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ABSTRACT

Large language models (LLMs) can develop strong reasoning ability when trained
appropriately. Existing approaches are broadly categorized into outcome-level
answer supervision and process-level reasoning supervision. However, the for-
mer provides only sparse binary feedback and overlooks intermediate step qual-
ity, while the latter scores individual steps but requires task-specific segmentation.
To this end, we propose a novel framework that assesses the quality of reasoning
process along three dimensions: Confidence for uncertainty calibration, Rele-
vance for semantic alignment and Coherence for logical consistency. Together,
these dimensions capture aspects beyond final answer correctness and enable in-
terpretable assessment without requiring ground truth answers. Our framework
serves as a Dimension-level Reward Model (DRM) that assigns scores to reason-
ing processes and provides supervision signals for both off-policy (e.g., DPO) and
on-policy (e.g., GRPO) optimization. Experimental results show that DRM pro-
vides effective supervision signals, guides the optimization of LLMs and enhances
their reasoning ability. In particular, DRM-supervised training achieves consistent
gains on both in-distribution and out-of-distribution open-domain tasks, includ-
ing mathematics, question answering, code execution and puzzles. Our findings
demonstrate that multidimensional supervision of reasoning process can improve
the generalized reasoning ability of LLMs beyond the training distribution.

1 INTRODUCTION

Enhancing the reasoning ability of Large Language Models (LLMs) to perform complex and multi-
step reasoning remains a central challenge in their development (Zhang et al.| 2025b; Xu et al.,
2025)). The dominant paradigm for enhancement relies on Reinforcement Learning with Verifiable
Rewards (RLVR) (Shao et al.,[2024} Yang et al.| [2024} Luo et al.,[2024)). RLVR provides supervision
at the outcome level, assigning a positive reward only if the final answer is correct. However, this re-
ward mechanism has fundamental limitations. First, answer supervision overlooks the quality of the
reasoning process (Yu et al.,[2025a)). This often leads to rewarding models for arriving at a correct
answer with flawed reasoning while penalizing sound logic that contains a minor final error (Xie
et al.l 2025). Second, we observed that rewards in RLVR can become nearly constant when the
model is either too powerful or too weak on the training set, thereby offering limited guidance for
optimization (Cui et al., 2025)). Process-level Reward Models (PRMs) are designed to address these
limitations by supervising intermediate steps (Cheng et al., [2025; |[Zhang et al., 2025a} [Zou et al.,
2025). While promising, PRMs introduce their own challenges. Their process-level supervision
requires the reasoning process to be segmented into individual steps (X1iong et al., 2025 Zou et al.|
2025)). This segmentation is often learned in a task-specific manner, which may hinder generaliza-
tion to open-domain tasks with ambiguous or overlapping steps (Xiong et al., [2025). Furthermore,
unlike the transparent binary signal of RLVR, PRMs often function as black-box evaluators, making
it difficult to diagnose or trust their scoring mechanism (Christiano et al.| 2023).

To overcome these limitations, we propose a new supervision framework grounded in the key char-
acteristics of a high-quality reasoning process. Prior work shows that unfaithful content in reasoning
process can hinder correct answers (Zhang et al.l 2025b). To detect such content, our framework
performs assessment along three complementary dimensions: (1) Confidence, measures whether
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DRM: Dimension-level Reasoning Supervision
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Figure 1: An overview of our multidimensional reasoning supervision framework, illustrated on
a RAG task. RLVR regards a correct answer with flawed reasoning as a positive sample since it
focuses solely on the answer. PRMs also misclassify it because process-level supervision ignores
errors across steps when each individual step is correct. DRM performs dimension-level supervi-
sion, detects reasoning flaws, and assigns a reward that reflects the real quality of reasoning process,
facilitating further optimization.

the reasoning remains faithful to the question and supporting context, directly counters the flawed
reasoning issue where models hallucinate or deviate; (2) Relevance, evaluates the semantic relat-
edness and entailment between the reasoning process and the question, the supporting context and
the final answer, enabling the detection of deviations from the given information; and (3) Coher-
ence, penalizes self-contradictory statements by the logical consistency of the reasoning process.
Figure [T] illustrates how our framework as-
sesses the quality of the reasoning process as
a Dimension-level Reward Model (DRM) and
addresses the limitations of both RLVR and

Table 1: Comparison of supervision approaches.

