
1 
 
 

Abstract 1 

Item difficulty plays a crucial role in 2 

adaptive testing. However, few works have 3 

focused on generating questions of varying 4 

difficulty levels, especially for multiple-5 

choice (MC) cloze tests. We propose 6 

training pre-trained language models 7 

(PLMs) as surrogate models to enable item 8 

response theory (IRT) assessment, avoiding 9 

the need for human test subjects. We also 10 

propose two strategies to control the 11 

difficulty levels of both the gaps and the 12 

distractors using ranking rules to reduce 13 

invalid distractors. Experimentation on a 14 

benchmark dataset demonstrates that our 15 

proposed framework and methods can 16 

effectively control and evaluate the 17 

difficulty levels of MC cloze tests.  18 

1 Introduction 19 

Multiple-choice cloze tests are fill-in-the-blank 20 

questions that assess reading comprehension and 21 

overall language proficiency by requiring test 22 

takers to select the correct missing words from 23 

options. Table 1 gives an example test item 24 

consisting of a stem with a gap to fill, a key or 25 

answer, and three distractors. 26 

 27 

Stem: 
I knelt and put my arms around the child. Then the tears 
came, slowly at first , but soon she was ___ her heart out 
against my shoulder. 

Options: 
A. crying       B. shouting       C. drawing      D. knocking 

Key: A        Distractors:  B  C  D 

Table 1: A question item of MC Cloze test. 28 

 29 

MC cloze test questions have been a focus of 30 

research because they are a common question 31 

format on standardized language proficiency 32 

exams such as TOEFL, TOEIC, IELTS, and 33 

college/high school entrance exams.   In this paper, 34 

we address the research questions of generating 35 

MC cloze test of different item difficulty levels. 36 

Prior studies on cloze test question generation 37 

have concentrated largely on distractor generation, 38 

with the goal of reproducing distractors exactly 39 

matching the benchmark datasets (Chung et al. 40 

2020; Ren et al., 2021; Chiang et al. 2022; Wang et 41 

al. 2023). Although some studies have 42 

acknowledged the benefit of having distractors 43 

with diverse difficulty levels (Yeung et al., 2019), 44 

there has been minimal investigation into 45 

generating distractors with difficulty level different 46 

from the benchmark.  47 

Item difficulty plays a crucial role in adaptive 48 

testing. It is a parameter that determines which 49 

questions to present to a test taker and estimates 50 

their proficiency level. Therefore, the difficulty of 51 

each item should be known beforehand so 52 

appropriate questions can be selected during the 53 

test (Susanti et al. 2017). However, only a number 54 

of works have focused on generating question 55 

items of various difficulty levels, for RC questions 56 

(Gao et al. 2019a), C-test questions (Lee et al. 2019 57 

and 2020), and MC cloze questions (Susanti et al. 58 

2017). This research gap is largely due to the lack 59 

of a reliable metric to evaluate the item difficulty 60 

of generated questions. Most previous study relies 61 

on human test takers and human annotation for 62 

assessing the change of difficulty levels (Susantia 63 

et al. 2017, Lee et al. 2019). 64 

    Our research has two main goals: (1) We propose 65 

strategies to generate cloze-test questions by 66 

controlling both the distractors and the gap, with 67 

consideration for reducing invalid distractors. (2) 68 

We address the problem of objective and efficient 69 

evaluation by using PLMs as subject surrogates to 70 

mimic Item Response Theory, bypassing the need 71 

for human test subjects. We will provide our dataset 72 

and codes upon request.73 
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 75 

