
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REPRESENTATION SHATTERING IN TRANSFORMERS:
A SYNTHETIC STUDY WITH KNOWLEDGE EDITING

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge Editing (KE) algorithms alter models’ weights to perform targeted
updates to incorrect, outdated, or otherwise unwanted factual associations. To
better identify the possibilities and limitations of these approaches, recent work
has shown that applying KE can adversely affect models’ factual recall accuracy
and diminish their general reasoning abilities. While these studies give broad in-
sights into the potential harms of KE algorithms, e.g., via performance evaluations
on benchmarks, we argue little is understood as to why such destructive failures
occur. Is it possible KE methods distort representations of concepts beyond the tar-
geted fact, hence hampering abilities at broad? If so, what is the extent of this dis-
tortion? Motivated by such questions, we define a novel synthetic task wherein a
Transformer is trained from scratch to internalize a “structured” knowledge graph.
The structure enforces relationships between entities of the graph, such that edit-
ing a factual association has “trickling effects” on other entities in the graph (e.g.,
altering X’s parent is Y to Z affects who X’s siblings’ parent is). Through eval-
uations of edited models and analysis of extracted representations, we show that
KE inadvertently affects representations of entities beyond the targeted one, dis-
torting relevant structures that allow a model to infer unseen knowledge about an
entity. We call this phenomenon representation shattering and demonstrate that it
results in degradation of factual recall and reasoning performance more broadly.
To corroborate our findings in a more naturalistic setup, we perform preliminary
experiments with pretrained GPT-2-XL and Mamba models, reproducing the rep-
resentation shattering effect therein as well. Overall, our work yields a precise
mechanistic hypothesis to explain why KE has adverse effects on model abilities.

1 INTRODUCTION

Large language models (LLMs) have led to unprecedented advances in several domains (Gemini
Team, 2023; Bubeck et al., 2023; Touvron et al., 2023; Thoppilan et al., 2022; Chowdhery et al.,
2022; Qin et al., 2023; Chen et al., 2021; Ahn et al., 2022; Driess et al., 2023). However, the static
nature of their training pipelines implies that as our world evolves, models’ internalized knowledge
can become incorrect or outdated. To address this, recent work has proposed several protocols
for knowledge editing (KE), wherein the goal is to minimally and precisely alter model weights
such that only the targeted information (and its relevant associations) are updated, but all unrelated
information remains (ideally) unaffected (Mitchell et al., 2022; Meng et al., 2022a; 2023; Dai et al.,
2021; Cheng et al., 2023; De Cao et al., 2021; Sinitsin et al., 2020).

Despite significant work on the topic, it still remains unclear precisely what effects KE should have
on a model. For example, assume you edit the fact that “Michael Jordan won the 1998 NBA MVP”
to “Reggie Miller won the 1998 NBA MVP”, then what should the impact of such an edit be?
Should the model now believe Michael Jordan and the Chicago Bulls never reached the NBA finals
in 1998? Should it perhaps believe Reggie Miller was on the Chicago Bulls? Should the pop quote
“Be like Mike” (Wikipedia, 2024) now become “Be like Reggie”? As Hofweber et al. (2024);
Hase et al. (2024) argue, it is difficult to design clear, well-defined answers for such questions.
Motivated by this, recent work has started investigating precisely what effects KE actually has on
the model (Hoelscher-Obermaier et al., 2023; Li et al., 2023b; Lynch et al., 2024). For example,
Cohen et al. (2023) demonstrate that knowledge beyond the edited fact can often be impacted in a
detrimental manner, such that the model begins to have an incoherent understanding of the world;
Gupta et al. (2024) demonstrate unrelated facts are often forgotten by the model post-editing; and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Entity #125

Entity #124

Before Editing
Model
Editing

0.8

0.6

0.4

0.2

0

1.0

?
A B A B C

?
A B

?

Direct
Recall

Logical
Inference

Compositional
Inference

Performance Before Editing
Performance After Editing

0.59 0.60
0.72

Entity #125

Entity #124

Which entity is to the right of #123?(a) (b)

After Editing

Figure 1: Representation shattering explains why knowledge editing can sometimes degrade models’ gen-
eral capabilities. (a) Prior works finds that editing facts, e.g., the president of the US, can sometimes harm
general abilities of LLMs (figure reproduced from Gu et al. (2024)). (b) We introduce a synthetic data genera-
tion process defined by a knowledge graph containing ring-shaped geometries. When we train a model on our
synthetic data, we observe that the model’s internal representations mirror the ring structure of the underlying
data generation process. We then explain the post-edit degradation of the model’s capabilities by uncovering
the “shattering” of latent representations. In the example provided, while the edit successfully changes the fact
(Entity #124 is to the right of Entity #123), the model’s performance metrics drop after the knowledge edit.

Gu et al. (2024) show that KE can harm broader reasoning capabilities beyond mere factual recall.
While these works clearly demonstrate the detrimental impacts of editing on a model, they still
leave open the question precisely why such harms occur—at a mechanistic level, how are model
representations impacted such that a broad set of knowledge and capabilities in a model are heavily
distorted once an edit occurs?

This work. To address the questions above, we aim to develop a mechanistic understanding of the
impact of KE on a model’s internals. For this purpose, we argue we must solve two problems: (i)
identify how a model expresses knowledge about some predefined set of entities in its representa-
tions, and (ii) investigate how this mechanism is affected as we apply KE to alter a fact correspond-
ing to a subset of the entities. Instead of attacking a complicated system that may be difficult to
interpret (e.g., an off-the-shelf LLM), we take inspiration from a multitude of recent papers that
establish synthetic abstractions of the target system and develop precise hypotheses as to why the
phenomenon-in-question occurs (Allen-Zhu & Li, 2023c;a;b; Okawa et al., 2023; Chan et al., 2022;
Li et al., 2023a; Lubana et al., 2024). Specifically, we define a data-generating process that yields en-
tities arranged in a structured knowledge graph. This structure is defined via use of a predefined set
of relations that locally constrain how entities relate to each other (similar to parent-child relations).
Given enough entities and relations, such local constraints manifest a broader global structure in the
knowledge graph. Performing traversal over the nodes of this knowledge graph, we get sequences
that can be used as “strings” to train a Transformer on. As we show, this protocol leads to the model
precisely encoding the structure of the graph in its latent representations. However, when KE is
applied to edit either incorrectly learned facts or insert counterfactual knowledge (using the method
proposed by Meng et al. (2022a)), we find latent representations are heavily distorted and the graph
structure completely destroyed—we call this phenomenon representation shattering. Interestingly,
this phenomenon manifests in proportion to how far the proposed edit moves a given node from its
current location to a new location in the graph (defined via edge distance). We thus hypothesize
representation shattering underlies the detrimental effects of KE on a pretrained model’s factual and
reasoning capabilities at broad. Overall, we make the following contributions in this work.

• Structured Knowledge Graphs as a Toy Setting for Investigating Impact of KE. We propose
use of a structured knowledge graph wherein entities (nodes) are connected to each other via
predefined local constraints (relations) that manifest into a broader, global structure in the graph
(see Sec. 3). Training Transformers on strings (path traversals) from the graph, we find model
representations precisely encode the global structure of the graph. This allows us to assess the
impact of KE at a more mechanistic level, since distorting a fact now has global effects that can
be precisely (and, in fact, visually) delineated by analyzing the model representations.

• Representation Shattering as a Mechanistic Hypothesis to Explain Detrimental Effects of
KE. We find KE distorts latent representations for entities in the graph such that the global ge-
ometry learned during pretraining is, at times, completely destroyed—we call this phenomenon
representation shattering and hypothesize it underlies the detrimental effects of KE on model
capabilities observed in prior work (see Sec. 4). As we show, the extent of harm on latent rep-
resentations turns out to be correlated to the amount an edit alters the graph from its original
organization into the new, desired one.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Investigations with Off-the-Shelf LLMs. Using pre-trained GPT2-XL and Mamba models, we
provide evidence for our claims about representation shattering in more naturalistic settings. For
one, we find real-world analogues to our synthetic knowledge graph structures (i.e., days of the
week) and reproduce similar shattering phenomena in GPT2-XL and Mamba to what we observe
in our toy setup (see Sec. 4.5). Additionally, we further reinforce the generality of our findings
with preliminary replications of representation shattering under more complex knowledge graph
geometries, such as trees (i.e. countries and their cities).

2 RELATED WORK

Knowledge Editing. Several protocols for knowledge editing (KE) have been proposed in recent
work. Early work defined meta-learning based approaches (Sinitsin et al., 2020; De Cao et al.,
2021; Mitchell et al., 2022) and established the broader desiderata for what properties a KE pro-
tocol should satisfy; e.g., ensuring facts unrelated to the target one are not hampered via the edit-
ing protocol. Building on work aimed at understanding how Transformers encode knowledge in
their internals (Geva et al., 2020), modern KE protocols focus on defining closed-form operations
that involve (i) localizing knowledge to specific components in a model (e.g., MLP layers) and (ii)
defining operations to alter a factual association by assuming the fact is represented in a localized
manner (Meng et al., 2022a; 2023).