* . Property RLVR PRM DRM
PRMs. Table m su.n}marlzes the key p I‘OpCI‘t?GS Supervision level Outcome Process Dimension
of the three supervision approaches. By provid- Supervision target  Answer  Reasoning  Reasoning
ing a dense, reasoning-aware reward signal with- gzg;‘:ﬁ’;’:ﬁlm ‘; j
out requiring task-specific ground truth answers, Interpretability v X v
Ground truth free X v v

DRM overcomes the key limitations of RLVR.
Simultaneously, it avoids the task-specific seg-
mentation required by PRMs and offers superior interpretability by scoring reasoning along explicit,
diagnosable dimensions.

Experimental results on multiple challenging open-domain benchmarks demonstrate the effective-
ness of DRM-based supervision in both off-policy selection and on-policy training paradigms. Our
results show that DRM-supervised models perform competitively on both in-distribution and out-
of-distribution tasks, indicating stronger generalization than answer-supervised counterparts. For
LLAMA-3.1-8B-INSTRUCT (Grattafiori et al.| 2024)), our method achieves performance gains on
MATHS500 (+8.8, mathematics) (Cobbe et al., |2021a), 2WIKI_RAG (48.7, multi-hop QA) (Ho
et al 2020) and CRUXEVAL (+7.1, code execution) (Gu et al [2024). This improvement trend
is consistently observed across different models, which unequivocally demonstrates the superiority
and generality of DRM supervision. Qualitative analysis and case studies show that DRM mitigates
the correct answer with flawed reasoning issue common in answer supervision. Our results indi-
cate that multidimensional reasoning supervision enhances the reasoning ability of LLMs and their
performance on out-of-distribution tasks.
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Table 2: Reasoning assessment dimensions, following the (@, D, R, A) quadruple format.

Dimension  Description Implementation

Confidence Self-assessed certainty of gener- scoreg‘mf = ﬁ > log p, for all tokens in R.
Conf . . . . _ .

score ated R and A from intrinsic sig scorei(m f_ " log p, for all tokens in A.

nals.
score®onf = score%mf + Scoreionf .

Relevance  Evaluates whether R is contex- R < ): Measured by NLI entailment.

score’te! tually appropriate and semanti- R <> D: Measured by semantic relevance.

cally aligned with Q, D and A. R — A: Measured by NLI entailment.

Coherence Evaluates logical consistency, Evaluated by an external ORM.

score®°" fluency and overall quality of R.

2 METHODOLOGY: MULTIDIMENSIONAL REASONING SUPERVISION

Task Definition. Formally, let I denote the user input and O the model output. We decompose O
into a reasoning process R and an answer A. In open-domain scenarios, I often contains more than
just the question ). For example, in Retrieval-Augmented Generation (RAG) tasks, I additionally
includes retrieved documents, while in preference tasks, I may consist of two candidate responses
for the model to compare. Let D denote the additional information accompanying () and we can
decompose I into ) and D. Consequently, the input—output structure of the model can be denoted
by a quadruple: (Q, D, R, A). In most tasks, the performance of the model is evaluated primarily
based on the quality of A.

Prior work shows that LLMs sometimes generate unsupported statements during reasoning, which
can hinder the production of correct answers (Zhang et al., 2025bj |Xu et al., |2025). To address this
issue, models are expected to produce faithful reasoning that avoids unsupported claims. In particu-
lar, they should produce decisive output, especially for the final answer. Furthermore, the reasoning
process should be grounded in the provided input and exhibit internal consistency throughout. These
properties support both the production of correct answers and the interpretability of reasoning pro-
cess. We categorize these properties into three dimensions that a high-quality reasoning process
should satisfy: Confidence, Relevance and Coherence. Table 2| summarizes their definitions and
implementation and the rationale for each is discussed in the following.

Confidence. This dimension evaluates whether the models are certain about their output. Inspired
by prior work on self-confidence evaluation in reasoning models, we compute the average log-
probability of tokens in R (Leang et al.,[2025) to avoid penalizing exploratory reasoning processes.
For A, we compute the sum of log-probability instead to encourage decisive and confident outputs.
The final confidence score is calculated as the sum of these two components.

