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Abstract
Graph anomaly detection (GAD) aims to identify anomalous graphs
that significantly deviate from other ones, which has raised grow-
ing attention due to the broad existence and complexity of graph-
structured data in many real-world scenarios. However, existing
GAD methods usually execute with centralized training, which
may lead to privacy leakage risk in some sensitive cases, thereby
impeding collaboration among organizations seeking to collectively
develop robust GAD models. Although federated learning offers
a promising solution, the prevalent non-IID problems and high
communication costs present significant challenges, particularly
pronounced in collaborations with graph data distributed among
different participants. To tackle these challenges, we propose an
effective federated graph anomaly detection framework (FGAD).
We first introduce an anomaly generator to perturb the normal
graphs to be anomalous and train a powerful anomaly detector by
distinguishing generated anomalous graphs from normal ones. We
subsequently leverage a student model to distill knowledge from the
trained anomaly detector (teacher model), which aims to maintain
the personality of local models and alleviate the adverse impact of
non-IID problems. Additionally, we design an effective collaborative
learning mechanism that facilitates the personalization preserva-
tion of local models and significantly reduces communication costs
among clients. Empirical results of diverse GAD tasks demonstrate
the superiority and efficiency of FGAD.

CCS Concepts
• Computing methodologies→ Artificial intelligence; Neu-
ral networks; • Security and privacy → Intrusion/anomaly
detection and malware mitigation;
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1 Introduction
Anomaly detection [5, 35] is a fundamental research problem in
machine learning, which has been extensively explored in various
domains, e.g., images [2, 17] and time-series data [1, 6]. In the real
world, graph-structured data [21–23, 34, 44] is commonly available
due to its exceptional ability to represent complicated relationship
information among entities [29, 30, 54]. This is particularly evi-
dent in domains like social networks and medical applications. In
return, graph anomaly detection (GAD) [7, 32], which aims to iden-
tify graphs that exhibit significant deviations from other normal
graphs, has raised broad attention in recent years.With the advance-
ment of graph neural networks (GNNs) [4, 15, 47], GAD has made
remarkable strides and demonstrated promising performance in
detecting anomalies across many real-world scenarios with natural
graph-structured data, e.g., social networks and bioinformatics.

In realistic collaborative efforts among different companies and
organizations, a common demand is an attempt to share their knowl-
edge to detect anomalies more accurately. Although existing GAD
approaches [11, 31, 39, 50] simplify coordination with centralized
training, it introduces a critical privacy leakage risk as it typically
requires all participants to provide their own data to train a global
model, as shown in Figure 1(a). Graph data may encompass sen-
sitive information that the participants are not willing to share,
e.g., private relationships in social networks, which will hinder
collaborations. Therefore, an urgent imperative emerges to investi-
gate approaches that facilitate collaboration between GAD models
distributed to different participants while protecting their privacy.

As the emerging technique in machine learning, federated learn-
ing (FL), as shown in Figure 1(b), enables collaboration between
different participants with the consideration of privacy-preserving.
Clients in FL are only required to share their network parameters
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Figure 1: Overview of the centralized learning and federated
learning frameworks.

with the server rather than their local data, which will prevent
the leakage of sensitive information in participants. Classical FL
methods, such as FedAvg [33] and FedProx [20], have become the
paradigm of collaborative learning across various domains [16, 45].
To facilitate collaborative training of GNN models for graph data
across clients, federated graph learning (FGL) [10, 24, 51] has also
been widely studied in recent years. FGL methods [38, 46] integrate
GNNs with FL methods to collaboratively learn representations
for complicated graph data distributed in various clients, and have
demonstrated superiority in many downstream tasks, e.g., graph
classification. Hence, an intuitive approach to address the above
issue is to integrate the existing advancements in FL and FGL with
general anomaly detection techniques, e.g., deep one-class classifi-
cation (DeepSVDD) [37].

However, this solution may encounter the following challenges:
(1) The graph data distributed in various clients often exhibit sig-

nificant heterogeneity and non-IID property [12, 46], e.g., con-
taining different graph structures or feature dimensions. These
factors place a higher demand on maintaining the validity of
the local models for their own data, e.g., personalization.

(2) It is difficult to learn a universal hypersphere as the decision
boundary for highly heterogeneous graph data under the fed-
erated learning setting. Besides, such non-IID graphs across
clients hardly conform to the assumption in DeepSVDD that
their latent distribution could follow a universal hypersphere.

(3) Existing collaborative learning mechanisms, e.g., FedAvg [33],
require transmitting all network parameters of each client in a
single communication round, which brings substantial commu-
nication costs in applications.

These challenges naturally lead us to a research question: Can we
design an FL-based collaborative GAD framework to detect
anomalous graphs with non-IID properties effectively?

