
Meta-Learning with Sparse Experience Replay for Lifelong Language
Learning

Anonymous ACL submission

Abstract

Lifelong learning requires models that can con-001
tinuously learn from sequential streams of data002
without suffering catastrophic forgetting due003
to shifts in data distributions. Deep learn-004
ing models have thrived in the non-sequential005
learning paradigm; however, when used to006
learn a sequence of tasks, they fail to retain007
past knowledge and learn incrementally. We008
propose a novel approach to lifelong learn-009
ing of language tasks based on meta-learning010
with sparse experience replay that directly op-011
timizes to prevent forgetting. We show that un-012
der the realistic setting of performing a single013
pass on a stream of tasks and without any task014
identifiers, our method obtains state-of-the-art015
results on lifelong text classification and rela-016
tion extraction. We analyze the effectiveness017
of our approach and further demonstrate its018
low computational and space complexity.019

1 Introduction020

The ability to learn tasks continuously during a021

lifetime and with limited supervision is a hallmark022

of human intelligence. This is enabled by efficient023

transfer of knowledge from past experience. On the024

contrary, when current deep learning methods are025

subjected to learning new tasks in a sequential man-026

ner, they suffer from catastrophic forgetting (Mc-027

Closkey and Cohen, 1989; Ratcliff, 1990; French,028

1999), where previous information is lost due to029

the shift in data distribution. Non-stationarity is030

inevitable in the real world where data is contin-031

uously evolving. Thus, we need to design more032

robust machine learning mechanisms to deal with033

catastrophic interference.034

Lifelong learning, also known as continual learn-035

ing (Thrun, 1998), aims at developing models that036

can continuously learn from a stream of tasks in037

sequence without forgetting existing knowledge038

but rather building on the information acquired039

by previously learned tasks in order to learn new040

tasks (Chen and Liu, 2018). One conceptualiza- 041

tion of this is to accelerate learning by positive 042

transfer between tasks while minimizing interfer- 043

ence with respect to network updates (Riemer et al., 044

2019). Techniques such as regularization (Kirk- 045

patrick et al., 2017) and gradient alignment (Lopez- 046

Paz and Ranzato, 2017; Chaudhry et al., 2019) to 047

mitigate catastrophic forgetting have been shown 048

effective in computer vision and reinforcement 049

learning tasks. Meta-learning (Schmidhuber, 1987; 050

Bengio et al., 1991; Thrun and Pratt, 1998) has 051

been applied in continual learning with the objec- 052

tive of learning new tasks continually with a rela- 053

tively small number of examples per task (Javed 054

and White, 2019; Beaulieu et al., 2020) (in image 055

classification) or in a traditional continual learn- 056

ing setup by interleaving with several past exam- 057

ples from a memory component, i.e. experience 058

replay (Riemer et al., 2019; Obamuyide and Vla- 059

chos, 2019a) (in image classification, reinforce- 060

ment learning and language processing). 061

In natural language processing (NLP), contin- 062

ual learning still remains relatively unexplored 063

(Li et al., 2020). Despite the success of large 064

pre-trained language models such as BERT (De- 065

vlin et al., 2019), they still require considerable 066

amounts of in-domain examples for training on 067

new tasks and are prone to catastrophic forgetting 068

(Yogatama et al., 2019). Existing continual learn- 069

ing approaches to NLP tasks include purely replay- 070

based methods (Wang et al., 2019; Han et al., 2020; 071

d’Autume et al., 2019), a meta-learning based 072

method (Obamuyide and Vlachos, 2019a; Wang 073

et al., 2020) as well as a generative replay-based 074

method (Sun et al., 2020). 075

Currently, most of the approaches to continual 076

learning employ flawed experimental setups that 077

have blind spots disguising certain weak points. 078

By assuming explicit task identifiers, distinct out- 079

put heads per task, multiple training passes over 080

the sequence of tasks, and the availability of large 081
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training times as well as computational and mem-082