Table 2: Recent Research on Question Generation for Language Proficiency Test 76 

 77 

2 Related Research 78 

   The language proficiency test commonly adopts 79 

cloze tests (open or multiple-choice), C-tests, and 80 

reading comprehension (RC) to assess students' 81 

language skills. Question Generation (QG) aims to 82 

create natural and human-like questions from 83 

diverse data sources. Research on MC cloze test 84 

question generation primarily focuses on tasks 85 

such as analyzing factors influencing item 86 

difficulty (Susanti et al., 2017), distractor 87 

generation (Yeung et al., 2019; Ren and Zhu, 2021; 88 

Chiang et al., 2022), and reducing invalid 89 

distractors (Zesch and Melamud, 2014; Wojatzki et 90 

al., 2016). Table 2 presents a comparative analysis 91 

of recent studies on the automatic generation of 92 

cloze test, RC, and C-test. 93 

For MC cloze test, distractor generation 94 

algorithms aim to identify plausible but incorrect 95 

candidates for filling in blanks. Selection is based 96 

on semantic proximity to the target word, measured 97 

through methods like WordNet (Brown et al., 98 

2005), thesauri (Smith et al., 2010), and word 99 

embeddings similarity (Guo et al., 2016; Susanti et 100 

al., 2015; Jiang and Lee, 2017). Recent studies 101 

utilize confidence scores from BERT models 102 

(Devlin et al. 2018) for ranking distractor 103 

candidates, outperforming semantic similarity 104 

methods in correlation with human judgment 105 

(Yeung et al., 2019). Ren and Zhu (2021) apply 106 

knowledge-based techniques to help generate 107 

distractor candidates. Chiang et al. (2022) suggest 108 

BERT-based methods as superior in distractor 109 

generation. Their candidate selection relies on 110 

confidence scores from pretrained language 111 

models. Wang et al. (2023) propose a Text2Text 112 

formulation using pseudo Kullback-Leibler 113 

divergence, candidate augmentation and multi-task 114 

training, enhancing performance in generating 115 

distractors that align with benchmarks. 116 

Item difficulty is crucial in adaptive testing, yet 117 

few studies focus on generating items with diverse 118 

difficulty levels different from standard benchmark 119 

datasets. Furthermore, these works typically rely 120 

on human test-taker evaluations (Susanti et al., 121 

2017; Lee et al., 2019). A few studies used model 122 

judgments in RC test (Gao et al., 2019) and C-test 123 

(Lee et al., 2020). In related research on question 124 

difficulty estimation, QA models are also proposed 125 

to estimate difficulty through item response theory 126 

(Benedetto, 2022). 127 

Related Research Answer 
Type Dataset 

Factors to Control/Generate Difficulty 
Control 

(Evaluation  
Method) 

Difficulty 
Level Distractor  

(Selection Method) 

Gap 
(Generation 

Method) 
Stem 

Gao et al. 2019a R. C. SQuAD   Ö Yes  
(RC system) Item Level 

Gao et al. 2019b R. C. RACE Ö   None  
Chung et al. 2020 R. C. RACE Ö    None  

Qiu et al. 2020 R. C. RACE Ö   None  
Felice et al. 2022 Open Cloze private  Ö (Electra)  None  
Matsumori et al. 

2023 Open Cloze private  Ö  
(gap score)  None  

Lee et al. 2019 C-test Beiborn 
et al.2016 

 
Ö (prediction)  Yes (Human 

Subject) Item Level 

Lee et al. 2020 C-test Beiborn 
et al.2016 

 Ö  
(entropy)  Yes (MLP 

model) 
Proficiency 

Level 

Susantia et al. 2017 MC Cloze TOEFL 
iBT Ö (feature-based)  Ö Yes (Human 

subject) Item Level 

Yeung et al. 2019 MC Cloze Chinese 
sentences 

Ö (BERT-based 
ranking)   None  

Ren and Zhu, 2021 MC Cloze DGen Ö (featured-based 
L2R)   None  

Panda et al. 2022 MC Cloze ESL 
lounge 

Ö (BERT-based and 
feature-based)   None  

Chiang et al. 2022 MC Cloze CLOTH, 
DGen 

Ö (BERT-based and 
feature-based))   None  

Wang et al. 2023 MC Cloze CLOTH, 
DGen Ö (Text2Text)   None  

Our Research MC Cloze CLOTH 
Ö (BERT-based 

and feature-based 
with validity rules) 

Ö (confidence-
based entropy)  