In this paper, we propose an effective federated graph anomaly
detection (FGAD) framework, as shown in Figure 2, to answer this
research question. To improve the anomaly detection capability in
the local model, we introduce an anomaly generator that perturbs
normal graphs to be anomalous, and unsupervised train a classifier
to identify anomalies from normal graphs. The generated anoma-
lous graphs are encouraged to be diverse but resemble normal ones
through iterations, so that more robust decision boundaries can be
learned in a self-boosted manner. To alleviate the adverse impact

of non-IID problems, we propose to preserve the personalization
of each client by leveraging knowledge distillation. Specifically,
we introduce a student model to distill the knowledge from the
trained teacher anomaly detector. The student model only takes
the normal graphs as the input, with the aim of aligning its pre-
dicted distributions with that of the teacher model. Moreover, we
further design an effective collaborative learning mechanism, in
which the student and teacher models share the same backbone
network to streamline the capacity of local models. Furthermore,
we engage only the parameters of the student head rather than the
entire model in collaborative learning, which allows the teacher
model to preserve the personalization of a client. In this way, we
not only alleviate the adverse impact of non-IID property, but also
reduce the communication costs between clients and server during
collaborative learning. The contributions of this paper are:

• We, for the first time, explore the GAD problem on non-IID
graphs under federated learning setup, and propose an effective
federated graph anomaly detection (FGAD) method.

• We introduce a self-boosted distillation module, which not only
promotes the detecting capability by identifying self-generated
anomalies, but also maintains the personalization of local models
from knowledge distillation to alleviate non-IID problems.

• We propose an effective collaborative learning mechanism that
streamlines the capacity of local models and reduces communi-
cation costs with the server.

• We establish a comprehensive set of baselines for federated graph
anomaly detection. Extensive experiments also validate the ef-
fectiveness of our FGAD.

2 Related Works
2.1 Graph Anomaly Detection
Graph anomaly detection (GAD) [3, 26, 32, 42, 52] refers to detect-
ing abnormal graphs that significantly differ from other normal
ones, which have received growing attention in recent years owing
to the ubiquitous prevalence of graph-structured data in real-world
scenarios, e.g., social networks [25, 28]. There are many works that
advance the research on GAD. For instance, Zhao et al. [53] inves-
tigated graph-level anomaly detection issues by integrating graph
isomorphism network (GIN) [47] with deep one-class classification
(DeepSVDD) [37]. Qiu et al. [36] leveraged neural transformation
learning to develop a more robust GAD model to overcome the
performance flip issue. Ma et al. [31] utilized knowledge distillation
to capture more comprehensive normal patterns from the global
and local views for detecting graph anomalies.

Although these GADmethods have achieved remarkable success,
they primarily rely on a centralized training paradigm. In real-world
collaborative scenarios, the graph data is often distributed across
various clients from data owners, which necessitates the transmis-
sion of local graph data to a central server during their practical
collaborations. Unfortunately, this process can potentially expose
sensitive information and pose severe privacy risks. Additionally,
the inherent non-IID property in the graph data distributed across
diverse clients presents yet another formidable challenge. As a re-
sult, effective solutions to address these challenges remain an open
research problem.
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Figure 2: Overview of the FGAD framework. Note that the teacher model utilizes both normal and generated anomalous graphs
for training an anomaly detector, while the student model only inputs normal graphs for the distillation of normal patterns.

2.2 Federated Graph Learning
Federated learning (FL) approaches [12, 19, 49], such as FedAvg [33],
FedProx [20], provide a promising solution for collaboratively train-
ing models with data distributed in different clients, while preserv-
ing their privacy. In FL, clients only share their network parameters
rather than data with the central server, which mitigates the privacy
leakage risk and enables clients to share and leverage knowledge
from others. As an emerging technique, FL has not only made re-
markable advancements in handling image [8, 18, 48] and time
series data [27, 41], but also raised attention to graph data [43, 51],
where collaborative efforts are significantly more challenging due
to the complex structural information and heterogeneous charac-
teristic of graphs compared to other data types.

Federated graph learning (FGL) [51] aims to facilitate the col-
laboration of GNNs distributed in multiple remote clients to meet
the requirement of handling complicated non-IID graph data that
widely exist in many real-world scenarios, e.g., social networks,
medical, and biological data. For example, Xie et al. [46] studied the
federated learning issue on non-IID graphs by integrating clustered
federated learning with GIN, which achieves effective collabora-
tions for distributed GINs. Tan et al. [38] designed a structural
knowledge-sharing mechanism to facilitate the federated graph
learning process. Although existing FGL methods have been vali-
dated formany tasks, such as graph classification, their effectiveness
in addressing the intricate unsupervised graph anomaly detection
remains an ongoing area to be explored. While it is possible to
extend these FL/FGL [20, 33, 38, 46] methods to address GAD tasks
by integrating them with classical anomaly detection methods like
DeepSVDD [32, 37], it is imperative to acknowledge some signif-
icant challenges, e.g., the adverse impact of the non-IID problem
across different clients and the communication costs of transmitting
complex GNN model parameters during collaborative learning.

3 Methodology
3.1 Preliminary and Problem Formulation

Notation: Let 𝐷={𝐺1, . . . ,𝐺𝑁 } denote a graph dataset which
consists of 𝑁 graphs, and each graph 𝐺𝑖={𝑉𝑖 , 𝐸𝑖 } in the graph set

comprises a node set 𝑉𝑖 and edge set 𝐸𝑖 . Typically, assume the
number of nodes in a graph 𝐺𝑖 is 𝑛𝑖=|𝑉𝑖 |, an adjacency matrix
A𝑖∈{0, 1}𝑛𝑖×𝑛𝑖 is used to represent the topology of graph 𝐺𝑖 . Be-
sides, let x𝑣∈R𝑑 denote the attribute vector for node 𝑣∈𝑉𝑖 ,X𝑖∈R𝑛𝑖×𝑑
is used to represent the attribute matrix of graph 𝐺𝑖 .

