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Abstract

Recent 3D novel view synthesis (NVS) methods often require
extensive 3D data for training, and also typically lack gen-
eralization beyond the training distribution. Moreover, they
tend to be object centric and struggle with complex and intri-
cate scenes. Conversely, 3D-free methods can generate text-
controlled views of complex, in-the-wild scenes using a pre-
trained stable diffusion model without the need for a large
amount of 3D-based training data, but lack camera control.
In this paper, we introduce a method capable of generating
camera-controlled viewpoints from a single input image, by
combining the benefits of 3D-free and 3D-based approaches.
Our method excels in handling complex and diverse scenes
without extensive training or additional 3D and multiview
data. It leverages widely available pretrained NVS models
for weak guidance, integrating this knowledge into a 3D-free
view synthesis style approach, along with enriching the CLIP
vision-language space with 3D camera angle information, to
achieve the desired results. Experimental results demonstrate
that our method outperforms existing models in both qualita-
tive and quantitative evaluations, achieving high-fidelity, con-
sistent novel view synthesis at desired camera angles across
a wide variety of scenes while maintaining accurate, natural
detail representation and image clarity across various view-
points. We also support our method with a comprehensive
analysis of 2D image generation models and the 3D space,
providing a solid foundation and rationale for our solution.
Furthermore, the proposed framework contributes to scenario
generation and ecological visualization by enabling control-
lable, multi-view synthesis of natural and urban environments
from limited imagery. This capability can support climate im-
pact simulations and environmental narrative synthesis, align-
ing with recent advances in generative AI and foundation
models for scientific and ecological applications.

Introduction
Novel-view synthesis plays a pivotal role in numerous
real-world applications, including 3D environments, aug-
mented reality (AR), virtual reality (VR), and autonomous
driving. Recent advancements in diffusion-based methods,
such as Zero-1-to-3 (Zero123) (Liu et al. 2023a) and
Zero123++ (Shi et al. 2023a), along with NeRFs (Tancik
et al. 2022; Zhou and Tulsiani 2023; Deng et al. 2023)
Gaussian Splatting (Li et al. 2024; Zhu et al. 2023), and so
on (Sargent et al. 2023; Tung et al. 2025; Van Hoorick et al.
2025; Burgess, Wang, and Yeung 2023; Wiles et al. 2020;
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Figure 1: Our model is capable of generating high quality
camera-controlled images at specific azimuth and elevation
angles for a variety of complex scenes, all without requir-
ing extra 3D datasets or extensive training. The image in the
bottom right corner showcases the output from the 3D-based
baseline, Zero123++ (Shi et al. 2023a), created from a des-
ignated angle.

Shen et al. 2021; Tucker and Snavely 2020). They have sig-
nificantly propelled the field forward. Some techniques en-
able the specification of camera angles and the sampling
of novel-view images from precise viewpoints. However,
diffusion-based methods remain largely object-centric and
may struggle to generalize to complex scenes with intricate
backgrounds. They also require extensive 3D object datasets
for training. In contrast, NeRF and Gaussian Splatting meth-
ods can handle complex scenes but depend on multi-view
information to construct 3D models. Therefore, achieving
novel-view synthesis from a single image in a data-efficient
manner, without relying on additional 3D, multi-view, or
depth information, is highly advantageous.

On the other hand, 3D-free methods such as DreamBooth
and other recent models (Kothandaraman et al. 2023b,a;
Ruiz et al. 2023) aim to intelligently extract the rich 3D
knowledge embedded in text-to-2D image diffusion mod-
els, such as stable diffusion (Rombach et al. 2022; Podell
et al. 2023), to generate text-controlled views from complex,
real-world input images without needing additional multi-
view or 3D information for fine-tuning or inference. Among
these, HawkI stands out as the current best 3D-free model,
demonstrating superior capability in utilizing embedded 3D
knowledge for high-quality, text-controlled image synthesis.
However, despite its excellence, HawkI, like other 3D-free
methods, lacks the ability to precisely control camera an-
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Figure 2: Method. Our method generates a high fidelity camera controlled novel viewpoint of a single image Iinput, its text
description and designated angle information. It infuses prior information from pre-trained NVS models into the text to image
stable diffusion architecture in a 3D-free inference-time optimization procedure.

gles when generating novel-view images. Ideally, we aim
for both data-efficient novel view synthesis and camera con-
trollability, which is the primary focus of this paper.

We start by examining why 3D-free methods like HawkI
struggle with camera control. To understand this, we need to
assess how effectively the CLIP model—used as the vision-
language backbone in image generation models like Stable
Diffusion—interprets the 3D space. Our analysis shows that
while CLIP excels at recognizing scene entities and general
directions (such as up, down, left, and right), it falls short in
grasping specific angles, like 30 degrees upward. This limi-
tation makes it inadequate for generating camera-controlled
views on its own. Therefore, to achieve camera control, we
need guidance on angles, which can be provided by 3D pri-
ors from pretrained 3D models. One approach is to integrate
this 3D prior information into 3D-free models like HawkI.

Before we explore how to incorporate these 3D priors into
HawkI, it’s crucial to understand the role of guidance im-
ages in 3D-free methods. Our analysis indicates that incor-
rect guidance can lead to significant inconsistencies in the
generated images, both in terms of angle and content. Thus,
it’s essential for the 3D prior to accurately understand angles
and to be effectively utilized.