Yes (PLM-
based IRT 

Assessment) 
Item Level 
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    Gap generation has been the focus in the context 128 

of C-tests (Lee et al. 2019 and 2020). In open cloze 129 

tests, Felice et al. (2022) recommend transformer 130 

models and multi-objective learning for gap 131 

prediction. Matsumori et al. (2023) propose a 132 

masked language model approach with a gap score 133 

metric for generating open cloze questions tailored 134 

to specific target words. In contrast, research 135 

addressing the control of difficulty levels by 136 

modifying both distractors and gaps in multiple-137 

choice cloze tests is lacking. 138 

3 Methodology 139 

Our research addresses key challenges in 140 

generating MC cloze questions. We aim to produce 141 

questions with varying difficulty by managing both 142 

the gap and distractors, using ranking rules to 143 

eliminate invalid distractors. We also propose a 144 

PLM-based IRT assessment framework to 145 

objectively evaluate item-level difficulty changes, 146 

alleviating reliance on human annotation. 147 

As shown in Figure 1, our approach involves: (1) 148 

training PLM-based models on benchmark data to 149 

simulate test-takers; (2) designing strategies to 150 

control difficulty by manipulating gaps and 151 

distractors; (3) using PLM-based surrogate models 152 

to take the modified tests and applying IRT to 153 

evaluate difficulty changes. 154 

 155 

 156 

Figure 1: Research Structure 157 

3.1 IRT Assessment with PLM-based 158 

Surrogate Models 159 

Calibrating test difficulty traditionally requires 160 

trials with human subjects, which is time-161 

consuming and costly. IRT is a framework to 162 

estimate item difficulty unsupervised (Benedetto, 163 

2022; Susanti et al., 2017). Previous work used 164 

Reading Comprehension systems or MLP models 165 

to evaluate change of predictions (Gao et al. 2019a, 166 

Lee et al. 2020). We propose that predictions by 167 

various PLMs with different settings can simulate 168 

human test-taking for IRT without actual test-169 

takers. 170 

We fine-tune 12 PLM models on each dataset 171 

using BigBird (Zaheer et al. 2020) and Electra 172 

(Clark et al. 2020) with different hyperparameters. 173 

Control strategies generate hard and easy versions 174 

of each test fold. Trained surrogate models take 175 

these versions, and their scores are aggregated 176 

across folds. An IRT model fitted on the aggregated 177 

scores for the original and modified tests evaluates 178 

difficulty shifts between easy and hard versions by 179 

modeling score distributions.  180 

3.2 Difficulty-controllable Question 181 

generation 182 

     For difficulty-controllable question generation, 183 

we combine PLM-based confidence scores, 184 

semantic similarity and edit distance metrics, and 185 

validity rules to generate gaps and distractors at 186 

tunable difficulty levels. 187 

 188 

Gap Difficulty Control: 189 

Entropy has been studied as a proxy for gap 190 

complexity in open cloze tests (Felice et al., 2022) 191 

and C-tests (Lee et al., 2020). We propose 192 

leveraging pre-trained model confidence scores for 193 

entropy estimation of candidate gaps, without 194 

separate training (Figure 10, Appendix B). 195 

Given a cloze stem, we identify candidate gap 196 

words matching the POS tag of the original key. 197 

We fine-tune a model like BERT to predict words 198 

for each candidate gap. For each gap, we calculate 199 

the Shannon entropy using the top K predictions 200 

ordered by the model's confidence score:201 

 202 

where 𝑥!  is the 𝑖"#	word predicted by BERT for 203 

the candidate gap, and 𝑝(𝑥!)   is BERT model’s 204 

confidence score for 𝑥!  . 205 
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We sort candidate gaps by entropy and select 206 

high entropy ones for hard questions and low 207 

entropy for easy questions. Hard questions are 208 

generated by selecting hard gaps and generating 209 

more difficult distractors for the selected gaps, and 210 

vice versa for easy questions. 211 

 212 

Distractor Difficulty Factors: 213 

     Inspired by previous work (Susantia et al. 2017, 214 

Yeung et al. 2019, Ren and Zhu 2021, Chiang et al. 215 

2022), we design three factors for distractor 216 

generation: semantic similarity using word2vec 217 

cosine similarity, syntactic similarity using 218 

Levenshtein distance, and PLM confidence scores 219 

for gap prediction.      220 

 221 

• Confidence score   222 

     Formally, let 𝕄(	) be a PLM model finetuned 223 

with our training data set, S be a cloze stem, V  be 224 

a vocabulary list, A be the answer of S, and 𝑑! be a 225 

word in V as a candidate distractor. We denote a 226 

given stem S with the cloze blank filled in [𝑀𝑎𝑠𝑘] 227 

with 𝑆⨂[&'()] . 228 

Confidence score 𝐶!   for 𝑑!  given by PLM is 229 

defined: 230 

𝐶! = 𝑝(𝑑!|𝕄(𝑆⨂[&'()])	231 

  232 

• Semantic similarity 233 

The semantic similarity 𝑆!  of the candidate 234 

distractor and the answer is defined as: 235 

 236 

𝑆! = 𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐸𝑚𝑏𝑒𝑑(𝑑!), 𝐸𝑚𝑏𝑒𝑑(𝐴)) 237 