ory resources, they are essentially solving an easier083

problem compared to true continual learning (Far-084

quhar and Gal, 2018). Specifically, while a high085

rate of experience replay (Lin, 1992) usually mit-086

igates catastrophic forgetting, it comes closer to087

multi-task learning (Caruana, 1997) than a lifelong088

learning setup and is computationally expensive089

when learning on a data stream in real-life applica-090

tions. Continual learning methods in NLP suffer091

from these limitations too. An appropriate evalua-092

tion of continual learning is thus one where no task093

identifiers are available, without multiple epochs094

of training, with a shared output head as well as095

constraints on time, compute and memory.096

In this paper, we propose a novel and efficient097

approach to lifelong learning on NLP tasks that098

overcomes the aforementioned shortcomings. We099

consider the realistic lifelong learning setup where100

only one pass over the training set is possible with101

constraints on the rate of experience replay, and102

no task identifiers are available. Our approach is103

based on meta-learning and experience replay that104

is sparse in time and size. We are the first to inves-105

tigate meta-learning with sparse experience replay106

in the context of large-scale pre-trained language107

models, in contrast with previous works that per-108

form replay very often. Additionally, we conduct109

a systematic study of approaches that rely on pre-110

trained models and that conform to the same setup.111

We extend two algorithms, namely online112

meta-learning (OML) (Javed and White, 2019)113

and a neuromodulatory meta-learning algorithm114

(ANML) (Beaulieu et al., 2020) to the domain of115

NLP and augment them with an episodic memory116

module for experience replay, calling them OML-117

ER and ANML-ER respectively. While their origi-118

nal objective is to continually learn a new sequence119

of tasks during testing, we enhance them for the120

conventional continual learning setup where evalu-121

ation is on previously seen tasks. Furthermore, by122

realizing experience replay as a query set, we di-123

rectly optimize to prevent forgetting. We show that124

combining a pre-trained language model such as125

BERT along with meta-learning and sparse replay126

produces state-of-the-art performance on lifelong127

text classification and relation extraction bench-128

marks when compared against current methods un-129

der the same realistic setting. Through further ex-130

periments, we demonstrate that BERT combined131

with OML-ER results in an efficient form of life-132

long learning, where most of the weight updates 133

are performed on a single linear layer on top of 134

BERT, while using a limited amount of memory 135

during training and without any network adaptation 136

during test-time. Therefore, our approach is consid- 137

erably more efficient than previous work in terms 138

of computational complexity as well as memory 139

usage, enabling learning on a task stream with- 140

out substantial overheads. We hope that our paper 141

informs the NLP community about the right exper- 142

imental design of continual learning and how meta- 143

learning methods enable efficient lifelong learning 144

with limited replay and memory capacity. To facili- 145

tate further research in the field, we make our code 146

publicly available1. 147

2 Background and Related Work 148

Meta-learning In meta-learning, a model is 149

trained on several related tasks such that it can 150

transfer knowledge and adapt to new tasks using 151

only a few examples. The training set is referred to 152

as meta-training set and the test set is referred to as 153

meta-test set. They consist of episodes where each 154

episode corresponds to a task, comprising a few 155

training examples for adaptation called the support 156

set and a separate set of examples for evaluation 157

called the query set. The goal of meta-learning 158

is to learn to adapt quickly from the support set 159

such that the model can perform well on the query 160

set. Optimization-based meta-learning methods 161

(Finn et al., 2017; Nichol et al., 2018; Triantafil- 162

lou et al., 2020) have been shown to work well 163

for few-shot learning problems in NLP – specifi- 164

cally machine translation (Gu et al., 2018), relation 165

classification (Obamuyide and Vlachos, 2019b), 166

sentence-level semantic tasks (Dou et al., 2019; 167

Bansal et al., 2019), text classification (Jiang et al., 168

2018), and word sense disambiguation (Holla et al., 169

2020). 170

Continual learning Current approaches to pre- 171

vent catastrophic forgetting can be grouped into one 172

of several categories: (1) constrained optimization- 173

based approaches with or without regularization 174

(Kirkpatrick et al., 2017; Zenke et al., 2017; 175

Chaudhry et al., 2018; Aljundi et al., 2018; 176

Schwarz et al., 2018) that prevent large updates 177

on weights that are important to previously seen 178

tasks; (2) memory-based approaches (Rebuffi et al., 179

2017; Sprechmann et al., 2018; Wang et al., 2019; 180
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d’Autume et al., 2019) that replay examples stored181

in the memory; (3) generative replay-based ap-182

proaches (Shin et al., 2017; Kemker and Kanan,183

2018; Sun et al., 2020) that employ a gener-184

ative model instead of a memory module; (4)185

architecture-based approaches (Rusu et al., 2016;186

Chen et al., 2016; Fernando et al., 2017) that either187

use different subsets of the network for different188

tasks or dynamically expand the networks; and189

(5) hybrid approaches that formulate optimization190

constraints based on examples in memory (Lopez-191

Paz and Ranzato, 2017; Chaudhry et al., 2019).192

More recently, Riemer et al. (2019) proposed an193

approach based on a first-order optimization-based194

meta-learning algorithm, Reptile (Nichol et al.,195

2018), augmented with experience replay. How-196

ever, it involved interleaving every training exam-197

ple with several examples from memory, leading198

to a high replay rate. Elastic Weight Consolida-199

tion (EWC) (Kirkpatrick et al., 2017), Gradient200

Episodic Memory (GEM) (Lopez-Paz and Ranzato,201

2017) and Averaged-GEM (A-GEM) (Chaudhry202

et al., 2019) are three popular continual learning203

methods. EWC introduces a regularization term204

involving the Fisher information matrix that indi-205

cates the importance of each of the parameters to206

previous tasks. GEM solves a constrained opti-207

mization problem as a quadratic program involving208

gradients from all examples from previous tasks.209

A-GEM is a more efficient version of GEM since it210

solves a simpler constrained optimization problem211

based on gradients from randomly drawn samples212

from previous tasks in the memory.213

Continual learning in NLP Wang et al. (2019)214

propose an alignment model named EA-EMR that215

limits the distortion in the embedding space in an216

LSTM-based (Hochreiter and Schmidhuber, 1997)217

architecture for lifelong relation extraction. For218

the same task, Obamuyide and Vlachos (2019a)219

show that utilizing Reptile (Nichol et al., 2018)220

with memory can improve performance and call221

their method MLLRE. Han et al. (2020) further im-222

prove relation extraction with their model, EMAR,223

through episodic memory activation and reconsol-224

idation. d’Autume et al. (2019) propose a model225

with episodic memory called MbPA++ which in-226

corporates sparse experience replay during training227

and local adaptation on K-nearest neighbors from228

the memory for every example during inference.229

Through their experiments on sequential learning230

on multiple datasets of text classification and ques-231

tion answering with BERT, they show that their 232

model can effectively reduce catastrophic forget- 233

ting. Meta-MbPA (Wang et al., 2020) incorporates 234

local adaptation during meta-training and performs 235

fewer local adaptation steps during testing. Sun 236

et al. (2020) present a model based on GPT-2 (Rad- 237

ford et al., 2019), called LAMOL, that simulta- 238

neously learns to solve new tasks and to gener- 239

ate pseudo-samples from previous tasks for replay. 240

They perform sequential learning on five tasks from 241

decaNLP (McCann et al., 2018) as well as multiple 242

datasets for text classification. 243

All these methods are not yet well-suited for ap- 244

plication in real-life scenarios – MbPA++ has slow 245

inference, Meta-MbPA has a higher rate of sam- 246

pling examples from memory, and other methods 247

require task identifiers and multiple epochs of train- 248

ing. Our approach, on the other hand, alleviates all 249

these problems. 250

3 Methods 251

3.1 Task formulation 252

A typical continual learning setup consists of a 253

stream of K tasks T1, T2, ..., TK . For supervised 254

learning tasks, every task Ti consists of a set of data 255

points xj with labels yj , i.e., {(xj , yj)}Nij=1 that are 256

locally i.i.d., where Ni is the size of task Ti. We 257

consider the setting where the goal is to learn a 258

function fθ with parameters θ by only making one 259

pass over the stream of tasks and with no identifiers 260

of tasks Ti available. In multi-task learning, on the 261

other hand, it is possible to draw samples i.i.d from 262

all tasks along with training for multiple epochs. 263

Therefore, multi-task learning is an upper bound to 264

continual learning in terms of performance. 265

We propose an approach to continual learning 266

with meta-learning and experience replay where 267

the updates are similar to first-order MAML. We 268

maintain an episodic memory (or simply called 269

memory)M which stores previously seen exam- 270

ples. Episodes for meta-training are constructed 271

from the stream of examples as well as randomly 272

sampled examples fromM. We perform experi- 273

ence replay sparsely, i.e., a small number of exam- 274

ples are drawn fromM and only after seeing many 275

examples from the stream (i.e. at long intervals), 276

therefore being computationally inexpensive. 277

3.2 Episode generation and experience replay 278

We assume that data points arrive in mini-batches 279

of a given size b and every data point has a probabil- 280
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ity pwrite of being written into an episodic memory281