GraphNeuralNetworks: Graph neural networks (GNNs), which
iteratively learn representations with neighborhood aggregation
andmessage propagation, is a widely used paradigm of learning rep-
resentation for graph-structured data in many downstream tasks. In
this paper, we leverage the graph isomorphism network (GIN) [47],
a widely used GNN backbone, to learn graph representation for
anomaly detection tasks. Generally, in each layer of a GIN, the node
representation is updated by aggregating its neighborhood informa-
tion. For instance, in the 𝑘-th layer of GIN, the learned aggregated
features a(𝑘 )𝑣 for node 𝑣 can be formulated as:

a(𝑘 )𝑣 = AGGREGATE({h(𝑘−1) (𝑢), 𝑢 ∈ Ñ (𝑣)}), (1)

where AGGREGATE(·) indicates the aggregation function, and
Ñ (𝑣) represents the neighbor node set of node 𝑣 . Then, the node
feature h(𝑘 )𝑣 in the 𝑘-th layer is obtained by combing the node
feature learned in the (𝑘 − 1)-th layer with the aggregated feature:

h(𝑘 )𝑣 = 𝜎 (COMBINE(h(𝑘−1)
𝑣 , a(𝑘 )𝑣 )), (2)

where 𝜎 (·) denotes the activation function, e.g., LeakyReLU. Partic-
ularly, the initial feature h(0)𝑣 for node 𝑣 is set as h(0)𝑣 =x𝑣 . Conse-
quently, we can obtain the representation for a graph𝐺 based on
the learned features of all nodes within 𝐺 as follows:

h𝐺 = R(CONCAT(h(𝑘 )𝑣 , 𝑘 ∈ {1, . . . , 𝐾}), 𝑣 ∈ 𝐺), (3)

where 𝐾 is the number of GIN layers, and CONCAT(·) denotes the
concatenate operation that stacks the graph representation learned
across all 𝐾 layers. R(·) denotes the readout function that obtains
the graph-level representation by aggregating the node features
within a graph, and we choose sum-readout in this paper. Note that
for convenience, we use GIN(·) to simply represent a GIN model
containing the above three operations in the following sections.
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Problem Formulation: The objective of the GAD under the
FL setup is to facilitate collaboration among clients, which allows
each participant to enhance their GADmodels by leveraging knowl-
edge from others without exposing private data. Given 𝐶 clients,
the collective graph dataset is denoted as 𝐷={𝐷𝑐 }𝐶𝑐=1, where each
client possesses its own graph set 𝐷𝑐 . A prevalent paradigm in
GAD [32] is that all graphs within the client, i.e., ∀𝐺𝑖∈𝐷𝑐 , are
deemed as “normal”. The model is trained to capture this normal-
ity so that the trained model can identify when an “anomalous"
graph �̃� deviates significantly from the distribution of 𝐷𝑐 by some
pre-defined assumptions, e.g., the hypersphere decision boundary
in DeepSVDD [37]. On the contrary, in this paper, we attempt to
develop an anomaly detector that can adaptively learn decision
boundaries rather than relying on the strong assumption of the
shape of the latent distribution. This can be regarded as solving:

minimize
w(1) ,...,w(𝐶 )

1
𝐶

𝐶∑︁
𝑐=1

|𝐷𝑐 |
|𝐷 | (ℓ𝑐 (𝑦, 𝑓w(𝑐 ) (𝐺)) + ℓ𝑐 (𝑦, 𝑓w(𝑐 ) (�̃�))), (4)

where |𝐷 | and |𝐷𝑐 | denote the total number of graphs and that
of in 𝑐-th client. {𝐺,𝑦} represents the normal graph labeled with
𝑦=1, and {�̃�,𝑦} represents the anomalous graph labeled with 𝑦=0.
ℓ𝑐 (·) denotes the local loss function of 𝑐-th client, e.g., binary cross-
entropy loss. 𝑓w(𝑐 ) (·) is the GIN-based neural network of 𝑐-th client,
which is parameterized by w(𝑐 ) . However, tackling this problem
presents the following challenges:
1) GAD is generally an unsupervised task in which only normal

graphs (w/o labels) are accessible. How will we produce high-
quality anomalous graphs for training local anomaly detectors?

2) In the context of FL-based GAD, how can we alleviate the adverse
impact of the prevalent non-IID problem across clients?

3) Transmitting all network parameters following conventional FL
methods may limit the scalability given the complexity of GIN.
Therefore, how do we reduce communication costs in collabora-
tive learning while maintaining the validity of local models?

