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ABSTRACT

We study offline constrained reinforcement learning from human feedback with
multiple preference oracles. Motivated by applications that trade off performance
with safety or fairness, we aim to maximize target population utility subject to
a minimum protected group welfare constraint. From pairwise comparisons col-
lected under a reference policy, we estimate oracle-specific rewards via maximum
likelihood and analyze how statistical uncertainty propagates through the dual pro-
gram. We cast the constrained objective as a KL regularized Lagrangian whose
primal optimizer is a Gibbs policy, reducing learning to a one-dimensional convex
dual problem. We propose a dual-only algorithm that ensures high-probability
constraint satisfaction and provide finite-sample performance guarantees for the
resulting Gibbs policy. Our analysis shows how estimation error, data coverage,
and constraint slack jointly affect feasibility and optimality.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has rapidly become a cornerstone for align-
ing Al behavior with human preferences, especially when explicit reward specification is impractical
or unreliable. Early studies in preference-based reinforcement learning demonstrated that effective
policies can be derived directly from comparative human judgments (Jain et al., 2015; Busa-Fekete
et al., 2014; Daniel et al., 2015; Wirth et al., 2016). Building on this foundation, deep-RL meth-
ods showed that reward models learned from pairwise feedback outperform hand-crafted rewards
in complex domains such as games and robotics (Christiano et al., 2017). The same paradigm has
proven successful for language modeling: preference-guided PPO (Ziegler et al., 2020), recursive
reward modeling (Wu et al., 2021), and instruction-tuned systems like InstructGPT (Ouyang et al.,
2022) substantially enhance the helpfulness, harmlessness, and truthfulness of large language mod-
els. These empirical successes have, in turn, spurred a growing body of theoretical work aimed at
rigorously characterizing the statistical and computational properties of RLHF (Xiong et al., 2024;
Jietal,, 2025; Kaufmann et al., 2024).

Theoretical work in RLHF began with (Novoseller et al., 2020), which minimized regret from trajec-
tory comparisons using Dueling Posterior Sampling. Follow-up algorithms such as PPS and PEPS
(Xu et al., 2020), PR-LSVI (Wu & Sun, 2024), and PARL (Chakraborty et al., 2024) established re-
gret bounds and convergence guarantees. Other contributions include generalizing to rich dynamics
and feedback (Chen et al., 2022), deriving minimax regret bounds (Saha et al., 2023), and analyz-
ing policy optimization under linear and neural models (Du et al., 2024). Further developments
expanded the feedback models (Zhu et al., 2023; Zhan et al., 2024), introduced interactive and
feedback-efficient learning frameworks (Kong & Yang, 2022), and provided off-policy guarantees
(Li et al., 2023), privacy protection (Chowdhury & Zhou, 2023), and algorithmic reductions from
standard RL (Wang et al., 2023). Recent work sharpens safety and robustness via high-confidence
constraint satisfaction (Chittepu et al., 2025) and convergence under unknown preference mappings
(Zhang & Ying, 2025).

Most of the analysis so far focuses on a single Oracle model, where the reward is mainly dependent
on the preferences given by a single oracle. Many practical deployments demand more than a
single “helpfulness” objective: the system must maximize performance for its primary users while
ensuring that the protected group achieves a predefined standard. This multi-objective alignment is
essential for fairness, such as limiting cultural misappropriation or mitigating disparate impact across
demographic groups (Siddique et al., 2023); for legal compliance, where decisions must adhere
to open-textured regulations like those in the European Convention on Human Rights (Botskina,
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2025); and for safety-critical operation, where behavior must remain within formally verified safety
envelopes (Dai et al., 2024). These requirements can be formalized as a constrained RLHF problem
involving two distinct reward oracles:

max E,[r]] — nDky(w||mo) st Ex[r3] > Jmin,

where 7] reflects utility for the primary users, 75 quantifies the welfare of the protected group, 7 is
a reference policy, Jyi, denotes the minimum acceptable performance for the protected group, and
1 > 0 governs the trade-off between utility and deviation from the reference policy.