moduleM. We construct episodes on-the-fly from282

the stream of mini-batches. Given a buffer size m,283

we construct episode i by takingmmini-batches as284

the support set Si and the next batch as the query285

set Qi.286

We explicitly define our experience replay mech-287

anism as consisting of two fixed hyperparameters288

– replay interval RI , which indicates the number289

of data points seen between two successive draws290

from memory, and replay rate r ∈ [0, 1] which in-291

dicates the proportion of examples to draw from292

memory relative to RI . Thus, after every RI exam-293

ples from the stream, br ·RIc examples are drawn294

from the memory.295

We use these sampled examples from memory as296

the query set. To perform experience replay in an297

episodic fashion, we compute the replay frequency298

RF as follows (see Appendix A.6):299

RF =

⌈
RI/b+ 1

m+ 1

⌉
(1)300

Hence, every RF episodes, we draw a random301

batch of size br · RIc from M as the query set.302

For other episodes, the query set is obtained from303

the data stream. The support set for replay episodes304

is still constructed from the stream. A high r and/or305

a low RI ensures that information is not forgotten,306

but in order to be computationally efficient and ad-307

here to continual learning, it is necessary that r is308

low and RI is high, so that the replay is sparsely309

performed, both in terms of size and time.310

During meta-testing, we randomly draw m311

batches from the memory as the support set and312

take the entire test set of the respective task as the313

query set for evaluation. This is done primarily in314

order to match the testing and training conditions315

(Vinyals et al., 2016).316

3.3 Meta-learning methods317

OML-ER The original OML algorithm (Javed318

and White, 2019) was designed to solve new con-319

tinual learning problems during meta-testing. Here,320

we extend it to our setup by augmenting it with an321

episodic memory module to perform experience322

replay (ER), and refer to it as OML-ER.323

The model fθ is composed of two functions –324

a representation learning network (RLN) hφ with325

parameters φ and a prediction learning network326

(PLN) gW with parametersW such that θ = φ ∪327

W and fθ(x) = gW (hφ(x)) for an input x. In328

each episode, the RLN is frozen while the PLN 329

is fine-tuned during the inner-loop optimization. 330

In the outer-loop, both the RLN and the PLN are 331

meta-learned. 332

During the inner-loop optimization in episode 333

i, the PLN is fine-tuned on the support set mini- 334

batches Si with SGD to give: 335

W ′
i = SGD (Li,φ,W ,Si, α) (2) 336

where Li is the loss function. Using the query set, 337

the objective we optimize for is: 338

J(θ) = Li
(
φ,W ′

i ,Qi
)

(3) 339

During a regular episode, the objective encourages 340

generalization to unseen data whereas during a re- 341

play episode, it promotes retention of knowledge 342

from previously seen data. 343

For the outer-loop optimization, we use the 344

Adam optimizer (Kingma and Ba, 2015) with a 345

learning rate β to update all parameters – both the 346

RLN and PLN: 347

θ ← Adam(J(θ), β) (4) 348

The above optimization would involve second- 349

order gradients. Instead, we use the first-order 350

variant where the gradients are taken with respect 351

to θ′i = φ ∪W ′
i . 352

We use BERTBASE (Devlin et al., 2019) as the 353

RLN (fully fine-tuned; output from the [CLS] to- 354

ken) and a single linear layer mapping to the classes 355

as the PLN. 356

ANML-ER Beaulieu et al. (2020) proposed 357

ANML that outperformed OML in solving new 358

continual learning problems in image classification. 359

Inspired by neuromodulatory processes in the brain, 360

they design a context-dependent gating mechanism 361

to achieve selective plasticity, i.e., limited and/or 362

selective modification of parameters with new data. 363

We refer to our extension of this method as ANML- 364

ER. 365

The model fθ is composed of two networks – a 366

regular prediction network (PN) and a neuromod- 367

ulatory network (NM) that selectively gates the 368

internal activations of the prediction network via 369

element-wise multiplication. Formally, the NM is 370

a function hφ with parameters φ, and the PN is 371

a composite function gW2 ◦ eW1 with parameters 372

W = W1 ∪W2. The output is obtained as: 373

fθ(x) = gW2 (eW1(x) · hφ(x)) (5) 374
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In the inner-loop, the NM is fixed while the PN375

