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Abstract

Concept activation vector (CAV) has attracted broad research interest in explainable
AI, by elegantly attributing model predictions to specific concepts. However, the
training of CAV often necessitates a large number of high-quality images, which
are expensive to curate and thus limited to a predefined set of concepts. To address
this issue, we propose Language-Guided CAV (LG-CAV) to harness the abundant
concept knowledge within the certain pre-trained vision-language models (e.g.,
CLIP). This method allows training any CAV without labeled data, by utilizing the
corresponding concept descriptions as guidance. To bridge the gap between vision-
language model and the target model, we calculate the activation values of concept
descriptions on a common pool of images (probe images) with vision-language
model and utilize them as language guidance to train the LG-CAV. Furthermore,
after training high-quality LG-CAVs related to all the predicted classes in the
target model, we propose the activation sample reweighting (ASR), serving as
a model correction technique, to improve the performance of the target model
in return. Experiments on four datasets across nine architectures demonstrate
that LG-CAV achieves significantly superior quality to previous CAV methods
given any concept, and our model correction method achieves state-of-the-art
performance compared to existing concept-based methods. Our code is available at
https://github.com/hqhQAQ/LG-CAV.

1 Introduction

Concept activation vector (CAV) [16] interprets the pre-trained black-box classification models (target
models) by quantifying the significance of a concept to the model predictions. CAV provides intuitive
insights to comprehend the intrinsic behavior of black-box models, elucidating the patterns behind
their decision-making processes. Owing to its simplicity and effectiveness, it has been followed
by numerous studies [10, 36, 11, 1, 40] and extended to diverse domains, such as recommender
system [45], 3D shape generation [8], abusive language detection [25], etc.

However, the training of CAV usually necessitates an ample amount of high-quality images that
accurately depict the corresponding concept. Unfortunately, in practical contexts, gathering an
adequate number of training images is challenging especially when the number of concepts is
extensive, thereby significantly impacting the quality (estimated using the proposed concept accuracy
and concept-to-class accuracy) of the trained CAVs. Figure 1 delineates the correlation between
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Figure 1: The quality of CAV is significantly affected by the number of training images. Here concept
accuracy estimates whether the CAV faithfully represents its corresponding concept. Concept-to-class
accuracy measures the similarity between the CAV and its strongly semantic-related class.
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Figure 2: (A) LG-CAV is trained guided by activations of concept descriptions on the probe images
from VL model. (B) The distribution of activation values on a concept named “Skyscraper” (from the
Broden dataset [2]) in the target model (ResNet18) and VL model (CLIP) differs a lot.

the number of training images for each concept and the quality of the trained CAVs on the Broden
dataset [2]. It can be concluded that when the number of training images is small, the quality of the
trained CAVs is low, hindering CAVs from properly interpreting the model.

In recent years, the advent of foundational vision-language models (referred to as VL models, such
as CLIP [30]) establishes connections between images and text by mapping image features and text
features into a shared feature space. These VL models undergo pre-training on extensive image-text
datasets, equipping them with the ability to grasp a multitude of concepts. Inspired by this, to address
the data-scarcity problem of CAV training, in this work we propose LG-CAV to utilize the abundant
concept knowledge from VL models for more cheaply getting CAV for any concept given the concept
descriptions, without being confined to specific pre-defined concepts.

The concept features extracted by VL model cannot be directly used for training the LG-CAV, as
VL model and the target model operate within distinct feature spaces. To bridge the gap, our work
ingeniously trains the LG-CAV by calculating its activation values on a common pool of images (probe
images), and making them mimic the activation values of the corresponding concept from VL model
on these images, as shown in Figure 2 (A). Therefore, LG-CAV learns its corresponding concept
according to the concept’s existence degree (activation value) on the probe images from VL model.

However, directly applying the above framework is not guaranteed to improve the quality of LG-
CAV (see experiments in subsubsection 4.1.2), because the calculated activation values from the
target model and VL model are in different distributions (see Figure 2 (B)). To tackle this problem,
our work proposes a Gaussian alignment (GA) module to align the activation values from the target
and VL models. Besides, we propose a concept ensemble (CE) module and a deviation sample
reweighting (DSR) module into this framework to further improve the quality of LG-CAV. Detailedly,
CE module strengthens the completeness of concept descriptions by employing data augmentations
on the concept texts. DSR module optimizes the selection of probe images by allocating higher
training weights to the probe images with a more stable concept representation.

Furthermore, after training numerous high-quality LG-CAVs that can describe all classes in the
dataset, our work makes a considerable improvement on previous CAV methods by applying LG-
CAVs to model correction on generic datasets like ImageNet. To this end, we fine-tune the target
model to align the prediction of each class with its strongly-related concept, with a proposed activation
sample reweighting (ASR) module that allocates higher training weights to the samples activated
more highly by the corresponding LG-CAVs.

We perform extensive experiments to validate the performance of our proposed method. Experiments
demonstrate that LG-CAV achieves significantly higher CAV quality (concept accuracy & concept-to-
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class accuracy) than previous CAV methods on the Broden & ImageNet datasets over nine backbones.
Besides, we conduct model correction on the ImageNet & CUB-200-2011 & CIFAR-100 datasets over
nine backbones. Experiments present that our method achieves significantly superior performance to
other concept-based methods.

To sum up, the key contributions of this work can be listed as follows:

• We propose LG-CAV to tackle the data-scarcity problem of CAV training, which is trained
guided by the corresponding concept descriptions from VL model.

• We propose a Gaussian alignment (GA) module, a concept ensemble (CE) module, and a
deviation sample reweighting (DSR) module to further enhance the quality of LG-CAV.

• Beyond providing explanations, we apply LG-CAV to model correction, by proposing an
activation sample reweighting (ASR) module.

• Experiment results verify that LG-CAV achieves significantly higher CAV quality, and our
model correction method outperforms existing concept-based methods remarkably.

2 Related Work

Concept Activation Vector (CAV). With the development and widespread application of deep
learning [12, 31, 3, 46], it has become increasingly important to explain the internal mechanisms
of deep neural networks (e.g., using concept activation vector (CAV)). Each CAV [16] is trained
for a specific concept in the target model, and is used to quantify the importance of this concept
to model predictions. Most existing CAV methods only utilize CAVs to interpret the target model.
Concept_Gradient [1] extends the original linear CAV to non-linear concept functions, which im-
proves the interpretability of CAV without the linear separability assumption of CAV. OA-TCAV [40]
proposes an adversarial training approach to improve the quality of CAV. Differently, our method
achieves significantly superior CAV quality to these methods, by transferring the abundant concept
knowledge from VL model.

Vision-Language Models for Interpretability. CLIP-Dissect [27] and DISCOVER [28] utilize
CLIP model to describe the neurons inside the target model. Label-free CBM [26] and PCBM [47]
utilize CLIP model to generate additional concept annotations for concept bottleneck models [17].
These methods are limited to solely interpreting the target model and lacking the ability to improve
the model performance using the explanation results.