In this paper, we investigate constrained RLHF in the offline setting, where the learner receives a
fixed batch of preference data consisting of paired comparisons annotated by both the primary and
the protected populations. The learner must synthesize a policy without any further environment
interaction. Our main contributions are:

* We present the first formal treatment of constrained RLHF with multiple reward oracles, integrat-
ing preference-based reward estimation and constraint satisfaction into a unified framework.

* We design a dual-only algorithm that jointly optimizes the policy and Lagrange multiplier, using
reward estimates inferred from offline pairwise comparisons provided by both oracles.

* We provide non-asymptotic, sample-dependent and sample-independent guarantees showing how
dataset coverage governs the optimality gap and constraint violation of the learned policy.

To the best of our knowledge, this work is the first to establish finite-sample guarantees for con-
strained RLHF with multiple reward oracles in the offline setting.

2 RELATED WORK

This section reviews two lines of prior work: we survey key results in RLHF, and we outline the
main ideas in constrained RL. This context highlights the gap that our study addresses.

RLHF: A growing body of work has established theoretical guarantees for RLHF in both online and
offline regimes. In the offline regime, Zhu et al. (2023) provided the first finite-sample guarantees
for policies trained via maximum likelihood estimation under the Bradley—Terry model with linear
rewards (Bradley & Terry, 1952). Building on this, Zhan et al. (2024) introduced the FREEHAND
algorithm, which generalizes earlier approaches by allowing a broader class of reward functions and
feedback models. Kong & Yang (2022) developed feedback-efficient frameworks that incorporate
human-in-the-loop reward specification. Li et al. (2023) provided the first off-policy analysis for
offline RLHF via the DCPPO algorithm. Zhu et al. (2024) addressed overfitting and overoptimiza-
tion in reward learning and proposed the IDS algorithm for improved robustness. Chowdhury &
Zhou (2023) studied privacy-preserving reward learning in preference-based RL. Wang et al. (2023)
presented reduction-based approaches that adapt reward-based RL algorithms to the RLHF setting,
showing how theoretical guarantees transfer. Finally, Zhou et al. (2025) unified the analysis of
privacy and robustness in offline RLHF.

Constraint RL: Constrained RL traces dates back to CMDP formulations of the 1970s—1990s
(Kolesar, 1970; Ross, 1989; Altman, 1999). Foundational optimization ideas such as Lagrangian re-
laxation (Everett, 1963; Shapiro, 1979) and primal-dual updates (Altman, 1998; Efroni et al., 2020;
Bertsekas, 2016) motivated algorithms that embed multipliers directly into RL procedures (Zheng
& Ratliff, 2020; Ding et al., 2020; Ying et al., 2022). In the offline setting, guarantees are now avail-
able for primal—dual critic methods (Hong et al., 2024), LP-based algorithms under partial coverage
(Hong & Tewari, 2025), and multi-constraint primal policy optimization (Guan et al., 2024).

3 FORMULATION

In this section, we present the problem formulation. We extend the standard preference-based RLHF
setup (Ouyang et al., 2022; Xiong et al., 2024) to the constrained setting. Let X be the finite prompt
space and A the finite response space. A prompt x ~ dy is first sampled from a fixed distribu-
tion dg. Conditional on x, two independent responses a,a’ € A from the reference policy 7o are
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produced. Feedback is then collected from two independent human-preference oracles: a target-
population oracle 01 and a protected-group oracle 05. Each oracle’s binary preference, following the
Bradley—Terry model, is modeled as a Bernoulli random variable whose success probability is given
by a logistic function of the latent reward gap:

Ok(maaaa/) ~ Ber (o(ri(z, a) — TZ(xva/))) . kefl,2},

where 7} : X x A — R is the unknown reward function for oracle k and o(z) = (1 +e %)~ '1is
the logistic link. Specifically, o (x, a,a’) = 1 indicates that oracle oy, prefers action a over action
a’,denoted as a >}, a’.