Evaluations of Knowledge Editing Methods. As argued by Hase et al. (2024); Hofweber et al.
(2024), the problem of KE is relatively ill-defined. Consequently, it is unclear that when we edit
knowledge within a model, what effects said edits should have on other facts it may have inter-
nalized during training. Prior work has hence taken an alternative approach, primarily focusing on
developing an empirical understanding of what the phenomenology of KE protocols is: e.g., if an
edit is performed, how are counterfactual statements or unrelated facts affected. These works gen-
erally show that KE in fact has extreme detrimental effects on a model, e.g., hampering both its
broader internalized knowledge and its reasoning abilities (Hase et al., 2023; Cohen et al., 2023;
Hoelscher-Obermaier et al., 2023; Gupta et al., 2024; Gu et al., 2024). While the primary method-
ology used in such papers is to perform empirical benchmarking of a model that has undergone
editing, we instead focus on a mechanistic analysis of how editing alters a model’s representations
(albeit primarily in a toy synthetic task) to yield the undesirable effects on model abilities.

Explaining Models via Synthetic Tasks. To disentangle the failures of KE methods from the fail-
ures of the models themselves, we argue for use of a more controllable and interpretable setup. Such
a setup can help identify a concrete hypothesis for why KE has undesirable effects on the model,
which we can then analyze in naturalistic settings by designing more precisely defined experiments.
This methodology of designing toy, control tasks to investigate hypotheses for phenomenology of
a neural network has yielded promising results in recent years, providing, e.g., a concrete hypothe-
sis for how chain-of-thought reasoning aids model capabilities (Prystawski et al., 2024; Feng et al.,
2023), models for emergent capabilities (Okawa et al., 2023; Lubana et al., 2024), existence of
nonlinear representations (Engels et al., 2024), and failure modes for compositional generaliza-
tion (Zhou et al., 2023).

3 FORMALZING KNOWLEDGE EDITING

Epistemology has grappled with the nature of knowledge for centuries (Chappell, 2005). In this work
we adopt a humble, yet precise definition of knowledge based on structured knowledge graphs. A
knowledge graph is used to represent how facts, entities, and relations are interlinked, giving rise
to notions of consistency, coherency, and reasoning across different pieces of information. Using
these definitions, we will define a synthetic data generation process on knowledge graphs, in order
to systematically study knowledge editing in Transformers.

3.1 KNOWLEDGE GRAPHS

A knowledge graph consists of a collection of entities X = {xi}ni=1, and a collection facts F that
relate different entities. For example, a graph defined on entities X = {“Alice”, “Bob”, “Carol”}
can encode the fact “Alice is the advisor of Bob” using the relation “advisor”, represented as
(“Alice”, “advisor”, “Bob”).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 3.1 (Knowledge graph). Formally, a knowledge graph G = (X,R, F) consists of nodes
X , relations R, and facts F , where each fact f = (xi, r, xj) ∈ R is defined by a relation r ∈ R
between two entities xi, xj ∈ X .

A relation sub-graph corresponds to a sub-graph constructed by only considering facts that use
relation r. For example Gadvisor is a sub-graph that specifies all facts for the relation “advisor”.
Every knowledge graph contains a collection of facts that can be inferred from the graph.

Related pieces of information such as “Alice’s advisor was Bob” and “Bob’s advisor was Carol”
can be composed to form cohesive statements such as “Alice’s advisor’s advisor was Carol. To
capture such statements, we define compositions of relations below. The composition of relations
are essential to capture ripple effects that occur in the knowledge graph after an edit (Cohen et al.,
2023) to a relation in R.

Definition 3.2 (Composition of relations). A composition of relations r⃗ = (r1, r2, · · · , rk) ∈ Rk

with respect to knowledge graph G is defined such that for every fact f = (xi, r⃗, xj), there exists a
collection of facts {(xi, ri, xi+1)}ki=1 for which x1 = xi and xk+1 = xj . In other words, any fact
defined on the composition of relations has a corresponding set of facts defined on relations from R.
Furthermore, the set of facts form a path in the knowledge graph such that the sequence of relations
in the path are r1, r2, · · · rk.

3.2 CYCLIC GRAPHS: A DESCRIPTION OF THE ENTITIES AND RELATIONS

JanFeb

Mar

Apr

May
Jun

Jul Aug Sep
Oct

Nov

Dec
Mon

Tue
Wed

Thu Fri
Sat

Sun

Figure 2: Isomap projections of rep-
resentations in Llama-3.1-405B (Fiotto-
Kaufman et al., 2024). The geometry of
the data—for example, the cyclic nature of
months or days—is often reflected in the
representations learnt by language models.
Similar representations can also be found in
other models like GPT-2-Small and Mistral
7B (Engels et al., 2024).

We study knowledge graphs where every relation sub-
graph is a set of disjoint cyclic graphs, i.e., for every entity
xi and relation r, there exists exactly one entity xj such
that (xi, r, xj) ∈ F . We specifically choose a cyclic ge-
ometry as a global constraint on the graph structure since
cycles are a common pattern that relate entities in natu-
ral language domains; e.g., see Fig. 2, where we show
a 2D projection of representations from Llama-3.1-405B
corresponding to months of a year and days of the week
naturally organize in a cyclic fashion.

Knowledge editing methods, e.g., ROME (Meng et al.,
2022a; 2023), target a set of entities for which predefined
facts are to be edited, while using another retain set of
facts about said entities to help ensure relations beyond
the targeted ones are not altered. A test set of facts are
then used to evaluate how well the method worked. Motivated by this, we define a knowledge graph
with 2048 entities (denoted by 1-2048) over which we define 3 cyclic orders (order I, II and III).
The cyclic orders are generated using random permutations of the entities. We create 8 relations for
each cyclic order totaling to 24 relations. The 8 relations correspond to the 1-hop, 2-hop, 3-hop and
4-hop neighbors in the clockwise and anti-clockwise directions in the cycle. The relations are named
after a combination of the cyclic order (I, II, III), the neighbor’s distance (between 1-4) and the
neighbor’s direction (Clockwise, Anti-clockwise). For instance, the relation “I C2” denotes the 2-
hop neighbor in the clockwise direction, with respect to cyclic order I.” The 1-hop neighbor relation
graphs (both clockwise and anti-clockwise) contain a single cycle, 2-hop relation graphs consist of
2 cycles, the 3-hop relation graph contains 1 cycle, while the 4-hop relation graph contains 4 cycles.
The k-hop neighbor relations are related to each other by design, so any edit to one k-hop relation
should be consistent with all other k-hop relations. An edit corresponds to changing a fact in the
knowledge graph and can also be interpreted as changing an edge in the relation graph. For an
illustrative example, see Fig. 3.

Depending on the fact being edited, the 3 cyclic orders are used to define the edit sub-graph, the
retain sub-graph, and the test sub-graph. Why do we create 3 cyclic orders? The knowledge editing
method targets edit sub-graph relations. The facts based on edit relations are then tested to check
if a knowledge edit was successful. The retain sub-graph relations are used by the knowledge
editing algorithm to minimize changes to unrelated relations, but no edits are made to facts that use
these relations. The test sub-graph relations are used to define facts that are neither directly edited,
nor used by the knowledge editing algorithm. The relations are used to evaluate whether unrelated

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

facts remain unchanged after a knowledge edit. We note that relations for all 3 sub-graphs are seen
during pre-training and this distinction between the cyclic orders is made only during model editing.

The distance of an edit (shown in Fig. 3) is defined as the shortest distance between the original and
edited entity in the cyclic order.

3.3 EXPERIMENTAL SETUP

1.I_C1 = 5
1.I_C2 = 3→2
1.I_A1 = 6
1.I_A2 = 7
…

1
5

2

3
4

8

7

6

1
6

5

3
8

7

2

4

1
4

5

6
3

7

2

8

Edit sub-graph:
Cyclic Order I

Retain sub-graph:
Cyclic Order II

Test sub-graph:
Cyclic Order III

1.II_C1 = 6
1.II_C2 = 5
1.II_A1 = 4
1.II_A2 = 2
…

1.III_C1 = 4
1.III_C2 = 5
1.III_A1 = 8
1.III_A2 = 2
…

1 I_C1 5 I_A2 6 II_C2 4 III_C4 7 I_A1 8 II_C2 II_C1 4 …

Randomly trace a sequence of connected entities through the three cyclic orders:

Hold out some relations for testing!

1
5

2

3
4

8

7

6

1
6

5

3
8

7

2

4

1
4

5

6
3

7

2

8

Edit
knowledge

Retain
knowledge

Reserved
for eval

Distance = 1

1.I_C2 = 2
“2 hops clockwise from entity 1
in cyclic order I is entity 2”

Compose relations!