is fine-tuned on the support set. As per our notation,376

Equation 2 is the form of the inner-loop here too.377

In the outer-loop, both the NM and the PN are378

updated as in Equation 4 with first-order gradients.379

Our PN is the BERTBASE encoder followed by a380

linear layer mapping to the classes as in OML-ER.381

For the NM, we use BERTBASE followed by two382

linear layers (768 units) with ReLU non-linearity383

between them and a final sigmoid non-linearity to384

limit the gating signal to [0, 1]. We keep the NM385

BERT frozen throughout to reduce the total number386

of parameters. Our preliminary experiments indi-387

cated that fine-tuning the NM BERT in addition388

produces negligible improvements.389

3.4 Baselines390

We consider four BERT-based baselines to evaluate391

the effectiveness of our approach.392

SEQ We train our model “traditionally" on all393

tasks in a sequential manner i.e., one after the other,394

without replay.395

REPLAY It is an extension of SEQ that incor-396

porates sparse experience replay. After seeing RI397

examples from the stream, i.e., a replay frequency398

RF = dRI/be, br · RIc examples are randomly399

drawn from the memory and one gradient update400

is performed on them.401

A-GEM It requires replay at every training step402

and task identifiers by default (Chaudhry et al.,403

2019), but we adapt it to our setting by randomly404

sampling data points from the memory in sparse405

intervals.406

MTL We train our model in a “traditional" multi-407

task setup for multiple epochs on mini-batches that408

are sampled i.i.d from the pool of all tasks. Thus,409

it serves as an upper bound for the performance of410

continual learning methods.411

4 Experimental setup412

4.1 Datasets413

Text classification We use the lifelong text clas-414

sification benchmark introduced by d’Autume et al.415

(2019) which consists of five datasets2 from Zhang416

et al. (2015), trained on sequentially. The datasets417

are AGNews (news classification; 4 classes), Yelp418

(sentiment analysis; 5 classes), Amazon (sentiment419

analysis; 5 classes), DBpedia (Wikipedia article420

classification; 14 classes) and Yahoo (questions421

2https://tinyurl.com/y89zdadp

and answers categorization; 10 classes). Following 422

d’Autume et al. (2019), we merge the classes of 423

Yelp and Amazon and have a total of 33 classes, 424

and randomly sample 115, 000 training examples 425

and 7, 600 test examples from each of the datasets 426

since each of them have different sizes. The evalu- 427

ation metric is the macro average of the accuracies 428

over the five datasets. 429

Relation extraction We use the lifelong relation 430

extraction benchmark created by Wang et al. (2019) 431

based on the few-shot relation classification dataset 432

FewRel (Han et al., 2018). It consists of 44, 800 433

training sentences and 11, 200 test sentences, and a 434

total of 80 relations along with their corresponding 435

names available. Each sentence has a ground-truth 436

relation as well as a set of 10 negative candidate 437

relations. The goal is to predict the correct rela- 438

tion among them. To construct tasks for contin- 439

ual learning, they first perform K-means clustering 440

over the average GloVe embeddings (Pennington 441

et al., 2014) of the relation names to obtain 10 dis- 442

joint clusters. Each task then comprises of data 443

points having ground-truth relations from the cor- 444

responding cluster. In any given task, the candi- 445

date relations that were not seen in earlier tasks 446

are removed. But, if all the candidate relations are 447

unseen, the last two candidates are retained. The 448

evaluation metric is the accuracy on a single test 449

set containing relations from all the clusters. 450

4.2 Implementation 451

For text classification, we largely maintain the ex- 452

perimental setup of d’Autume et al. (2019). We 453

consider four orders of the datasets (see Appendix 454

A.2) and report the average results obtained from 455

three independent runs. We also set pwrite = 1. 456

While they perform replay by drawing 100 exam- 457

ples from memory for every 10, 000 examples from 458

the stream, we draw 96 examples from memory for 459

every 9, 600 examples which is more convenient 460

with batch size b = 16. Thus, we have r = 0.01 461

and RI = 9600. We obtain the best hyperparame- 462

ters by tuning on the first order of the datasets only. 463

The learning rate for SEQ, A-GEM, REPLAY and 464

MTL is 3e−5. MTL is trained for 2 epochs. For 465

OML-ER, the inner-loop and outer-loop learning 466

rates are 1e−3 and 1e−5 respectively whereas for 467

ANML-ER, they are 3e−3 and 1e−5 respectively. 468

The support set buffer size m for both of them is 5. 469

We truncate the input sequence length to 300 for 470

ANML-ER and 448 for the rest. The loss function 471
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Method Accuracy

MbPA++ (d’Autume et al., 2019) 70.6
MbPA++ (Sun et al., 2020) 74.2
LAMOL (Sun et al., 2020) 76.5
Meta-MbPA (Wang et al., 2020) 77.3

SEQ 20.8 ± 0.5
A-GEM 21.9 ± 0.3
REPLAY 67.3 ± 0.7
OML-ER 75.7 ± 0.4
ANML-ER 75.7 ± 0.1

MTL 79.4 ± 0.2

Table 1: Test set accuracy on text classification.

is the cross-entropy loss across the 33 classes. For472

the evaluation of meta-learning methods, we con-473

struct five episodes at meta-test time, one for each474

of the datasets, where their query sets consist of the475

test sets of these datasets.476

For relation extraction, we consider five orders477

of the tasks as in Wang et al. (2019). We report the478

average accuracy on the test set over the five orders,479

averaged over three independent runs. Sentence-480

relation pairs are concatenated with a [SEP] token481

between them to serve as the input. Since this482

is a smaller dataset, we set RI = 1600 and r =483

0.01. Additionally, b = 4, m = 5 and pwrite = 1.484

Hyperparameter tuning is performed only on the485

first order. The learning rate is 3e−5 for SEQ, A-486

GEM and REPLAY. MTL is trained with a learning487

rate of 1e−5 for 3 epochs. The inner-loop and488

outer-loop learning rates are 1e−3 and 3e−5 for489

OML-ER as well as ANML-ER. All models are490

trained using the binary cross-entropy loss, treating491

the true sentence-relation pairs as the positive class492

and the incorrect pairs as the negative class. The493

prediction is obtained as an argmax over the logit494

scores. Meta-learning methods are evaluated using495

a single meta-test episode with the test set as the496

query set.497

5 Experiments and results498

Text classification We present the average accu-499

racy across the baselines and our models with stan-500

dard deviations across runs in Table 1. We perform501

significance testing with a two-tailed paired t-test at502

a significance level of 0.05. Simply training on the503

datasets sequentially leads to extreme forgetting504

as reflected in the low accuracy of the SEQ model.505

With A-GEM, we get only a small, but significant506

gain (p = 0.008) compared to sequential training.507

By analyzing the frequency of constraint violations508

Method Accuracy

EA-EMR (Wang et al., 2019) 56.6
MLLRE (Obamuyide and Vlachos, 2019a) 60.2
EMAR (Han et al., 2020) 66.0

SEQ 48.1 ± 3.2
A-GEM 45.5 ± 2.1
REPLAY 65.4 ± 1.2
OML-ER 69.5 ± 0.5
ANML-ER 68.5 ± 0.7

MTL 85.7 ± 1.1

Table 2: Test set accuracy on relation extraction.

in Appendix A.12, we find that A-GEM updates on 509

BERT often behave similar to that in SEQ, which 510

explains its poor performance. REPLAY, on the 511

other hand, drastically improves performance, indi- 512

cating that BERT benefits substantially even from 513

a sparse experience replay. MbPA++ is the current 514

state-of-the-art on this benchmark under the realis- 515

tic setup of excluding task identifiers, using sparse 516

replay and a single training epoch. Sun et al. (2020) 517

re-implement MbPA++ and obtain a higher score 518

than the original implementation. We surmise that 519

this is partly attributed to the fact that they perform 520

replay after every 100 steps along with dynamic 521

batching and therefore likely resulting in a higher 522

replay interval. ANML-ER achieves the highest ac- 523

curacy, demonstrating that our meta-learning setup 524

is more effective at mitigating catastrophic forget- 525

ting. OML-ER is almost as effective as ANML-ER, 526

with the differences between the two being statisti- 527

cally insignificant (p = 0.993). Although LAMOL 528

has a higher score, it is not directly comparable 529

to our methods since it uses task identifiers and 530

multiple epochs of training, and has a higher gen- 531

erative replay rate of 20%, all of which make the 532

task easier. Meta-MbPA is not directly comparable 533

either since it performs local adaptation on nearest 534

neighbors obtained from the memory during all its 535

inner loop updates, thus having a higher replay rate 536

effectively. Our meta-learning approach further 537

narrows the gap with the MTL upper bound. 538

Relation extraction We report the average test set 539

accuracy along with the standard deviation across 540

the three runs in Table 2. We see that A-GEM 541

performs similar to SEQ, with the differences being 542

statistically insignificant (p = 0.218). Including 543

sparse experience replay (REPLAY) again leads 544

to a substantial increase in performance compared 545

to SEQ. A low A-GEM performance compared to 546

a simple replay method on this benchmark was 547
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also observed in Wang et al. (2019). OML-ER548