We operate in the offline setting, where the learner has access to a dataset Dy =
{(z4, al(-l), a§2), Yi1,Yi2) Y, consisting of prompts, response pairs, and corresponding binary pref-
erences. Each tuple (xi,agl),agz)) is drawn ii.d. from the distribution (x,a,a’) ~ pg =
do(x)mo(alx)mo(a’|x). For each triplet, the preferences y; 1,y; 2 € {0,1} are independently sam-
pled from the two oracles o; and oy. More specifically,

) a@)) = ]P’(al(.l) K a52)|x,a§-1) a(-2)) = U(r,’:(a:i,a(l)) - r?;(xi,a@)))

P(y’i,k = 1|I7ai s &g s &g i i

The learner seeks a policy 7* : X — A(A) that maximizes the expected reward of the target
population, remains sufficiently close to a reference policy 7, and ensures a minimum level of
welfare for the protected group. Here, A(.A) denotes the set of all probability distributions over the
response set .A. Formally, the goal is to solve the following constrained optimization problem:

max By [Banr(lo) 1 (@, @)] = nDice (w(-|2) 7o (- |2))]
S.t. Ewwdo [EaNﬂ'HI) [7“3(37,@)]] Z Jmirn

where II denotes the set of all policies 7 : X — A(A), Jmin denotes the minimum acceptable
reward for the protected group, and 1 > 0 controls the trade-off between utility and divergence from
the reference policy. For notational convenience, we rewrite the problem in abstract form:

. <
max J(m) st e(m) <0, (1)
where J(m) denotes the regularized target reward objective, and c(m) = Jpin —

Esndo [Eamn(|)[r3 (2, a)]] is the constraint function. Throughout the paper, we adopt the short-
hand notation E; = E,4, ]EaN,r(.‘w) and E := E, . q,, unless stated otherwise.

Following Xiong et al. (2024); Zhu et al. (2023), we impose the following assumptions on the
reference policy and the reward functions.

Assumption 1 (Full coverage). For every x € X, the reference policy wo(- | ) has full support
over the finite action space A.

Assumption 2 (Linear reward). For each k € {1,2}, the latent reward is assumed to be linear in a
known feature map ¢, i.e., ri(z,a) = (05, d(x, a)), with || p(x, a)|| < 1forall (z,a) and |6} < B.
Assumption 3 (Identifiability). Let A(z;a,a’) = ¢(x,a) — ¢(x,a’) and define the population
difference covariance matrix ¥, ‘= E(z,a,a/)r\zpo[A(x; a, ' )A(z; a, a’)T]. We assume that ¥, =
0, or equivalently,span{A(z;a,a’) : © € X,a,a’ € A} = R%, so that 0} for k € {1,2} is uniquely
identifiable from pairwise comparisons.

Notice that the identifiability assumption is necessary for the uniqueness of 6. Without it, there
exists a nonzero vector v such that v " A(x;a,a’) = 0, forall # € X and a,a’ € A. In that case,
the likelihood is invariant along the ray 6 + tv for ¢t € R, so the solution set for 6}, is an affine line
rather than a point.

4  ANALYSIS

In this section, we analyze the constrained optimization problem introduced above. First, using the
offline preference dataset Dy, we obtain maximum-likelihood estimators 7; and 75 of the latent
reward functions 77 and r3. We then construct the corresponding Lagrangian, derive the associated
dual problem, and verify the convexity conditions required for strong duality.
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4.1 REWARD ESTIMATION

Under Assumption 2 and 3 and the conditional independence of oracle preferences given
1) 42 )) the joint log-likelihood of the dataset DN is