Model Correction. Model correction methods aim to improve the target model by introducing
corrective information into the model. Most existing methods [32, 22, 24, 19, 41] are limited to
customized tasks with narrow scope (e.g., debias the color bias of model representations on the
ColorMNIST dataset [22]). Some methods [11, 4] improve the accuracy of generic classification
models, but they are limited to small-sized datasets. Differently, our method trains high-quality
LG-CAVs that can describe all classes in the dataset, thus facilitating the task of model correction on
generic datasets like ImageNet.

We provide more detailed comparisons with the related methods in Appendix C.3.

3 Method

3.1 Preliminaries

The target model is a pre-trained classification model that receives image x as input and outputs
K classification logits, with a backbone f and a final layer h. Detailedly, f extracts the image
features f(x) ∈ RDf of x (Df is dimension size), and h is a linear layer that projects f(x) into K
classification logits. Note h(f(x)) ∈ RK , and hk(f(x)) ∈ R is the classification logit for class k.

Concept activation vector (CAV) [16] represents a concept for the target model. Specifically, given
positive images (Pc) and negative images (Nc) for the concept c, a binary linear classifier is trained
on internal features {f(x) : x ∈ Pc} and {f(x) : x ∈ Nc} to discriminate c, with a classification
loss Lcls. Finally, the CAV vc ∈ RDf for c is defined as the weight vector for c in the classifier.
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VL model [30] consists of an image encoder gimg that projects input image x into image features
gimg(x) ∈ RDVL , and a text encoder gtext that projects input texts t into text features gtext(t) ∈
RDVL . After trained on a large-scale image-text dataset, gimg(x) and gtext(t) are projected into the
same feature space and can be directly compared.

3.2 Evaluation of CAV Quality

We propose two metrics (concept accuracy and concept-to-class accuracy) to evaluate the CAV
quality, based on the definition that CAV quantifies the importance of a concept to the class prediction.

Concept accuracy. Concept accuracy estimates whether the CAV faithfully represents its corre-
sponding concept. To this end, the accuracy Acc(vc) for CAV vc is calculated as the test accuracy of
the binary classification model. Specifically, let C denote the set of all concepts, concept accuracy
Sconcept is finally calculated averagely over all concepts (note that ∥ · ∥ denotes cardinality of a set):

Sconcept =
1

∥C∥
∑
c∈C

Acc(vc). (1)

Concept-to-class accuracy. The original CAV simply determines whether the trained CAV vc has a
positive relation to a class k in the target model, by simply determining whether the angle between
vc and ∇hk(f(x)) (the gradients of classification logit for class k on f(x)) is acute. However, this
metric is too simplified to reflect the degree of connection between CAVs and classes. Therefore,
we propose concept-to-class accuracy to estimate the extent to which the CAV vc relates to class k
according to the cosine similarity between vc and ∇hk(f(x)). We construct the ground-truth set (D)
of positively-related concept-class pairs by calculating the similarity between the concepts and the
class names with a language model (like all-mpnet-base-v2 [39] as used in CLIP-Dissect [27]) and
selecting the concept-class pairs with the similarity exceeding a threshold ϵ. Finally, concept-to-class
accuracy Sconcept_to_class is calculated averagely over all ground-truth concept-class pairs D:

Sconcept_to_class =
1

∥D∥
∑

(c,k)∈D

vc · ∇hk(f(x))

∥vc∥∥∇hk(f(x))∥
. (2)

3.3 LG-CAV

In this section, we first propose a framework on how to transfer the concept knowledge from
VL model to the LG-CAV, then propose three modules into this framework to further improve the
quality of LG-CAV: a Gaussian alignment (GA) module, a concept ensemble (CE) module, and a
deviation sample reweighting (DSR) module.

3.3.1 Framework

The features of concept descriptions extracted by VL model cannot be directly used to supervise the
training of CAVs, because VL model and the target model have different feature spaces. Therefore,
we propose an ingenious method that transforms the concept knowledge of VL model into activation
values on a common pool of images (also named probe images, denoted as R) and trains the LG-CAV
from these activation values, inspired by previous concept-based method [7] that adopts probe images
to recognize common units of different models.

Specifically, this method consists of three steps to train LG-CAV vc: (1) Calculate the activation
values {Actvc

(f(x)) : x ∈ R} of vc on the image features {f(x) : x ∈ R} extracted by
the target model. (2) Calculate the activation values {Actgtext(c)(gimg(x)) : x ∈ R} of gtext(c)
on {gimg(x) : x ∈ R} using VL model. (3) Train vc by aligning {Actvc(f(x)) : x ∈ R}
with {Actgtext(c)(gimg(x)) : x ∈ R}, and the corresponding loss function LLG-CAV is shown in
Equation 3 (note that ∥ · ∥2 denotes the L2 norm, f , gtext, gimg are freezed, and only vc is trainable).

LLG-CAV =
1

∥R∥
∑
x∈R

(
Actvc

(f(x))−Actgtext(c)(gimg(x))
)2
. (3)

We calculate activation value as cosine similarity between two vectors (e.g., Actvc
(f(x)) =

vc·f(x)
∥vc∥∥f(x)∥ ), because cosine similarity is invariant to the norms of feature vectors which differ
a lot in different models. Therefore, the LG-CAV learns to recognize images with the corresponding
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Figure 3: Top: The original CAV is defined as the weight vector for its represented concept in the
binary linear classifier. Bottom: The LG-CAV is learned by mimicking the activation values of its
represented concept on the probe images R using VL model. Besides, three modules (GA module,
CE module, and DSR module) are proposed to enhance the quality of LG-CAV.

concept and the images without the corresponding concept. Besides, compared with the original
binary classification task for CAV training, the activation values encompass richer information about
the extent to which the concepts exist in the images, thus facilitating the training of LG-CAV.

3.3.2 Gaussian Alignment Module

However, directly utilizing the above LLG-CAV is not guaranteed to improve the quality of CAVs (see
experiments in subsubsection 4.1.2), because the activation values calculated from VL model and the
target model have significantly different distributions (due to the huge difference of feature space in
the two models). To address this problem, Gaussian alignment (GA) module aligns the distribution
of activation values for VL model with that for the target model, based on the observation that
the distribution of activation values resembles a Gaussian distribution (Figure 2 (B)). GA module
consists of three steps: (1) Calculate the cosine similarity for each pair of features in {f(x) : x ∈ R}
to simulate the activation values from the target model, which will be A = { f(x′)·f(x′′))

∥f(x′)∥∥f(x′′)∥ :

x′,x′′ ∈ R}. (2) Estimate the parameters (mean & standard deviation) of Gaussian distribution
X ∼ N (µtarget, σ

2
target) for A (activation values from the target model), and X ∼ N (µVL, σ

2
VL) for

{Actgtext(c)(gimg(x)) : x ∈ R} (activation values from VL model). (3) Calculate the transformation
function for these two Gaussian distributions, then use it to transform each Actgtext(c)(gimg(x)) to
be Ãctgtext(c)(gimg(x)), as shown in Equation 4.

Ãctgtext(c)(gimg(x)) =
Actgtext(c)(gimg(x))− µVL

σVL
· σtarget + µtarget. (4)

Detailedly, this transformation first transforms X ∼ N (µVL, σ
2
VL) into a standard Gaussian

distribution (X ∼ N (0, 1)), then transforms the standard Gaussian distribution into X ∼
N (µtarget, σ

2
target), as shown in Appendix A.