 238 

where 𝐸𝑚𝑏𝑒𝑑(	)  refers to Glove Embedding. 239 

 240 

• Levenshtein ratio 241 

The Levenshtein ratio measures string similarity 242 

on a scale from 0 to 1. It is defined as: 243 

𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛+'"!, =
𝑠𝑢𝑚 − 𝑙𝑑𝑖𝑠𝑡

𝑠𝑢𝑚
 244 

where sum is the total length of two strings, and 245 

ldist is the weighted edit distance between two 246 

strings based on Levenshtein distance (Levenshtein 247 

et al. 1966). The Levenshtein distance counts 248 

insertions, deletions, and substitutions to transform 249 

one string into the other. The weighted distance is 250 

calculated as: 251 

 252 

𝑙𝑑𝑖𝑠𝑡 = 𝑁𝑢𝑚(𝐼𝑁𝑆𝐸𝑅𝑇) + 𝑁𝑢𝑚(𝐷𝐸𝐿𝐸𝑇𝐸) + 2253 

∗ 𝑁𝑢𝑚(𝑅𝐸𝑃𝐿𝐴𝐶𝐸) 254 

 255 

Invalid Distractor Control 256 

Challenging distractors are semantically similar 257 

to correct answers, but selection based solely on 258 

semantic scores or PLM confidence may generate 259 

invalid distractors that plausibly fit the gap. 260 

Previous work suggests context-sensitive lexical 261 

inference rules can filter potentially appropriate 262 

distractors (Zesch and Melamud, 2014). Our 263 

analysis reveals that fine-tuning BERT and ranking 264 

distractors by confidence scores produces 302 265 

items with 482 invalid distractors, 365 of which 266 

ranked higher than the correct answer. 267 

Motivated by these observations and previous 268 

research (Zesch and Melamud, 2014), we design 269 

validity rules: 270 

(1) Valid distractors have lower confidence 271 

ranking than answers. (2) For hard items, top two 272 

distractors by semantic similarity and Levenshtein 273 

ratio are selected from 50 ranks after the answer. 274 

(3) For easy items, bottom two are chosen from 275 

ranks 50-100 after the answer. 276 

Annotation and validity rule impact analysis are 277 

in Appendix C. 278 

 279 

Distractor Selection Strategy 280 

With the three defined control factors and 281 

validity rules, we design two strategies for 282 

generating challenging or easy distractors. For 283 

distractor generation, we use BERT to rank and 284 

score all candidate words, then select the top 100 285 

ranks after the correct answer to form the distractor 286 

candidate list, implementing the first validity rule. 287 

The first strategy, Confidence-Ranking Control 288 

(Figure 11, Appendix B), chooses the top 3 highest-289 

confidence distractors from the candidate list for 290 

difficult questions and the bottom 3 for easier 291 

questions. 292 

The second strategy, 3-Factor Ranking Control, 293 

combines all three control factors – confidence 294 

scores, word2vec embedding similarity, and 295 

Levenshtein distance – along with validity rules 2 296 

and 3 (Figure 12, Appendix B). This integrated 297 

approach allows us to tune distractor difficulty. 298 

4 Experiment Design 299 

This section presents the experimentation details 300 

for validating our proposed framework and 301 

methods. Table 6 provides generation examples 302 

referencing the original item shown in Table 1. 303 

 304 

 305 
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 Distractor generation w/ Confidence-Ranking Control Distractor generation w/ 3-Factor Ranking Control 

Hard  

(I) 
Stem: 

I knelt and put my arms around the child. Then 
the tears came, slowly at first , but soon she was 
___ her heart out against my shoulder. 

Options: 
A. crying    B. sobbing   C. pouring  D. weeping 

Key: A        Distractors:  B  C  D 
 

(II)  
Stem: 

I knelt and put my arms around the child. Then 
the tears came, slowly at first , but soon she was 
___ her heart out against my shoulder. 