(xﬂ a’i ’ 7
INORSE i Sl
ke{1,2} i=1
where £ (05) = yilogo((0x, Ai)) + (1 = i) logo(— (0, Ay)), and A; = ¢(w;,al"))
o(x4, a; (2 )) Maximizing the individual log-likelihoods ZN E (0r) foreach k € {1, 2} yields the
maximum-likelihood estimators Hk. By Lemma 3.1 of Zhu et al. (2023), the in-sample estimation
error satisfies, with probability at least 1 — 26 for every k € {1,2},

~ . d+log(1/0
||9k—ek||zN,mg<c\/72g]<V“ + DuegB? = By

where || - [, ., denotes the Mahalanobis norm induced by the regularized empirical covariance
matrix Xy reg = Upy + Aregd With

1 N
N:NZ

Here d is the feature dimension, 3 is an upper bound on the norm of the reward parameters, Ayeg > 0
is the regularization parameter, v = 1/(2+e~ 2 +e?) reflects the curvature of the logistic likelihood,
and C' > 0 is a problem dependent constant.

We factor the likelihood under conditional independence for clarity, but our guarantees are agnostic
to this assumption: the stated rates hold under arbitrary dependence and thus represent the worst
case over correlation structures between 07 and ¢;. When prior correlation or shared latent structure
is known, joint estimation can exploit it to tighten constants and reduce sample complexity. Absent
such knowledge, the independence-based presentation serves as a baseline that avoids modeling or
validating dependence.

4.2 DUAL PROBLEM ANALYSIS

Let L£(m, A) be the Lagrangian of the constrained problem (1). We have
L(m,A) = Ex[ri (2, a) + Ar3(, a)] = nE[Dgr(m(-]2)[|mo(-x))] = AJmin
The associated dual problem is therefore miny>o max, £(m, A).
Observe that IT is a convex set. Moreover, for every = € X, the KL-divergence Dk, (7 (- | x)||7o(- |

x)) is strictly convex in (- | ). Hence, the primal problem is a strictly concave maximization with
an affine constraint, and under Slater’s condition, the strong duality holds.

Assumption 4 (Slater’s condition). There exists a policy © € Il and a slack p > 0 such that
Eﬁ' [7‘3 (x7 a)] Z Jmin + p-

Slater’s condition can be verified using the greedy policy for r5. With the estimate 52, the slack
p can be approximated with high probability, since with probability at least 1 — § we have ||y —
05155, vee < Bn- Thus, if By is sufficiently small, the slack can be estimated using Ez[72(z, a)] —

= (02, 0(a. ).

Corollary 1. Let T be the greedy policy w.rt.0s, ie.,7(a|z) = 1{a € argmax, <02, d(x,a’))}.
With probability at least 1 — 6,

Jmin, Where 7 is the greedy policy for 72 (z, a)

BN
Amin(EN,reg)
Hence, if the right-hand side is strictly larger than J iy, Assumption 4 holds with slack

. . BN
5= 4 (Bala(z,0)) T Tuin )
min ,reg

Ex[r5(x,a)] > Ez[r2(z,a)] —
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Proof. Applying Cauchy—Schwarz, the confidence bound |6 _§2||2N,mg < Bn,and ||p(z,a)]| < 1
yields the inequality. O

This estimate can be used to bound the optimal dual parameter. Since J(7) is strictly concave and
the feasible set is convex, the constrained problem admits a unique optimal policy 7* € II.

Consider the dual function g(A) = max,L(7, A). By standard results for KL-regularized objectives
(e.g., Zhang (2023)), the maximizer 7} = arg max, £L(m, A) has the Gibbs (Boltzmann) form
7o(alz) exp (% (07 + N5, (x, a)>)

Zx(x)

m(alz) =

where Z,(z) is the normalizing constant, also referred to as the partition function. Having a closed-
form solution to the dual problem enables an efficient dual-only algorithm. Following Xiong et al.
(2024), we assume access to a “Policy Improvement Oracle”.