3.3.3 Concept Ensemble Module

Concept ensemble (CE) module employs data augmentations on the concept descriptions, thus
enhancing the comprehensiveness of the concept. Specifically, instead of using a single prompt like
“a photo of the concept c” (that will be fed into gtext), CE module uses multiple prompts (e.g., “a
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bright photo of the concept c”, “a cropped photo of the concept c”) to describe c. These concept
prompts follow the class prompts in the original CLIP model, as demonstrated in Appendix C.2.
Next, gtext will encode these augmented prompts into text features, and generate the augmented text
features g̃text(c) by averaging them.

3.3.4 Deviation Sample Reweighting Module

Deviation sample reweighting (DSR) module optimizes the selection of probe images, by allocating
higher training weights to the probe images that can more stably represent the concept. To this end,
DSR module estimates the weight of the probe image x according to the standard deviation of its
similarities with the ground-truth positive images Pc, using three steps: (1) Calculate cosf (x,Pc) =

{ f(x)·f(x′)
∥f(x)∥∥f(x′)∥ : x′ ∈ Pc}. (2) Calculate the standard deviation stdf (x,Pc) of cosf (x,Pc). Note

that stdf (x,Pc) ∈ R, and lower stdf (x,Pc) indicates more stable concept representation of x.
(3) The weight ωf (x,Pc) is finally calculated by normalizing the opposite of stdf (x,Pc) with a
softmax operation, as shown in Equation 5. Note that the averaged value of all sample weights equals
1, and the softmax function can be replaced by other normalization functions.

ωf (x,Pc) = ∥R∥ ·
exp

(
− stdf (x,Pc)

)∑
x′∈R

exp
(
− stdf (x′,Pc)

) . (5)

3.3.5 Loss Function

With the above three modules, the updated LG-CAV loss L̃LG-CAV is calculated as in Equation 6.
Besides, when positive images Pc and negative images Nc are provided, L̃LG-CAV can be added into
the training framework of original CAV to enhance the CAV quality, and the total loss function Ltotal

will be Ltotal = Lcls + L̃LG-CAV (note that Lcls is the classification loss for the original CAV).

L̃LG-CAV=
1

∥R∥
∑
x∈R

ωf (x,Pc) ·
(
Actvc(f(x))− Ãctg̃text(c)(gimg(x))

)2
. (6)

3.4 Model Correction

Due to the lack of high-quality CAVs that can sufficiently relate to all classes in the dataset, most
existing CAV methods are confined to explaining the local behavior of target model using a very
limited number and variety of CAVs. Different from these methods, our proposed method can train a
sufficient quantity of high-quality LG-CAVs that relate to all classes in the dataset, thus having great
potential to improve the performance of target model in an interpretable manner.

Specifically, our model correction method alleviates spurious correlation in the target model (i.e.,
incorrect dependence of a class on unrelated concepts) to improve the model performance. To this
end, we fine-tune the target model to align the prediction of each class with its strongly-related
LG-CAV. However, directly aligning the gradients for each class with the LG-CAV would easily
interfere with other correct concepts and hurt the performance. To align them in a more soft
manner, activation sample reweighting (ASR) module allocates different training weights to the
images of each class, according to the activation values of the corresponding LG-CAV on them.
Assume concept c is strongly related to class k, and let Ik denote the training images of class k,
then ASR module reweights image x of Ik in two steps (similar to DSR module): (1) Calculate
Actvc

(f(x)) (the activation value of LG-CAV vc on x). (2) Calculate the weight ωfine-tune
f (x) by

normalizing Actvc(f(x)) with a softmax operation, as shown in Equation 7.

ωfine-tune
f (x) = ∥Ik∥ ·

exp
(
Actvc

(f(x))
)∑

x′∈Ik

exp
(
Actvc

(f(x′))
) . (7)

Next, ωfine-tune
f (x) will be used as the weight of image x in the classification loss during fine-tuning.

In this manner, the target model learns to predict class k from the samples activated more highly
by the LG-CAV vc, thus better aligning the prediction of class k with its strongly-related concept c.
Besides, this method requires no further training on the backbone f (only uses f to extract image
features and trains the subsequent layers), leading to minimal training cost.
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Table 1: The comprehensive evaluation of concept accuracy (%) for different CAVs on the Broden
dataset. The results are on nine backbones pre-trained on ImageNet (Note that Res denotes ResNet,
Dense denotes DenseNet) averaged over 4 runs with different seeds. Bold font denotes the best result.

Method Res-18 Res-34 Res-50 Dense-121 Dense-169 VGG-13 VGG-19 ViT-B ViT-L
Original CAV [16] 68.92 69.32 71.34 72.46 72.70 67.44 69.56 65.35 65.85

Text-to-Concept [23] 70.04 71.35 72.40 73.67 74.19 68.35 70.24 67.22 66.27
OA-TCAV [40] 72.62 72.20 73.24 73.90 74.89 68.69 70.81 67.83 67.35

Ours 67.23 67.48 67.52 69.43 68.46 65.99 67.94 63.16 63.22
Ours + GA 74.89 73.47 74.19 76.28 74.70 69.63 72.31 68.99 68.41

Ours + GA + CE 76.41 74.47 75.63 78.18 76.12 70.25 72.92 69.43 69.31
Ours + GA + CE + DSR 77.45 76.04 76.48 79.07 77.25 70.69 73.47 70.52 70.09

Table 2: The comprehensive evaluation of concept-to-class accuracy for different CAVs on the
Broden dataset averaged over 4 runs with different seeds.

Method Res-18 Res-34 Res-50 Dense-121 Dense-169 VGG-13 VGG-19 ViT-B ViT-L
Original CAV [16] 6.20 7.02 7.20 6.08 6.54 5.40 5.53 7.22 7.97

Text-to-Concept [23] 9.48 9.06 8.73 7.42 8.33 7.52 7.07 10.70 11.09
OA-TCAV [40] 10.11 10.29 10.90 9.18 10.63 8.38 8.74 10.07 10.68

Ours 4.72 6.66 5.99 5.64 6.02 4.02 4.49 6.07 6.38
Ours + GA 16.72 16.61 16.92 15.47 15.81 14.55 15.04 17.52 17.83

Ours + GA + CE 19.14 20.10 20.51 18.78 19.00 17.50 18.35 21.52 22.34
Ours + GA + CE + DSR 24.58 25.61 26.05 23.93 23.97 21.40 22.79 26.12 27.72

4 Experiments

4.1 The Quality of LG-CAV

4.1.1 Experiment Settings

Datasets. We estimate the quality of LG-CAV on the Broden dataset [2] (a popular concept-based
dataset with 63,305 images for 1197 visual concepts). In the Broden dataset, each image may contain
multiple concepts. Therefore, we collect positive samples for each concept by selecting the images
containing only this concept, and randomly select the same number of images from other concepts as
negative samples. Finally, the simplified Broden dataset consists of 17,746 images for 468 visual
concepts. The probe images (R) for each LG-CAV are from ImageNet and the images of other
concepts in the Broden dataset. Specifically, we select the most activated and the same number of
most least activated images by VL model.