3.2 Self-boosted Graph Knowledge Distillation
The first challenge here is to produce anomalous graphs without
using any supervised information. To resolve this, we propose a
graph anomaly generator, denoted as Gw𝑎

(·), to generate anoma-
lous graphs by perturbing the graph structure of normal graph
𝐺 . For each client, we aim to generate an anomalous graph set
�̃�𝑐={X𝑐 , Ã𝑐 } in an unsupervised manner by feeding it with nor-
mal graph set 𝐷𝑐

1. To ensure diversity in the generated anomalous
graphs, we utilize variational graph auto-encoder (VGAE) [14] to
build the anomaly generator. Specifically, we first learn a latent
Gaussian distribution N(𝝁𝑐 ,𝝈2

𝑐 ), which can be determined as:

𝝁𝑐 = GIN𝝁 (X𝑐 ,A𝑐 ), log𝝈𝑐 = GIN𝝈 (X𝑐 ,A𝑐 ), (5)

where GIN𝝁 (·) and GIN𝝈 (·) denote two distinct GINs in anomaly
generator, and 𝝁𝑐 and 𝝈𝑐 explicitly parameterize the following
inference model:

𝑞(Z̃𝑐 |X𝑐 ,A𝑐 ) =
|𝐷𝑐 |∏
𝑖=1

𝑞(Z(𝑖 )
𝑐 |X𝑐 ,A𝑐 ), (6)

1Note that we slightly abuse notations X𝑐 , Ã𝑐 , and A𝑐 to represent the relevant
attribute and adjacency matrices in the 𝑐-th client.

where 𝑞(Z̃(𝑖 )
𝑐 |X𝑐 ,A𝑐 )=N(Z̃(𝑖 )

𝑐 |𝝁 (𝑖 )
𝑐 , diag(𝝈 (𝑖 )2

𝑐 )), and it allows us
to sample from a wide range in the latent space thereby facilitating
the diverse anomalous graph generation. Here, we employ the
reparametrization trick [13] to address the obstacle of gradient
propagation in the sample operation. Consequently, the generated
adjacency matrix can be calculated by:

Ã𝑐 = T (Z̃⊤𝑐 Z̃𝑐 ), Z̃𝑐 = 𝝁𝑐 + 𝜖 exp(𝝈𝑐 ), 𝜖 ∼ N(0, 1), (7)

where T : R→[0, 1] represents the element-wise transformation
operations such as Sigmoid(·), and 𝜖 represents a random Gaussian
noise that follows the standard normal distribution N(0, 1).

Intuitively, allowing the generated graphs to closely resemble
normal graphs while remaining as anomalies is beneficial in train-
ing a robust and powerful anomaly detector, as it forces the model to
distinguish those subtle deviations from the normal patterns. There-
fore, we propose to optimize the anomaly generator by minimizing
the following objective:

ℓ𝑐g (A𝑐 , Ã𝑐 ) = −
∑︁
𝑖, 𝑗

(A𝑖 𝑗
𝑐 log(Ã𝑖 𝑗

𝑐 ) + (1 − A𝑖 𝑗
𝑐 ) log(1 − Ã𝑖 𝑗

𝑐 )), (8)

where A𝑖 𝑗
𝑐 denotes the presence (1) or absence (0) of an edge be-

tween nodes 𝑖 and 𝑗 , ℓ𝑐g is the binary-cross entropy loss function.
Subsequently, we can train an anomaly detector with the normal
and generated anomalous graph sets for the local client as follows:

ℓ𝑐ad = 𝑙ce (𝑦𝑐 , Proj(𝑓w𝑔
(X𝑐 ,A𝑐 ))) + 𝑙ce (𝑦𝑐 , Proj(𝑓w𝑔

(X𝑐 , Ã𝑐 ))), (9)

where Ã𝑐=Gw𝑎
(X𝑐 ,A𝑐 ), 𝑙ce (·) is the cross-entropy loss, and 𝑓w𝑔

(·)
denotes the GIN backbone that learns graph representation by
feeding with graph data. Proj(·) is the MLP-based projection head
that maps the graph representation learned from 𝑓w𝑔

(·) into the
predicted logits. Notably, we simply set pseudo labels for the normal
graphs and the generated anomalous graphs, i.e., 𝑦𝑐=1 and 𝑦𝑐=0.

Hence, we can train an anomaly detector in an unsupervised
manner by minimizing the following objective function:

ℓpt =
1
𝐶

𝐶∑︁
𝑐=1

|𝐷𝑐 |
|𝐷 | (ℓ

𝑐
ad + ℓ𝑐g ), (10)

where ℓ𝑐g attempts to generate anomalous graphs that closely resem-
ble normal ones, while ℓ𝑐ad aims to identify those generated anoma-
lous graphs. Therefore, we produce diverse anomalous graphs to
learn a powerful anomaly detector in such a self-boosted style, and
the two objectives mutually improve each other during training.

However, in the context of federated learning, the graph data
across different clients are often heterogeneous and exhibit non-IID
property. Such characteristics can potentially affect the anomaly
detection performance of local models, i.e., the second challenge.
To alleviate the adverse impact of the non-IID problem, we propose
a graph knowledge distillation framework, which is designed to
preserve the personalization of the local model during collaborative
learning. Specifically, we regard the previously pre-trained anomaly
detector as the “teacher” model, and introduce a “student” model
that aims to distill the knowledge from the teacher model and
achieve collaboration between clients.