Using these insights, along with the established knowl-
edge that 3D-based methods such as HawkI enable pre-
cise camera control and 3D-free methods like Zero123++
offer generalizability and data efficiency, we propose a
simple approach for novel-view synthesis that generates
camera-controlled novel views at specified azimuth and el-
evation angles from a single input image, without requir-
ing 3D datasets or extensive training. Our method utilizes
information from off-the-shelf pretrained model, specifi-
cally using Zero123++ (Shi et al. 2023a), a plug-and-play
model, in conjunction with the pretrained stable diffusion
model. The process employs a 3D-free HawkI-style opti-
mization procedure during inference to achieve the desired
outcomes, utilizing information from 3D-based methods as
pseudo or weak guidance images. To improve viewpoint
consistency—an area where the CLIP model lacks informa-
tion—we introduce a regularization loss term. This term pro-
motes alignment between the target angle embedding (which
captures elevation and azimuth data) and the optimized em-
bedding. By integrating 3D angular information within the
CLIP space through the 3D prior image, we reinforce the

specified camera viewpoint in the generated images. We val-
idate our approach through extensive qualitative and quan-
titative comparisons across various metrics that assess text
consistency and fidelity w.r.t. input image.

In summary, the contributions of this paper are as follows:
(1) We present a novel approach for novel view synthesis
that allows for precise camera control, especially effective
for complex images with multiple objects and detailed back-
grounds. Our method harnesses insights from pretrained 3D
models within a 3D-free framework, removing the necessity
for additional multi-view or 3D data during both training
and inference, effectively combining the advantages of both
approaches. (2) We provide an analysis of the CLIP model’s
understanding of 3D space and the role of guidance images
in 3D-free methods. This analysis supports our solution by
highlighting the importance of using priors from pretrained
3D models to enhance viewpoint information in 3D space,
utilizing the 3D prior image as a guiding factor for our task.
(3) We present comprehensive qualitative and quantitative
results on various synthetic and real images, demonstrating
significant improvements over baseline 3D-based and 3D-
free methods in terms of text consistency and fidelity relative
to the input images. Our model’s results maintains consis-
tent, accurate, natural detail representation and image clarity
across various viewpoints. Also, our model outperforms the
lowest-performing model by 0.1712 in LPIPS (HawkI-Syn
(−20◦, 210◦) in Table 3), which is 5.2 times larger than
the 0.033 gap of Zero123++ in comparison to the lowest-
performing model (Table 1 in (Shi et al. 2023a)).
Prior Work on 3D and 3D-free Approaches for

NVS
Recent research has increasingly focused on novel view syn-
thesis using diffusion models (Chen et al. 2021; Mildenhall
et al. 2021; Shi, Li, and Yu 2021; Gu et al. 2023). Ap-
proaches for 3D generation (Chen et al. 2024; Lin et al.
2023; Poole et al. 2022; Raj et al. 2023; Xu et al. 2023;
Gao et al. 2024; Park et al. 2017) often rely on text for
reconstruction and require substantial multi-view and 3D
data (Shi et al. 2023c; Wang and Shi 2023; Yang et al.
2024; Liu et al. 2023b; Höllein et al. 2024; Jain, Tancik,
and Abbeel 2021; Liu et al. 2024; Shi et al. 2023b,c) for su-
pervised learning. For instance, Zero123 (Liu et al. 2023a),
Magic123 (Qian et al. 2023), and Zero123++ (Shi et al.



2023a) utilize a pre-trained stable diffusion model (Rom-
bach et al. 2022) combined with 3D data corresponding to
800k objects to learn various camera viewpoints. In other
words, they are extremely data hungry, meaning that they
need extensive multi-view and 3D data to train on. Addi-
tionally, most state-of-the-art view synthesis algorithms are
largely object-centric, and may not work well on complex
scenes containing multiple objects or background informa-
tion. This is due to the domain gap between the 3D objects
data that they are typically trained on, and the inferencing
image.

On the other hand, Free3D (Zheng and Vedaldi 2024) in-
troduces an efficient method for synthesizing accurate 360-
degree views from a single image without 3D represen-
tations. By incorporating the Ray Conditioning Normal-
ization (RCN) layer into 2D image generators, it encodes
the target view’s pose and enhances view consistency with
lightweight multi-view attention layers and noise sharing.
However, it still requires training on large-scale 3D datasets
like Objaverse and multi-view information, and it cannot
include background transformations. DreamFusion (Poole
et al. 2022) presents a Text-to-3D method using a NeRF and
a Diffusion Model-based Text-to-2D model. It introduces a
probability density distillation loss, allowing the 2D Diffu-
sion Model to optimize image generation without needing
3D data or model modifications. DreamFusion’s key contri-
butions are creating Text-to-3D models without 3D dataset
training and utilizing a Diffusion Model. However, it can-
not transform images with backgrounds or introduce ele-
vation changes in camera-controlled images. Aerial Diffu-
sion and HawkI (Kothandaraman et al. 2023a,b) synthe-
size high-quality aerial view images using text and a sin-
gle input image without 3D or multi-view information. They
employ a pretrained text-to-2D Stable Diffusion model,
achieving a balance between aerial view consistency and in-
put image fidelity through test-time optimization and mu-
tual information-based inference. However, Aerial Diffusion
doesn’t extend well to complex scenes and has artifacts in
the generated results, and HawkI struggles with controlling
camera angles, detailed feature generation, and maintaining
view consistency.

Understanding 2D models and the 3D space
In this section, we use 3D-free stable diffusion based view
synthesis method, HawkI (Kothandaraman et al. 2023b).
HawkI employs classical computer vision techniques to gen-
erate aerial view images from ground view images through
a homography transformation, which acts as the guidance
image for the diffusion model. We used the HawkI default
setting for experiments, unless stated otherwise.

How well do CLIP models understand the
3D-space?
The main reason stable-diffusion-based 2D models using
3D-free approaches struggle with camera control is their
limited understanding of 3D space. While they can grasp
concepts like top, bottom, and side, they lack precise cam-
era information, such as “30 degrees to the right.” A key
factor in this limitation is the CLIP model, which serves as

the vision-language backbone for models like Stable Diffu-
sion. In this section, we analyze how effectively CLIP mod-
els comprehend 3D space by examining the 3D-free stable
diffusion based view synthesis method, HawkI (Kothandara-
man et al. 2023b). Our hypothesis is that HawkI’s capability
to execute viewpoint transformations without relying on 3D
data is dependent on this homography image.