Options: 
A. crying    B. screaming   C. cried   D. crushed 

Key: A        Distractors:  B  C  D 
 

Easy 

(III)  
Stem: 

I knelt and put my arms around the child. Then 
the tears came, slowly at first , but soon she was 
___ her heart out against my shoulder. 

Options: 
A. crying    B. counting   C. shouting  D. booming 

Key: A        Distractors:  B  C  D 
 

(IV)  
Stem: 

I knelt and put my arms around the child. Then 
the tears came, slowly at first , but soon she was 
___ her heart out against my shoulder. 

Options: 
A. crying    B. owing   C. caves   D. sobbed 

Key: A        Distractors:  B  C  D 
 

Table 3:  Generated hard and easy items for the original item in Table 306 

 307 

4.1 Dataset 308 

Various datasets have been used for cloze test 309 

generation (Table 1), with CLOTH1  (Xie et al., 310 

2017) and DGen (Ren & Zhu, 2021) being popular 311 

choices. DGen compiles science questions from 312 

diverse sources and levels, while CLOTH contains 313 

cloze-style English reading comprehension 314 

questions for middle-school and high-school 315 

entrance exams. We selected CLOTH as it aligns 316 

closely with our goal of controlling item difficulty 317 

for adaptive testing. We strictly follow the “Terms 318 

and Conditions” as listed on the download site. 319 

We divided the CLOTH dataset into two sets 320 

according to its two proficiency levels – CLOTH-321 

M for middle school and CLOTH-H for high 322 

school entrance exams. Each set was further 323 

segmented into 5 folds. Within each fold, we split 324 

the passages into stems. Stems comprised 325 

consecutive sentences leading up to the first 326 

[MASK] token (i.e. gap), ensuring sufficient 327 

context surrounding the cloze deletion. Data 328 

statistics is provided in Appendix A.  329 

4.2 Evaluation 330 

For each data fold, we trained 12 PLM models 331 

using BigBird and Electra architectures, with 332 

learning rates of 1e-4, 1e-5, and 3e-5, batch sizes 333 

of 16 and 32, epoch of 1 and AdamW optimizer. 334 

We conducted experiments on a single NVIDIA 335 

Quadro RTX 8000 GPU. The control strategies 336 

were applied to the “Test” split. By concatenating 337 

the scores across all surrogate models and test 338 

folds, IRT models were then fitted to quantify 339 

overall changes in test difficulty. We use the py-irt 340 

 
1 https://www.cs.cmu.edu/~glai1/data/cloth/ 

library (Lalor and Rodriguez, 2023) as it leverages 341 

PyTorch and GPU acceleration for faster and more 342 

scalable IRT modeling compared to existing 343 

libraries. We apply the 1PL (also known as the 344 

Rash model) with default setting. This model 345 

estimates a latent ability parameter for subjects and 346 

a latent difficulty parameter for items, which fits 347 

exactly what we intend to evaluate. 348 

5 Results and Analysis 349 

Surrogate Model Performance    350 

   Table 3 presents the surrogate models' average 351 

accuracies across the five test data folds on the 352 

original cloze items. Italic numbers indicate the 12 353 

CLOTH-M surrogates' performances, while 354 

underlined numbers show the 12 CLOTH-H 355 

surrogates. The models exhibit a wide accuracy 356 

range (0.42 to 0.81), demonstrating diverse 357 

capabilities as artificial test takers for difficulty 358 

modeling. 359 

 360 

Proficiency CLOTH-M CLOTH-H 
Model BigBird Electra BigBird Electra 
1e-4，16 0.4282 0.7106 0.4234 0.527 
1e-4，32 0.6691 0.7306 0.5671 0.6601 
1e-5，16 0.811 0.7613 0.7902 0.7119 
1e-5，32 0.8081 0.7602 0.7974 0.7102 
3e-5，16 0.6093 0.7558 0.687 0.7008 
3e-5，32 0.798 0.7615 0.7814 0.7072 

Table 4. Surrogate models’ performance  361 

 362 

   To further analyze the surrogate models, we 363 

select 4 as middle school surrogates (Electra (1e-4, 364 

16), Electra (1e-4, 32), Bigbird (1e-4, 32), and 365 

Electra (3e-5, 32)) and 3 as high school surrogates 366 
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(Bigbird (1e-5, 16), Bigbird (1e-5, 32), Bigbird 367 