Backbones. We follow the original CAV work [16] to train CAVs for the target models pre-trained
on ImageNet (from the open-sourced PyTorch package [29]). These backbones include ResNet [12],
DenseNet [14], VGG [38], and Vision Transformer [6].

Parameters. To simulate the absence of images for training CAVs in reality, we set the number of
positive samples (Pc) and negative samples (Nc) to be 10, and the remaining images will be used
as the test set. The threshold ϵ for determining positively-related concept-class pair is 0.6. For each
CAV method, we use SGD optimizer [34] to train the CAV for 10 epochs with a learning rate of 1e-3.
∥R∥ (the number of probe images) is set to be 1000. The loss function adopted here is Ltotal since
Pc and Nc are available.

4.1.2 Experiment Results

Concept accuracy. Table 1 demonstrates that without sufficient data, the accuracy of original CAV
is insufficient to accurately represent a concept. The first version of LG-CAV (Ours) has a lower
accuracy than the original CAV when no other modules are added, due to the large difference in
the distribution of activation values. The added GA module aligns the activation values from target
model and VL model, and improves the concept accuracy by 5.83 points averagely. The added CE
and DSR modules both effectively improve the concept accuracy, and the final LG-CAV outperforms
Text-to-Concept and OA-TCAV (see Appendix C.3 for the analysis of them) by a large margin.

Concept-to-class accuracy. Table 2 demonstrates that our proposed modules also enhance concept-
to-class accuracy, because the CAV that better represents a concept can more accurately correspond
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Table 3: The comprehensive evaluation of accuracy (%) on selected classes (40 classes) of ImageNet
averaged over 4 runs with different seeds.

Method Res-18 Res-34 Res-50 Dense-121 Dense-169 VGG-13 VGG-19 ViT-B ViT-L
Original 90.65 91.00 92.50 92.00 92.75 88.55 90.90 94.55 93.15

HiBug [4] 90.38 90.82 92.69 92.36 92.60 88.74 91.07 94.74 93.46
Ours 91.16 91.79 93.06 92.91 93.16 89.21 91.43 94.94 93.66

Table 4: The comprehensive evaluation of accuracy (%) for different methods on ImageNet (note that
KD denotes knowledge distillation) averaged over 4 runs with different seeds.

Method Res-18 Res-34 Res-50 Dense-121 Dense-169 VGG-13 VGG-19 ViT-B ViT-L

Original 69.76 73.31 76.13 74.43 75.60 69.93 72.38 81.07 79.67
Concept_Distillation [11] 69.46 73.06 75.77 74.04 75.46 69.80 72.29 80.86 79.51

KD [13] 69.93 73.49 76.27 74.68 75.99 70.06 72.46 81.15 79.77
Label-free CBM [26] N/A N/A 71.95 N/A N/A N/A N/A N/A N/A

Ours 70.26 73.66 76.47 74.94 76.28 70.19 72.60 81.38 80.05

to its strongly-related class. The final LG-CAV also has much higher concept-to-class accuracy than
Text-to-Concept and OA-TCAV.

4.2 Model Correction

4.2.1 Experiment Settings

Datasets. We employ our model correction method on three representative datasets: Ima-
geNet [5] (large-scale dataset), CUB-200-2011 [43] (a popular dataset used by many concept-based
methods), and CIFAR-100 [18] (small-scale dataset). The probe images (R) for each LG-CAV are
also the most highly and least activated images by VL model from their respective datasets.

Backbones. The target models pre-trained on ImageNet are from PyTorch, and the target models
pre-trained on CIFAR-100 and CUB-200-2011 are from another open-sourced PyTorchCV package,
following PCBM [47]. The VL model adopted here is CLIP model with ViT-L/14 as backbone.

Parameters. We use SGD optimizer to train the final classification layer for 20 epochs with a learning
rate of 1e-3. Note that different from the experiments in subsection 4.1, the training of LG-CAVs for
these concepts does not require the original classification loss Lcls and DSR module, due to the lack
of ground-truth positive samples Pc.

4.2.2 Experiment Results

We adopt two methods to find the strongly-related concept of each class in the target model, corre-
sponding to two types of datasets: datasets with few classes & datasets with many classes.

Datasets with few classes. We manually collect the concept descriptions of each class from Wikipedia
for these datasets (e.g., the randomly selected subset of ImageNet with 40 classes (ImageNet-40)).
The selected classes and their corresponding concept descriptions can be referred to in Appendix C.1.

Appendix B.1 demonstrates that the trained LG-CAVs have ability to distinguish whether images
contain their respective concepts. Next, we utilize these LG-CAVs for model correction with the ASR
module. As shown in Table 3, our model correction method effectively improves the performance of
original pre-trained model (converted from the pre-trained 1000-classes model by removing other
960 classes in the final classification layer), by an improvement of up to 0.91 points.

Datasets with many classes. Collecting sufficient high-quality concept descriptions for datasets
with many classes is a challenging task. Therefore, we instead acquire the concept descriptions of
each class based on its comparison with its confused class, inspired by relative CAV proposed in
the original CAV work. Specifically, for the class k, we first find the confused class k′ to which
images from class k are most likely to be mispredicted by the pre-trained model, then define the
concept descriptions as “a photo of class k, not k′”. This approach is applied to the whole ImageNet,
CUB-200-2011, and CIFAR-100.
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Figure 4: Ablation experiments on probe images (selection strategy & image number).

...

0.7592
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Figure 5: (A) Activation values of the LG-CAV & (B) Model correction example.

As shown in Table 4, our method improves model performance on the whole ImageNet in an
interpretable manner based on LG-CAV, surpassing original model (by up to 0.68 points), Con-
cept_Distillation, knowledge distillation, and Label-free CBM (see Appendix C.3 for the analysis of
them). Besides, the results on CUB-200-2011 (Appendix B.2) & CIFAR-100 (Appendix B.3) also
verify the effectiveness of our method.

4.3 Ablation Study

Selection of probe images. In the above experiments, we select the most activated and least
activated images as probe images R. We compare this selection strategy with random selection
in this subsection. As shown in the first two figures of Figure 4, the LG-CAVs trained with this
selection strategy have higher quality, because the probe images selected by this strategy contain
richer information to represent the corresponding concepts.

Number of probe images. This subsection investigates how the number of probe images affects the
quality of LG-CAV. As shown in the last two figures of Figure 4, when the number of probe images is
small, increasing the quantity of probe images can improve the quality of LG-CAV. However, when
the number of probe images reaches a certain level (saturation), further increasing the quantity of
probe images does not improve the quality of LG-CAV.

Additionally, we provide more ablation experiments on the choice of VL model, the coefficient of
LG-CAV loss, and the depth of extracted image features in the target model in Appendix B.5.

4.4 Visualization Results

Activation values of the trained LG-CAV. Figure 5 (A) demonstrates the activation values of
a trained LG-CAV on its highly-activated and lowly-activated images, indicating that the trained
LG-CAV can accurately activate images that contain the corresponding concepts.

Examples of model correction. As shown in Figure 5 (B), an image of “Tiger Cat” is misclassified as
“Tabby Cat” by the target model (with ResNet18 as backbone) before model correction. During model
correction, ASR module mitigates spurious correlation of the target model by aligning the prediction
of “Tiger Cat” with its strongly-related concept “a cat animal with orange stripes”. This image is
activated by the LG-CAV of this concept with a high activation value (0.7488), thus the classification
logit for “Tiger Cat” increases after model correction. Besides, we utilize Grad-CAM [37] to attribute
the prediction of “Tiger Cat” in the target model, and it shows that the attribution map focuses more
accurately on the cat’s body after model correction.