We conducted an experiment where the homography im-
age was omitted to see if CLIP could generate camera-
controlled images without the guidance factor for camera
angle control. Detailed angle instructions were still pro-
vided in the target text description. Our results showed that
CLIP could not independently generate consistent view-
points, highlighting the importance of 3D guidance images.
In the experiment, different pyramids, waterfalls, and houses
were generated inconsistently, and camera control angles
were not accurately followed. This demonstrates that CLIP
struggles with 3D comprehension and validates the necessity
of novel view image (guidance image). Figure 3 illustrates
these findings.
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Figure 3: Analysis of how well CLIP understands the 3D
space In this experiment, we generate camera control im-
ages for specific angles without using any guidance image.

Importance of guidance image in 3D-free methods
Our previous analysis revealed that the CLIP model in the
view synthesis method (HawkI) without a guidance image
struggles to understand 3D space, resulting in inconsistent
images. Conversely, HawkI with a guidance image cannot
perform transformations from various camera viewpoints.
This raises the question of what kind of guidance image is
suitable for 3D-free camera control.

We conduct experiments using the images generated us-
ing the pretrained Zero123++ (Shi et al. 2023a) model for
guidance. In our experiments, the target text specified the
desired transformation angles, but the guidance images had
different angles. i.e. the guidance images introduced incor-
rect viewpoints. When generating an image at a (30◦, 30◦)
angle, the model followed the guidance image’s suggestion,
regardless of the text input. This emphasizes that the model
benefits from the information in the 3D-prior model’s guid-
ance image a lot. Our experiment highlights the importance
of accurate guidance images for camera control. Figure 4
illustrates these findings.
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Figure 4: Using an image with an incorrect viewpoint as
the guidance image In this experiment, we examine how
the results are derived when an incorrect viewpoint image is
used as a guidance image.

3D-Free Meets 3D Priors: An approach for
3D-data efficient NVS

According to the analysis, we present a method (Figure 2)
for data-efficient text and camera-controlled novel-view syn-
thesis from a single input image (Iinput) and its text de-
scription (tinput) (e.g., “An ancient Egyptian pyramid in the
desert,” obtained using the BLIP-2 (Li et al. 2023) model).
Our model eliminates the need for training data, 3D data,
or multi-view data. Instead, it utilizes a pretrained text-to-
2D image stable diffusion model as a strong prior, along
with pretrained novel-view synthesis (NVS) models, e.g.
Zero123++, for guidance. Our method combines informa-
tion from the pretrained NVS model and performs a rapid
inference-time optimization and inference routine to gener-
ate novel-view images of any given in-the-wild complex in-
put scene at specified elevation (αelev) and azimuth angles
(αazi). Elevation (αelev) refers to the vertical angle relative
to the object, measured in degrees, and is defined based on
the orientation of the input image. Similarly, azimuth angles
(αazi) refer to the horizontal angle around the object, also
relative to the input image. We next describe our method in
detail.

Inference-time Optimization
We employ a pretrained NVS model G to obtain a weak
prediction, Iview, of Iinput at (αelev, αazi). This prediction
is represented as Iview = G(Iinput, αelev, αazi). Although
Iview is not a fully accurate depiction of the desired target,
it provides weak or pseudo guidance for the model regard-
ing the content and direction of the desired viewpoint trans-
formation. Subsequently, we utilize the pretrained text-to-
image stable diffusion model to perform inference-time op-
timization (Kothandaraman et al. 2023b).

Across all four steps, the reconstruction loss L is used
to guide the optimization process, ensuring accurate re-
construction of Iinput and Iview. In Step 4, the addition
of the regularization loss reinforces viewpoint consistency
by aligning eview with etarget, thereby improving camera-
controlled image generation.

Step 1: Text Embedding Optimization on Iinput Ini-
tially, we enhance the CLIP embedding for tinput with
Iinput to derive eoptim (optimized CLIP text-image embed-
ding from einput, which is the CLIP test embedding for

tinput). This embedding is optimized to most accurately re-
construct Iinput. f represents the diffusion model function
that maps the input latent xt, timestep t, and the optimized
embedding eoptim. The reconstruction is achieved by min-
imizing the denoising diffusion loss function L (Ho, Jain,
and Abbeel 2020), using the frozen diffusion model UNet:

min
eoptim

0∑
t=T

L(f (xt , t , eoptim ; θ), Iinput) (1)

This approach refines the text embedding to represent the
characteristics of Iinput more accurately than the generic
text embedding einput.

Step 2: Fine-tuning UNet on Iinput Subsequently, the
LoRA layers (with parameters θLoRA) within the cross-
attention layers of the diffusion model are fine-tuned at
eoptim to replicate Iinput, employing the diffusion denois-
ing loss function:

min
θLoRA

0∑
t=T

L(f (xt , t , eoptim ; θ), Iinput) (2)

The rest of the UNet model remains frozen during this fine-
tuning.

Step 3: Text Embedding Optimization on Iview This
process is repeated for Iview, where eoptim is further refined
to eview to best reconstruct Iview:

min
eview

0∑
t=T

L(f (xt , t , eview ; θ), Iview ) (3)

Step 4: Fine-tuning UNet on Iview with Regularization
Loss Following the refinement of eview, the LoRA layers
are adjusted to capture the nuances of the weak guidance
image Iview, guiding the transformation towards the desired
viewpoint. At this stage, an additional regularization term
is introduced to improve viewpoint consistency. The total
loss during this step combines the reconstruction loss and
the regularization loss:

min
θLoRA

0∑
t=T

(
L(f (xt , t , eview ; θ), Iview ) + Lreg

)
(4)

Viewpoint Regularization Since the CLIP model lacks an
understanding of camera control information, it is essential
to enhance its comprehension using 3D prior information
from pretrained models. In other words, we aim to improve
the viewpoint knowledge of the CLIP model by leverag-
ing this prior knowledge, enabling it to generate the desired
camera-controlled output.