The network architecture of the student model is similar to the
teacher model, which consists of a GIN backbone and a projection
head. Since the purpose of the student model is to mimic the pre-
dictions of the teacher model for normal data, only normal graphs
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are considered in the knowledge distillation. The predicted logits
of the teacher and student models are computed as follows:

Q𝑐,t = Projt |wt (𝑓w𝑔
(X𝑐 ,A𝑐 )), Q𝑐,s = Projs |ws (𝑓w𝑔′ (X𝑐 ,A𝑐 )), (11)

where 𝑓w𝑔
(·), Projt |wt (·) and 𝑓w𝑔′ (·), Projs |ws (·) are the backbone

networks and projection heads of teacher and student models re-
spectively. Note that Projt |wt (·) is actually the same as the projec-
tion head Proj(·) in Eq. (9). Subsequently, the student model distills
the knowledge from the teacher model by matching its predicted
logits with those of the teacher model, described as follows:

ℓ𝑐kd =
1

|𝐷𝑐 |
∑︁
𝑖∈𝐷𝑐

𝐾𝐿(softmax(Q(𝑖 )
𝑐,t /𝜏), softmax(Q(𝑖 )

𝑐,s /𝜏)), (12)

where 𝐾𝐿(·, ·) denotes the Kullback-Leibler divergence, which is
applied to measure the discrepancy between the distribution of
the predicted logits from teacher and student models. softmax(·) is
the softmax function, i.e., softmax(𝑞𝑖/𝜏)= exp(𝑞𝑖/𝜏 )∑

𝑗 exp(𝑞 𝑗 /𝜏 ) , and 𝜏 is the
temperature factor that controls the smoothness of the distillation.

3.3 Parameter-efficient Collaborative Learning
Based on the design of the self-boosted graph knowledge distillation
module, the objective function of all clients is defined as follows:

Ltotal =
1
𝐶

𝐶∑︁
𝑐=1

|𝐷𝑐 |
|𝐷 | (ℓ

𝑐
ad + 𝜆ℓ𝑐g + 𝛾ℓ𝑐kd), (13)

where 𝜆 and 𝛾 are the two trade-off parameters. In federated learn-
ing, let W(𝑐 )={w(𝑐 )

𝑎 ,w(𝑐 )
𝑔 ,w(𝑐 )

𝑔′ ,w
(𝑐 )
t ,w(𝑐 )

s } denote the parameter
set of the 𝑐-th client, the conventional solution achieves collab-
oration by uploading the network parameters to the server and
subsequently distribute the aggregated network parameters to each
client. However, there are several problems with this solution. First,
the high parameter complexity of a GIN-based backbone can limit
the scalability of the model during the parameter aggregation pro-
cess. Second, the transmission of all network parameters may intro-
duce non-IID problems, and affect the performance of local models
trained on different graph data across clients.

To address these issues, we propose an effective collaborative
learning mechanism, which is described in Figure 2. Specifically, We
let the teacher and student models share the same GIN backbone
for learning graph representation, i.e.,

Z𝑐 = 𝑓w𝑔
(X𝑐 ,A𝑐 ) = 𝑓w𝑔′ (X𝑐 ,A𝑐 ), (14)

where Z𝑐 denotes the learned graph representation that is shared
as the input to the projection heads of teacher and student. This
operation not only reduces the complexity of the local model, but
also simplifies the knowledge distillation of the student model.
We upload only the parameter set w(𝑐 )

s of the student head for
collaboration instead of uploading all the network parameters, i.e.,
the parameter aggregation in the server is formalized as follows:

w̄s =
𝐶∑︁
𝑐=1

|𝐷𝑐 |
|𝐷 | w

(𝑐 )
s , (15)

where w̄s denotes the aggregated parameters in the server. The
proposed collaborative learning mechanism not only streamlines
the capacity of local models, but also significantly reduces the com-
munication costs, which addresses the third challenge. To facilitate

the understanding of the proposed FGAD method, we summarize
its detailed training process in Algorithm 1. The collaboration be-
tween clients via the student model is performed in the following
steps:
• Each client performs graph knowledge distillation independently,
updating its network parameters, and uploads the network pa-
rameters of the student head to the server.

• The server then aggregates the network parameters following
Eq. (15), and distributes the aggregated network parameters to
each client.
To demonstrate the efficiency of FGAD, we further conduct the-

oretical and empirical analysis (refer to Appendix 4-5).

Algorithm 1 Training procedure of FGAD.

Input: Graph set 𝐷 = {𝐷𝑐 }𝐶𝑐=1, number of clients 𝐶 , number of
GNN layers 𝐾 , learning rate 𝛼 , total epochs T .

Output: The overall graph anomaly detection performance.
1: Initialize the parameter sets {W(𝑐 ) }𝐶

𝑐=1 for each local model;
2: Pretrain the local model in each client with Eq. (10);
3: while not converge do
4: for 𝑡 = 1, 2, . . . ,T do
5: for 𝑐 = 1, . . . ,𝐶 do
6: Generate anomalous graph set D̃ with Eqs. (5), (6), (7);
7: Compute loss items ℓ𝑐ad, ℓ

𝑐
g , ℓ𝑐kd with Eqs. (8), (9), (12);

8: end for
9: Back-propagation and update each local model via mini-

mizing Eq. (13);
10: end for
11: Upload the parameter sets {w(𝑐 )

s }𝐶
𝑐=1 of student model in

each client to the server;
12: Compute aggregated network parameters w̄s with collabo-

rative learning following Eq. (15);
13: Distribute parameter set w̄s to the local model of each client;
14: end while
15: Evaluate the anomaly detection performance in each client and

aggregate their results;
16: return The overall graph anomaly detection performance.