Definition 1 (Policy Improvement Oracle (Xiong et al., 2024)). For reward functionr : X x A — R
and a reference policy m, for all x € X, we can compute the Gibbs policy:

o mo(- | 7) - exp (71]7"(1‘, -)> .

(| ) = argmax B r(jz) (2, a) —nlog m

Next, we analyze the properties of the dual function g(-). By the envelope theorem, we have
g/()‘) = Eﬂ'; [7’; ($7 CL)] — Jmin-

Since 7} belongs to an exponential family, its mean parameter is Lipschitz continuous given bound-
edness of its sufficient statistics. Consequently, the derivative of the dual function g’(\) is Lipschitz
continuous (Wainwright & Jordan, 2007; Brown, 1986).

2
Lemma 1. The derivative g'()\) is Lipschitz continuous with Lipschitz constant L = %.

Proof. Fix x € X, and let A(\) = log Z,(«x) denote the log-partition function of 73 (- | ). Then

d _ N d? _ N
aA()‘) =" IEWK(‘\JC)[TQ(LL"G')]’ WA()‘) =0 2C0v,r;(.|x)(7"2(x,a)).
By Assumption 2, the reward function is bounded by B, so the covariance is bounded by B2, and
hence the derivative of A is Lipschitz with constant at most ]3—22. O

The same properties also hold for the empirical dual function g(\) = max, L(m, X; b1, 52) where

L(m, \; 61,02) denotes the Lagrangian of the primal problem (1) with the true parameters 6; and 63
replaced by their statistical estimates. In this case, 75 is replaced in the proof by 75, the policy that
attains the maximum in g(\). Next, we quantify the gap between g(\) and g(\), as well as their
derivatives, in terms of the estimation errors of 67, 65, and the regularized sample covariance matrix.
These bounds make explicit how statistical uncertainty propagates through the dual program.

Lemma 2. For any \ > 0 we have with probability at least 1 — 20, we have

. (1+X)BN ~ / BN B(1+)
g(X) —g(N)| < Tt and |§'(\) — g (V)| < S r— <1+ ; )

where Amin (XN reg) > 0 is the smallest eigenvalue of regularized sample covariance matrix.

proof. Notice that [g(\) — G(A)| < maxye(ns 7,y |£(m, X 05,05) — L(7, X; 01,65)|. This implies
the bound

max  Eq [[6(z,0)llg |- 101 = 01+ A8~ 62)5y.se

me{my,ma}t
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Finally, by the MLE error and the bound ||¢(, CL)HZ]—Vl < |lo(z, a)||/ v/ Amin (XN reg), the result
,reg
follows. To bound the difference of derivatives, notice that

T (N) = ' (V)| = [z, [72] — Exs [r3]] < [Ea, [F2 — r3]| + Bz, [r3] — Exy [r3]].
The first term can be bounded as before, while the second is bounded as follows:

Bz, [r2] = En [r3]] < N1631] - 1Banzy (12) [¢(2; 0)] = Earrns (12 [0(2; a)]]

(a) 1 ~ ~ 1 14+ A
& BIR @+ 30) - 207 + a0 < — N
n n n )\min(EN,rcg)
where (a) follows from the boundedness of 65 and an argument similar to Lemma 1. O]

The bounds above yield practical, data—dependent upper bound on the accuracy of estimating g(\)
and its derivative. To decouple these guarantees from a particular sample, note that X 5 ¥,
by the law of large numbers. Moreover, standard covariance concentration for bounded feature
differences implies that |5 — X o ||op is small with high probability, where || - ||, denotes the op-
erator norm. Using this, the following proposition provides a high—probability, sample—independent
change—of-norm relations.