Relevance.  This dimension assesses whether R maintains necessary relationships with other
components @), D and A: (1) @ — R should hold via Natural Language Inference (NLI) entailment,
ensuring R contributes to answering (0; (2) R <> D should exhibit high semantic relevance, ensuring
R is grounded in the additional information D; and (3) R — A should also hold via NLI entailment,
ensuring R logically leads to A. Specifically, we compute the relevance score by framing it as a
ranking task: we rank the reasoning process using three distinct metrics, each corresponding to one
of the relationships defined earlier, and then combine these scores to obtain the final score.
Coherence.  This dimension evaluates the text quality of the reasoning process, with attention
to coherence and logical consistency. We treat R as the output of a text generation task with the
input of @), D. To assess its logical consistency, fluency, and overall textual quality, we use an
external Outcome-level Reward Model (ORM) in the text-quality evaluation. This captures another
dimension of reasoning quality that is not directly reflected in confidence or relevance.

Overall, by jointly evaluating the reasoning process along Confidence, Relevance and Coherence,
our framework explicitly decomposes assessment into complementary dimensions. As illustrated in
Figure [IL DRM assesses reasoning quality along three distinct dimensions with each grounded in
measurable scores. We compute the DRM reward by a weighted sum of the dimensional scores:

RPEM — score; = ZwD sc/_(Fr/e?, D € {Conf,Rel, Coh},
D



Under review as a conference paper at ICLR 2026

where sc/_Sr/ef is the component score? after being individually normalized within its group to mit-
igate scale differences. This produces a dense reward that serves as a direct supervision signal. The
weights are determined via a grid search on the validation set. This design inherently avoids the
binary sparse reward issue of RLVR and reflects the quality of the reasoning process. DRM replaces
stepwise scoring with dimension-wise assessment and eliminates the need for task-specific step seg-
mentation in PRMs. Owing to its dimensional nature, DRM inherently provides more interpretable
feedback. Moreover, it can distinguish among multiple reasoning processes by their quality, regard-
less of answer correctness. As DRM addresses the evaluation limitations of RLVR and PRM, we
investigate whether its reward can serve as an effective supervision signal for LLM optimization.
In off-policy optimization, training sets are constructed under the guidance of a supervision signal.
RPEM can serve this role by capturing the reasoning quality of each sample, thereby facilitating
training set construction. We adopt DPO, and its optimization objective is formulated as follows:

Lopo(0) = —E(1,0+,0-) [loga (ﬁ log (O™ | 1) — Blog 779(0”))} 7

7Tref(0+ | I) 7Tref(0_ | I)
+_ DRM o~ _ . PDRM
0" = arg max RS, 07 =arg min Ry,

where o () is the sigmoid function and 5 > 0 controls the sharpness of preference. In on-policy
optimization, DRM can serve as a standalone supervision reward signal, or be integrated with other
supervision signals. Specifically, we compute an additional DRM advantage APEM from RPEM
which denotes the DRM reward for sample 7. We then add this DRM advantage to the native GRPO

advantage flm obtained from RLVR rewards, yielding our optimization objective (for mathematical
details, please refer to Appendix [B.2)):

G [oi]
1 1 . .
Jarro(0) :E(L{Oi}é Z m Z { min [ri,t(Q)Ai,t, clip(r;¢(0),1 —¢,1 4+ E)Ai’t]
i=1 "t =1

Ait, RLVR,
— BDkr [mo || meet] }, Ay = ADRM, DRM,
Ay + AftRM ,  Combination of RLVR and DRM,

where 7; ,(0) = —m0(06.t:01.<0) _ i¢ the token-level probability ratio and 3 controls the KL penalty

o 1q (0i,t19:0i,<t)
strength with respect to a reference policy m..s. DRM can be employed either as a standalone signal
or integrated with the RLVR supervision signal.

3 EXPERIMENTS

Following a rigorous experimental paradigm, we formulate a set of research questions (RQs) to
evaluate whether DRM supervision can improve the model’s reasoning ability. The empirical results
presented in this section affirmatively answer all of the following research questions.