Furthermore, we provide more visualization results in Appendix D.
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5 Conclusion

In this work, we propose LG-CAV to address the data-scarcity problem of original CAV by transferring
the extensive concept knowledge from VL model. Specifically, LG-CAV mimics the activation values
from VL model on the probe images to learn these concept knowledge. Besides, we propose
a Gaussian alignment (GA) module, a concept ensemble (CE) module, and a deviation sample
reweighting (DSR) module to further enhance the quality of LG-CAV. Furthermore, we go beyond
previous CAV methods by generalizing LG-CAV to model correction, with a human-understandable
method that aligns the class predictions with the strongly-related concepts. Experiment results
demonstrate that LG-CAV significantly improves the CAV quality, and our model correction method
outperforms existing concept-based methods by a large margin. We hope our work can provide
inspiration for future interpretable methods based on vision-language models.
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A Proof

To address the problem that activation values calculated from VL model and the target model
have significantly different distributions (due to the huge difference of feature space in the two
models), our proposed Gaussian alignment (GA) module first estimates the Gaussian distribution
of activation values for the target model and VL model (XVL ∼ N (µVL, σ

2
VL) and Xtarget ∼

N (µtarget, σ
2
target)), then transforms each Actgtext(c)(gimg(x)) to be Ãctgtext(c)(gimg(x)) according

to the transformation between these two Gaussian distributions:

Ãctgtext(c)(gimg(x)) =
Actgtext(c)(gimg(x))− µVL

σVL
· σtarget + µtarget. (8)

Specifically, this transformation first transforms X ∼ N (µVL, σ
2
VL) into a standard Gaussian

distribution (X ∼ N (0, 1)), then transforms the standard Gaussian distribution into X ∼
N (µtarget, σ

2
target), which can be proved in the following theorem.

Theorem: The Gaussian distribution XVL ∼ N (µVL, σ
2
VL) of activation values for VL model can

be converted into Gaussian distribution Xtarget ∼ N (µtarget, σ
2
target) of activation values for the

target model with a linear transformation: Xtarget =
XVL−µVL

σVL
· σtarget + µtarget.

Proof. We first prove that XVL ∼ N (µVL, σ
2
VL) can be converted into the standard Gaussian

distribution Xstandard ∼ N (0, 1) with a linear transformation: XVL−µVL

σVL
.

As Gaussian distributions, the cumulative distribution function of XVL is FXVL
(k) = P(XVL ≤

k) =
∫ k

−∞
1√

2πσVL
exp

(
− (x−µVL)

2

2σ2
VL

)
dx, and the cumulative distribution function of Xstandard is

FXstandard
(k) = P(Xstandard ≤ k) =

∫ k

−∞
1√
2π

exp
(
− x2

2

)
dx.

Let X = XVL−µVL

σVL
, then the cumulative distribution function of X will be FX(k) = P(X ≤ k) =

P(XVL−µVL

σVL
≤ k) = P(XVL ≤ k ·σVL+µVL) =

∫ k·σVL+µVL

−∞
1√

2πσVL
exp

(
− (x−µVL)

2

2σ2
VL

)
dx. Next,

let x = z · σVL + µVL, then dx = σVLdz, and FX(k) =
∫ k

−∞
1√

2πσVL
exp

(
− (z·σVL)

2

2σ2
VL

)
σVLdz =∫ k

−∞
1√
2π

exp
(
− z2

2

)
dz. Therefore, FX(k) (the cumulative distribution function of X) is equal to

FXstandard
(k) (the cumulative distribution function of Xstandard), proving that X is identical with

Xstandard.

Likewise, Xtarget ∼ N (µtarget, σ
2
target) can be converted into the standard Gaussian distribution

Xstandard ∼ N (0, 1) with a linear transformation: Xtarget−µtarget

σtarget
.{

Xstandard = XVL−µVL

σVL
.

Xstandard =
Xtarget−µtarget

σtarget
.

(9)

Therefore, by combining these two equations, Xtarget can be converted from XVL with a linear
transformation, as shown in Equation 10.

Xtarget = Xstandard · σtarget + µtarget

=
XVL − µVL

σVL
· σtarget + µtarget.

(10)

B Experiments

B.1 LG-CAV Quality

For the datasets with few classes, we manually collect the strongly-related concept descriptions of
each class from Wikipedia. After training the LG-CAVs for these concept descriptions, we first verify
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Table 5: The averaged Recall@100 (%) of LG-CAVs on ImageNet-40. Random CAV denotes the
randomly initialized CAV. Bold font denotes the best result.

Method Res-18 Res-34 Res-50 Dense-121 Dense-169 VGG-13 VGG-19 ViT-B ViT-L

Random CAV 4.98 5.07 4.62 5.00 5.04 4.60 4.74 4.92 5.08

LG-CAV 76.25 73.13 76.88 75.63 79.38 83.75 85.63 84.38 78.75

Table 6: The evaluation of accuracy (%) for different concept-based methods on the CUB-200-2011
dataset over five backbones. The results of PCBM & Trustworthy CBM & Label-free CBM are from
their original paper.

Method Res-10 Res-12 Res-14 Res-16 Res-18

Original 72.23 72.73 75.23 76.35 76.67
PCBM [47] N/A N/A N/A N/A 58.80

PCBM-h [47] N/A N/A N/A N/A 61.00
Trustworthy CBM [15] N/A N/A N/A N/A 68.30
Label-free CBM [26] N/A N/A N/A N/A 74.31

Ours 72.74 73.14 75.66 76.67 77.31

the quality of LG-CAVs by calculating the Recall@100 performance of them. Specifically, given an
LG-CAV, we use CLIP model (with ViT-L/14 as backbone) to find 50 test images that best match its
corresponding concept as ground-truth, then calculate the Recall@100 by comparing them with the
100 most activated test images calculated from LG-CAV. Table 5 illustrates the averaged Recall@100
performance over all LG-CAVs, indicating that the trained LG-CAVs have the ability to distinguish
images containing their respective concepts.

B.2 Model Correction on CUB-200-2011

Table 6 demonstrates the experiment results of model correction on CUB-200-2011 over five back-
bones (ResNet10, ResNet12, ResNet14, ResNet16, and ResNet20), indicating that our model cor-
rection method shows superior performance to the original model. Besides, our method naturally
exceeds other concept-based interpretability methods (PCBM [47], Trustworthy CBM [15], and
Label-free CBM [26]) that sacrifice performance for the sake of interpretability.

B.3 Model Correction on CIFAR-100

Table 7 also verifies the effectiveness of our method on small-scale dataset (CIFAR-100) over five
backbones (ResNet20, DenseNet40, PreResNet20, SEResNet20, and SEPreResNet20).

Table 7: The evaluation of accuracy (%) for different methods on the CIFAR-100 dataset over five
backbones.