and ANML-ER significantly outperform all the549

baselines (p = 0.006 for OML-ER and p = 0.026550

for ANML-ER when compared to REPLAY), and551

the former achieves the highest accuracy overall552

but, again, the differences between the two are553

not statistically significant (p = 0.098). Although554

not directly comparable, both of them outperform555

the previous state-of-the-art LSTM-based method556

EMAR (Han et al., 2020), despite it using task557

identities as additional information and training for558

multiple epochs. There is, however, a wide gap559

between OML-ER and the MTL upper bound. We560

return to this in a later analysis.561

6 Analysis562

Ablation study To investigate the relative563

strengths of the various components in our ap-564

proach, we perform an ablation study and report565

the results in Table 3. Meta-learning without replay566

leads to a large drop in performance, showing that567

experience replay, despite being sparse, is crucial.568

Interestingly however, meta-learning without re-569

play still has considerably higher scores compared570

to SEQ, demonstrating that it is more resilient to571

catastrophic forgetting. Retrieving relevant exam-572

ples from memory and fine-tuning on them during573

inference is a key aspect in MbPA++ since retriev-574

ing random examples instead produces only about575

0.4% improvement over REPLAY (d’Autume et al.,576

2019). Our approach works with random examples577

and yet achieves substantially higher accuracies.578

For OML-ER, omitting fine-tuning altogether at579

the meta-testing stage produces a small, yet sig-580

nificant drop (p = 0.019) for text classification,581

but an insignificant one (p = 0.602) for relation582

extraction. Similarly, for ANML-ER, no meta-583

test fine-tuning results in a small, significant drop584

(p = 0.006) for text classification and an insignif-585

icant change (p = 0.265) for relation extraction.586

Unlike MbPA++, our methods, overall, work well587

even without additional adaptation steps during in-588

ference. Without neuromodulation, ANML-ER is589

equivalent to standard MAML enhanced with ex-590

perience replay, which we could call MAML-ER.591

The performance difference between ANML-ER592

and MAML-ER is not statistically (p = 0.120 for593

text classification and p = 0.087 for relation ex-594

traction), which suggests that the neuromodulator595

in ANML-ER is not useful for our language tasks.596

Even though OML-ER, ANML-ER and MAML-597

Method
Accuracy

Text
classification

Relation
extraction

OML-ER 75.7 ± 0.4 69.5 ± 0.5
− Replay 24.6 ± 0.6 55.9 ± 0.9
−Meta-test fine-tuning 75.6 ± 0.4 69.3 ± 0.7

ANML-ER 75.7 ± 0.1 68.5 ± 0.7
− Replay 51.7 ± 1.8 57.0 ± 0.9
−Meta-test fine-tuning 74.9 ± 0.3 67.7 ± 0.9
− Neuromodulation 75.8 ± 0.2 68.0 ± 0.4

Table 3: Ablation study on model components.

Replay rate Method
Accuracy

Text
classification

Relation
extraction

1 % REPLAY 67.3 ± 0.7 65.4 ± 1.2
OML-ER 75.7 ± 0.4 69.5 ± 0.5

2 % REPLAY 67.2 ± 2.0 67.1 ± 0.8
OML-ER 75.6 ± 0.1 71.6 ± 1.1

4 % REPLAY 70.3 ± 1.3 69.2 ± 2.2
OML-ER 76.0 ± 0.6 75.5 ± 0.4

— MTL 79.4 ± 0.2 85.7 ± 1.1

Table 4: Test metrics on text classification and relation
extraction for varying replay rates.

ER are equally successful in terms of performance, 598

OML-ER is computationally more efficient as only 599

its PLN (a single linear layer) is fine-tuned in the 600

inner-loop. 601

Effect of replay rate We noted previously that 602

there exists a gap in performance between our best 603

model and MTL. To analyze if increasing the re- 604

play rate can help narrow the gap, we train both 605

REPLAY and OML-ER with a 2% and 4% replay 606

rate3, keeping RI the same as before (Table 4). 607

On text classification, OML-ER has similar per- 608

formance (p = 0.936) with 2% replay rate and a 609

small, significant improvement (p = 0.001) with 610

4% replay rate. The same trend is observed with 611

REPLAY as the replay rate increases (p = 0.861 612

and p = 0.045) . In contrast, OML-ER and RE- 613

PLAY improve by a significantly greater extent 614

on relation extraction (p = 3e−4 and p = 0.048 615

respectively). We surmise this is because text clas- 616

sification has equally sized tasks whereas the tasks 617

in relation extraction are imbalanced (see Appendix 618

A.3). Since we employ uniform sampling for mem- 619

ory read/write, this imbalance is reflected in the 620

memory, causing larger tasks to be replayed more 621

3The maximum replay rate for our meta-learning methods
is 1/m = 20% i.e., replay every episode with m = 5
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Memory
capacity

Accuracy
Text classification Relation extraction

100 % 75.7 ± 0.4 69.5 ± 0.5
5 % 75.2 ± 0.4 69.2 ± 0.9
1 % 75.6 ± 0.3 66.8 ± 0.3

Table 5: Variation of performance of OML-ER with the
size of the memory.