(3e-5, 32)). These models are trained similarly and 368 

tested on both CLOTH-M and CLOTH-H. The 369 

table below compares the average accuracies, 370 

standard deviations, and utility ratios of the 12-371 

surrogate sets and the middle and high school 372 

surrogate subsets: 373 

 374 

Model 
CLOTH-M CLOTH-H 

Avg. 
Acc. Stdv Utility 

Ratio 
Avg. 
Acc. Stdv Utility 

Ratio 
12 0.717 0.104 73.9% 0.672 0.108 72.1% 

4-mid 0.718 0.034 38.2% 0.615 0.072 52.2% 
3-high 0.803 0.006 10.4% 0.79 0.007 10.9% 

Table 5. Comparing surrogate models 375 

    376 

   The utility ratio is the percentage of test questions 377 

remaining after excluding those answered correctly 378 

or incorrectly by all test takers. The 4 middle 379 

school surrogates perform better on CLOTH-M 380 

and worse on CLOTH-H, while the 3 high school 381 

surrogates substantially outscore them on CLOTH-382 

M. The smaller standard deviations demonstrate 383 

these sets represent distinct proficiency levels. The 384 

12-surrogate sets achieve higher utility ratios 385 

(73.9%, 72.1%) than the middle and high school 386 

sets, and are retained for evaluating item difficulty 387 

control given their better utility and diverse 388 

performances to distinguish between stronger and 389 

weaker students. 390 

 391 

Performance of Control Methods  392 

 Figures 2 and 3 present the effect of generating 393 

difficult and easy items using the Confidence-394 

ranking algorithm and 3-Factor strategy. The red 395 

lines show IRT distributions for difficult generated 396 

items, the blue lines for easy items, and the black 397 

dotted lines mark the original test difficulty. 398 

Both strategies systematically manipulated 399 

cloze item difficulty. Across CLOTH-M and 400 

CLOTH-H, the strategies successfully generated 401 

harder items (red distribution shift right) and easier 402 

items (blue shift left) compared to the original test 403 

items. 404 

However, CLOTH-H exhibits a narrower spread 405 

between high and low difficulty items, indicating 406 

greater efficacy adjusting difficulty for the lower 407 

proficiency CLOTH-M rather than the advanced 408 

CLOTH-H. 409 

 410 

Effect of Gap Control 411 

   The effect of gap position control on difficulty 412 

control differs for intermediate (CLOTH-M) 413 

versus advanced (CLOTH-H) questions. For 414 

CLOTH-M, retaining the original gap position 415 

versus modifying it does not substantially impact 416 

the efficacy of confidence ranking or 3-factor 417 

ranking (Fig. 4). The item difficulty distributions 418 

remain relatively consistent. 419 

    In contrast, for CLOTH-H, retaining the original 420 

gap positions leads to wider item difficulty 421 

distributions when generating hard questions, as 422 

shown by the rose dashed line and the red dashed 423 

line in Figure 4. However, for generating easy 424 

CLOTH-H items, controlling the gap position or 425 

not produces similar difficulty distributions. 426 

 427 
Figure 2. Change of IRT for CLOTH-M with Confidence-428 

Ranking  (above) and 3-Factor Ranking Control (below) 429 

 430 

 431 
Figure 3. Change of IRT for CLOTH-H with Confidence-432 

Ranking (above) and 3-Factor Ranking Control (below) 433 
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434 

Figure 4:  Comparing the Effect of Gap-control on Two Strategies for Two Datasets 435 