Lemma 3. With probability at least 1 — 8, the following bounds hold for any v € R?:

1012 x res

Cmin((sa N) '

1012 x res

v res <
G0N S o2 <

and similarly
Gonin (6, V) - [0llt < [ollz < a8, N) - [0l

Here (nin(0, N) and (max (0, N) quantify the deviation of the smallest and largest eigenvalues of
YN reg from their asymptotic counterparts, respectively, and are given by

Cmax(& N) = \/(1 + gN((S)))\ma»x(ZDm) + )\Tega

Cmin(& N) = \/(1 - §N(6)))\min(EDm) + )\reg-

The error terms are

d+ log(§) N d+ 1og(%)
N N

)\max(E’D ),
Amin (ZDOC ) EN( )

Zn(6) == CK? and gy (6) =

Proof. By Assumption 2, we have ||¢(z,a)||2 < 1. Therefore |A|l2 < 2. Hence A is a sub-
Gaussian vector with parameter & = O(1). Then by Theorem 4.7.1 and Remark 4.7.3 in Vershynin
(2018) we have with probability 1 — §, we have || Xp,, — Xp__ |lop < EN(0)||I XD, |lop-

Since ¥p_, and ¥p,, are both positive semi-definite, by triangle inequality we have
/\max (EDN) S )\max(z'Doo) + Amax(EDN - E'Doc) S (1 + gN((s)))\max(EDoc)
Furthermore, by a corollary (spectral stability) of Weyl’s inequality, we have
|)‘min(EDN) - /\min(ZDoo” < HZDN - EDOC ”017 < §N(5))‘min(21?oo)
Therefore Apin(Epy) > (1 —&n) Amin(Ep,,). Combining the inequalities and noting
Ai(Enreg) = Ai(EDy ) + Areg, the result follows from the definition of the Mahalanobis norm. [

Combining Lemma 3 with Lemma 2 and using the norm equivalences to replace sample—dependent
spectral terms by population—level quantities yields the following: with probability at least 1 — 36
we have

G 1+ N)fn = , B B(1+))
A0 -] < ¢TSS and 00— < e (14 PR,
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For brevity, we define the value and derivative error envelopes £,() and £, (). Depending on the
use case, these envelopes may represent either the data-dependent or the data-independent versions:

(1+ NS (1+B1+Xn"1) By

R R EVz e SR CRCR PV o)

Finally, since ¢’ is L-Lipschitz with L = B?/n, these envelopes can be extended uniformly over
[0, A] via a standard e—net argument.

Next, we establish convexity properties of g(\); the same conclusions apply to g(\) with the pa-
rameter m(-) replaced by mg(-) defined analogously. As in Lemma 1, one can further bound the
difference between mg(-) and my(-).
Proposition 1. Under the standing assumptions, the dual function g is mgy(A)—strongly convex on
[0, A] where

1

my(A) = 5Aeing1E Varaw;(.\z)(rg(x,a))} > 0.

Proof. Analogous to the proof of Lemma 1, we have g”(\) = %]E {VarGNﬂ;(_‘x) (r3(z, a))} . Since
1 > 0 and mo(-|z) has full support on A, the Gibbs policy 7} (-|z) also has full support for every
z and every finite A\. Hence, for any = where r3(x, -) is non-constant, Var,:(..)(r3(z,a)) > 0;
by the positive-measure assumption, the expectation over z is strictly positive for every A € [0, A].
The map A — ¢”()) is continuous, so on the compact interval [0, A], mgy(A) = infycioa 9”7 (A)
is attained and, since g”’(\) > 0 for all A, we have m,(A) > 0. Therefore, g is my(A)-strongly
convex on [0, A]. O

With these properties in place, we can now present the main result of this section.

Theorem 1. Under the standing assumptions, let ™ denote the optimal primal policy that solves
the primal problem (1), and let \* := argminy>o g()\). Then * = 7%.. Moreover, \* admits the
following upper bounds:

Deterministic bound. Let B be as in Assumption 2, and let T and p be as in Assumption 4. Define

A= B%m. We have
< min{A [—g/(O)}.‘_} .
N ’ mg(A)

Data—driven bound. Let B be as in Assumption 2, and let 7 and p be as in Corollary 4. Define

A=pt (B + \/ﬁ - j(fr)) . Then, with probability at least 1 — 39,
1 <minf, EHOLE 0L
N ’ Mg (A) ’

where F(-) is defined analogously to F(-) but with 0% and 03 replaced by their estimates.