often and underrepresented tasks to be forgotten622

more quickly. A higher replay rate therefore in-623

creases the chances of sufficiently revisiting all pre-624

vious tasks, leading to better scores. Additionally,625

on both benchmarks, OML-ER outperforms RE-626

PLAY even with higher replay rates. There is still627

a wide gap between OML-ER with 4% replay and628

MTL, indicating there is scope for improvement.629

Effect of memory size In our experiments so far,630

we store all the examples in memory; however, this631

does not scale well when the number of tasks is632

very large. In order to investigate the effect of mem-633

ory size on performance, we present the accuracy of634

OML-ER with 5% and 1% memory capacity in Ta-635

ble 5. We achieve this by setting pwrite to 0.05 and636

0.01 respectively. There are insignificant changes637

(p = 0.074 and p = 0.952 respectively) in average638

accuracy even with reduced memory for text classi-639

fication. MbPA++, on the other hand, was shown640

to have a drop of 3% accuracy with 10% memory641

capacity (d’Autume et al., 2019), which demon-642

strates that our method is more memory-efficient.643

Performance on relation extraction suffers a small644

but significant drop (p = 0.040) with 1% memory.645

The difference is insignificant (p = 0.741) with646

5% memory and, overall, can still be considered647

memory-efficient.648

Episodic updates In addition to the automatic649

gradient alignment that comes with meta-learning,650

we believe that its episodic nature is another reason651

for its strength in lifelong learning. In text classifi-652

cation for example, SEQ has a replay every 600 op-653

timizer steps whereas meta-learning, by way of its654

formulation, has a replay every 101 meta-optimizer655

steps (using Equation 1 with our hyperparameters)4.656

Fewer updates between replays likely aids in knowl-657

edge retention. To probe deeper, we trained our658

REPLAY model such that replay occurs every 100659

optimizer steps by setting RI = 1600, with ev-660

erything else being the same. This achieves an661

4However, we note that optimizer steps and meta-optimizer
steps are not the same nor directly comparable as such.

accuracy of 74.4±0.2. Although this is now closer 662

to our meta-learning methods, it is still significantly 663

lower (p = 0.001 for OML-ER and p = 8e−5 for 664

ANML-ER). Therefore, episodic updates in meta- 665

learning are an important part of the model, con- 666

tributing positively to performance. For “regular” 667

training to match the same level of performance, ex- 668

perience replay would need to be performed more 669

often. 670

7 Discussion and conclusion 671

Continual learning methods so far have relied on 672

manual heuristics and/or have computational bot- 673

tlenecks. MbPA++ is inexpensive during training 674

due to sparse replay, but its inference is expensive 675

since it requires retrieval of K nearest neighbors 676

for every test example and multiple gradient steps 677

on them. A-GEM, on the other hand, is slower to 678

train due to its projection steps. OML-ER achieves 679

the best of both worlds – its training is fast because 680

its inner-loop, which makes up a large portion of 681

the training, involves only updating the small PLN, 682

and its inference is fast since it relies only on a 683

small number of updates on randomly drawn exam- 684

ples from memory. Furthermore, it also retains its 685

performance when the memory capacity is lowered. 686

Our method uses a simple, random write mech- 687

anism. Other strategies such as those based on 688

surprise (Ramalho and Garnelo, 2019) and forget- 689

ting (Toneva et al., 2019) could further refine per- 690

formance. Furthermore, the problem of task size 691

imbalance could be mitigated with class-balancing 692

reservoir sampling (Chrysakis and Moens, 2020). 693

In our experiments on text classification, we as- 694

sume that all the classes are known beforehand. 695

Lifelong learning when the classes are unknown a 696

priori and available only during each of the indi- 697

vidual tasks is more challenging and would be an 698

interesting extension. 699

In conclusion, we showed that pre-trained 700

transformer-based language models, meta-learning 701

and sparse experience replay produce a synergy 702

that improves lifelong learning on language tasks 703

in a realistic setup. This is an important step in 704

moving away from manually-designed solutions 705

into simpler, more generalizable methods to ulti- 706

mately achieve human-like learning. Meta-learning 707

could further be exploited for the combined setting 708

of few-shot and lifelong learning. It might also 709

be promising in learning distinct NLP tasks in a 710

curriculum learning fashion. 711
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A Appendix 1001

A.1 Meta-learning 1002

Optimization-based methods for meta-learning ex- 1003

plicitly include generalizability in their objec- 1004

tive function and optimize for the same. Model- 1005

agnostic meta-learning (MAML) algorithm (Finn 1006

et al., 2017) is an optimization-based method that 1007

seeks to train a model’s initial parameters such 1008

that it can perform well on a new task after only 1009

a few gradient steps. During meta-training, it in- 1010

volves a two-level optimization process where task 1011

adaptation is performed using the support set in an 1012

inner-loop and meta-updates are performed using 1013

the query set in an outer-loop. Specifically, param- 1014

eters θ of the model fθ are updated to θ′i for task 1015

Ti in the inner-loop by m steps of gradient-based 1016

update U on the support set as: 1017

θ′i = U(LsTi ,θ, α,m) (6) 1018

where LsTi is the loss on the support set and α is the 1019

inner-loop learning rate. The outer-loop objective 1020

is to have fθ′i generalize well across tasks from a 1021

distribution p(T ): 1022

J(θ) =
∑
Ti∼p(T )

LqTi(fU(LsTi ,θ,α,m)) (7) 1023

where LqTi is the loss computed on the query set. 1024

The outer-loop optimization does the update with 1025

the outer-loop learning rate β as: 1026

θ ← θ − β∇θ
∑
Ti∼p(T )

LqTi(fθ′i) (8) 1027

This involves computing second-order gradients, 1028

i.e., the backward pass works through the update 1029
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step in Equation 6, which is a computationally1030

expensive process. Finn et al. (2017) propose a1031

first-order approximation, called FOMAML, which1032

computes the gradients with respect to θ′i rather1033

than θ. The outer-loop optimization step thus re-1034

duces to:1035

θ ← θ − β
∑
Ti∼p(T )

∇θ′iL
q
Ti(fθ′i) (9)1036

During meta-testing, new tasks are learned from1037

the support sets and the performance is evaluated1038

on the corresponding query sets.1039

A.2 Dataset order for text classification1040

For text classification, the four different orderings1041

of the datasets are:1042

1. Yelp→ AGNews→ DBpedia→ Amazon→ Yahoo1043

2. DBpedia→ Yahoo→ AGNews→ Amazon→ Yelp1044

3. Yelp→ Yahoo→ Amazon→ DBpedia→ AGNews1045

4. AGNews→ Yelp→ Amazon→ Yahoo→ DBpedia1046

A.3 Task distribution for relation extraction1047

In relation extraction, the size of each cluster is not1048

balanced. Hence, each of the tasks vary in their size.1049

In Figure 1 we plot the number of relations and the1050

number of sentences in each cluster. Overall, there1051

is a great imbalance with respect to the task size,1052

with cluster 2 and 6 having a disproportionately1053

larger size compared to the other clusters.1054
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Figure 1: Task distribution for relation extraction.