We camera control results by adding a regularization term
between the text embedding that includes elevation and az-
imuth information (etarget) and the optimized text embed-
ding (eview) in addition to the pretrained guidance model.
In addition to enriching the viewpoint knowledge of the
3D space, applying this loss is also essential to address
the limitations of the 3D-prior guidance model, as the 3D-
prior model does not perform very well in complex scenes.



Specifically, by applying a regularization loss between the
text embedding that contains angle information and the op-
timized text embedding, our hypothesis is that we can im-
prove camera control results by building a model that ref-
erences the guidance image as supplementary information
rather than relying solely on it. Hence, to improve viewpoint
consistency, an additional regularization loss term is added
to the reconstruction loss. This term introduces a constraint
between the angle embedding etarget (representing eleva-
tion and azimuth information) and the optimized embedding
eview during this refinement. The regularization term, cal-
culated as Lreg = ∥eview − etarget∥2 encourages align-
ment between eview and the intended angle information in
etarget, reinforcing the target viewpoint in the generated re-
sults. Thus, the predicted image from the 3D-based NVS
method, Zero123++, serves as weak or pseudo guidance.
The optimization strategy conditions the embedding space
with knowledge related to the input image and its view vari-
ants using the guidance image prior which facilitates view
transformation and provides a direction for viewpoint trans-
formation.

Inference To generate the camera-controlled image with
designated elevation (αelev) and azimuth angles (αazi), we
use the target text description ttarget, which varies accord-
ing to the corresponding αelev and αazi. For instance, if
αelev = 30◦ and αazi = 30◦, ttarget can be formatted as
”View from an elevated angle of +30 degrees and an az-
imuth angle of +30 degrees” + tinput (e.g., ”View from an
elevated angle of +30 degrees and an azimuth angle of +30
degrees, An ancient Egyptian pyramid in the desert.”). Next,
we use the finetuned diffusion model to generate the target
image using ttarget, along with mutual information guid-
ance (Kothandaraman et al. 2023b), which enforces similar-
ity between the contents of the generated and input images.

Experiments and Results
Datasets We utilize the HawkI-Syn (Kothandaraman et al.
2023b) and HawkI-Real (Kothandaraman et al. 2023b)
datasets that feature complex scenes with multiple fore-
ground objects and background. Both datasets provide im-
ages and text prompts to the model. While we acknowl-
edge the value of established benchmarks, our chosen
datasets, HawkI-Syn and HawkI-Real, cover a broad spec-
trum of scene types—including indoor/outdoor, human/an-
imal, and synthetic/real-world domains. As shown in prior
work (Kothandaraman et al. 2023b), they are specifically
designed for evaluating viewpoint generalization in diverse,
unbounded settings, making them suitable and representa-
tive for our task.

Baselines We compare our method with state-of-the-
art view synthesis methods: Zero123++ (Shi et al.
2023a) and Stable Zero123 for 3D-based methods and
HawkI (Kothandaraman et al. 2023b) for 3D-free method.

Implementation Details We employ the stable diffusion
2.1 model as the backbone for all our experiments and
results. To generate the pseudo guidance images for dif-
ferent viewpoints, we use the pretrained Zero123++ (Shi
et al. 2023a) model. All images except those in HawkI-Real

dataset are used at a resolution of 512 × 512. For Iinput,
we train the text embedding for 1,000 iterations with the
learning rate of 1e − 3 and the diffusion model for 500 it-
erations with the learning rate of 2e − 4. Training the text
embedding for 1,000 iterations guarantees that the text em-
bedding eoptim is not too close to the einput, avoiding bias
towards Iinput. Likewise, it is not too distant from einput,
allowing the text embedding space to capture the character-
istics of Iinput. Regarding Iview, we trained the text embed-
ding for 500 iterations and the diffusion UNet for 250 itera-
tions. We aim for eview to be near eoptim and limit the dif-
fusion model training to 250 iterations to prevent overfitting
to Iview. The purpose of Iview is to introduce variability and
provide pseudo supervision rather than accurately approxi-
mating the camera control. We set the mutual information
guidance hyperparameter to 1e − 6 and conduct inference
over 50 steps.
Qualitative analysis
We evaluate our method on four distinct viewpoints:

{(αelev, αazi) | (30◦, 30◦), (−20◦, 210◦),

(30◦, 270◦), (−20◦, 330◦)}.
Our model is able to generate distinct viewpoints in

the camera control to ensure consistency across gener-
ated views. Details are mentioned in the Zero123++ (Shi
et al. 2023a). We present qualitative representative re-
sults and comparisons with Zero123++ (Shi et al. 2023a),
HawkI (Kothandaraman et al. 2023b), and StableZero123 at
camera angles of (30◦, 30◦) and (30◦, 270◦) in Figures 5
and 6. Our method demonstrates superior scene recon-
struction from all viewpoints compared to previous works.
Specifically, results on HawkI-Syn in Figure 5 show that Sta-
bleZero123 is largely ineffective. HawkI fails to capture the
correct camera elevation in all cases except for the house im-
age. While Zero123++ handles both elevation and azimuth,
it struggles with background and detailed features. For in-
stance, the pyramid in the first row lacks shadow informa-
tion; the waterfall image in the second row appears unnat-
ural; and the house in the last row blurs detailed features.
Conversely, our model accurately reflects shadow charac-
teristics in the pyramid, and reconstructs the details and
background of the waterfall and house examples from var-
ious viewpoints. Similar observations are made for HawkI-
Real results shown in Figure 6. StableZero123 is ineffective.
Zero123++ fails to capture background or detailed infor-
mation. For example, when tasked with camera control for
an image of the Eiffel Tower, Zero123++ focuses solely on
the Eiffel Tower, ignoring surrounding details. The original
HawkI model, while producing aerial views, fails in angle
conversion tasks. In contrast, our model accurately performs
angle conversion tasks at (30◦, 30◦) and (30◦, 270◦), includ-
ing the Seine River in the background for the Eiffel Tower
image, showcasing its superiority. Camera control tasks for
the HawkI-Real dataset, including images like the Hawaii
beach and a cat, further demonstrate our model’s excellence
compared to other models. The key benefits of our model
over 3D-based NVS methods such as Zero123++ and 3D-
free methods such as HawkI arises by merging the strengths
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Figure 5: Results on HawkI-Syn. Comparisons between the state-of-the-art view synthesis models, Zero123++, HawkI, Stable
Zero123, and our method highlights the superior performance of our model in terms of background inclusion, view consistency,
and the accurate representation of target elevation and azimuth angles.
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Figure 6: Results on HawkI-Real. Comparisons between the state-of-the-art view synthesis models, Zero123++, HawkI, Stable
Zero123, and our method highlights the superior performance of our model in terms of background inclusion, view consistency,
and the accurate representation of target elevation and azimuth angles.
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Figure 7: Ablation Study on the use of regularization loss
between angle embedding and optimized embedding In
this experiment, we analyze the effect of adding a regular-
ization term between the angle embedding (etarget) and the
optimized embedding (eview) on camera control results. The
results show improvements in viewpoint consistency and
style coherence when the regularization loss is applied.
of 3D-based techniques into a 3D-free optimization process,
effectively combining the best features of both.

Quantitative Evaluation
Following prior work (Shi et al. 2023a; Kothandaraman
et al. 2023b; Liu et al. 2023a), we evaluate our method
using six metrics - (i) LPIPS (Zhang et al. 2018): Quan-
tifies the perceptual similarity between the generated and

input images, with lower values indicating better perfor-
mance. (ii) CLIP-Score (Radford et al. 2021): Measure text-
based alignment of the generated images. The CLIP score
assesses alignment with both content and the (αelev, αazi)
viewpoint. Higher values are preferred. (iii) DINO (Caron
et al. 2021), SSCD (Pizzi et al. 2022): DINO evaluates the
semantic consistency of the generated images by compar-
ing high-level feature embeddings extracted from a self-
supervised vision transformer. DINO is trained not to ignore
differences between subjects of the same class. Higher val-
ues indicate better preservation of semantic content across
different views of the same scene. SSCD measures struc-
tural similarity between the generated images and their ref-
erence counterparts using learned feature representations.
SSCD focuses on capturing fine-grained structural and con-
textual consistency. Higher values are preferred for better
alignment with ground-truth structures. (iv) CLIP-I (Ruiz
et al. 2023): CLIP-I measures the cosine similarity between
the embeddings of multi-view images and the input image
within the CLIP space. (v) PSNR (Peak Signal-to-Noise Ra-



tio) and SSIM (Wang et al. 2004) (Structural Similarity In-
dex): PSNR Quantifies the pixel-wise fidelity of the gener-
ated images relative to the reference images. PSNR is calcu-
lated as the logarithmic ratio of the maximum possible pixel
value to the mean squared error between the two images.
Higher values indicate better pixel-level accuracy. SSIM as-
sesses perceptual similarity by comparing luminance, con-
trast, and structural information between the generated and
reference images. SSIM is designed to measure structural
consistency, with higher values reflecting closer perceptual
alignment. Similar to the quantitative comparison performed
by Zero123++, we use 10% of the overall data from the
HawkI-Syn and HawkI-Real datasets as the validation set to
compute the quantitative metrics. Table 1 and Table 3 shows
that our model significantly outperforms the state-of-the-art
across these evaluation metrics, reinforcing how our models
stands out by incorporating the robust features of 3D-based
NVS methods into a 3D-free optimization strategy, thereby
capitalizing on the benefits of both approaches.

Dataset, Angle, Method LPIPS ↓ CLIP ↑ DINO ↑ SSCD ↑ CLIP-I ↑ PSNR ↑ SSIM ↑
HawkI-Syn (30◦, 30◦) Ours 0.5661 29.9563 0.4314 0.3638 0.8317 11.0664 0.3162

HawkI-Syn (30◦, 30◦) HawkI 0.5998 28.3786 0.3982 0.3519 0.8221 10.7092 0.2941
HawkI-Syn (30◦, 30◦) Zero123++ 0.5694 28.2555 0.4293 0.4605 0.8149 10.9923 0.3073

HawkI-Syn (30◦, 30◦) Stable Zero123 0.7178 21.3430 0.2108 0.2386 0.6467 9.2585 0.1954

HawkI-Syn (30◦, 270◦) Ours 0.5744 29.1800 0.4148 0.3684 0.8327 11.0661 0.3047
HawkI-Syn (30◦, 270◦) HawkI 0.5971 27.9540 0.3964 0.3473 0.8278 10.6303 0.2779

HawkI-Syn (30◦, 270◦) Zero123++ 0.6056 25.6665 0.2681 0.2195 0.7087 10.4395 0.2984
HawkI-Syn (30◦, 270◦) Stable Zero123 0.6785 23.1555 0.2119 0.2657 0.6456 9.4703 0.1673

HawkI-Real (30◦, 30◦) Ours 0.6201 29.8850 0.3346 0.2588 0.8152 9.4009 0.2184
HawkI-Real (30◦, 30◦) HawkI 0.6529 27.5847 0.2844 0.2269 0.7754 8.9257 0.2160