4 Experiment
4.1 Experimental Setup

Datasets. We evaluate the performance of FL-based graph anom-
aly detection on non-IID graphs through two distinct experimental
setups: (1) single-dataset and (2) multi-dataset scenarios.
• Single-dataset: We distribute a single dataset across multiple
clients, each of which possesses a unique subset of the dataset.
This setup allows us to assess the effectiveness when clients
collaborate on a shared dataset. We employ three social network
datasets, including IMDB-BINARY, COLLAB, and IMDB-MULTI,
to conduct this experiment.

• Multi-dataset:We broaden our evaluation by considering var-
ious datasets distributed in multiple clients, and each of them
holds a specific dataset. We consider social network data (SO-
CIALNET) as well as molecular (MOLECULES), biochemical
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Table 1: Anomaly detection performance (mean(%) ± std(%)) under the single-dataset setting. Note that the best performance is
marked in Bold, and the last column shows the number of transmitted parameters in collaborative learning.

Methods IMDB-BINARY COLLAB IMDB-MULTI # Parameters
AUC AUPRC AUC AUPRC AUC AUPRC

Self-train 41.58±1.34 47.43±1.39 46.96±1.80 30.87±0.62 52.39±1.31 32.74±0.60 N/A

FedAvg [33] 40.96±3.44 48.24±2.41 49.60±0.45 30.69±0.50 49.11±1.46 36.13±1.54 5,370,880
FedProx [20] 39.62±2.36 46.74±1.24 49.56±0.50 31.40±0.50 52.16±1.75 36.13±1.54 5,370,880

GCFL [46] 56.98±5.56 59.68±3.37 48.93±1.02 30.84±0.36 49.44±2.95 34.87±0.68 10,741,760
FedStar [38] 54.76±1.28 56.49±0.86 51.89±0.33 36.89±0.43 58.28±0.53 39.97±1.22 416,000

FGAD 64.97±0.52 66.60±1.12 55.08±1.85 66.67±0.00 60.51±1.18 66.82±0.14 21,130

Table 2: Anomaly detection performance (mean(%) ± std(%)) under the multi-dataset setting. Note that the best performance is
marked in Bold.

Methods MOLECULES BIOCHEM SOCIALNET MIX

AUC AUPRC AUC AUPRC AUC AUPRC AUC AUPRC

Self-train 61.26±2.91 61.31±1.91 54.54±0.99 52.29±0.40 50.31±1.55 39.96±1.58 51.94±0.42 47.65±0.64
FedAvg [33] 54.41±3.21 55.55±3.23 40.88±1.36 51.63±1.13 48.21±1.02 38.29±1.29 47.96±0.61 44.89±0.68
FedProx [20] 57.93±2.14 58.72±2.25 46.04±0.49 51.57±0.80 47.26±0.10 37.23±0.92 46.79±0.63 44.19±0.29
GCFL [46] 45.67±1.33 51.96±0.79 41.49±0.30 52.23±0.65 47.59±0.95 37.53±0.93 49.58±0.50 45.37±0.69
FedStar [38] 56.15±0.92 59.73±1.21 47.80±0.48 56.48±0.19 53.79±2.03 36.40±1.11 50.53±1.11 45.83±0.41
FGAD 62.15±0.69 79.19±0.49 58.09±0.85 59.04±0.54 54.86±0.29 56.88±0.98 58.14±0.36 52.03±0.63

(BIOCHEM) and mix data types (MIX). This allows us to thor-
oughly assess FL-based graph anomaly detection across a spec-
trum of data types and collaboration scenarios.

Note that for all datasets, we regard the graphs in the first class as
normal and graphs in other classes as anomalous. We allocate 80%
of the normal graphs data for training, and subsequently construct
the testing data by combining the remaining normal data with an
equal number of anomalous graphs. Refer to Appendix 2 for more
information and construction details of each dataset.

Network Structure. We employ a 3-layer GIN [47] as the back-
bone network for our method, with the aggregated dimension in
each layer set to 64. Additionally, we adopt the 4-layer and 3-layer
fully connected networks for the teacher head and student head,
respectively. The network structure of the teacher head is set to
256-192-128-64-2, while for the student head is 192-128-64-2. Refer
to our code for further details and reproducibility2.

Baseline Methods. We compare the proposed FGAD method
with several state-of-the-art baseline methods. We include two fed-
erated learning methods: FedAvg [33] and FedProx [20], as well as
two federated graph learning methods: GCFL [46] and FedStar [38].
Note that in order to adapt these baseline methods to the graph
anomaly detection task, we integrate them with DeepSVDD [37] to
construct an end-to-end graph anomaly detection model. Besides,
we regard the self-training strategy without the FL setting as one of

2Code is available at https://github.com/wownice333/FGAD.

the baselines. To ensure a fair comparison with FGAD, we employ
the same GIN network structure as FGAD in all baseline methods.