Proof. By Slater’s condition, strong duality holds and there exists A* > 0 such that J(7*) = g(\*),
and (7%, \*) is a saddle point: L(7*,\) > L(7*,\*) > L(m,A\*) forall 7 € Il and A > 0. The
right inequality implies 7* € arg max, £(m, \*), and by uniqueness we have 7* = 7}..

Deterministic bound. By strong duality, B > g(A\*) > L(7,A*) > J(7) + A*p. Thus A\*

<
B—J(%) >

——— = A. On the other hand, by strong convexity of g(+) we have, for all A > 0, ¢'(\)
g'(0) + mg(A). Substituting A* and using g’(A*) = 0 yields the desired bound.

Data—driven bound. The result follows from Corollary 1, together with the facts that, with prob-

ability at least 1 — 6, J(7) > J(7) — #, and that, with probability at least 1 — 24,
min (XN, reg

g'(0) < g'(0) — &4(0). Here, similar to Lemma 1, one can replace m,(A) with mg(A) at the cost
of introducing an additional error term.
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Algorithm 1 Projected Gradient Descent (Dual)

Require: MLEs 51, 52 from D; step size a; constraint level Jy,in; projection radius R; iterations 1’
Ensure: Approximate dual minimizer Ap
1: Initialize \g < 0
2: fort =0toT — 1do . .
3: Policy Optimization: 7y, (a|z) oc mo(alz) exp (5 (61 + Mib2, d(x, a))).
4:  Gradient Estimation: §'(\;) < ExzdoEansz,, (o) [(B2, 6(2,a))] = Jmin-
5: Projected Gradient Descent: A¢11 « Projjy (A — ag'(\)).
6: end for _
7: return Ay £ ST,

5 ALGORITHM

We now present our dual-only algorithm for solving the constrained RLHF problem. Our approach
exploits the closed-form solution of the KL-regularized objective to reduce the constrained opti-
mization to a one-dimensional convex problem over the dual variable. The unique Gibbs form of
the optimal policy eliminates the need for complex primal-dual iterations. Instead, we minimize the

dual via projected gradient descent on a high-probability domain [0, R] for A*. With MLEs 61, 6,
and a step size « = 1/L = 1/B? (from the Lipschitz constant of g’), the algorithm outputs an ap-
proximately optimal dual parameter that induces the corresponding Gibbs policy. Each iteration of
the algorithm performs three steps: (i) form the current Gibbs policy, (ii) estimate the dual gradient,
and (iii) take a projected gradient step, ensuring A remains in the range where our guarantees apply.

Theorem 2. Under the standing assumptions, Algorithm 1, with projection radius R chosen as in
Theorem 1 and step size o = 5, yields:

- . B?R? . B’R
90) = gO\") S2E(R)+ s (in — By [0l < () +

B?R? B?R
J(m*) — J(nt ) <28, (R R&E/ (R
() = T, ) < 26,(B) + e + R (£ (B)+ 2.
with probability inherited from choice of R.

Proof. The proof follows from standard projected gradient descent analysis combined with our con-
centration results. For the dual sub-optimality we decompose into two terms. The first term is
upper bounded by our concentration g(Ar) — g(Ar) + g(A*) — g(A*) < 2&,(R) and the sec-

ond by standard results in projected gradient descent g(Ar) — Gg(A*) < g(\r) — ﬁ(/)\\*) < 3221;2
where we use g(A\*) < g(A\*) and Lipschitz parameter L = %2 with step size . For con-

straint violation, we decompose |g'(Ar)| into two pieces. The first bounded by our concentration
l9'(Ar) — §'(Ar)| < €y (R) and the second again by standard results in projected gradient descent