Figure 3: Synthetic data generation process with a
cyclic knowledge graph. The entities (nodes) are ar-
ranged according to 3 different cyclic orders. Each en-
tity (node) has relations (directed edges) pointing to 8
other entities in each cyclic order which totals to 24 re-
lations across all 3 orders. The relations correspond to
1-4 hop neighbors in the clockwise and anti-clockwise
directions. We select a random path on the knowl-
edge graph using all 24 relations to generate a prompt,
which is shown above. The relations follow the nam-
ing convention of ⟨cyclic-order⟩ ⟨direction⟩⟨hops⟩, i.e.
II A3 is the relation corresponding to the three-hop
anti-clockwise neighbor in the second cyclic order. In
cyclic order I, the above figure denotes an edit for a
relation between Entity 1 to Entity 3 (red) to a relation
between Entity 1 to Entity 2 (green). The distance of
the edit is 1, as defined with respect to cyclic order I.

Data-generating process. We generate a se-
quence of alternating entities and relations re-
sembling x1r⃗1x2r⃗2x3r⃗3 . . . , where any con-
secutive triplet of entity, relation, and en-
tity xirixi+1 from the sequence is a fact
(xi, r⃗i, xi+1) in the knowledge graph. The
composition of relations r⃗i = ri1ri2ri3 . . . is
a sequence of 1 or more relation tokens, while
xi is a single entity token. Every token is sam-
pled using a uniform probability over all the
permissible choices (see Alg. 1). For exam-
ple, a plausible sequence for the example in
Fig. 3 is “1 I C4 4 III A2 8 III A3 3
II C2 7”, which is an alternating sequence
of entities and k-hop relations. As previously
noted, relations belonging to all three cyclic or-
ders are included in the data generation process;
the distinction between edit, retain, and test re-
lations is only relevant to knowledge editing on
a trained model. Furthermore, we remark that
this sampling process is identical to traversing
random walks on the knowledge graph, simi-
lar to previous works (Prystawski et al., 2024;
Khona et al., 2024). Additional details of the
generation process are documented in Appx. B.

Training setup. We train a Transformer model
using next-token prediction on the synthetic
data generated from the above data genera-
tion process. For all experiments (unless stated
otherwise), we use a 2-layer nanoGPT Trans-
former (Karpathy, 2021). For additional de-
tails, see Appx. C.

Evaluation (seen facts). We assess the model’s ability to remember facts seen during training, both
before and after an edit. Specifically, to analyze whether the model has learned the fact (xi, r⃗, xj),
we prompt it with an entity xi and a relation r⃗, expecting it to produce xj as the next token. In
practice, the model outputs can vary across prompts: we account for this by averaging the softmax
probabilities across 5 randomly sampled sequences of the form . . . xir⃗ and using the output token
with the highest probability.
Evaluation (unseen facts). We also evaluate the model on two other criteria. (1) Compositional
inference. In addition to facts seen in the training data, we evaluate the model on compositions
of relations. The model must preserve geometric structures of the data in order to compositionally
generalize after a knowledge edit. (2) Logical inference. A key feature of reasoning in natural
language is logical inference. For example, if Alice is said to be the advisor of Bob, then Bob is an
advisee of Alice (even if it is not explicitly stated). Our data generation process has similar relations,
such as clockwise and anti-clockwise 1-hop neighbors. By “holding out” one direction for some such
pairs of relations from being observed verbatim in the training dataset, i.e., the relation may only
appear compositionally, we can assess the degree to which the model internalizes properties among
related relations. We can also evaluate if editing a fact for a relation changes the fact for other related
relations, i.e., we check if the model’s knowledge is logically self-consistent after an edit.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Test type (a) Unedited model (b) Corrective edits (c) ⟨∆Acc.⟩ for Counterfactual edits
Cyclic Order Acc. Sub-Graph ⟨∆Acc.⟩ d = 1 d = 2 d = 3 d = 4

Direct recall
I 98.34 Edit -21.95 -01.49 -67.01 -77.07 -77.94
II 93.71 Retain -22.64 -01.91 -66.70 -75.49 -75.42
III 99.37 Test -21.83 -01.75 -67.00 -76.12 -77.90

Logical
inference

I 98.16 Edit -22.24 -01.44 -67.22 -77.14 -78.02
II 93.95 Retain -22.50 -01.83 -66.88 -75.67 -75.67
III 99.40 Test -22.03 -01.80 -67.31 -76.27 -78.23

Compositional
inference

I 88.15 Edit -29.60 -05.32 -73.15 -80.35 -80.63
II 79.31 Retain -31.92 -05.32 -71.21 -78.70 -78.87
III 93.50 Test -31.70 -06.69 -74.88 -81.38 -80.62

Table 1: The direct recall, logical inference, and compositional inference accuracies before and after KE.
Results are for ROME; see Appx. F.5.1 for other methods. (a) The performance of our model (before editing)
across the three cyclic orders (I, II, and III). Not only does our model perform well on direct recall, but it
also generalizes to both logical and compositional inference tasks. This suggests that the model’s internal repre-
sentations extend beyond simple memorization and capture the underlying global structure that relates entities.
(b) Changes in model accuracy after applying corrective knowledge edits. Each ⟨∆Acc.⟩ result is averaged
across multiple edits, and each row labeled edit/retain/test is averaged across each of the cyclic orders taking
turns, i.e., playing the roles of the edit, retain, and test sub-graphs. We find that corrective knowledge edits
negatively affect the model’s accuracy both on related and unrelated facts. These results align with the findings
on LLMs (Gu et al., 2024; Gupta et al., 2024). (c) ⟨∆Acc.⟩ for edit, retain, and test sub-graphs after applying
counterfactual edits. Intentionally introducing inconsistencies into the model’s knowledge via counterfactual
KE can significantly degrade model capabilities. Furthermore, the greater the induced inconsistency (scaling
the counterfactual edit distance d from 1-4), the more severe the resulting performance degradation.

3.4 REPRESENTATION SHATTERING

In this work, we explore the hypothesis that knowledge editing methods distort the geometry of the
representations of entities in the knowledge graph. We believe this distortion can give us insight into
why knowledge editing degrades the general capabilities of the model. In the following sections, we
investigate the following hypothesis.
Hypothesis 3.3 (Representation shattering). Language models embed related entities on a mani-
fold in their internal representations. KE methods distort this manifold in order to insert new facts
or alter old ones, i.e., they shatter model representations. The extent of representation shattering
increases with the distance between the old fact and the desired new fact on the manifold.

To quantify the extent of representation shattering, we define a precise metric to capture the amount
of distortion of the representations:

R(D∗) =
||D∗ −D∅||F
||D∅||F

, (1)

where ||D||F is the Frobenius norm of D, D∅ the pairwise distance matrix of the entities com-
puted using the unedited model, and D∗ is the pairwise distance matrix computed using the edited
model. The distance between entities is computed by measuring the euclidean distance between the
representation vector of each entity.

4 UNCOVERING REPRESENTATION SHATTERING

We study knowledge editing methods like ROME (Meng et al., 2022a), MEMIT (Meng et al.,
2022b), PMET (Li et al., 2024), and AlphaEdit (Fang et al., 2024) in this work. While in the main
paper we primarily present results with ROME (see Appx. C for a short primer), we provide results
with other methods in Appx. F.5.1 and Appx. F.5.2. We perform two different types of edits: cor-
rective edits and counterfactual edits. Corrective edits are applied to facts which the model recalls
incorrectly after training. A counterfactual edit introduces a new fact, i.e., it changes fact (xi, r, xj)
to fact (xi, r, xk) where xj ̸= xk. Such an edit introduces inconsistencies in the knowledge graph.

Overall, we show the following. (1) Transformers trained on knowledge graphs recall facts, perform
logical inferences, and compositional inferences. However, both corrective and counterfactual edits

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

500 3000 6000 9000 24000 72000 150000

100 101 102 103 104 105
Log Train Step

4

6

Lo
g

Tr
ai

n
Lo

ss

50
0

30
00

60
00

90
00

24
00

0

72
00

0

15
00

00

(a) (b)

Figure 4: Transformers learn representations that mirror the geometry of the underlying data. (a) The
representations—or output of the second attention layer—for the input xr⃗ for different entities x and fixed
relation r⃗ are visualized using Isomap. The model learns the cyclic ordering to represent all the facts. For
visualizations of representations at various other model layers and modules, please see Appx. F.3. (b) To
improve the visual fidelity of the projected representations when comparing representations of post-edit models
to the unedited model, we construct Isomap neighborhood graphs using the outputs of the Transformer. For
more details, please see Appx. E.

degrade the model on all three fronts. (2) Transformers learn a representation that reflects the un-
derlying geometry of the data. Knowledge edits “shatter” this representation, which serves as an
explanation for the degradation in accuracy after KE. (3) Counterfactual edits with larger distance
display a larger degree of shattering. (4) These phenomena occur in pretrained language models,
indicating representation shattering can explain degradation in model abilities after KE.