Implementation Details. We use GIN [47] as the graph rep-
resentation learning backbone for FGAD and all baselines. The
number of GIN layer 𝐾 is set to 3, and the dimensions of the hidden
layer of GIN and projection head of student and teacher models
are all set to 64. We utilize Adam [13] as the optimizer and fixed
the learning rate 𝛼 = 0.001. For all datasets, we first pretrain the
anomaly generator and teacher model for 10 epochs, thereafter,
jointly train with knowledge distillation and collaborative learning
for 200 epochs. The implementation of FGAD is based on PyTorch
Geometric [9] library, and the experiments are run on NVIDIA
Tesla A100 GPU with AMD EPYC 7532 CPU.

Evaluation Metrics: We use Area Under the Curve (AUC) and
Area Under the Precision-Recall Curve (AUPRC) as the evaluation
metrics in the experiment. Each method is executed 10 times to
report their means and standard deviations.

Additionally, refer to Appendix 3 for more experimental set-
tings, including the training details, trade-off parameter setting,
and baseline setting.

4.2 Experimental Results
In this section, we conduct comprehensive experiments including
two types of non-IID graph scenarios, i.e., the single-dataset and
multi-dataset distributed in multiple clients, to validate the effec-
tiveness of the proposed method. Table 1 and Table 2 show the
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experimental results of FGAD and several state-of-the-art baselines,
from which we can have the following observations.

• Comparison: In the single-dataset experiment, FGAD demon-
strates a remarkable advantage over all baseline methods. For
instance, in the IMDB-BINARY dataset, FGAD achieves signifi-
cant performance improvement, exceeding Self-train by 23.39%
in AUC and 19.17% in AUPRC. It also significantly surpasses
classical FedAvg and FedProx. Furthermore, FGAD outperforms
the state-of-the-art baselines GCFL and FedStar by a substan-
tial 7.99% and 10.21% in AUC, respectively. Similar trends are
observed across other benchmarks, demonstrating the effective-
ness of FGAD. In the multi-dataset experiment, the GAD task is
more challenging as the non-IID problem is more severe than
the single-dataset scenario. Nevertheless, FGAD still exhibits out-
standing performance compared to other baselines. For example,
on MOLECULES, FGAD outperforms the runner-up FedStar by
6.00% in AUC and 19.46% in AUPRC. Besides that, it achieves
more than a 10.00% performance improvement compared to other
baseline methods. More importantly, we can observe from Table 1
that FGAD significantly reduces communication costs during col-
laborative learning compared to other baseline methods.

• Discussion: The Self-train strategy discards collaborative train-
ing and fails to leverage the knowledge from other clients to learn
more robust local GAD models. FedAvg and FedProx require the
transmission of all network parameters of the local models, which
introduces severe non-IID problems in collaborative learning.
Consequently, these three baselines yield sub-optimal perfor-
mance in most cases. Although GCFL incorporates a specific
design to alleviate non-IID challenges, such as utilizing clustered
FL for collaborative learning, it still necessitates the transmis-
sion of all network parameters and does not effectively address
non-IID problems, as validated by the experimental results. On
the other hand, FedStar achieves runner-up performance in most
cases, which may primarily be attributed to the introduced struc-
tural embedding that helps to preserve the personalization of
local models. Compared with the baseline methods, FGAD con-
siders enhancing the detecting capability of local models in a
self-boosted manner, and introduces an effective collaborative
learning mechanism by leveraging knowledge distillation. This
allows FGAD to learn more powerful local GAD models, mitigate
the adverse effects of non-IID problems, and reduce communica-
tion costs among clients.

4.3 Embedding Visualization
We employ t-SNE [40] to visualize the learned embeddings for intu-
itive comparison. Figure 3 shows the embedding visualization for
AIDS, one of the constituents of MOLECULES. We include results
from FedAvg, GCFL, and FedStar for a comprehensive analysis. It’s
evident that the learned embeddings by FedAvg and GCFL exhibit
poor discriminative properties, with both normal and anomalous
graphs appearing entangled in the latent space. Although the visu-
alization result of FedStar shows some separation between normal
and anomalous graphs, decision boundaries remain blurred. Con-
versely, the learned embeddings of FGAD are clearly more discrim-
inative compared to the other baseline methods. The visualization
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Figure 3: Embedding visualization of the proposed FGAD
compared with several baselines using t-SNE. Note that the
data point marked in yellow, red, and green correspond to
the normal graph (test), anomalous graph, and normal graph
(train), respectively.

Table 3: Ablation study results (mean(%) ± std(%)) of FGAD
and its three variants.

Methods IMDB-MULTI MOLECULES
AUC AUPRC AUC AUPRC

FGAD_v1 56.67±1.72 64.91±1.85 57.98±2.78 75.80±0.09
FGAD_v2 56.69±1.22 65.98±0.90 59.41±2.22 77.32±1.02
FGAD_v3 55.23±3.54 61.02±2.68 55.58±4.56 66.73±0.80
FGAD 60.51±1.18 66.82±0.14 62.15±0.69 79.19±0.49

of FGAD reveals distinct boundaries between the embeddings of
normal and anomalous graphs, supporting its effectiveness.

4.4 Ablation Study
To validate the effectiveness of each component in the proposed
FGAD method, we derive three variants from FGAD and perform a
systematic evaluation. Specifically, we illustrate the construction
details of the three variants as follows:
• FGAD_v1: This variant only considers local training in each
client and abandons the collaborative learning between clients.