17’ ()| < \/QL@(;\T) — §(X*)) < f%. For primal sub-optimality we note that g(A) = L(7}, A)
and J(r3 ) = dO7) + A (Jmin — Er: [r3]). With strong duality this yields that the primal sub-
T

optimality is upper bounded by the sum of dual sub-optimality and constraint violation. O

The explicit finite-sample bounds in Theorem 2 demonstrate a trade-off between statistical error
O(y/d/N) and optimization error O(1/+/T). In practice, T' should be chosen so that the optimiza-
tion error matches the statistical error, yielding a balanced trade-off among estimation accuracy, data
coverage, constraint slack, and algorithmic complexity.

6 SIMULATION

We simulate in a finite prompt-action environment where features are drawn as ¢(z, a) ~ N (0, I)
and normalized to unit Le-norm. Ground-truth parameters 67 and 63 are independently sam-
pled from N(0, I;) and normalized. We set 8y = wb} + (1 — w)f5 and define my(a|r) o
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Figure 1: Performance vs.dataset size (V) with 7" = 1000 over three settings of w. Top: Primal
objective sub-optimality. Bottom: Constraint violation.

exp(niO (0o, ¢(z,a))). Here, w controls behavioral bias and 7 controls coverage. We use 5 seeds,
and over each random seed we generate a dataset Dy, with |Dy = 3,000 samples by re-
peating: (1) sample x uniformly from X, (2) sample a, a’ ES mo(+|z), and (3) draw Bradley-Terry
preferences y1, y2 using 67, 65.

max max |

For each random seed, we evaluate convergence by measuring performance on the first N samples
of the dataset, increasing N from 0 to Npax = 3000 in increments of 300. In our simulations,
we set |X'| = 100 and |.A| = 10 to reduce computational overhead. For each oracle k € {1,2},

we estimate 6y using a regularized Bradley—Terry MLE (for stability at small [V), applied to the
pairwise feature differences ¢(x, a) — ¢(x, a’), optimized with L-BFGS. We minimize the empirical
dual using projected gradient descent as in Algorithm 1 with step size o = g5 where = .05 and

B = max| (B, 6(.a))|.

To generate an active yet feasible constraint level, we calibrate J,;,, once per configuration using
the ground-truth reward and an expanded dataset of 10,000 samples to ensure stability: Jyi, =
Ey + frac - (Ep — Ep), where Ej is the constraint expectation at A = 0 and Ej; is the expectation at
Ani = 5. Each figure reports averages over random seeds, using the same per-seed dataset prefixes
across parameter configurations. When varying w, we regenerate my and the per-seed datasets,
and recalibrate J,;, accordingly. For comparison, we approximate \* via gradient descent using
ground-truth rewards with increased iterations for accuracy, and then recover the corresponding
optimal Gibbs policy as in our analysis.

Our simulations confirm the theory: Figure 1 shows convergence across three values of w, with
both primal suboptimality and constraint violation decreasing as [V increases. Shaded regions in-
dicate confidence intervals over 5 random seeds, illustrating the consistency of our approach. As
w increases from 0.3 (which biases the generating policy toward oracle 1) to w = 0.9 (which bi-
ases toward oracle 2), we observe a higher initial constraint violation. In each setting, however, we
observe convergence to near-zero violation and suboptimality.

7 CONCLUSION AND FUTURE WORK

We studied constrained RLHF in the offline setting with two reward oracles, proposed a dual-only
method that reduces learning to a one-dimensional convex program with a closed-form Gibbs policy,
and derived finite-sample guarantees that separate optimization error (tuned by 7") from a statisti-
cal floor (governed by coverage and N). Simulations on synthetic prompt—action environments
corroborate the theory, showing simultaneous decay of primal suboptimality and constraint viola-
tion. As future work, we aim to extend our results to richer preference models, exploit cross-oracle
dependence via joint estimation, address multiple constraints and distribution shift through robust
formulations, and develop online constrained RLHF.
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