4.1 EVALUATING THE EFFECTS OF KNOWLEDGE EDITING

We evaluate the effects of counterfactual and corrective edits on three fronts. Direct recall accu-
racy calculates the accuracy of facts seen during training. Logical inference accuracy measures
the accuracy on a subset of held out relations that can be inferred from other relations, i.e., the
k-hop anti-clockwise neighbors can be inferred directly from the k-hop clockwise neighbors. Com-
positional inference accuracy measures the accuracy on a held out subset of compositions of two
relations. Both logical inference and compositional inference measure the accuracy on samples that
would be considered out-of-distribution.

We report scores for all three metrics in Tab. 1. The model’s logical and compositional inference
accuracies are close to the direct recall accuracy, which implies that the model generalizes outside
of the training data before KE. However, after KE, all accuracies decrease, with a more severe
decrease for counterfactual edits (they introduce inconsistencies between facts).

4.2 TRANSFORMER REPRESENTATIONS CAPTURE THE GEOMETRY OF THE DATA

The model achieves high compositional and logical inference accuracies before knowledge editing,
indicating that it captures the global structure of the data and does not merely memorize all the facts
seen during training. We see this reflected in the internal representation of the model (output of the
second attention layer), which we visualize using Isomap (Tenenbaum et al., 2000)—a non-linear
dimensionality reduction method that uses multi-dimensional scaling with distances computed using
a local neighborhood graph. In Fig. 4a, we plot the evolution of the Isomap embedding—of the
internal representation for the input with one entity and relation (xr⃗)—over the course of training.
The different data points correspond to different values of the entity x, for a fixed relation r⃗ and
the points in the plot are colored by the cyclic ordering. We see that the representation manifold
resembles the cyclic ordering of the entities, particularly towards the end of training.

4.3 CORRECTIVE KNOWLEDGE EDITS SHATTER THE REPRESENTATION GEOMETRY

We assess how the representation changes after applying a corrective knowledge edit—i.e., applying
KE to a fact that the model learned incorrectly during training. While one would expect the perfor-
mance of the model to increase after a corrective edit, we find the opposite: a corrective edit results

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

60
45

30
15

0

 Direct Recall (%)
60

45
30

15
0

 Lo
gic

 (%
)

80

60

40

20

0

 C
om

po
sit

io
n

(%
)

(a)
R(D*) = 0.149 R(D*) = 0.064 R(D*) = 0.022

(b)
60 40 20 0

Mean Acc. (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R(
D

*)

y = 0.002x + 0.009
r2 = 0.905

(c)

Figure 5: Representation shattering strongly correlates with a degradation in accuracy. (a) We plot the
change in direct recall, logical inference, and compositional inference accuracies for different edits models,
edited on different facts. We find all 3 accuracies to be strongly correlated. We select 3 edited models that span
the range of accuracies, which is denoted by ✖, ▲and ★ in the plot. (b) We plot the representations using a
variant of Isomap (see Appx. E) with the entities colored by the cyclic order. We observe a clear trend where
larger drop in accuracy directly correlates with a greater degree of representation shattering, i.e., the geometric
structure of the data is destroyed after the edit. (c) We plot the mean drop in accuracy against the representation
shattering metric R(D∗) as defined in Eq. 1. Greater representation shattering is strongly correlated with more
severe accuracy degradation (r2 = 0.905).

in a drop in all accuracies (see Tab. 1). These results align with previous empirical findings showing
that reasoning capabilities degrade after corrective edits (Gu et al., 2024; Cohen et al., 2023).

We visualize the representations of 3 different models using the techniques described in 4.2. The 3
models are obtained after applying 3 different edits and are selected to have high (★), intermediate
(▲), and low (✖) direct recall accuracies. In Fig. 5, we observe that the model with the highest
accuracy (★) has a representation that preserves the geometry of the data after the edit. However,
as the model accuracy decreases, the representations also display a greater degree of distortion, no
longer capturing the geometry of the data; in other words, the model is affected by representation
shattering. Beyond visual inspection, this trend is also quantified in Fig. 5c, which shows a strong
negative relationship between the distortion metric R(D∗) (Eq. 1) and model accuracy (r2 = 0.905).

4.4 HOW DO DIFFERENT COUNTERFACTUAL EDITS CHANGE THE EXTENT OF SHATTERING?

Sub-Graph d = 1 d = 2 d = 3 d = 4

Edit 01.80 21.93 26.22 27.90
Retain 01.80 20.84 25.32 27.28
Test 01.84 21.89 26.52 28.68

Table 2: Mean R(D∗) for counterfactual edits, aver-
aged across each sub-graph type. We observe higher
degrees of representation shattering for greater counter-
factual edit distances (d). Results are for ROME; other
methods also reproduce this relationship (Appx. F.5.2).

Counterfactual editing, wherein ones adds
new facts that were unseen during training,
is commonly used for evaluating KE proto-
cols (Meng et al., 2022a; 2023; Gupta et al.,
2024; Hoelscher-Obermaier et al., 2023). We
consider 25 different counterfactual edits cor-
responding to every single counterfactual edit
distance, where the counterfactual edit distance
(or CE distance) is the distance between the en-
tity in the old fact and new fact as measured in
the cyclic order. Fig. 3 illustrates an example
where the counterfactual edit has an edit distance of 1. In Fig. 6, we see that increasing the dis-
tance of the counterfactual edit results in a drop in accuracy and an increasing in the extent
of shattering. This relationship is numerically supported by R(D∗) as shown in Tab. 2: shattering
increases as counterfactual edit distance increases. In other words, when a new fact changes one
entity to another, the extent of shattering increases as the distance between the old and new entity
increases. As a naturalistic parallel, if the entities are different months, accuracy is higher when we
edit “December” to “November” as opposed to “July”.

4.5 REPRESENTATION SHATTERING IN LLMS

Finally, we investigate whether our findings generalize to large Transformers trained on naturalistic
data. We consider concepts with a cyclic order, in particular months of the year, and apply a counter-
factual edit to GPT-2 (Radford et al., 2019) and Mamba S4 (Gu & Dao, 2023) (see Appx. F.5.3) using

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Direct Recall
Logical Inference
Compositional Inference

I_
C1

 (
Ed

it
)

Unedited
0.015

CE Dist = 1
0.104

CE Dist = 2
0.138

CE Dist = 3
0.169

CE Dist = 4

II_
C1

 (
Re

ta
in

)

0.013 0.065 0.119 0.132

III
_C

1
(T

es
t)

0.015 0.062 0.108 0.148

Figure 6: Counterfactual edits with larger edit distance result in larger drop in accuracy and greater de-
gree of representation shattering. We apply counterfactual knowledge edits to overwrite a correctly learned
fact (1154.I C1=567) with inconsistent counterfactual associations. We then plot the accuracy after the
counterfactual edit for different edit distances and the corresponding low-dimensional embedding of the rep-
resentation obtained using a modified version of Isomap (see Appx. E). The numerical quantity in the upper
right of each manifold visualization is the R(D∗) value measuring the degree of representation shattering with
respect to the manifold of the unedited model. Both visually and numerically, we find that a counterfactual edit
with larger edit distance requires a significant distortion to the representation geometry to learn the new fact.

ROME to change the order of months. We additionally explore non-cyclic geometries, specifically
tree-structured concepts, and their representation shattering in Appx. F.6.

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Ac
cu

ra
cy

Before Editing
CE Dist 1
CE Dist 2

CE Dist 3
CE Dist 4
CE Dist 5

Figure 7: Inducing representation shattering via KE
degrades model performance in a real LLM (GPT-
2). We evaluate GPT-2’s ability to perform a reasoning
task from Gu et al. (2024) before and after editing. As
the edit distance grows, accuracy gradually decreases,
with a notable drop at distance 4, coinciding with the
point of representation shattering.

We generated prompts following the template
described in Engels et al. (2024), which
include prompts such as “Let’s do some
calendar math. One month after
January is February...”. For a
distance-1 edit, we modified the answer to
“March”; for a distance-2 edit, we changed it
to “April”, and so on. We then updated the
parameters of GPT-2 with these new prompt-
answer pairs using ROME. Fig. 8 shows the
latent representations for the 12 months ex-
tracted from the GPT-2 model before and after
the edit. We find that as we vary the edit dis-
tance from 1 to 5, the observed representation
shattering increases. In Fig. 7, we examine
the impact of representation shattering on
model performance. We evaluated the GPT-2
model on the reasoning task from Gu et al.
(2024) both before and after editing. As the
edit distance increases, we observe a gradual

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Before editing
0.014

CE dist 1
0.004

CE dist 2

0.005
CE dist 3

1.022
CE dist 4

0.996
CE dist 5

Figure 8: Representation shattering also occurs in real LLMs (GPT-2) for months of year. We applied
KE (ROME) with counterfactual prompts for the order of months to GPT-2. The ring structure holds for edit
distances up to 3 but becomes untied for distances 4 and 5. See Appx. F.5.3 for similar results with Mamba
S4 (Gu & Dao, 2023), and Appx. F.6 for experiments with concepts organized in a non-circular geometry.

decline in accuracy, with a drop at distance of 4, which corresponds to the point of representation
shattering. This result demonstrates that our findings from synthetic data can generalize to larger
models trained on naturalistic data.