• FGAD_v2: This variant drops the proposed collaborative learn-
ing mechanism and follows the parameter aggregation mecha-
nism of the classical FedAvg method.

• FGAD_v3: This variant drops the knowledge distillation mod-
ule, i.e., removes the student model and only takes the teacher
anomaly detector in collaboration.

Table 3 shows the experimental results of FGAD and its three vari-
ants on two datasets, yielding the following observations. FGAD_v1
demonstrates a performance decline compared to FGAD, which
is primarily due to the fact that FGAD_v1 exclusively focuses on
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(b) MOLECULES

(a) IMDB-BINARY

Figure 4: Parameter analysis of 𝜆 and 𝛾 on IMDB-BINARY
and MOLECULES. Note that the values of 𝜆 and 𝛾 range from
[1𝑒−4, . . . , 1𝑒3].

local training, neglecting collaboration with other clients. Conse-
quently, it fails to leverage the comprehensive knowledge of other
clients. Secondly, when we substitute the proposed collaborative
learning mechanism with the classical FedAvg, there is also a no-
ticeable performance decline. This can be attributed to the potential
susceptibility of parameter transmission in FedAvg to the adverse
effects of non-IID problems. Third, FGAD consistently outperforms
FGAD_v3 by a significant margin. This observation reveals the cru-
cial role of the self-boosted distillation module in maintaining the
personalization of local models within each client, which effectively
mitigates the non-IID problems. Overall, the ablation study results
fully support the rationale and the effectiveness of each component
proposed in FGAD.

4.5 Parameter Analysis
4.5.1 Impact of Hyper-Parameters 𝜆 and 𝛾 . The objective func-
tion of the proposed FGAD method contains two main hyper-
parameters, i.e., 𝜆 and 𝛾 . In this section, we analyze the impact
of the two hyper-parameters on anomaly detection performance.
Specifically, we vary the values of 𝜆 and 𝛾 within the range of
[1𝑒−3, . . . , 1𝑒4] and Figure 4 presents the experimental results on
IMDB-BINARY and MOLECULES datasets. Based on the observa-
tions in the figure, we draw several conclusions. Firstly, FGAD
tends to yield sub-optimal performance when the values of 𝜆 and 𝛾
are set too low, e.g., 1𝑒−4 and 1𝑒−3. This emphasizes the significant
role of both loss terms in the FGAD framework and suggests their
effectiveness. Secondly, we can observe that excessively high values
of 𝜆 and 𝛾 also have an adverse impact on performance, because
they may obscure the primary objective of optimizing the anomaly
detector. Finally, it is worth noting that FGAD exhibits relatively
stable performance both in AUC and AUPRC across a wide range
of 𝜆 and 𝛾 values, demonstrating its robustness.

(a) (b)

Figure 5: Average performance and distribution of variance
between clients of FedAvg and FGAD. Note that the client
number is set to [2, . . . , 10].

4.5.2 Impact of Client Numbers. The number of clients 𝐶 is
another hyper-parameter in the FGAD framework, and its impact
on the performance is crucial for assessing the scalability of client
numbers. Therefore, we vary the number of clients 𝐶 within the
range of [2, . . . , 10] and conduct the experiment. The results on
IMDB-BINARY are reported in Figure 5. Note that we also include
FedAvg as a baseline method for comparative analysis. It can be
observed that FGAD consistently achieves remarkable performance
improvement compared to FedAvg in all cases, and exhibits sta-
bility against changes in the number of clients. However, when
the number of clients increases to certain large values, the aver-
age performance degrades, and the performance variance between
different clients becomes more significant in both FGAD and Fe-
dAvg. This is primarily due to the gradually increasing discrepancy
between the graph data distributed across different clients, which
causes more severe non-IID problems. Nevertheless, FGAD still
exhibits relatively smaller performance fluctuations compared with
FedAvg, which fully demonstrates the scalability of the proposed
FGAD method.

4.5.3 Other Experiments. We further analyze the impact of the
number of layers and latent dimensions in GIN, as well as the
justification of backbone sharing. Refer to Appendix 6, 7, and 8
for details due to the limitation of the paper length.

5 Conclusion
In this paper, we studied a challenging GAD problem with non-IID
graph data distributed across multiple clients, and proposed an ef-
fective federated graph anomaly detection (FGAD) method to tackle
this issue. To enhance the detecting capability of local models, we
proposed to unsupervised train a classifier in a self-boosted manner
by distinguishing the normal and anomalous graphs generated from
an anomaly generator. Besides that, in order to alleviate the adverse
impact of non-IID problems among clients, we introduce a student
model to distill knowledge from the teacher anomaly detector and
engage only the student model in collaborative learning so that the
personalization of local models could be preserved. Furthermore,
we improved the collaborative learning mechanism that stream-
lines the capacity of local models and reduces the communication
costs during collaborative learning. Comparative experiments with
state-of-the-art baselines in the graph anomaly detection tasks on
single/multi datasets (from diverse domains) demonstrated the su-
periority of FGAD. We believe that this work will pave the way for
future research on collaborative GAD under the FL setting.
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