A.4 Illustration of the setup1055

Figure 2 provides an illustration of the structure of1056

episodes and experience replay.1057

A.5 Motivation1058

Riemer et al. (2019) note that, given two sets of1059

gradients for shared parameters θ, interference oc-1060

curs when the dot product of gradients is negative,1061

and transfer occurs when their dot product is posi-1062

tive. Additionally, they show that Reptile (Nichol1063

et al., 2018) implicitly maximizes the dot product 1064

between gradients within an episode and, hence, 1065

when coupled with experience replay, it could fa- 1066

cilitate continual learning. 1067

Consider a first-order MAML setup that per- 1068

forms one step of SGD on each of the m batches in 1069

the support set during the inner-loop of an episode. 1070

Starting with parameters θ0 = θ, it results in a 1071

sequence of parameters θ1, ..., θm using the losses 1072

L1, ..., Lm. The meta-gradient computed on the 1073

query set of the episode is: 1074

gFOMAML =
∂Lq(θm)

∂θm
(10) 1075

Using Taylor series approximation as in Nichol 1076

et al. (2018), the expected gradient under mini- 1077

batch sampling could be expressed as: 1078

1079

E [gFOMAML] = E

[
∂Lq(θm)

∂θ
− α

2

∂

∂θ

(
m∑
j=1

∂Lj(θj−1)

∂θ
· 1080

∂Lq(θm)

∂θ

)]
+O(α2) (11) 1081

where α is the inner-loop learning rate. We provide 1082

a more detailed derivation in Appendix A.7. Outer- 1083

loop gradient descent with this gradient approxi- 1084

mately solves the following optimization problem: 1085

min
θ

E

[
Lq(θm)− α

2

(
m∑
j=1

∂Lj(θj−1)

∂θ
· ∂L

q(θm)

∂θ

)]
(12) 1086

This objective seeks to minimize the loss on the 1087

query set along with maximizing the dot product 1088

between the support and query set gradients. Thus, 1089

integrating previously seen examples into the query 1090

set in a first-order MAML framework could also po- 1091

tentially improve continual learning by minimizing 1092

interference and maximizing transfer. 1093

A.6 Expression for replay frequency 1094

In REPLAY and A-GEM, since gradient updates 1095

occur after seeing a batch of size b from the stream, 1096

the replay frequency RF , i.e., the number of steps 1097

between the replay interval RI , is simply given by 1098

RF =

⌈
RI
b

⌉
(13) 1099

In meta-learning, learning occurs in episodes where 1100

the support set has m batches of size b each and 1101

a single batch as query set of the same size b. Af- 1102

ter encountering RI examples, we would like the 1103
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Test set

Memory

Meta-training

Meta-testing

Figure 2: Illustration of meta-learning for lifelong learning. The m mini-batches that form the support set used for
inner-loop optimization are shown in blue. Red boxes indicate query sets used in outer-loop optimization. After
every RI examples, the query set is obtained by sampling r ·RI examples from the memory, whereas other query
sets are derived from the data stream. During meta-testing, m mini-batches are sampled from the memory for
fine-tuning, followed by evaluation on the test set.

replay to be realized as a query set. If RF is the1104

episode at which replay occurs,1105

b [(RF − 1)(m+ 1) +m] = RI1106

RF − 1 =
RI/b−m
m+ 1

1107

RF =

⌈
RI/b+ 1

m+ 1

⌉
(14)1108

where we round it up to the nearest integer so that1109

replay is not performed before RI examples.1110

A.7 Derivation of gradients1111

Consider a first-order MAML setup that performs1112

one step of SGD on each of the m batches in the1113

support set during the inner-loop of an episode.1114

Starting with parameters θ0 = θ, it results in a1115

sequence of parameters θ1, ..., θm using the losses1116

L1, ..., Lm. The query set could be considered1117

as the (m + 1)-th batch that produces the meta-1118

gradient for θ using L(m+1) = Lq. We introduce1119

the following two notations to denote the gradient1120

and the Hessian with respect to the initial parame-1121

ters θ:1122

ḡi =
∂Li(θi−1)

∂θ
(15)1123

H̄i =
∂2Li(θi−1)

∂θ2
(16)1124

Using Taylor series approximation, Nichol et al.1125

(2018) show that the meta-gradient can be written1126

as:1127

gFOMAML =
∂Lq(θm)

∂θm
1128

= ḡm+1 − αH̄m+1

m∑
j=1

ḡj +O(α2)1129
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Figure 3: Architecture of OML.

Taking expectation under mini-batch sampling, 1130

E[gFOMAML] = E [ḡm+1]− α
m∑
j=1

E
[
H̄m+1ḡj

]
+O(α2) 1131

= E [ḡm+1]− α
m∑
j=1

E
[
H̄j ḡm+1

]
+O(α2) 1132

(interchanging j and m+ 1) 1133

= E [ḡm+1]− α

2

m∑
j=1

E
[
H̄m+1ḡj + H̄j ḡm+1

]
1134

+O(α2) (averaging the last two equations) 1135

= E [ḡm+1]− α

2

∂

∂θ

m∑
j=1

E [ḡj · ḡm+1] 1136

+O(α2) 1137

Re-writing based on Equation 15 and 16 gives: 1138

E[gFOMAML] = E

[
∂Lq(θm)

∂θ

− α

2

∂

∂θ

(
m∑
j=1

∂Lj(θj−1)

∂θ
· ∂L

q(θm)

∂θ

)]
+O(α2)

(17)

A.8 Model architecture 1139

Figure 3 and 4 depict the architectures of OML and 1140

ANML respectively. 1141
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A.9 Pseudo code1142

Algorithms 1 and 2 outline the meta-training and1143

meta-testing procedure respectively that is common1144

to both OML-ER and ANML-ER.1145

Algorithm 1: Meta-training
Input: Initial model parameters

θ = φ ∪W , replay interval RI ,
replay frequency RF , replay rate r,
support set buffer size m, memory
M, write probability pwrite,
inner-loop learning rate α,
outer-loop learning rate β