5 CONCLUSION

In this work, we introduced a synthetic framework to analyze the side effects of knowledge editing
in transformers, identifying “representation shattering” as a key factor behind performance degrada-
tion. Specifically, we show preserving representational structures underlying a model’s knowledge
is crucial to avoiding negative consequences of knowledge editing: distortion of such structures
impacts a model’s broader capabilities. To arrive at this hypothesis, we design a controlled frame-
work that allows investigations into models modified by knowledge editing protocols, offering clear
representation-level explanations for why knowledge editing can harms models’ broader capabilities
that generalize to real-world models like GPT-2. While the use of simplified tasks and models can
limit the scope of our conclusions, since larger, more complex real-world models may exhibit addi-
tional dynamics that our framework does not capture, we do believe that testing knowledge editing
protocols on setups similar to our synthetic, knowledge graph one will significantly aid design of
better editing protocols. We claim failing even such simple, albeit systematically defined settings,
likely implies the editing protocol should not be readily trusted or applied at scale.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. arXiv preprint arXiv:2309.14316, 2023a.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation.
arXiv preprint arXiv:2309.14402, 2023b.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023c.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. Advances in Neural Information Processing Systems, 35:18878–18891, 2022.

Sophie-Grace Chappell. Plato on knowledge in the theaetetus. 2005.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Siyuan Cheng, Ningyu Zhang, Bozhong Tian, Xi Chen, Qingbing Liu, and Huajun Chen. Edit-
ing Language Model-based Knowledge Graph Embeddings, December 2023. URL http:
//arxiv.org/abs/2301.10405.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the Ripple Effects of
Knowledge Editing in Language Models, December 2023. URL http://arxiv.org/abs/
2307.12976.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
2021.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Joshua Engels, Isaac Liao, Eric J. Michaud, Wes Gurnee, and Max Tegmark. Not All Language
Model Features Are Linear, May 2024. URL http://arxiv.org/abs/2405.14860.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Xiang Wang, Xiangnan He, and Tat-seng
Chua. Alphaedit: Null-space constrained knowledge editing for language models. arXiv preprint
arXiv:2410.02355, 2024.

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. arXiv preprint arXiv:2305.15408,
2023.

11

http://arxiv.org/abs/2301.10405
http://arxiv.org/abs/2301.10405
http://arxiv.org/abs/2307.12976
http://arxiv.org/abs/2307.12976
http://arxiv.org/abs/2405.14860

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jaden Fiotto-Kaufman, Alexander R Loftus, Eric Todd, Jannik Brinkmann, Caden Juang, Koyena
Pal, Can Rager, Aaron Mueller, Samuel Marks, Arnab Sen Sharma, Francesca Lucchetti, Michael
Ripa, Adam Belfki, Nikhil Prakash, Sumeet Multani, Carla Brodley, Arjun Guha, Jonathan Bell,
Byron Wallace, and David Bau. NNsight and NDIF: Democratizing access to foundation model
internals. arXiv preprint arXiv:2407.14561, 2024.

Gemini Team. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

Mor Geva, Yoav Goldberg, and Jonathan Berant. Transformer feed-forward layers are key-value
memories. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing, 2020.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun
Peng. Model editing harms general abilities of large language models: Regularization to the
rescue. arXiv preprint arXiv:2401.04700, 2024.

Akshat Gupta, Anurag Rao, and Gopala Anumanchipalli. Model Editing at Scale leads to Gradual
and Catastrophic Forgetting, January 2024. URL http://arxiv.org/abs/2401.07453.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does Localization Inform Edit-
ing? Surprising Differences in Causality-Based Localization vs. Knowledge Editing in Language
Models, October 2023. URL http://arxiv.org/abs/2301.04213.

Peter Hase, Thomas Hofweber, Xiang Zhou, Elias Stengel-Eskin, and Mohit Bansal. Fundamental
problems with model editing: How should rational belief revision work in llms? arXiv preprint
arXiv:2406.19354, 2024.

Jason Hoelscher-Obermaier, Julia Persson, Esben Kran, Ioannis Konstas, and Fazl Barez. Detecting
Edit Failures In Large Language Models: An Improved Specificity Benchmark, June 2023. URL
http://arxiv.org/abs/2305.17553.

Thomas Hofweber, Peter Hase, Elias Stengel-Eskin, and Mohit Bansal. Are language models ratio-
nal? the case of coherence norms and belief revision. arXiv preprint arXiv:2406.03442, 2024.

Andrej Karpathy. NanoGPT, 2021. Github link. https://github.com/karpathy/
nanoGPT.

Mikail Khona, Maya Okawa, Jan Hula, Rahul Ramesh, Kento Nishi, Robert Dick, Ekdeep Singh
Lubana, and Hidenori Tanaka. Towards an understanding of stepwise inference in transformers:
A synthetic graph navigation model. arXiv preprint arXiv:2402.07757, 2024.

Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Wat-
tenberg. Emergent World Representations: Exploring a Sequence Model Trained on a Synthetic
Task, 2023a.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model edit-
ing in a transformer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 18564–18572, 2024.

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang, Xi Chen, and Huajun Chen. Unveiling
the Pitfalls of Knowledge Editing for Large Language Models, November 2023b. URL http:
//arxiv.org/abs/2310.02129. arXiv:2310.02129 [cs].

Ekdeep Singh Lubana, Kyogo Kawaguchi, Robert P Dick, and Hidenori Tanaka. A percolation
model of emergence: Analyzing transformers trained on a formal language. arXiv preprint
arXiv:2408.12578, 2024.

Aengus Lynch, Phillip Guo, Aidan Ewart, Stephen Casper, and Dylan Hadfield-Menell. Eight meth-
ods to evaluate robust unlearning in llms. arXiv preprint arXiv:2402.16835, 2024.

12

http://arxiv.org/abs/2401.07453
http://arxiv.org/abs/2301.04213
http://arxiv.org/abs/2305.17553
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
http://arxiv.org/abs/2310.02129
http://arxiv.org/abs/2310.02129

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. Advances in Neural Information Processing Systems, 35, 2022a.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. arXiv preprint arXiv:2210.07229, 2022b.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-Editing
Memory in a Transformer, August 2023. URL http://arxiv.org/abs/2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
Model Editing at Scale, June 2022. URL http://arxiv.org/abs/2110.11309.

Maya Okawa, Ekdeep Singh Lubana, Robert P Dick, and Hidenori Tanaka. Composi-
tional abilities emerge multiplicatively: Exploring diffusion models on a synthetic task.
https://openreview.net/forum?id=ZXH8KUgFx3, 2023.

Ben Prystawski, Michael Li, and Noah Goodman. Why think step by step? reasoning emerges from
the locality of experience. Advances in Neural Information Processing Systems, 36, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Arnab Sen Sharma, David Atkinson, and David Bau. Locating and editing factual associations in
mamba. 2024.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin, Sergei Popov, and Artem Babenko. Editable
neural networks. arXiv preprint arXiv:2004.00345, 2020.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Wikipedia. Be Like Mike, 2024. Wikipedia Link. https://en.wikipedia.org/wiki/Be_
Like_Mike.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023.

13

http://arxiv.org/abs/2210.07229
http://arxiv.org/abs/2110.11309
https://en.wikipedia.org/wiki/Be_Like_Mike
https://en.wikipedia.org/wiki/Be_Like_Mike

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A SETUP DETAILS

We will publicly release the source code for our work on GitHub at a later time.

A.1 PSEUDO-CODE

Let U(.) define the uniform distribution over the input. Let X be the set of entities, R the set of
relations and F the set of facts, defining a knowledge graph G = (X,R, F).

Algorithm 1: Generate a single sequence containing a collection of facts.
1 function generateSequence()
2 xp ∼ U(X) from a uniform distribution over the entities.
3 S = [xp]
4 entity flag← False

// Create a sequence of alternating entities and relations
5 while len(S) < context size do
6 if (entity flag) then

// Add an entity that completes a valid fact
7 Set xn such that (xp, r⃗, xn) is a fact in the knowledge graph G.
8 S.append(xn)
9 xp ← xn

10 else
// Add a composition of relations

11 K ∼ U({1, 2}). r⃗ = []
12 for (i in 1 to K) do
13 r ∼ U(R)
14 S.append(r)
15 r⃗.append(r)
16 Set xn such that (xs, r⃗, xn) is a fact in the knowledge graph G.
17 entity flag← ¬ (entity flag)
18 S = S[:context size]
19 return S

B DATA GENERATION PROCESS DETAILS

For this study, we use the following hyperparameters for our data generation process.