 436 

Comparing Confidence-ranking and 3-Factor 437 

Ranking on Generating Easy and Hard Items 438 

Comparing the two control strategies, 3-factor 439 

ranking generates a slightly wider range of easy 440 

item difficulties for both datasets as shown in 441 

Figure 5. Meanwhile, confidence-ranking method 442 

without gap control produces slightly wider 443 

distributions of hard items for both datasets as 444 

evident in Figure 6. 445 

 446 
Figure 5: Confidence-ranking and 3-factor ranking w/ 447 

and w/o Gap control on generating easy items for 448 

CLOTH-M (above) and CLOTH-H (below) 449 

 450 
Figure 6: Confidence-Ranking and 3-Factor Ranking w/ 451 

and w/o Gap control on generating hard items for 452 

CLOTH-M (above) and CLOTH-H (below) 453 

 454 

Best Combination Strategies and 455 

Advantage of Gap Control 456 

   We provide the box plot analysis on best 457 

combination control strategies for the two 458 

proficiency tests. Figures 7 and 8 show that the best 459 

strategy combination is the 3-Factor Ranking 460 

control without gap for easy question and 461 

confidence ranking control without gap for hard 462 

questions. Figure 9 shows Gap Control with 3-463 

Factor ranking enhances easy CLOTH-M item 464 

generation over 3-Factor without gap control. 465 
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While maintaining the same mean difficulty, Gap 466 

Control increases variability, indicating improved 467 

ability to span multiple difficulty values - better 468 

fulfilling key needs when creating easy test 469 

questions. 470 

 471 

 472 
Figure 7: Best combination for CLOTH-M: 3-Factor 473 

Ranking without Gap Control for Easy Items and 474 

Confidence-Ranking without Gap Control for Hard Items 475 

Generation. 476 

 477 

Figure 8: Best combination for CLOTH-H: 3-Factor Ranking 478 

without Gap Control for Easy Items and Confidence-Ranking 479 

without Gap Control for Hard Items Generation. 480 

 481 

Figure 9: Gap Control strategy increases item variability than 482 

without gap control for 3-Factor Ranking method on easy 483 

item generation for CLOTH-M. 484 

6 Conclusions 485 

In this work, we proposed a novel evalutation 486 

framework for assessing control of item-level 487 

difficulty for MC Cloze test. By using diverse 488 

pretrained models as surrogate test takers, we fitted 489 

IRT distributions to quantify changes in difficulty - 490 

avoiding reliance on human test subjects.  491 

    We designed two strategies leveraging entropy, 492 

semantic similarity, edit distance to manipulate 493 

both the gap position and distractor selection for 494 

difficultuy-controlled question generation. We 495 

further implemented validity rules to reduce 496 

generation of invalid distractors. 497 

   Systematic experimentation shows: (1) The 498 

advanced test (CLOTH-H) is more difficult to 499 

control than intermediate test (CLOTH-M); (2) 500 

Gap control has a limited effect, yet increases item 501 

variability for easy CLOTH-M generation; (3) 502 

Comparatively, 3-Factor Ranking Control method 503 

works better for easy items generation while 504 

Confidence Ranking Control method exceeds at 505 

hard item generation; (4) Validity rules reduce but 506 

do not eliminate invalid distractors -- further study 507 

into this challenge is desired. 508 

7 Limitation 509 

Our difficulty control methods worked better for 510 

intermediate exam questions than advanced ones. 511 

More research is needed to improve the methods' 512 

ability to handle very complex test items. 513 

Additionally, our techniques should be validated 514 

across other subject domains. Questions also 515 

persist around optimizing validity methods to 516 

avoid invalid distractors. We do not anticipate any 517 

potential risks or ethical concerns arising from the 518 

proposed framework for generating multiple-519 

choice cloze test questions with controllable 520 

difficulty levels using pre-trained language models. 521 

 522 
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A Data Statistics 662 

Table 3 presents the number of items per split in 663 

our dataset. 664 

 665 

Fold Split CLOTH-M  CLOTH-H  

0 
Train 17123 42540 

Validate 5678 14189 
Test 5669 14139 

1 
Train 16975 42432 

Validate 5757 14155 
Test 5738 14281 

2 
Train 17011 42628 

Validate 5680 14145 
Test 5779 14095 

3 
Train 17094 42502 

Validate 5733 14194 
Test 5643 14172 

4 
Train 17077 42463 

Validate 5752 14224 
Test 5641 14181 

 666 

Table 6: Data Statistics 667 

B Algorithms 668 

Figures 8, 9, and 10 present the algorithms for 669 

Gap Control, Confidence-Ranking Control, and 3-670 

Factor Ranking Control respectively. 671 

672 
Figure 10: Gap Generation Algorithm 673 

 674 
Figure 11: Distractor Generation with Confidence-Ranking Control 675 
 676 

 677 

Figure 12: Distractor Generation with 3-Factor Ranking Control 678 

C Annotation for Invalid Distractor 679 

Control 680 

We analyzed the issues of invalid distractors with 681 

human evaluation. We recruited 9 college students 682 

at the CET-6 English proficiency level as 683 

annotators. The annotators work with our research 684 
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lab on regular basis and receive subsidy for their 685 