HawkI-Real (30◦, 30◦) Zero123++ 0.6253 27.9877 0.3315 0.3362 0.8023 9.2962 0.1990
HawkI-Real (30◦, 30◦) Stable Zero123 0.6614 23.0895 0.1781 0.1192 0.6569 7.7977 0.1684

HawkI-Real (30◦, 270◦) Ours 0.5868 30.5489 0.4126 0.3424 0.8708 10.6177 0.2687
HawkI-Real (30◦, 270◦) HawkI 0.6215 29.0488 0.3530 0.3363 0.8358 10.6472 0.2439

HawkI-Real (30◦, 270◦) Zero123++ 0.6302 27.5228 0.3145 0.2005 0.7529 9.8864 0.2484
HawkI-Real (30◦, 270◦) Stable Zero123 0.6268 21.1090 0.1750 0.0494 0.6500 8.3163 0.1637

Table 1: Quantitative Results. Evaluation of seven metrics
demonstrates the superior results of our method over prior
work.

Dataset, Angle, Method LPIPS ↓ CLIP ↑ DINO ↑ SSCD ↑ CLIP-I ↑ PSNR ↑ SSIM ↑
HawkI-Syn (30◦, 30◦) w/ regularization 0.5661 29.9563 0.4314 0.3638 0.8317 11.0664 0.3162
HawkI-Syn (30◦, 30◦) w/o regularization 0.5867 28.5417 0.4122 0.3640 0.8243 10.8272 0.2954

HawkI-Real (30◦, 30◦) w/ regularization 0.6201 29.8850 0.3346 0.2588 0.8152 9.4009 0.2184
HawkI-Real (30◦, 30◦) w/o regularization 0.6257 29.0798 0.3357 0.2401 0.8231 9.1957 0.2014

HawkI-Syn (30◦, 270◦) w/ regularization 0.5744 29.1800 0.4148 0.3684 0.8327 11.0661 0.3047
HawkI-Syn (30◦, 270◦) w/o regularization 0.5952 28.9866 0.4098 0.3350 0.8248 10.8656 0.2850

HawkI-Real (30◦, 270◦) w/ regularization 0.5868 30.5489 0.4126 0.3424 0.8708 10.6177 0.2687
HawkI-Real (30◦, 270◦) w/o regularization 0.6114 29.9184 0.4003 0.3075 0.8541 10.2958 0.2615

HawkI-Syn (−20◦, 210◦) w/ regularization 0.5740 29.1144 0.4277 0.3529 0.8280 10.9697 0.2837
HawkI-Syn (−20◦, 210◦) w/o regularization 0.5860 28.6385 0.3969 0.3559 0.8171 10.8401 0.2792

HawkI-Real (−20◦, 210◦) w/ regularization 0.6185 30.6729 0.3610 0.2880 0.8448 10.3130 0.2223
HawkI-Real (−20◦, 210◦) w/o regularization 0.6338 29.1693 0.3817 0.2605 0.8263 10.0794 0.2117

HawkI-Syn (−20◦, 330◦) w/ regularization 0.5624 29.2144 0.4487 0.3892 0.8559 11.2175 0.3048
HawkI-Syn (−20◦, 330◦) w/o regularization 0.5714 28.4089 0.4476 0.3870 0.8492 11.0409 0.2947

HawkI-Real (−20◦, 330◦) w/ regularization 0.5925 29.5090 0.3899 0.3127 0.8689 10.6183 0.2971
HawkI-Real (−20◦, 330◦) w/o regularization 0.5894 28.8531 0.3704 0.2954 0.8506 10.5213 0.2828

Table 2: Quantitative Results of Ablation Study. Evalua-
tion of seven metrics demonstrates the superior results of the
regularized method over the non-regularized one.
Ablation analysis: viewpoint regularization loss
To demonstrate the effectiveness of our approach in achiev-
ing camera control, we present results for scenes such as a
Hawaiian beach and a waterfall. In both instances, the guid-
ance images from Zero123++ fail to provide accurate direc-
tion to the model. For the Hawaiian beach scene, the out-
put generated with the regularization term exhibits a more
consistent style compared to the output produced without it.
Despite the inaccuracies in the Zero123++ guidance images,
the regularization term facilitates more reliable camera con-
trol than the results generated without it. Similarly, in the

Dataset, Angle, Method LPIPS ↓ CLIP ↑ DINO ↑ SSCD ↑ CLIP-I ↑ PSNR ↑ SSIM ↑
HawkI-Syn (−20◦, 210◦) Ours 0.5740 29.1144 0.4277 0.3529 0.8280 10.9697 0.2837

HawkI-Syn (−20◦, 210◦) HawkI 0.6024 27.7407 0.3831 0.3494 0.8226 10.5667 0.2744
HawkI-Syn (−20◦, 210◦) Zero123++ 0.6037 24.4148 0.2936 0.3021 0.7309 10.7458 0.2803

HawkI-Syn (−20◦, 210◦) Stable Zero123 0.7452 20.7860 0.0852 0.0996 0.5634 6.3887 0.0971

HawkI-Syn (20◦, 330◦) Ours 0.5624 29.2144 0.4487 0.3892 0.8559 11.2175 0.3048
HawkI-Syn (20◦, 330◦) HawkI 0.5943 27.5738 0.4080 0.3532 0.8152 10.8882 0.2759

HawkI-Syn (20◦, 330◦) Zero123++ 0.5652 25.8831 0.4305 0.4431 0.7932 11.1130 0.2936
HawkI-Syn (20◦, 330◦) Stable Zero123 0.6332 23.2087 0.3366 0.3393 0.6890 9.1852 0.1943