• Number of entities: 2048
• Number of example sequences: 108
• Maximum composition length: 2
• Maximum entities per sequence: 8

Additionally, only when generating the training dataset, we drop sequences which contain one di-
rection of a pair of conjugate facts with fixed probability p. In other words, if the fact (xi, r, xj)
always implies that (xj , r

′, xi) is a valid fact (i.e. r = I C1 and r′ = I A1), one of (xi, r, xj) or
(xj , r

′, xi) may be restricted to inclusion in the training dataset by composition only (with probabil-
ity p). Holding out these relations allows us to benchmark the model’s logical inference capabilities
on relations it could not have directly memorized from the training dataset. In practice, we set the
probability p = 2

3 .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C MODEL ARCHITECTURE

Our Transformer model is a fork of the open-source nanoGPT repository (https://github.
com/karpathy/nanoGPT). The design is inspired by GPT, and the architecture is a decode-
only Transformer with a causal self-attention mask. Our hyperparameter values are as follows.

• Batch size: 256
• Context length: 16
• Optimizer: Adam
• Learning rate: 6 · 10−4

• Training epochs: 1.5 · 105
• Decay iterations: 1.5 · 105
• Momentum: β1 = 0.9, β2 = 0.95
• Activation function: GeLU
• Block size: 16
• Embedding dimensions: 24
• Heads: 12

As for tokenization, we assign every entity and relation a unique token and use standard next-token
prediction with cross-entropy loss. targetn is the 1-shifted version of the training sequence account-
ing for the padding token, and xn are the logit outputs of the model at the nth timestep.

L(xn, target n) = − log
(exp(βxn, target n)∑#tokens

v=0 exp(βxn,v)

)
= − log

(
softmax(βxn)target n︸ ︷︷ ︸

prob(target n)

)

D RANK-ONE MODEL EDITING (ROME)

D.1 ALGORITHM DEFINITION

Rank-One Model Editing (ROME), proposed by Meng et al. (2022a), is a popular knowledge editing
algorithm used on LLMs. Their contributions are two-fold: first, through “causal tracing,” they find
that early-layer MLP modules of transformer models are implicated in encoding factual associations.
Second, interpreting feed-forward layers as linear associative memories encoding key-value pairs,
ROME applies a rank-one update to the MLP weights.

Notationally, for a factual association (xi, r, xj), the key is the entity xi while the value is xj . In
each feed-forward layer, the hidden state h

(l−1)
i at layer l − 1 is transformed into a key k by the

weight matrix W
(l)
fc , and the corresponding value v is retrieved by the matrix W

(l)
proj :

h
(l)
i = W

(l)
projσ

(
W

(l)
fch

(l−1)
i

)
where σ(·) denotes the activation function.

To modify the factual association (xi, r, xj) in the model, ROME computes a new key-value pair
(k∗,v∗), representing the entity xi and the new target entity x∗

j . ROME then applies a rank-one

update to the weight matrix W
(l∗)
proj at a specific layer l∗ to encode this new fact:

Ŵ
(l∗)
proj = W

(l∗)
proj + λ

(
C−1k∗)⊤ where λ =

v∗ −W
(l∗)
projk

∗

(C−1k∗)
⊤
k∗

Here, C is the uncentered covariance matrix of the key vectors k, estimated by sampling tokens
from a representative dataset.

The key vector k∗ corresponds to the entity xi in the factual association (xi, r, x
∗
j). The vector is

computed by averaging the MLP output for xi over multiple randomly generated contexts:

15

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

k∗ =
1

N

N∑
j=1

σ
(
W

(l∗)
fc γ

(
a
(l∗)
i + h

(l−1)
i

))

where γ(·) is a normalization function, and a
(l∗)
i is the attention output at layer l∗.

The value vector v∗ is optimized to maximize the model’s probability of predicting the target entity
x∗
j given the subject xi and relation r. This is done by minimizing the following objective:

L(z) =
1

N

N∑
j=1

(
− logP

(
x∗
j |xi, r

)
+DKL (PG (xi|p′) ||PG (xi|p′))

)
The first term maximizes the probability of the target entity x∗

j , while the second term controls for
“essence drift” to retain information about xi. This is done by sampling inputs p′ for which the
model’s outputs should not change during the edit.

D.2 IMPLEMENTATION

In our implementation of ROME tailored to our model, we apply the edit at layer 1 as it is the
only available early-site layer in our model configuration. The covariance matrix C is estimated
by randomly sampling 105 inputs from the validation dataset. This provides a representative set
of key vectors for computing the rank-one update. To solve for the key vector k∗, we sample 105

random context sequences, with sequence lengths varying between 2 and 10 tokens. The value solver
follows a similar procedure by sampling 102 context sequences selected in the same manner as the
key solver. The value optimization is performed using the Adam optimizer, with hyperparameters
lr = 10−3 and weight decay = 10−4. The value solver optimizes between 5 and 500 iterations,
stopping when the predicted token is replaced by x∗

j . The KL divergence weight is set to 3 during
optimization.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E VISUALIZATION METHODS

In Fig. 4, we demonstrated the emergence of cyclic representations within the model by extracting
representations and generating 3D Isomap projections. While the visualizations support the notion
that cyclical representations are present in the model, changes in the projections can be difficult to
intuitively interpret due to the overlap of differently colored segments of the manifold. For example,
below is a recreation of Fig. 6 using raw Isomap projections.

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Direct Recall
Logical Inference
Compositional Inference

II_
A4

 (
Re

ta
in

)
III

_A
4

(T
es

t)
I_

A4
 (

Ed
it

)

Unedited CE Dist = 1 CE Dist = 2 CE Dist = 3 CE Dist = 4

Figure 9: An equivalent version of Fig. 6 using the unprocessed Isomap projection renderings. Representation
shattering is still visible in the flattening and clustering of points in the manifold as the counterfactual edit
distance increases.

The coinciding ring segments are an artifact of the lossy projection of high-dimensional cyclical
representations into a low-dimensional space: when dimensionality reduction to 3D is applied, the
high-dimensional cyclical structure gets “squished” into a torus. To enhance the visual perceptibility
of the representation shattering phenomenon, we additionally implement a pre-processing step to
constrain the construction of the Isomap neighbors graph using the model’s output predictions. More
concretely, when visualizing the post-edit manifold for a particular edit (xi, r, x

∗
j), we adopt the

following procedure:

1. Construct a set S0 of entities by prompting the unedited model for all immediate neighbors of
xi in the cycle order of r (i.e. by getting outputs for xir

′ for all r′ in the same cycle order as r).
2. Apply the knowledge edit.
3. Construct a set S1 of entities by collecting outputs from the edited model for all sir where

si ∈ S0.
4. Constrain the Isomap pair-wise distance matrix to members of S1.

This procedure remains faithful in comparing the pre-edit model to the post-edit model, as relies
solely on model predictions and does not introduce any ground-truth priors.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

F ADDITIONAL RESULTS

F.1 INDEPENDENCE OF SUBGRAPHS

In our evaluations, we make edits to various relations under the assumption that the Transformer
internalizes the independence of the cyclic orders (I, II, and III). Here, we ask: do the model’s
internal representations truly reflect this? We answer this question by inspecting the representations
for the output of the multi-head attention output in layer 2 at the last token position using PCA.
Unlike in previous sections where we focused on a fixed relation r and varied xi for inputs of the
form · · ·xir, we now vary both xi and r and color-code each projection by the cyclic order to
which the relation r belongs. We present the resulting projections in Fig. 10, and find that prompts
eliciting knowledge for each cyclic order are clustered closely together in the latent space—this is
further evidence that the model internalizes the properties of the underlying knowledge graph.

Cyclic Order I
Cyclic Order II
Cyclic Order III

Figure 10: PCA of representations extracted from the output of the multi-head attention output in layer 2 at the
last token position, color-coded by the cyclic order of the last relation token.

F.2 MANIFOLDS FOR ALL RELATIONS

In Fig. 11, we provide isomap projections of representations extracted for all relations from our
model. We show highly structured representations are formed within the model, indicating the
model is truly learning the data-generating process and not merely memorizing information.