Output: Trained model parameters θ,
updated memoryM

for i = 1, 2, ... do
Si ← m batches from the stream
if i = RF then
Qi ← sample(M, br ·RIc)

end
else
Qi ← next batch from the stream
write(M,Qi, pwrite)

end
write(M,Si, pwrite)
W ′

i = SGD(Li,φ,W ,Si, α)
J(θ) = Li (φ,W ′

i ,Qi)
θ ← Adam(J(θ), β)

end

A.10 Implementation details1146

For text classification, we take 5, 000 examples1147

from each of the datasets as the validation set and1148

115, 000 examples from each of the datasets as1149

the training set. The number of training examples1150

matches that of d’Autume et al. (2019). On the1151

other hand, for relation extraction, we take a sub-1152

set of 4, 800 examples from the training set as the1153

Algorithm 2: Meta-testing
Input: Trained model parameters

θ = φ ∪W , support set buffer size
m, memoryM, batch size b,
inner-loop learning rate α, test set T

Output: Predictions on the test set
S ← sample(M,m · b)
Q ← T
W ′ = SGD(L,φ,W ,S, α)
predict(Q,φ,W ′)

validation set for hyperparameter tuning. With the 1154

best hyperparameters, we re-train on all 44, 800 1155

examples to match the number of examples used in 1156

Wang et al. (2019). 1157

The only hyperparameters we tune are the learn- 1158

ing rate (for SEQ, A-GEM and REPLAY), the inner 1159

and meta learning rates, and the support set buffer 1160

size m (for OML-ER and ANML-ER). The other 1161

hyperparameters are fixed to appropriate values. 1162

We performed tuning over the following values: 1163

• Learning rate: 5e−4, 1e−5, 3e−5, 5e−5 1164

• Inner learning rate: 5e−2, 1e−3, 3e−3, 5e−3 1165

• Meta learning rate: 5e−4, 1e−5, 3e−5, 5e−5 1166

• m: 3, 5, 7, 9 1167

In Table 6, we summarize all the hyperparame- 1168

ters for text classification and relation extraction. 1169

We use the random seeds 42 – 44 for the three inde- 1170

pendent runs. All models were trained on a system 1171

with a single Nvidia Titan RTX GPU and 45 GB 1172

memory. 1173

A.11 Additional results 1174

Table 7 shows the test set accuracy on the text 1175

classification benchmark per order of the dataset as 1176

well as the macro average. 1177

A.12 Frequency of constraint violations 1178

A-GEM solves a constrained optimization problem 1179

such that the dot product between the gradients 1180

from the current batch and a randomly drawn batch 1181

from the memory is greater than or equal to zero. 1182

We check constraint satisfaction by treating the 1183

model parameters as a single vector. To analyze 1184

the poor performance of A-GEM on our setup, we 1185

plot the average number of constraint violations 1186

across the four orders that occur per task in text 1187

classification in Figure 5. Note that the total num- 1188

ber of optimizer steps per task is 7187 and replay 1189
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Model Learning rate Inner loop
learning rate

Meta
learning rate

Support set
buffer size Batch size Maximum

sequence length

SEQ 3e−5 — — — 16 448
A-GEM 3e−5 — — — 16 448
REPLAY 3e−5 — — — 16 448
MTL (2 epochs) 3e−5 — — — 16 448
OML-ER — 1e−3 1e−5 5 16 448
ANML-ER — 3e−3 1e−5 5 16 300

SEQ 3e−5 — — — 4 —
A-GEM 3e−5 — — — 4 —
REPLAY 3e−5 — — — 4 —
MTL (3 epochs) 1e−5 — — — 4 —
OML-ER — 1e−3 3e−5 5 4 —
ANML-ER — 1e−3 3e−5 5 4 —

Table 6: Hyperparameters for text classification (top) and relation extraction (bottom).

Method Accuracy
Order 1 Order 2 Order 3 Order 4 Average

MbPA++ (d’Autume et al., 2019) 70.8 70.9 70.2 70.7 70.6
MbPA++ (Sun et al., 2020) 74.1 74.9 73.1 74.9 74.2
LAMOL (Sun et al., 2020) 76.7 77.2 76.1 76.1 76.5
Meta-MbPA (Wang et al., 2020) 77.9 76.7 77.3 77.6 77.3

SEQ 16.7 ± 0.7 25.0 ± 0.5 19.5 ± 0.4 22.1 ± 0.5 20.8 ± 0.5
A-GEM 16.6 ± 0.9 25.9 ± 1.1 21.6 ± 0.8 23.5 ± 1.0 21.9 ± 0.3
REPLAY 69.5 ± 1.0 66.2 ± 2.0 65.2 ± 2.3 68.3 ± 2.2 67.3 ± 0.7
OML-ER 75.4 ± 0.3 76.5 ± 0.2 75.4 ± 0.5 75.4 ± 0.8 75.7 ± 0.4
ANML-ER 75.6 ± 0.4 75.8 ± 0.1 75.5 ± 0.3 75.7 ± 0.3 75.7 ± 0.1

MTL — — — — 79.4 ± 0.2

Table 7: Test set accuracy on text classification. The last column is the macro average across the four orders.

occurs about 11 times for each. When fine-tuning1190

the whole of BERT, we have relatively few viola-1191

tions, meaning that no gradient correction is done1192

most of the time. This perhaps relates to the finding1193

by Merchant et al. (2020) that fine-tuning BERT1194

primarily affects the top layers and does not lead1195

to catastrophic forgetting of linguistic phenomena1196

in the deeper layers. We see that the number of1197

violations increase when we only fine-tune the top1198

2 layers of BERT. Yet, it was insufficient to reach1199

the performance of a simple replay method.1200

A.13 ANML visualization1201

The original OML and ANML models were1202

shown to produce sparse representations with CNN1203

encoders for images (Javed and White, 2019;1204

Beaulieu et al., 2020). Sparse representations al-1205

leviate forgetting since only a few neurons are ac-1206

tive for a given input. We visualize the represen-1207

tations from BERT before and after neuromodu-1208

lation, along with the neuromodulatory signal, in1209

our ANML-ER model in Figure 6. Clearly, none of1210

the representations are sparse. Moreover, most of1211

the neuromodulatory signal is composed of ones,1212
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Figure 5: Average number of constraint violations per
task in text classification.
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Figure 6: Visualization of the neuromodulatory signal (middle row) and the representation from BERT before
(top row) and after (bottom row) neuromodulation for three randomly chosen texts from the AGNews dataset. We
obtain the plots by reshaping the 768-dimensional representation into 48 × 16.

further confirming our hypothesis that the neuro-1213

modulator does not play a significant role here. The1214

lack of sparsity was also observed in OML-ER. Per-1215

haps, a more sophisticated neuromodulatory mech-1216

anism is required to induce sparsity in pre-trained1217

transformer-based language models.1218
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