HawkI-Real (−20◦, 210◦) Ours 0.6185 30.6729 0.3610 0.2880 0.8448 10.3130 0.2223
HawkI-Real (−20◦, 210◦) HawkI 0.6464 28.7500 0.3567 0.2697 0.8001 9.6859 0.2145

HawkI-Real (−20◦, 210◦) Zero123++ 0.6816 24.7083 0.2101 0.1706 0.6434 8.6865 0.2194
HawkI-Real (−20◦, 210◦) Stable Zero123 0.6650 21.5791 0.1564 0.0225 0.5850 7.4097 0.1681

HawkI-Real (−20◦, 330◦) Ours 0.5925 29.5090 0.3899 0.3127 0.8689 10.6183 0.2971
HawkI-Real (−20◦, 330◦) HawkI 0.6283 27.5200 0.3228 0.2406 0.8383 10.4706 0.2787

HawkI-Real (−20◦, 330◦) Zero123++ 0.5978 26.1550 0.3735 0.3080 0.8043 10.5917 0.2953
HawkI-Real (−20◦, 330◦) Stable Zero123 0.6673 25.6611 0.2667 0.1998 0.7249 9.0786 0.1653

Table 3: Quantitative Results. Evaluation of seven metrics
demonstrates the superior results of our method over prior
work.

waterfall scene, the regularization term enhances the consis-
tency of the generated rock textures surrounding the water-
fall. Without the regularization term, these textures are in-
consistently represented; however, with it, the style is main-
tained more faithfully. Once again, Zero123++ does not pro-
vide accurate guidance in this case, underscoring the sig-
nificant contribution of the regularization loss to improved
control and visual coherence in the generated images. De-
tailed results from our ablation study are presented in Fig-
ure 7. Furthermore, the application of the regularization
loss demonstrates performance improvements in quantita-
tive evaluations, as shown in Table 2.

Conclusions, Limitations and Future Work

In this paper, we propose an approach that integrates the ad-
vantages of off-the-shelf 3D-based pretrained models within
3D-free paradigms for novel view synthesis, offering precise
control over camera angle and elevation, without any addi-
tional 3D information. Our method performs effectively on
complex, in-the-wild images containing multiple objects and
background information. We qualitatively and quantitatively
demonstrate the benefits of our method over corresponding
3D and 3D-free baselines. One limitation of our method is
its reliance on an inference-time optimization routine for
each scene and viewpoint, which may hinder real-time per-
formance. Achieving faster performance is a direction for
future work. Additionally, extending our approach to NVS
and 3D applications with real-world constraints (such as re-
specting contact points and relative sizes) for tasks like edit-
ing, object insertion, and composition presents promising di-
rections for further research. Based on the current results,
we also propose exploring the use of an image-conditioned
model to achieve a higher level of view consistency as a fu-
ture research direction. As mentioned in the qualitative anal-
ysis, Due to its design, Zero123++ is limited to generating
only distinct fixed views. While this approach improves con-
sistency by leveraging Stable Diffusion’s priors, it restricts
the model’s ability to generate views beyond these prede-
fined angles, limiting flexibility in exploring arbitrary per-
spectives. Future work could explore enabling camera con-
trol from any angle, while addressing 3D prior model’s chal-
lenges like preserving source view attributes and mitigating
issues from incorrect pose information to improve consis-
tency and accuracy.
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Appendix
Computation Time
Table 4 presents a comparison of memory consumption and computation time across state-of-the-art 3D-prior models, including
Zero123++, Stable Zero123, and ZeroNVS. Among these models, Zero123++ demonstrates the shortest computation time,
requiring only 20 seconds, while other methods are significantly slower.

Our approach utilizes Zero123++ for generating 3D prior information, ensuring that the computational cost remains minimal.
Importantly, the generation of multi-view guidance images does not introduce any additional overhead, as this step is performed
using the most computationally efficient model in this category. This demonstrates that our method is well-suited for scalable
and real-time applications, maintaining efficiency while incorporating powerful 3D prior information.

Model Memory Consumption Computation Time

Zero123++ 10.18 GB / 40.0 GB (9,715 MiB) 20 sec
Stable Zero123 39.3 GB / 40.0 GB (37,479 MiB) 1,278 sec
ZeroNVS 33.48 GB / 40.0 GB (31,929 MiB) 7,500 sec

Table 4: Comparison of computation times for 3D-prior models. Among the prior works in NVS frequently mentioned,
including Zero123++, Stable Zero123, and ZeroNVS, the Zero123++ model has the shortest computation time. Our research
applies the Zero123++ model, which has the lowest computation time among 3D-prior models, to obtain 3D prior information
without requiring any additional computation time.

Model Step Memory Consumption Computation Time

HawkI Optimization 7.20 GB / 40.0 GB (6,875 MiB) 395 sec
Inference 8.43 GB / 40.0 GB (8,045 MiB) 6 sec (each image)

Total 8.43 GB / 40.0 GB (8,045 MiB) 401 sec

Ours (w/o regloss) Zero123++ 10.18 GB / 40.0 GB (9,715 MiB) 20 sec
Optimization 7.21 GB / 40.0 GB (6,879 MiB) 372 sec
Inference 8.43 GB / 40.0 GB (8,049 MiB) 6 sec (each image)

Total 10.18 GB / 40.0 GB (9,715 MiB) 398 sec

Ours (w/ regloss) Zero123++ 10.18 GB / 40.0 GB (9,715 MiB) 20 sec
Optimization 7.21 GB / 40.0 GB (6,885 MiB) 367 sec
Inference 8.43 GB / 40.0 GB (8,045 MiB) 6 sec (each image)

Total 10.18 GB / 40.0 GB (9,715 MiB) 393 sec

Table 5: Detailed Step-wise Comparison. Even when applying Zero123++ to our methodology, the additional GPU memory
consumption is relatively small, at 2.97GB (10.18GB - 7.21GB), and it takes only 20 seconds to generate the guidance image
using Zero123++. From an overall perspective, HawkI takes 401 seconds to complete optimization and generate the first image
through inference, while Ours (w/o regloss) takes 398 seconds, and Ours (w/ regloss) takes 393 seconds. This demonstrates
that our methodology does not result in significant differences in computation time or memory consumption while achieving
better performance compared to existing methods. Total memory consumption refers to the worst case, the computation time
indicates the total execution time. i.e., the time taken for the model to run and output the first image.