I_C1 I_A1 I_C2 I_A2 I_C3 I_A3 I_C4 I_A4

II_C1 II_A1 II_C2 II_A2 II_C3 II_A3 II_C4 II_A4

III_C1 III_A1 III_C2 III_A2 III_C3 III_A3 III_C4 III_A4

Figure 11: Isomap projections for representations for all relations, extracted from the output of the multi-head
attention output in layer 2 at the last token position. We find that all relations are represented by a cyclical
representation manifold. This shows that the model is not falling back on memorization for any relations—
rather, it represents all of its knowledge in consistent, ring-like manifolds.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F.3 MANIFOLDS FOR VARIOUS REPRESENTATION EXTRACTION POINTS

We repeat our representation visualizations analysis for all relations at different layers in the model
and at different sequence positions, finding the structured representations are found at specific token
positions. See Fig. 12.

attn1
@ last entity token (-2)

mlp1 gelu
@ last entity token (-2)

mlp1 cproj
@ last entity token (-2)

attn2
@ last entity token (-2)

mlp2 gelu
@ last entity token (-2)

mlp2 cproj
@ last entity token (-2)

attn1
@ last relation token (-1)

mlp1 gelu
@ last relation token (-1)

mlp1 cproj
@ last relation token (-1)

attn2
@ last relation token (-1)

mlp2 gelu
@ last relation token (-1)

mlp2 cproj
@ last relation token (-1)

Figure 12: 3D Isomap projections for representations extracted from various points in the model for various
token positions. The cyclical representation manifolds can only be observed for the last relation token position
(−1th token), and not at the last entity token position (−2th token). This intuitively makes sense because the
last relation token informs the model about which cycle order the current input is querying for. We primarily
use the “attn2 last relation token” representations throughout this work because it is the earliest point at which
a well-structured cyclical manifold can be observed beyond the point of the ROME intervention (which is at
“mlp1 cproj”).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F.4 COUNTERFACTUAL EDITING

F.4.1 DISTRIBUTION OF DEGREDATIONS FOR COUNTERFACTUAL EDITS

The plots in Fig. 13 correspond to the counterfactual editing results presented in Sec. 4.4 and Tab. 1.

1.0 0.8 0.6 0.4 0.2 0.0
Direct Recall Accuracy

0

5

10

15

20

CE Distance = 1

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 2

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 3

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 4 Edit
Retain
Test

1.0 0.8 0.6 0.4 0.2 0.0
Logical Inference Accuracy

0

5

10

15

20

CE Distance = 1

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 2

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 3

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 4 Edit
Retain
Test

1.0 0.8 0.6 0.4 0.2 0.0
Compositional Inference Accuracy

0

2

4

6

8

10

CE Distance = 1

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 2

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 3

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 4 Edit
Retain
Test

Figure 13: Distribution of post-edit accuracy degredations for direct recall, logical inference, and compositional
inference in relation to the counterfactual edit distances. A significant shift can be observed between CE
distances of 1 and 2, showing the point at which detrimental representation shattering can occur.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F.4.2 ADDITIONAL VISUALIZATIONS

In Fig. 6, we showcase an example of the change in accuracies and representation manifolds when
applying a counterfactual edits (specifically for fact 1154.I C1). For a more representative view,
we additionally provide more examples of counterfactual edits (with both raw and pre-processed
versions side-by-side, as described in Appx. E).

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Direct Recall
Logical Inference
Compositional Inference

III
_C

3
(T

es
t)

I_
C3

 (
Ed

it
)

Unedited CE Dist = 1 CE Dist = 2 CE Dist = 3 CE Dist = 4

II_
C3

 (
Re

ta
in

)

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Direct Recall
Logical Inference
Compositional Inference

III
_C

3
(T

es
t)

I_
C3

 (
Ed

it
)

Unedited CE Dist = 1 CE Dist = 2 CE Dist = 3 CE Dist = 4

II_
C3

 (
Re

ta
in

)

Figure 14: Counterfactual editing visualizations for 1623.I A2.

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Direct Recall
Logical Inference
Compositional Inference

I_
A1

 (
Re

ta
in

)
II_

A1
 (

Ed
it

)

Unedited CE Dist = 1 CE Dist = 2 CE Dist = 3 CE Dist = 4

III
_A

1
(T

es
t)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Direct Recall
Logical Inference
Compositional Inference

I_
A1

 (
Re

ta
in

)

0.015 0.306 0.281 0.226

II_
A1

 (
Ed

it
)

Unedited
0.014

CE Dist = 1
0.384

CE Dist = 2
0.346

CE Dist = 3
0.288

CE Dist = 4

III
_A

1
(T

es
t)

0.016 0.400 0.343 0.328

Figure 15: Counterfactual editing visualizations for 1121.II C1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

F.5 ALTERNATIVE EDITING METHODS AND MODELS

F.5.1 MODEL ACCURACY

In Tab. 1, we evaluate the effects of corrective and counterfactual edits with ROME with respect to
changes in the model’s direct recall accuracy, logical inference accuracy, and compositional infer-
ence accuracy. The results give several key insights: corrective knowledge edits negatively affect
the model’s accuracy both on related and unrelated facts, intentionally introducing inconsistencies
into the model’s knowledge via counterfactual KE can significantly degrade model capabilities, and
greater induced inconsistency (scaling the counterfactual edit distance d from 1-4) causes greater
performance degradation. Now, we reinforce these findings by repeating the same edits and evalu-
ations with additional KE methods: namely MEMIT (Meng et al., 2023), AlphaEdit (Fang et al.,
2024), and PMET (Li et al., 2024). We present our results in Tab. 3.

KE Method Test type Corrective edits ⟨∆Acc.⟩ for Counterfactual edits
Sub-Graph ⟨∆Acc.⟩ d = 1 d = 2 d = 3 d = 4

ROME

Direct recall
Edit -21.95 -01.49 -67.01 -77.07 -77.94
Retain -22.64 -01.91 -66.70 -75.49 -75.42
Test -21.83 -01.75 -67.00 -76.12 -77.90

Logical
inference

Edit -22.24 -01.44 -67.22 -77.14 -78.02
Retain -22.50 -01.83 -66.88 -75.67 -75.67
Test -22.03 -01.80 -67.31 -76.27 -78.23

Compositional
inference

Edit -29.60 -05.32 -73.15 -80.35 -80.63
Retain -31.92 -05.32 -71.21 -78.70 -78.87
Test -31.70 -06.69 -74.88 -81.38 -80.62

MEMIT

Direct recall
Edit -09.51 -01.64 -57.98 -67.04 -68.72
Retain -07.08 -01.78 -48.68 -57.23 -58.52
Test -06.54 -01.19 -51.85 -63.96 -70.26

Logical
inference

Edit -09.58 -01.61 -58.16 -67.31 -69.10
Retain -06.73 -01.64 -48.45 -57.55 -58.66
Test -06.67 -01.37 -52.37 -64.65 -70.99

Compositional
inference

Edit -11.43 -01.85 -57.79 -67.82 -71.79
Retain -08.34 -00.68 -53.05 -62.71 -64.09
Test -10.47 -03.30 -53.36 -66.81 -73.42

AlphaEdit

Direct recall
Edit -06.05 -01.45 -54.68 -64.01 -63.48
Retain -04.68 -01.69 -43.72 -52.36 -53.63
Test -03.75 -00.92 -47.53 -59.57 -66.09

Logical
inference

Edit -06.13 -01.42 -54.93 -64.42 -63.91
Retain -04.37 -01.55 -43.58 -52.74 -53.93
Test -03.85 -01.03 -48.05 -60.38 -66.83

Compositional
inference

Edit -07.75 -01.72 -55.82 -66.42 -68.35
Retain -05.99 -00.08 -50.19 -59.62 -61.57
Test -07.03 -02.75 -51.14 -64.14 -70.95

PMET

Direct recall
Edit -03.97 -01.34 -48.27 -50.80 -54.72
Retain -02.78 -01.61 -35.54 -39.18 -46.36
Test -02.01 -00.98 -43.40 -44.29 -52.67

Logical
inference

Edit -04.02 -01.32 -48.48 -51.05 -55.06
Retain -02.47 -01.47 -35.40 -39.39 -46.60
Test -02.10 -01.11 -44.07 -44.76 -53.32

Compositional
inference

Edit -05.60 -01.37 -49.89 -55.65 -60.62
Retain -03.09 -00.23 -42.24 -47.87 -53.78
Test -04.56 -02.95 -47.00 -50.95 -58.98

Table 3: Results of Tab. 1, replicated using MEMIT (Meng et al., 2023), AlphaEdit (Fang et al., 2024), and
PMET (Li et al., 2024). Overall, recent methods succeeding ROME are slightly less damaging to model ac-
curacy. However, all evaluated methods nonetheless cause undesirable performance degradations in similar
ways to ROME (especially for increased counterfactual edit distances). This suggests that KE methods, despite
their differences in approaches, often suffer from similar shortcomings in terms of negatively impacting model
performance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

F.5.2 REPRESENTATION SHATTERING METRIC

In Tab. 2, we showed that increasing the distance of the counterfactual edit results in an increase in
the extent of shattering, as numerically captured by R(D∗). In similar spirit to Appx. F.5.1, we seek
to verify whether this relationship between counterfactual edit distance and representation shattering
holds for methods other than ROME, i.e. MEMIT (Meng et al., 2023), AlphaEdit (Fang et al., 2024),
and PMET (Li et al., 2024). We present our results in Tab. 4.