Method Res-20 Dense-40 Pre-Res-20 SE-Res-20 SE-Pre-Res-20

Original 70.36 75.10 69.78 71.46 71.69

Ours 70.87 75.59 70.19 71.87 71.94

B.4 TCAV Score

In the main paper, we use concept-to-class accuracy to estimate the similarity between the CAV
and its strongly semantic-related class. The original CAV adopts a simpler but incomplete metric
named TCAV score for this purpose, which estimates whether the trained CAV vc has a positive
relation to its positively-related class k by simply determining whether the angle between vc and
∇hk(f(x)) (the gradients of classification logit for class k) is acute. Table 8 demonstrates that our
proposed modules also effectively improve the TCAV score.
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Table 8: The comprehensive evaluation of TCAV score (%) for different CAVs on the Broden dataset.
Bold font denotes the best result.

Method Res-18 Res-34 Res-50 Dense-121 Dense-169 VGG-13 VGG-19 ViT-B ViT-L

Original CAV 76.15 82.31 83.85 83.08 90.00 88.46 86.15 81.54 83.85

Ours + GA + CE + DSR 96.15 98.46 98.24 98.28 99.03 99.23 97.69 94.62 93.85

B.5 Additional Ablation Study

B.5.1 Different VL Models

We conduct ablation experiments on how the choice of CLIP model affects the quality of LG-CAV.
As shown in Table 9 and Table 10, the LG-CAVs trained from CLIP models with ViTs (ViT-
L/14, ViT-B/16, and ViT-B/32) as backbone have higher quality than those trained from CLIP
models with CNNs (RN50×16) as backbone, because the former CLIP models have much higher
performance (zero-shot accuracy) than the latter ones. Besides, Table 9 and Table 10 demonstrates
that the quality of LG-CAVs increases in the order of ViT-L/14 → ViT-B/16 → ViT-B/32, indicating
that the ViTs with larger patch sizes lead to LG-CAVs with higher quality. This is because ViTs with
larger patch size focus more on the overall concepts in the images rather than specific local details,
making the learned concept features easier to transfer to the target model.

Table 9: The comprehensive evaluation of concept accuracy (%) with different CLIP models in four
target backbones (ResNet18, DenseNet121, VGG13, and ViT-B/16) on Broden.

Method RN50×16 ViT-L/14 ViT-B/16 ViT-B/32

Res-18 76.12 77.45 77.85 78.22
Dense-121 77.89 79.07 79.46 79.59
VGG-13 70.02 70.69 71.11 71.39

ViT-B 70.15 70.52 70.88 70.99

Table 10: The comprehensive evaluation of concept-to-class accuracy with different CLIP models in
four target backbones (ResNet18, DenseNet121, VGG13, and ViT-B/16) on Broden.

Method RN50×16 ViT-L/14 ViT-B/16 ViT-B/32

Res-18 24.13 24.58 25.98 26.23
Dense-121 23.65 23.93 25.23 25.56
VGG-13 21.52 21.40 22.33 22.78

ViT-B 25.92 26.12 26.26 26.94

Besides, we adopt other VL models (EVA-CLIP [42], LaCLIP [9], CLIPA [21]) to train the LG-
CAVs. These VL models are advanced variants of the original CLIP model with more accurate
vision-language alignment, and the LG-CAVs trained with these VL models have higher concept
accuracy and concept-to-class accuracy, as shown in Table 11 and Table 12.

B.5.2 Coefficient of LG-CAV Loss

Figure 6 demonstrates how the coefficient of LG-CAV loss affects the quality of LG-CAV. Initially,
increasing the loss coefficient will increase the quality of LG-CAV (in both concept accuracy and
concept-to-class accuracy). However, when it exceeds 3.0, further increasing it will decrease the
quality of LG-CAV.

B.5.3 CAV Quality on Intermediate Features

In the experiments, we utilize the image features extracted from the last layer of the backbone to train
CAVs, because deep features better capture high-level concepts. Besides, we also conduct experiments
on the intermediate features of the target model over three backbones (ResNet18, DenseNet121, and
ViT-B). Specifically, the depth of layer for extracting the intermediate features of these backbones is
13, 88, 11, respectively.
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Table 11: The comprehensive evaluation of concept accuracy (%) with different VL models in four
target backbones (ResNet18, DenseNet121, VGG13, and ViT-B/16) on Broden. These VL models all
adopt ViT-L/14 as backbones.

Method Res-18 Dense-121 VGG-13 ViT-B

Original CAV 68.92 72.46 67.44 65.35
LG-CAV (CLIP) 77.45 79.07 70.69 70.52

LG-CAV (EVA-CLIP) 79.90 82.13 73.53 71.69
LG-CAV (LaCLIP) 77.93 79.95 71.39 71.06
LG-CAV (CLIPA) 78.45 80.16 71.42 70.80

Table 12: The comprehensive evaluation of concept-to-class accuracy (%) with different VL models
in four target backbones (ResNet18, DenseNet121, VGG13, and ViT-B/16) on Broden. These VL
models all adopt ViT-L/14 as backbones.

Method Res-18 Dense-121 VGG-13 ViT-B

Original CAV 6.20 6.08 5.40 7.22
LG-CAV (CLIP) 24.58 23.93 21.40 26.12

LG-CAV (EVA-CLIP) 25.60 24.79 22.20 28.56
LG-CAV (LaCLIP) 26.29 25.68 22.69 28.44
LG-CAV (CLIPA) 25.46 24.85 22.10 28.23

As shown in Table 13 and Table 14, our proposed modules can still effectively improve the quality of
LG-CAV (in both concept accuracy and concept-to-class accuracy) on the intermediate features. How-
ever, compared with the features extracted from the last layer, the LG-CAVs trained from intermediate
features have much lower quality. Besides, intermediate features have a much larger dimension size
than the features extracted from the last layer, resulting in enormous training costs. Therefore, these
two factors hinder the CAVs trained from intermediate features for broader applications.

Table 13: The comprehensive evaluation of concept accuracy (%) for intermediate features in three
backbones (ResNet18, DenseNet121, and ViT-B/16) of the target model on the Broden dataset. Bold
font denotes the best result.

Method Res-18 Dense-121 ViT-B

Original CAV 64.68 66.96 56.04

Ours 57.36 56.46 54.96
Ours + GA 68.21 70.65 58.56

Ours + GA + CE 69.25 71.09 59.45
Ours + GA + CE + DSR 70.99 72.31 60.84

B.6 Standard Deviation

The experiment results of our main experiments are averaged over 4 runs with different seeds,
but the standard deviations of experiment results are omitted in the main paper due to space limit.
Table 15, Table 16, and Table 17 demonstrate the standard deviation of experiment results, indicating
that the results are relatively stable in the experiments of evaluation of CAV quality and model
correction. The results of four representative backbones from ResNet, DenseNet, VGG, and ViT are
demonstrated, and the results of other backbones are similar.

C More Experiment Details

C.1 Concept Descriptions of 40 Classes in ImageNet

For the datasets with few classes (e.g., the randomly selected subset of ImageNet with 40
classes (ImageNet-40)), we manually collect the concept descriptions of each class from Wikipedia
for these datasets, as shown in Table 18.
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Figure 6: Ablation experiments on coefficient of LG-CAV loss. † denotes the loss coefficient used in
the experiments of the main paper.