Table 5 provides a detailed breakdown of memory usage and computation time for the optimization and inference steps in
our method. The optimization process requires 387 seconds (Optimization 367 sec + Zero123++ 20 sec), and the inference step
is highly efficient, taking only 6 seconds per image. Notably, the memory consumption remains consistent across optimization
and inference, excluding the Zero123++ computation, comparable to other competitive methods.

This breakdown highlights that the inclusion of the Zero123++ step in our approach does not result in excessive compu-
tational time. Instead, our method achieves high-quality multi-view synthesis while maintaining practical memory and



runtime efficiency. Furthermore, the results illustrate that our approach is capable of integrating multi-view guidance and
reconstructing images with enhanced fidelity without compromising scalability or practicality.

This experiment was conducted using an A100 GPU (40.0 GB) for all models to ensure a fair comparison. The GPU memory
consumption for each model is reported in the worst-case scenario, and the computation time is measured based on the time
taken for the model to fully generate an image. The results in Table 4 and Table 5 emphasize that the proposed method effectively
balances computational efficiency with enhanced performance. By leveraging Zero123++, the most efficient 3D-prior model,
and incorporating lightweight optimization techniques, our approach ensures minimal computational costs while achieving
significant improvements in output quality. These results validate the feasibility of the method for real-world applications,
demonstrating both its scalability and practicality.

Additional Results
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Figure 8: More results on HawkI-Syn. We present additional comparison results on HawkI-Syn for the angles of (−20◦, 210◦)
and (−20◦, 330◦). Our model consistently produces view synthesis images that maintained background inclusion and view
consistency, accurately mirroring the target elevation and azimuth angles. Notably, StableZero123 exhibits instability in its
results. It’s important to highlight that this task specifically addresses negative azimuth angles. HawkI, for instance, fails to
capture the correct camera elevation and is limited to generating aerial views. Zero123++ is capable of handling both elevation
and azimuth but falls short in integrating background elements and intricate details, as also observed in previous outcomes.
For example, when presented with an image of a pyramid casting a shadow, Zero123++ darkens the pyramid but fails to
render the shadow accurately. This shortcoming is also apparent in images of a waterfall and a house. In the waterfall task
within the specified azimuth range, Zero123++ produces an indistinct shape rather than a clear environment where water and
lake are visible from below the rocks. Similarly, for the house image, it generates an incomplete image with gray patches.
Conversely, our model not only captures the shadow details of the pyramid but also accurately renders the environment in the
waterfall image, ensuring visibility of water and lake from beneath the rocks. Additionally, it adeptly incorporates details and
backgrounds from multiple perspectives.
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Figure 9: More Results on HawkI-Real. We extend our analysis to additional settings of (−20◦, 210◦) and (−20◦, 330◦).
Our model, when tested on the HawkI-Real dataset, demonstrated superior performance in view synthesis images, excelling in
background inclusion and view consistency, and accurately representing the target elevation and azimuth angles. In comparison
to other leading models such as Zero123++, HawkI, and StableZero123, our model’s results are notably better. StableZero123’s
outputs are incomplete, and Zero123++ struggles with capturing background details and intricate information. Specifically,
Zero123++ neglected surrounding details, focusing solely on the Eiffel Tower. The original HawkI model also failed to achieve
the correct camera elevation or produced images that overlooked important features. For example, in the cat transformation
task, the output incorrectly depicted three cats instead of two. Our model stands out by delivering exceptional results for the
Eiffel Tower, Hawaiian beach, and cat transformations, underscoring its advanced capabilities over other models. Furthermore,
we present a quantitative evaluation in Table 3, which confirms our model’s dominance over state-of-the-art benchmarks across
various metrics.
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Figure 10: Additional comparisons in (30◦, 30◦) and (30◦, 270◦) settings on images from the HawkI-Syn and HawkI-Real
datasets. Comparisons between the state-of-the-art view synthesis models, Zero123++, HawkI, Stable Zero123, and our method
highlights the superior performance of our model in terms of background inclusion, view consistency, and the accurate repre-
sentation of target elevation and azimuth angles.
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Figure 11: Additional comparisons in (30◦, 30◦) and (30◦, 270◦) settings on images from the HawkI-Syn and HawkI-Real
datasets. Comparisons between the state-of-the-art view synthesis models, Zero123++, HawkI, Stable Zero123, and our method
highlights the superior performance of our model in terms of background inclusion, view consistency, and the accurate repre-
sentation of target elevation and azimuth angles.
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Figure 12: Additional comparisons in (30◦, 30◦) and (30◦, 270◦) settings on images from the HawkI-Syn and HawkI-Real
datasets. Comparisons between the state-of-the-art view synthesis models, Zero123++, HawkI, Stable Zero123, and our method
highlights the superior performance of our model in terms of background inclusion, view consistency, and the accurate repre-
sentation of target elevation and azimuth angles.
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Figure 13: Additional comparisons in (30◦, 30◦) and (30◦, 270◦) settings on images from the HawkI-Syn and HawkI-Real
datasets. Comparisons between the state-of-the-art view synthesis models, Zero123++, HawkI, Stable Zero123, and our method
highlights the superior performance of our model in terms of background inclusion, view consistency, and the accurate repre-
sentation of target elevation and azimuth angles.


