return F , Q
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C. Experimental setup
Baseline. We conducted a comprehensive comparison of our method against four advanced baseline methodologies.

• MLDE (Wu et al., 2019): This method employs a stochastic sampling method from the entire combinatorial space,
followed by the use of these samples to train a machine learning ensemble for fitness prediction, illustrating the
effectiveness of random sampling in capturing mutant diversity.

• ftMLDE (Wittmann et al., 2021): Our comparison includes ftMLDE’s unique sampling strategies EVmutation and
MSA-transformer. This method is a blend of various sampling and encoding methods, offering a multifaceted approach
to mutant selection and fitness prediction.

• CLADE (Qiu et al., 2021): This method utilizes hierarchical clustering for sampling, targeting high-fitness mutants. It
then employs supervised learning to train a fitness predictor, integrating clustering algorithms with precision learning.

• CLADE2.0 (Qiu & Wei, 2022): An advanced version of CLADE, it incorporates a composite scoring function using
profile HMM (Finn et al., 2011), EVmutation (Hopf et al., 2017), DeepSequence VAE (Riesselman et al., 2018), and a
pretrained PLM, enriching the sampling phase with a multi-faceted scoring system.

• EvoPlay (Wang et al., 2023): EvoPlay employs a unique combination of reinforcement learning techniques, including
the Monte Carlo Tree Search (MCTS) and a policy-value neural network. This method is specifically adapted for
mutating single-site residues in protein sequences, thereby optimizing their properties through an iterative, strategic
process similar to game playing.

Implementation Details. We employed the open-source protein pre-trained model ESM-2 (Verkuil et al., 2022) as the PLM
in the policy network. The reward function employs an ensemble machine learning framework (Wittmann et al., 2021),
which includes a diverse array of robust learning methodologies. These include XGBoost, 1D Convolutional Networks, and
Long Short-Term Memory (LSTM) models, thereby ensuring a multifaceted approach to the evaluation process. The synergy
of these diverse methodologies enhances the precision and reliability of the fitness assessment, offering a comprehensive
and nuanced understanding of the evolutionary potential of the protein mutants. Assign a positive reward value to good
mutation outcomes and a negative reward value to poor ones. Notably, we impose a substantial penalty for mutations that
result in illogical protein sequences, assigning a reward value of -100. Furthermore, a reward value of -1 is set for the rare
instances of generating unknown protein sequences.

In accordance with the baselines, we consider amino acid alternation with n = 4 mutation sites. In the preparation phase of
the experiment, we employed a clustering method that is consistent with the one used in the CLADE approach(Qiu et al.,
2021), resulting in the sampling of 96 mutants. These samples were subsequently annotated by the oracle, a process integral
to evaluating the selected samples’ fitness. Following this, the 96 annotated samples served as the initial training data for the
reward model, which was developed to furnish reward values for the reinforcement learning algorithm. Furthermore, the
discount factor in Eq.(12) is 0.99. The entropy coefficient is set at 0.2, alongside a clipping parameter of 0.2, crucial for
stabilizing the policy gradient updates. We implemented Vectorized Environments, an advanced method that aggregates
multiple independent environments into a single unified environment.

Our model was developed and executed within the PyTorch framework, supplemented by the Stable-Baselines3 (Raffin et al.,
2021) framework for reinforcement learning. The code is run on a Ubuntu server equipped with a single GPU (NVIDIA
TESLA V100 32G), ensuring high-performance computing capabilities essential for handling the complexity of the model
and the property of the data.

Ablation Experiment Supplement. Regarding the dynamic sliding window parameters, we carefully conducted experiments
to ascertain the impact of varying w1, w2, w3, and w4 on our model’s performance. Using the GB1 dataset as a case study,
we adjusted these parameters within a predefined reasonable range (details of which are provided in Table 6).

We conducted additional experiments where we replaced AAKG with random values. As shown in the Table 7, the
performance on the GB1 and PhoQ datasets both decreased. However, the introduction of noise may potentially encourage
exploration in reinforcement learning, hence the mean and max results still meet the threshold. Notably, NDCG performance
significantly decreased, indicating a lower understanding of the overall protein space. We also conducted the experiments that
substitute AAKG with BLOSUM62. For the simpler GB1 dataset, the incorporation of domain knowledge from BLOSUM62
achieved a comparable performance to our method. However, on the more challenging PhoQ dataset, BLOSUM62 is inferior
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to ours. Even when considering sample sizes of 192 and 288, we observed that both the mean and maximum performance
metrics remain below those achieved under random conditions. This suggests that the generalization ability of BLOSUM62
is limited.

Table 6. Dynamic sliding window parameters

w1 w2 w3 w4

Original 0 6 14 20
w1 ↑ w2 ↑ w3 w4 2 8 14 20
w1 w2 w3 ↓ w4 ↓ 2 8 10 17

w1 ↑ w2 ↓ w3 ↓ w4 ↓ 4 6 8 16

Table 7. Performance comparison

Dataset Sample size 192 288 384

Evaluation metric max mean NDCG max mean NDCG max mean NDCG

GB1
Random 0.862 0.377 0.710 0.903 0.470 0.797 0.954 0.467 0.777

BLOSUM62 0.862 0.497 0.845 0.904 0.515 0.851 0.972 0.542 0.841
AAKG 0.931 0.494 0.851 0.972 0.534 0.862 0.972 0.562 0.884

PhoQ
Random 0.455 0.114 0.779 0.447 0.119 0.788 0.455 0.127 0.791

BLOSUM62 0.316 0.097 0.763 0.337 0.097 0.759 0.486 0.132 0.807
AAKG 0.486 0.129 0.821 0.532 0.152 0.816 0.657 0.157 0.819
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