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Abstract—Serving Large Language Models (LLMs) in cloud
environments introduces significant security challenges, particu-
larly protecting sensitive data from untrusted cloud components.
While Trusted Execution Environments (TEEs) provide hard-
ware isolation, current approaches offer only boot-time attes-
tation without container orchestration integration. We present
a framework addressing these limitations through: runtime
attestation for continuous integrity verification, container-level
measurement for multi-tenant environments, attestation-aware
Kubernetes integration, and hardware-agnostic TEE abstraction.
This comprehensive approach creates an unbroken chain of trust
from hardware to application, enabling secure LLM deployment
against both infrastructure and orchestration-level attacks while
maintaining cross-platform compatibility.

Index Terms—Trusted Execution Environment, Runtime At-
testation, Large Language Models, Confidential Computing

I. INTRODUCTION

The rapid growth of large-language models (LLMs) and
their increasing adoption in real-world applications has led
to a paradigm shift in how natural-language-processing (NLP)
services are developed and deployed [8]. Cloud-native archi-
tectures, characterized by containerized micro-services orches-
trated by platforms like Kubernetes, have emerged as the
dominant approach for scalable and resilient LLM serving
[24], [34]. However, the deployment of LLMs in cloud-
native environments introduces significant security challenges,
particularly in protecting the confidentiality and integrity of the
model weights, user queries, and generated responses [19].

Confidential computing technologies, such as Intel Trust
Domain Extensions (TDX) [22], offer a promising solu-
tion to these challenges by providing hardware-based isola-
tion and protection for sensitive workloads. However, exist-
ing confidential-computing solutions are primarily designed
for monolithic, boot-time–attested, VM-centric deployments
and lack native integration with the dynamic, microservice-
oriented nature of cloud-native LLM serving [5]. Moreover,
the heterogeneity of hardware-based Trusted Execution En-
vironments (TEEs) across different cloud providers and plat-
forms creates vendor lock-in risks and hinders the portability
of secure LLM services [30].

To address these challenges, we propose a comprehensive
system for enabling runtime attestation and secure execution
of LLM workloads in confidential cloud-native environments.
Our approach extends the capabilities of Intel TDX to support
continuous integrity monitoring and attestation of the under-

lying infrastructure, seamlessly integrates this functionality
with cloud-native orchestration frameworks, and introduces a
hardware-agnostic TEE runtime for securing individual LLM
serving components. The proposed system comprises four key
contributions:

• A framework for runtime attestation in Intel TDX-based
confidential containers, leveraging hardware security fea-
tures and kernel-level extensions to establish an unbroken
chain of trust from the container’s launch to its runtime
execution.

• A set of enhancements to cloud-native orchestration plat-
forms like Kubernetes to enable pod-level attestation and
secure scheduling of confidential LLM serving work-
loads.

• A hardware-agnostic TEE runtime that provides a unified
interface for secure execution and data protection within
LLM serving microservices, abstracting the complexities
of different TEE technologies.

• A TEE-aware LLM serving scheduler that intelligently
places and scales LLM workloads based on the attested
security state of the underlying infrastructure, optimizing
for both security and performance.

Our system unifies hardware security, cloud orchestration,
and LLM-specific needs to enable secure, efficient cloud
deployment of language models-supporting trusted, scalable
use in applications like chatbots, content moderation, and
sentiment analysis.

II. BACKGROUND AND MOTIVATION

A. Background

LLM Serving in Cloud-Native Environments. The rapid
adoption of LLMs in various applications has led to a surge
in demand for efficient and scalable LLM serving infras-
tructures [1], [3], [8], [23], [24]. Cloud-native architectures,
characterized by containerized microservices orchestrated by
platforms like Kubernetes, have emerged as the dominant
paradigm for deploying and managing LLM workloads [3],
[23], [24], [34]. These architectures enable automatic scaling,
fault tolerance, and resource efficiency, making them well-
suited for the dynamic and resource-intensive nature of LLM
serving.

However, the deployment of LLMs in cloud-native environ-
ments also introduces new security challenges. The distributed
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TABLE I: Feature Support in TEE Platforms and Frameworks
(✓ = supported, ◦ = partially supported, × = not supported)

Platform/Framework Runtime Container K8s HW
Attest. Security Integ. Agnostic

Intel SGX [21] ✓ × ◦ ×
Intel TDX ◦ ◦ ◦ ×
AMD SEV/SEV-SNP [2] ◦ ◦ ◦ ×
ARM TrustZone/CCA [4] ◦ ◦ × ×
Confid. Containers [11] ◦ ✓ ✓ ×
Azure Confid. Cont. [27] ◦ ✓ ✓ ×
Proposed System ✓ ✓ ✓ ✓

and ephemeral nature of containers, coupled with the reliance
on potentially untrusted infrastructure, exposes LLM work-
loads to various threats, such as data breaches, insider attacks,
and malicious interference [9], [16], [19]. Protecting the confi-
dentiality and integrity of the model weights, user queries, and
generated responses throughout the serving lifecycle is crucial
for building trustworthy and reliable LLM services.