annotation work under supervision of our 686 

administrative office. 687 

   The invalid distractors will most likely appear 688 

when generating hard items. Using BERT’s 689 

confidence score ranking without validity control, 690 

we generated distractors for 4,575 items randomly 691 

selected from the CLOTH-H dataset. Manual 692 

annotation identified 1,676 items as having at 693 

least one invalid generated distractor (i.e., a 694 

distractor that could fit as an answer in the gap). 695 

As our control strategies involves ranking 696 

distractors after the answer, we identified 302 697 

items to further test validity rules. Among the 906 698 

distractors generated, 482 were annotated as 699 

invalid, representing an invalidity ratio of 53.2%. 700 

After applying the Confidence-Ranking Control 701 

method and 3-Factor Ranking Control method, 702 

the ratios dropped to 20.3% and 17.3% 703 

respectively (Table 7). 704 

Strategy Num. of Invalid 
Distractors 

Ratio of Invalid 
Distractors 

Confidence 
ranking w/o 
validity rules 

482 53.2% 

Confidence-
ranking Control 184 20.3% 

3-Factor Ranking 
Control 160 17.7% 

Table 7. Manual annotation of 906 distractors 705 

generated with confidence ranking w/o validity rules, 706 

and our methods of Confidence-Ranking Control and 707 

3-Factor Ranking Control 708 

    The following are examples of items with the 709 

answer (bolded) and invalid distractors 710 

(italicized) generated by confidence ranking 711 

without validity rules. The same item with 712 

distractors generated using Confidence-ranking 713 

Control and 3-Factor Ranking Control is also 714 

shown below: 715 

Example #1: 716 

I hope I did the right thing, Mom, Alice said. I saw 717 

a cat, all bloody but alive. I [MASK] it to the vet's, 718 

and was asked to make payment immediately. 719 

(1) Original options: 720 

A. carried  B. followed  C. returned D. guided 721 

(2) Distractors generated without control: 722 

     A. carried  B. took  C. brought  D. delivered 723 

(3) Distractors generated with 3-Factor Ranking 724 

Control: 725 

     A. carried  B. showed   C. reported  D. tried 726 

(4) Distractors generated with Confidence 727 

Ranking Control: 728 

     A. carried  B. transported   C. hauled  D. rode 729 

Example #2: 730 

[MASK] this surprised him very much, he went 731 

through the paper twice, but was still not able to 732 

find more than one mistake, so he sent for the 733 

student to question him about his work after the 734 

exam. 735 

(1) Original options: 736 

A. As   B. For   C. So   D. Though 737 

(2) Distractors generated without control: 738 

     A. As   B. Because  C. Although  D. Though 739 

(3) Distractors generated with 3-Factor Ranking 740 

Control: 741 

     A. As   B. Even   C. Once  D. Soon 742 

(4) Distractors generated with Confidence 743 

Ranking Control: 744 

     A. As   B. Realizing   C. Again  D. Initially 745 

 746 

D Instruction to Annotators for Invalid 747 

Distractor Identification. 748 

Instruction: You are given a set of multiple-749 

choice cloze test questions, each with four options. 750 

The correct answer is identified, along with three 751 

generated distractor options. Please review the 752 

choices and identify any “invalid distractors” - 753 

alternatives that contextually fit the gap as a 754 

potentially correct response, rather than an 755 

implausible one.  756 

For example: 757 

-------------------------- 758 

When I began planning to move to Auckland to 759 

study, my mother was worried about a lack of jobs 760 

and cultural differences. Ignoring these ____ I got 761 

there in July 2010. 762 

A. concerns        B. worries  763 

C. fears               D. considerations 764 

---------------------------- 765 

Here, the answer is "concerns". The generated 766 

distractors include "worries". Both are 767 

grammatically correct. "Concerns" fits the 768 

semantic context only slightly better. Therefore, 769 

in this case, "worries" is considered an "invalid 770 

distractor". 771 
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Your annotation results will help assess the 772 

efficacy of our difficulty-control strategies in 773 

limiting invalid distractor generation for multiple 774 

choice cloze tests. 775 