Method Sub-Graph d = 1 d = 2 d = 3 d = 4

ROME
Edit 01.80 21.93 26.22 27.90
Retain 01.80 20.84 25.32 27.28
Test 01.84 21.89 26.52 28.68

MEMIT
Edit 01.89 08.58 09.32 08.78
Retain 01.86 07.31 07.66 07.50
Test 01.85 07.49 08.35 07.70

AlphaEdit
Edit 01.86 07.77 08.44 07.68
Retain 01.85 06.51 06.89 06.99
Test 01.83 06.89 07.60 06.99

PMET
Edit 01.83 06.55 06.44 06.41
Retain 01.84 05.45 05.42 05.85
Test 01.83 06.14 05.75 06.31

Table 4: Results from Tab. 2, replicated using the alternative knowledge editing methods of MEMIT (Meng
et al., 2023), AlphaEdit (Fang et al., 2024), and PMET (Li et al., 2024). These successors to ROME achieve
lower amounts of representation shattering overall, coinciding with their more favorable performance in
Appx. F.5.1. However, the relationship between greater counterfactual edit distance d and greater represen-
tation shattering R(D∗) still robustly holds for all methods. This result again shows that various KE methods
struggle in similar ways: specifically, the greater the inconsistency between the model’s original knowledge
and the edited fact, the greater the resulting distortion upon the model’s representations.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

F.5.3 ROME ON MAMBA

In Sec. 4.5, we investigate whether the representation shattering hypothesis generalizes to large
Transformers trained on naturalistic data. We consider the cyclic order of the months of the year
and apply a counterfactual edit to GPT-2 (Radford et al., 2019) and found that as we vary the edit
distance from 1 to 5, the observed representation shattering increases.

To further probe the robustness of our claims with respect to model size and model architecture,
we additionally explore KE with Mamba (Gu & Dao, 2023). Mamba is a structured state space
sequence model, and we use the Mamba-2.8B variant for this experiment. For consistency with
previous experiments, we use ROME as the editing method, adapted appropriately to work with the
Mamba architecture (Sharma et al., 2024). As for the counterfactual edit prompts, we use the same
prompts as in Sec. 4.5 (i.e. “Let’s do some calendar math. One month after {}
is {}”). We present the resulting manifold visualizations and R(D∗) values in Fig. 16.

Before editing
0.275

CE dist 1
0.193

CE dist 2

0.190
CE dist 3

0.360
CE dist 4

0.711
CE dist 5

Figure 16: Fig. 8, replicated using Mamba-S4 (Gu & Dao, 2023) and ROME. Like ROME applied to GPT-
2, the ring structure shatters for larger counterfactual edit distances. Interestingly, the degree of shattering
fluctuates more in Mamba-S4 with respect to the counterfactual edit distance than in GPT-2. This may be
caused by Mamba’s greater model complexity, as its representation manifolds likely encode more information
about months of the year than just their cyclic order in the calendar. Nonetheless, larger counterfactual edit
distances (i.e. distance 5) causes greater shattering than smaller counterfactual edit distances (i.e. distance 1),
demonstrating that our findings are not limited to GPT-2 and can be extended to other models and architectures.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F.6 KNOWLEDGE EDITING WITH NATURALISTIC TREES

In our experiments, we primarily focus on synthetic knowledge graphs with cyclical structures.
While the simplicity of cycles is desirable for our synthetic experiments, real human knowledge
and language can exhibit more complex structures. For example, geographical ground-truths can be
expressed in a tree structure, with entities like cities/countries/continents having relations with other
cities/countries/continents, i.e. xi = Paris, r = located in country, xj = France.

Here, we ask: does the representation shattering hypothesis hold for more realistic tree-shaped
knowledge graphs in more complex models like GPT-2? To answer this question, we take inspi-
ration from the classic “The Eiffel Tower is located in the city of Rome” example of counterfactual
knowledge editing (Meng et al., 2022a). For our purposes, we edit the country associations of major
cities. In particular, we consider the following five countries: France, Spain, Italy, Germany, and
the United Kingdom. Then, we also consider the five most populous cities of each country, totaling
25 cities: Paris, Marseille, Lyon, Toulouse, Nice, Madrid, Barcelona, Valencia, Sevilla, Zaragoza,
Rome, Milan, Naples, Turin, Palermo, Berlin, Hamburg, Munich, Köln, Frankfurt am Main, London,
Birmingham, Liverpool, Glasgow, and Sheffield. The knowledge graph involving these city-country
pairs contains facts such as (xi = Paris, r = located in country, xj = France). The ground-truth
arrangements of the cities and countries form a tree (Fig. 17a).

From the latent space of LLMs, however, it is difficult to extract clean tree-like geometries. When
we project the representations for tokens corresponding to the country and city names using Isomap,
the result does not yield a discernible tree shape (Fig. 17b). Despite the exact structure of the latent
space not being clear, the notion of “distance” in the manifold can still be applied. For example,
in Fig. 17b, Spain is closer to France than is the United Kingdom; therefore, the edit “Paris is a
city in the country of Spain” has a smaller counterfactual edit distance than does the edit “Paris
is a city in the country of the United Kingdom.” Fig. 18a and Fig. 18b show the representation
manifold Isomaps after applying the edits “Paris is a city in the country of Spain” and “Paris is a
city in the country of the United Kingdom,” respectively, using ROME on GPT-2. First, we find that
both counterfactual edits cause the representations for all cities and countries to collapse inward.
Moreover, the edit to “the United Kingdom” causes a greater distortion than the edit to “Spain,” as
is evident both by visual inspection and by the numerical representation shattering quantity R(D∗).

(a)

ItalyGermanyNiceLondonLiverpool

Lyon

Berlin

Köln

Sheffield

Marseille

Milan

Sevilla

Munich

Valencia

Hamburg

Turin
Madrid

Toulouse

Rome

Naples

Birmingham

Palermo

BarcelonaGlasgow

Paris
FranceSpain

United Kingdom

Unedited Model

Subject (Paris)
Original Association (France)
Spain
United Kingdom

(b)

Figure 17: (a) The ground-truth tree representing the 5 countries and its 25 cities. The correct factual association
for the prompt “Paris is a city in the country of...” is France. In this example, we consider the counterfactual
edits “Paris is a city in the country of Spain” and “Paris is a city in the country of the United Kingdom”.
(b) Isomap projections of representations for the selected countries and cities. We find that, on this model’s
representation manifold, editing Paris to be in Spain constitutes a smaller counterfactual edit distance than does
editing Paris to be in the United Kingdom.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

ItalyGermany
NiceLondon

Liverpool

United Kingdom

Lyon

Berlin

Köln

Sheffield

Marseille

Milan

Sevilla

Munich

Valencia

HamburgTurinMadrid

Toulouse

Rome

Naples
Birmingham

PalermoBarcelona

Glasgow

Paris
France
Spain

0.121Paris is a city in the country of Spain

Subject (Paris)
Original Association (France)
Target Association (Spain)

(a)

Italy
Spain

Germany

Nice
London

Liverpool

LyonBerlin

Köln

Sheffield

Marseille

Milan

Sevilla
Munich

Valencia
HamburgTurinMadrid

Toulouse

Rome

Naples
Birmingham

Palermo
Barcelona

Glasgow
Paris

France

United Kingdom

0.156Paris is a city in the country of the United Kingdom

Subject (Paris)
Original Association (France)
Target Association (United Kingdom)

(b)

Figure 18: Isomap projections of latent representations after applying a counterfactual edit. (a) “Paris is a city
in the country of Spain.” (b) “Paris is a city in the country of the United Kingdom.”

To take a step in verifying whether this finding is generalizable, we applied counterfactual edits to
each of the 25 selected cities. For each city, we computed the country which constitutes the “closest”
and “furthest” counterfactual edit distance on the model’s representation manifold. After applying
the two counterfactual edits, we computed R(Dfarthest

∗) and R(Dclosest
∗). Across the 25 cities, the

average ratio R(Dfarthest
∗)/R(Dclosest

∗) was 1.1483. In other words, when changing a city’s parent
country, editing to a close country on the representation manifold yields less shattering than editing
to a country which sits far away on the manifold.

These preliminary results align with our main hypothesis: KE methods distort language models’
representations in order to insert new facts or alter old ones (i.e. representation shattering), and the
extent of representation shattering increases with the distance between the old fact and the desired
new fact on the manifold.

26

	Introduction
	Related Work
	Formalzing knowledge editing
	Knowledge Graphs
	Cyclic graphs: a description of the entities and relations
	Experimental Setup
	Representation shattering

	Uncovering Representation Shattering
	Evaluating the effects of knowledge editing
	Transformer representations capture the geometry of the data
	Corrective knowledge edits shatter the representation geometry
	How do different counterfactual edits change the extent of shattering?
	Representation shattering in LLMs

	Conclusion
	Setup Details
	Pseudo-Code

	Data Generation Process Details
	Model Architecture
	Rank-One Model Editing (ROME)
	Algorithm Definition
	Implementation

	Visualization Methods
	Additional Results
	Independence of Subgraphs
	Manifolds for All Relations
	Manifolds for Various Representation Extraction Points
	Counterfactual Editing
	Distribution of Degredations for Counterfactual Edits
	Additional Visualizations

	Alternative Editing Methods and Models
	Model Accuracy
	Representation Shattering Metric
	ROME on Mamba

	Knowledge Editing with Naturalistic Trees