Confidential Computing and Intel TDX. Confidential com-
puting technologies aim to protect sensitive workloads from
unauthorized access or tampering, even in untrusted environ-
ments. TDX [22] is a prominent example of such technologies,
providing hardware-based isolation and encryption for virtual
machines (VMs). TDX introduces the concept of a “trust
domain” - a hardware-enforced security boundary that shields
the VM’s memory from the host and other VMs.

However, TDX in its current implementation only supports
attestation at boot time (launch-time attestation) [10]. This
critical limitation means that while TDX can verify the in-
tegrity of a VM when it initializes, it cannot guarantee runtime
security after the VM has booted. Consequently, cloud service
providers, potential adversaries, or compromised components
can still access VM memory or tamper with running workloads
through various attack vectors, such as unauthorized SSH
access, malicious kernel modules, or exploitation of CPU
interfaces [31], [36]. Extending TDX with runtime attestation
capabilities is crucial for ensuring the continuous protection
of sensitive workloads throughout their lifecycle [32].

B. Motivation

Despite significant advances in confidential computing tech-
nologies, our analysis reveals critical gaps in the existing
infrastructure for secure LLM serving in cloud-native envi-
ronments. Current solutions provide only partial protection
throughout the LLM lifecycle, particularly in dynamic con-
tainerized deployments. To systematically identify these gaps,
we conducted a comprehensive analysis of major hardware
TEE platforms and relevant research frameworks. Table 1
presents our comparative findings, highlighting the limitations
of existing approaches against the four key features required
for secure cloud-native LLM serving.

As shown in the Table I, existing solutions have significant
limitations across multiple dimensions. Runtime attestation
capabilities are predominantly limited to launch-time verifi-
cation, with Intel SGX offering strong initial code attestation

but lacking continuous monitoring capabilities. Container-
level security varies widely, with process-based TEEs like
SGX requiring complex LibOS solutions while VM-based
TEEs need additional guest mechanisms to protect individual
containers. Kubernetes integration remains superficial across
platforms, focusing primarily on resource allocation or run-
time selection without incorporating attestation results into
scheduling decisions. The hardware heterogeneity across TEE
technologies creates significant portability challenges, with
existing abstraction efforts remaining either conceptual or
limited in scope.

These limitations are particularly problematic for LLM
serving applications, where the sensitivity of model weights,
user queries, and generated responses demands comprehensive
protection throughout the execution lifecycle [7]. The dy-
namic nature of cloud-native LLM serving further complicates
these challenges, requiring solutions that can verify workload
integrity while maintaining compatibility with orchestration
frameworks [37].

Our proposed system addresses these gaps by introducing
a comprehensive solution with four integrated components: a
continuous runtime attestation framework, enhanced container-
level protection, native Kubernetes integration for pod-level
attestation, and a hardware-agnostic TEE runtime. This ap-
proach enables a new level of trust and efficiency for secure
LLM services in cloud-native environments.

III. THREAT MODEL

To secure LLM deployments in cloud-native TEE envi-
ronments, we define a threat model addressing the unique
convergence of LLMs, confidential computing, and container
orchestration.

A. Assets and Adversaries

Our system protects several critical assets: (1) LLM
model intellectual property including architecture and parame-
ters [15], (2) sensitive user prompts and responses [19], (3) dy-
namic runtime state including memory and conversation con-
text [18], and (4) security-critical system configurations [6].

We consider four primary adversary types:
• Cloud Infrastructure Adversary: Controls host OS and

hypervisor, can observe network traffic, inspect unpro-
tected memory, and attempt side-channel attacks [33].

• Orchestration Plane Adversary: Controls Kubernetes
components and can manipulate pod specifications, con-
figurations, and scheduling decisions [14].

• Co-tenant Adversary: Malicious workloads on the
same physical host capable of mounting side-channel
attacks [32].

• Malicious User/Compromised Application: External
users crafting adversarial inputs or compromised internal
components [39].

B. Threat Vectors and Mitigation

We identify three primary threat categories that current
solutions address inadequately:
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Runtime Integrity Violations: While TEEs like Intel
TDX provide strong boot-time attestation, they cannot detect
compromises occurring after initialization [38]. A malicious
orchestrator or exploited vulnerability could inject code post-
boot, compromising the TEE’s integrity while existing attes-
tation mechanisms remain oblivious. Our continuous runtime
attestation addresses this gap by providing ongoing verification
throughout the workload lifecycle.