Table 14: The comprehensive evaluation of concept-to-class accuracy for intermediate features in
three backbones (ResNet18, DenseNet121, and ViT-B/16) on Broden. Bold font denotes the best
result.

Method Res-18 Dense-121 ViT-B

Original CAV 0.29 0.29 0.56

Ours 0.20 0.23 0.48
Ours + GA 0.58 0.63 0.68

Ours + GA + CE 0.86 1.04 0.85
Ours + GA + CE + DSR 1.40 1.80 1.16

C.2 Data Augmentation Templates in the CE Module

Concept ensemble (CE) module employs data augmentations on the concept descriptions. Specifically,
instead of using a single prompt like “a photo of the concept c” (that will be fed into gtext), CE
module uses multiple prompts (e.g., “a bright photo of the concept c”, “a cropped photo of the concept
c”) to describe c. The data augmentation templates are demonstrated in Table 19.

C.3 Comparisons with Baselines

C.3.1 The Quality of CAVs

We compare LG-CAV with four CAV methods: original CAV [16], Concept Gradient [1], OA-
TCAV [40], and Text-to-Concept [23].

Original CAV [16]. The original CAV is defined as the weight vector for the corresponding concept
in the binary linear classifier that classifies the positive images and negative images for this concept.
The original CAV has poor quality when the training images for the concept are insufficient.

Concept Gradient [1]. Concept Gradient extends the original linear CAV to non-linear concept
functions, improving the quality of CAV trained on the features extracted from intermediate layers
of the target model. In particular, when the features are extracted from the final layer of target
model (linearly separable), Concept Gradient is identical to the original CAV.

OA-TCAV [40]. OA-TCAV proposes an adversarial training approach to improve the quality of CAV.
However, it still suffers from the data-scarcity problem, and thus is inferior to our method.

Table 15: STD of concept accuracy (%) for different CAVs on the Broden dataset. The results are
on nine backbones pre-trained on ImageNet.

Method Res-18 Dense-121 VGG-13 ViT-B
Original CAV [16] 68.92 ± 0.35 72.46 ± 0.54 67.44 ± 0.34 65.35 ± 0.41

Text-to-Concept [23] 70.04 ± 0.71 73.67 ± 0.50 68.35 ± 0.76 67.22 ± 0.55
OA-TCAV [40] 72.62 ± 0.18 73.90 ± 0.40 68.69 ± 0.30 67.83 ± 0.32

Ours 67.23 ± 0.41 69.43 ± 0.48 65.99 ± 0.46 63.16 ± 0.44
Ours + GA 74.89 ± 0.57 76.28 ± 0.26 69.63 ± 0.49 68.99 ± 0.46

Ours + GA + CE 76.41 ± 0.44 78.18 ± 0.41 70.25 ± 0.61 69.43 ± 0.53
Ours + GA + CE + DSR 77.25 ± 0.38 79.07 ± 0.31 70.69 ± 0.50 70.52 ± 0.23
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Table 16: STD of concept-to-class accuracy for different CAVs on the Broden dataset averaged over
4 runs with different seeds.

Method Res-18 Dense-121 VGG-13 ViT-B
Original CAV [16] 6.20 ± 0.49 6.08 ± 0.55 5.40 ± 0.47 7.22 ± 0.66

Text-to-Concept [23] 9.48 ± 0.97 7.42 ± 1.05 7.52 ± 1.13 10.70 ± 1.24
OA-TCAV [40] 10.11 ± 0.38 9.18 ± 0.43 8.38 ± 0.40 10.07 ± 0.32

Ours 4.72 ± 1.19 5.64 ± 0.77 4.02 ± 1.10 6.07 ± 1.13
Ours + GA 16.72 ± 0.79 15.47 ± 1.17 14.55 ± 1.08 17.52 ± 0.94

Ours + GA + CE 19.14 ± 0.94 18.78 ± 0.76 17.50 ± 0.74 21.52 ± 1.15
Ours + GA + CE + DSR 24.58 ± 1.16 23.93 ± 0.90 21.40 ± 1.25 26.12 ± 0.91

Table 17: STD of accuracy (%) for different methods on ImageNet averaged over 4 runs with different
seeds.

Method Res-18 Dense-121 VGG-13 ViT-B

Original 69.76 74.43 69.93 81.07
Concept_Distillation 69.46 ± 0.06 74.04 ± 0.06 69.80 ± 0.05 80.86 ± 0.03

KD 69.93 ± 0.05 74.68 ± 0.04 70.06 ± 0.04 81.15 ± 0.03

Ours 70.26 ± 0.04 74.94 ± 0.02 70.19 ± 0.03 81.38 ± 0.02

Text-to-Concept [23]. Similar to our proposed LG-CAV, Text-to-Concept leverages VL model to
generate CAVs, by directly mapping the features of VL model into the feature space of target model.
However, it roughly conducts feature mapping with a linear projection matrix, without specialized
optimization for each individual CAV like our LG-CAV. Therefore, the quality of CAV trained with
Text-to-Concept is inferior to LG-CAV. Besides, Text-to-Concept can only be applied to small-sized
datasets with few classes (e.g., IN9 dataset [44], Living17 dataset [35]), without generalization ability
to large datasets like ImageNet.

C.3.2 Model Correction

We compare our model correction method with four baselines: Concept_Distillation [11], Knowledge
Distillation [13], Label-free CBM [26], and HiBug [4].

Concept_Distillation [11]. Concept_Distillation mitigates spurious correlation in the target model
by directly aligning the gradients for each class with the LG-CAV using cosine similarity. However,
this approach is not applicable to generic datasets like ImageNet, because it would easily interfere
with other correct concepts for each class and hurt the performance, as shown in Table 17.

Knowledge Distillation [13]. Knowledge distillation transfers the knowledge from VL model to the
target model by transferring the probabilistic predictions from VL model. For comparison with our
method, we freeze the backbone of target model and only train the final classification layer using
knowledge distillation.

Label-free CBM [26]. Label-free CBM incorporates an intermediate concept layer into the target
model, and makes class predictions based on the prior concept predictions. As a concept-based inter-
pretable model, Label-free CBM sacrifices more performance to achieve higher model transparency,
and thus naturally performs worse than our method.

HiBug [4]. HiBug leverages pre-trained large language models like ChatGPT and pre-trained vision-
language models like BLIP [20] to interpret the target model, and repair the model by training it on the
generated data from stable diffusion model [33]. HiBug is limited to small-sized datasets (ImageNet-
40) because the data generation cost is too large for large datasets.