Orchestration-Level Attacks: Standard TEE protections
focus on hardware isolation but neglect the powerful Kuber-
netes control plane that manages TEE deployments [35]. An
adversary could schedule confidential workloads onto non-
TEE nodes, inject malicious configurations, or tamper with
attestation workflows. Our deep Kubernetes integration with
pod-level attestation and security-aware scheduling provides
protection against these orchestration-layer threats.

Hardware Vendor Lock-in: Current solutions tie deploy-
ments to specific TEE implementations, creating security and
portability risks [28]. Our hardware-agnostic TEE runtime pro-
vides a unified interface across diverse TEE technologies, im-
proving resilience against vendor-specific vulnerabilities while
simplifying deployment across heterogeneous infrastructure.

C. Trust Assumptions

Our system relies on a minimal Trusted Computing Base
(TCB) including the Intel CPU with TDX support, the TDX
Module, Memory Encryption Engine, and the initial TD soft-
ware stack verified through attestation [10]. All components
outside this TCB (host OS, hypervisor, Kubernetes control
plane, network, and storage) are considered untrusted [13].

We explicitly consider sophisticated physical attacks requir-
ing specialized equipment, hardware supply chain compro-
mises, pure denial-of-service attacks, and inherent LLM al-
gorithmic vulnerabilities outside our scope of protection [17].

This threat model directly motivates our system design,
demonstrating how each component addresses specific gaps
in current confidential computing approaches for cloud-native
LLM serving.

IV. SYSTEM DESIGN

To address the identified limitations in secure cloud-native
LLM serving, we present a comprehensive system that enables
continuous attestation and secure execution of LLM workloads
in TDX-based environments shown in Figure 1.

A. Runtime Attestation for TDX

The foundation of our system extends Intel TDX to support
continuous integrity measurement during VM execution. We
introduce an RTMR extension mechanism that creates an
unbroken chain of trust from boot time to runtime, enabling
the guest OS to securely update Runtime Measurement Reg-
isters during execution. Our implementation includes a secure
interface between the guest OS and TDX module, with robust
access control and a standardized measurement protocol that
supports cryptographic authentication.

We integrate this mechanism with the Linux Integrity Mea-
surement Architecture (IMA), allowing IMA to use TDX’s

CC API & Common SDK
get_eventlog() get_measurement() get_quote() get_report() ...
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Fig. 1: Proposed system Architecture

RTMRs as its trust anchor. This integration provides fine-
grained visibility into the VM’s runtime state, capturing crit-
ical events such as kernel module loading and configuration
changes. By enabling continuous verification, this component
addresses the post-boot compromise detection gap identified
in our threat model.

B. Confidential Integrity Measurement Agent

The Confidential Integrity Measurement Agent (CIMA) ex-
tends runtime attestation capabilities to the container level. By
making IMA container-aware through Linux cgroups, CIMA
enables separate integrity measurements for each container
within a confidential VM. We implement integrations with
container runtimes to measure images during their lifecycle,
calculating cryptographic digests of layers and extending these
measurements into the RTMRs.

CIMA includes a gRPC-based service that exposes an at-
testation API to containers, allowing them to request integrity
measurements and attestation reports. To simplify adoption, we
provide language-specific SDKs that abstract the attestation
process with intuitive interfaces. This component enables
verification of individual microservices within shared confi-
dential environments, addressing the container-level security
challenges identified in our analysis.

C. Kubernetes Attestation Integration

To leverage attestation capabilities in orchestration deci-
sions, we integrate with Kubernetes through several exten-
sions. Our custom Admission Webhook verifies container
image integrity before deployment by comparing measure-
ments against expected values from a trusted repository. The
TEE-aware Scheduler Plugin considers attestation state when
placing workloads, ensuring sensitive applications run only on
verified nodes.

We develop an Attestation Policy Engine that enables ad-
ministrators to define attestation-based security policies as
Kubernetes resources, controlling deployment based on trust
verification. This component addresses orchestration-level at-
tack vectors by ensuring Kubernetes scheduling and policy
decisions incorporate verified trust information.
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TABLE II: Confidential Computing API Core Functions

API Function Description
get_default_algo() Returns default cryptographic algo-

rithms supported by the TEE
get_measure_count() Gets number of available measurement

registers
get_measurement(imr) Retrieves specific measurement register

value
get_quote(nonce,
data)

Generates attestation report with replay
protection

get_eventlog(start,
count)

Retrieves portion of TEE’s integrity
event log

D. Confidential Computing API

The Confidential Computing API provides a hardware-
agnostic abstraction layer for confidential computing opera-
tions shows in Table II. This API enables portable, vendor-
agnostic application development across diverse TEE tech-
nologies.

We implement adapters for multiple TEE technologies,
including Intel TDX, Intel SGX, and AMD SEV-SNP. Each
adapter translates abstract API calls into technology-specific
operations, handling different attestation protocols and security
models. This design enables applications to switch between
TEE technologies by changing the adapter configuration, ad-
dressing hardware vendor lock-in issues identified in our threat
model.

Together, these four components provide a comprehensive
solution for secure LLM serving in cloud-native environments,
enabling continuous integrity verification, container-level se-
curity, security-aware orchestration, and hardware-agnostic
deployment of confidential workloads.

V. LIMITATIONS & FUTURE WORK

Security Analysis Limitations: While our system provides
comprehensive protection against the threat vectors identified
in our model, several limitations remain. Our current approach
does not fully mitigate side-channel attacks, which can po-
tentially leak sensitive information through microarchitectural
effects. These attacks remain challenging for all TEE solutions,
as they exploit hardware behaviors outside the TEE’s control.
Additionally, our threat model assumes the correctness of the
hardware TCB, which may not hold if hardware vulnerabilities
are discovered in the underlying TDX implementation.

Performance Overhead: The runtime attestation mechanisms
introduce computational overhead, particularly for container-
level integrity measurement. While our preliminary evaluations
show acceptable performance for LLM serving workloads, the
overhead increases with the number of containers and the
frequency of attestation. Future optimization work is needed
to reduce this overhead, especially for latency-sensitive LLM
inference scenarios that require high throughput and real-time
responses.

Attestation Freshness Guarantees: Our current system pro-
vides periodic attestation, which creates a potential time
window between attestations during which malicious changes

might go undetected. Although we minimize this window
through careful timing, achieving true continuous attestation
remains challenging. Future work could explore event-driven
attestation triggers and more efficient incremental measure-
ment techniques to further reduce this gap.

VI. RELATED WORK

Trusted Execution for LLM Security. Recent advancements
in LLM security have explored various TEE-based protection
mechanisms. Li et al. [20] and Gim et al. [19] demon-
strated how TEEs can protect sensitive model components
and user prompts in distributed LLM environments through
hardware-enforced isolation and lightweight encryption. These
approaches build upon foundational TEE research by Li et
al. [26], who established a comprehensive taxonomy for TEE-
based secure computation protocols and evaluation criteria
for comparing security approaches. However, Muñoz and
Rı́os [29] identified critical vulnerabilities in existing TEE
implementations, highlighting that current solutions require
additional safeguards beyond hardware isolation. A significant
limitation in current research is the predominant focus on
static attestation at launch time rather than continuous runtime
verification [10], [13]. This critical gap leaves systems vulner-
able to runtime attacks after initial attestation, particularly in
long-running LLM serving environments. Our work directly
addresses this limitation by developing a runtime attestation
framework specifically designed for LLM serving in cloud-
native environments.
Container-Level Attestation in Cloud Environments. As
containerization has become the standard deployment model
for cloud applications, securing containerized workloads in
TEEs has emerged as a critical research direction. The CNCF
Confidential Containers project [6] and commercial imple-
mentations from Microsoft [25] and Alibaba [12] provide
hardware-enforced isolation for containerized applications us-
ing various TEE technologies (AMD SEV, Intel TDX, Intel
SGX). However, these solutions focus primarily on data-in-use
protection rather than comprehensive attestation frameworks
and lack deep integration with orchestration systems. Thijsman
et al. [35] identified critical gaps in existing trusted cloud-
native deployments, highlighting the need for attestation-
aware orchestration but without addressing the container-
level granularity required for multi-tenant LLM serving. Our
research extends these efforts by developing a comprehensive
framework that integrates runtime attestation with Kuber-
netes orchestration, enabling secure LLM serving with strong
protection against both infrastructure and orchestration-level
attacks while supporting hardware-agnostic deployment across
diverse TEE technologies.

VII. CONCLUSION

We presented a system addressing critical security gaps in
confidential computing for LLM deployments through contin-
uous runtime attestation, container-level integrity verification,
and security-aware Kubernetes orchestration. While empirical
evaluation remains future work, we believe our approach
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will significantly enhance LLM security posture against both
infrastructure and orchestration-level attacks through post-
attestation verification and hardware-agnostic deployment. Fu-
ture research will explore performance optimization, special-
ized LLM security features, and secure distributed inference
across multiple confidential nodes.
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