D More Visualization Results

We provide more visualization results generated by our method. Specifically, Figure 7 demonstrates
the highly activated images (and the activation values) of LG-CAVs for eight concepts on the
ResNet18 backbone. Figure 8 demonstrates eight model correction examples for the target model on
the ResNet18 backbone.
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Class Name Concept Descriptions

Electric Ray A round marine animal with a stocky tail
African Rock Python A python animal with a small triangular head
Yellow Garden Spider A spider animal with red or yellow portions near the body

Partridge A bird animal with thick neck and rounded wings
Toy Terrier A dog animal with white coat and a short, high-set tail

Black and Tan Coonhound A dog animal with long ears and a strong tail
English Foxhound A dog animal with thick skull and long muzzle

Otterhound A dog animal with dense shaggy coat and webbed feet
Norfolk Terrier A dog animal with hard, wiry, and straight coat

Wire Fox Terrier A dog animal with wiry and dense double coat, triangular head, dark eyes,
and small V-shaped ears

Golden Retriever A dog animal with long tails and dark eyes
Australian Kelpie A dog animal with a lean, muscular build and soft short coat
Siberian Husky A dog animal with thick, double-coated fur, pointed ears and bushy tail

Toy Poodle A dog animal with distinctive dense and curly coat

Red Fox A fox animal with a long, bushy tail, a narrow, pointed muzzle,
and thick, soft fur

Tiger Cat A cat animal with orange, gold, and red stripes
Leaf Beetle An insect animal with solid and tough body

Gazelle A gazelle animal with tan buff coats and white rumps
Bath Towel A rectangular, thin object made of fabric

Bathtub A long, usually rectangular container
Cassette A flat, rectangular container made of plastic

Candy Store A room with an assortment of sweets
Desktop Computer A computer with a rectangular chassis

Doormat A rectangular piece of fabric material
Gong A flat, circular metal disc

Hair Spray A pressurized aerosol can
Hatchet A small, handheld tool with sharp blade
Hook A curved or bent piece made of metal or plastic

Laptop Computer A portable computer with a rectangular display screen
Tights A garment similar to leggings but is thinner

Overskirt A short skirt
Product Packet / Packaging A container that holds the product

Paddle A relatively flat object with a long handle
Soup Bowl A small, round container for serving soups

Electrical Switch A rectangular or square shape, with a small lever or button
Toilet Seat A flat or curved seating surface on top of a toilet bowl

Velvet Fabric A soft fabric with smooth and lustrous surface
Wall Clock A typically circular-shaped clock face with numbers

Eggnog A creamy beverage with pale yellow or off-white color
Cliff A vertical or near-vertical rock exposure

Table 18: Concept descriptions of 40 classes from ImageNet.
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Data Augmentation Templates

a photo of the {}. a low resolution photo of the {}.
a rendering of the {}. graffiti of the {}.
a bad photo of the {}. a cropped photo of the {}.

a bright photo of the {}. a drawing of the {}.
a photo of the cool {}. a close-up photo of the {}.
a painting of the {}. a pixelated photo of the {}.
a sculpture of the {}. a plastic {}.

a photo of the dirty {}. a jpeg corrupted photo of the {}.
a blurry photo of the {}. a photo of the hard to see {}.
a good photo of the {}. a close-up photo of the {}.

the origami {}. a sketch of the {}.
a photo of the clean {}. a photo of the large {}.
a photo of the nice {}. a photo of the weird {}.

a photo of the small {}. a black and white photo of the {}.
a dark photo of the {}.

Table 19: The data augmentation templates for the concept descriptions in the CE module.
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0.7623 0.7594 0.7532 0.7488
a dog animal with brown coat

0.7407 0.7390 0.7372 0.7320

0.7640 0.7575 0.7492 0.7485
a dog animal with long tail

0.7402 0.7381 0.7361 0.7289

0.7791 0.7684 0.7680 0.7632
a dog animal with white coat

0.7630 0.7550 0.7544 0.7450

0.7592 0.7401 0.7378 0.7231
a cat animal with orange stripes

0.7212 0.7194 0.7141 0.7133

0.7754 0.7671 0.7668 0.7607
a bird animal with blue wing

0.7575 0.7518 0.7415 0.7414

0.7445 0.7436 0.7422 0.7416
a circular-shaped object

0.7406 0.7389 0.7296 0.7271

0.7234 0.7162 0.7155 0.7134
a round container

0.7088 0.7076 0.7053 0.7007

0.7881 0.7839 0.7714 0.7648
yellow liquid

0.7636 0.7572 0.7441 0.7410

Figure 7: Highly activated images (and the activation values) of LG-CAVs.
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''Hatchet"
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0.1649 (''Hatchet'')

0.7865 (Activation Value)

An example of correction for ''Hatchet"
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Debug)

''Bathtub"

0.2341 (''Hook'')

Grad-CAMClassification Logit 

0.1659 (''Bathtub'')

0.1975 (''Hook'')
0.2465 (''Bathtub'')

0.6932 (Activation Value)

An example of correction for ''Bathtub"
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Debug)

(After 
Debug)

''Eggnog"

0.3602 (''Soup Bowl'')

Grad-CAMClassification Logit 

0.2868 (''Eggnog'')

LG-CAV (''yellow
liquid'') 

0.3348 (''Soup Bowl'')
0.3881 (''Eggnog'')

0.8470 (Activation Value)

An example of correction for ''Eggnog"

(Before
Debug)

(After 
Debug)

''Eggnog"

0.2985 (''Soup Bowl'')

Grad-CAMClassification Logit 

0.2640 (''Eggnog'')

LG-CAV (''yellow
liquid'') 

0.2739 (''Soup Bowl'')
0.3097 (''Eggnog'')

0.8465 (Activation Value)

An example of correction for ''Eggnog"

(Before
Debug)

(After 
Debug)

''Gong"

0.2275 (''Lampshade'')

Grad-CAMClassification Logit 

0.2141 (''Gong'')

LG-CAV (''a flat
metal disc'') 

0.2056 (''Lampshade'')
0.2489 (''Gong'')

0.7382 (Activation Value)

An example of correction for ''Gong"

(Before
Debug)

(After 
Debug)

''Hair Spray"

0.2045 (''Switch'')

Grad-CAMClassification Logit 

0.1296 (''Hair Spray'')

LG-CAV (''a
pressurized can'') 

0.1691 (''Switch'')
0.1853 (''Hair Spray'')

0.8518 (Activation Value)

An example of correction for ''Hair Spary"

(Before
Debug)

(After 
Debug)

''Wall Clock"

0.2103 (''Packet'')

Grad-CAMClassification Logit 

0.1494 (''Wall Clock'')

LG-CAV (''a
circular object'') 

0.1632 (''Packet'')
0.1708 (''Wall Clock'')

0.7491 (Activation Value)

An example of correction for ''Wall Clock"

(Before
Debug)

(After 
Debug)

''Tiger Cat"

0.2624 (''Tabby Cat'')

Grad-CAMClassification Logit 

0.1883 (''Tiger Cat'')

LG-CAV (''a cat animal
with orange stripes'') 

0.2233 (''Tabby Cat'')
0.2782 (''Tiger Cat'')

0.7956 (Activation Value)

An example of correction for ''Tiger Cat"

(Before
Debug)

(After 
Debug)

LG-CAV (''a
rectangular container'') 

Figure 8: Model correction examples.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have discussed the limitations of the work in the appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have provided the full set of assumptions and a complete (and correct)
proof for each theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided the details of the experiments in the paper.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the source codes of this paper, and we use the public datasets
in this paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have specified all the training and test details for the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have reported the error bars about the statistical significance of the experi-
ments in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the computer resources for the experiments in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the societal impacts of this work in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper has no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The work uses the publicly available datasets and pre-trained models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have provided a detailed readme file for the source codes.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: This work hasn’t conducted experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work hasn’t conducted experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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