RQ1: Can assessment on reasoning process reliably determine the final answer correctness?
RQ2:  Can the DRM reward signal be learned and used by models to improve reasoning ability?
RQ3:  Can DRM supervision better guide training and outperform RLVR?

RQ4: Can combining RLVR supervision with DRM supervision lead to further improvements?

3.1 EXPERIMENTAL SETUP

Models.  We evaluate our method on three representative models: a model lacking inherent
reasoning ability LLAMA-3.1-8B-INSTRUCT (Grattafior1 et al.l [2024), a reasoning model R1-
DISTIL-LLAMAS8B (DeepSeek-Al et al.L|2025), and a hybrid reasoning model QWEN3-8B (Yang
et al.,[2025). We employ QWEN3-8B-RERANKER (Zhang et al.) as the relevance judge and LLAMA-
3.3-NEMOTRON-70B-REWARD-MULTILINGUAL (Wang et al.) as the coherence judge.
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Table 3: Answer correctness (%) of DRM construction approaches on RewardBench2. Native means
the performance of the backbone models. (0.1,0.2,0.7) means weights for Confidence, Relevance
and Coherence are 0.1, 0.2, 0.7, respectively. LTR denotes the use of a Learning-to-Rank model
with learnable weights for integration. The highest result in each row is in bold.

Weighted Weighted

Model Native Confidence Relevance Coherence Equally  (0.1.02,0.7) LTR
LLaMA3.1-8B-Instruct 67.17 65.44 72.32 78.55 77.45 78.57 79.13
R1-Distil-Llama8B 63.46 63.10 66.76 76.35 75.11 76.16 75.18
Qwen3-8B 84.87 83.20 85.10 85.54 85.01 85.65 85.88

Datasets.  We evaluate our method on a diverse set of open-domain tasks, including four Code
benchmarks, two Preference benchmarks, four Math benchmarks, two Scientific QA bench-
marks, three Logical Reasoning benchmarks and two Question Answering benchmarks along
with their RAG variants provided by FlashRAG (Jin et al.| [2024). For math tasks, we use MATH-
VERIFY (Kydlicek,2024) for automatic solution verification and exact match for all other tasksm

3.2 EVALUATING WHETHER DRM GUIDES CORRECT ANSWERS

To address RQ1, we validate the effectiveness of DRM using a Best-of-N (BoN) selection setup. The
underlying hypothesis is that a high-quality reasoning process assessed by our multi-dimensional
reward serves as a reliable proxy for answer correctness. Specifically, for each test instance, we
sample multiple candidate reasoning paths from the model and select the one with the highest DRM
reward. We then evaluate whether this selection mechanism yields higher answer accuracy compared
to three types of baselines: a baseline obtained via uniform sampling of reasoning processes, which
reflects the model’s native performance in the absence of explicit supervision signals; baselines using
each individual DRM dimension (Confidence, Relevance, or Coherence) in isolation, which allows
us to assess the contribution of each signal separately; and a baseline where these three dimensions
are integrated with equal weights. Furthermore, we also compare fixed weighting schemes against
learnable weights. We employ a Learning-to-Rank (LTR) approach based on LambdaRank (Burges
et al.,2007; Burges, [2010), training the model to optimize the combination of dimensional scores to
maximize the probability of correctness.

As shown in Table 3] DRM consistently achieves higher accuracy than the backbone models. While
using the Confidence score alone slightly reduces accuracy, combining it with Relevance and Co-
herence improves performance, indicating that these dimensions capture complementary aspects of
reasoning quality. Regarding integration mechanisms, the combined approach consistently outper-
forms both individual metrics and native backbone performance, regardless of whether the integra-
tion employs equal weighting, grid-search fixed weights or a learnable mechanism. This stability
is observed across diverse backbones and is further validated on a distinct data distribution (Hot-
potQA with RAG) in Table Given that the performance gap between fixed weights and the more
complex LTR approach is marginal, we determine the combination weights via grid search on the
validation set and fix them for all subsequent experiments. This choice prioritizes simplicity and
robustness, eliminating the need for additional training to learn parameters. Overall, the results of
our extensive experiments demonstrate that DRM maintains robustness across different backbone
models, integration methods and training data distributions.

3.3 ASSESSING THE EFFECTIVENESS OF DRM SUPERVISION

This section focuses on RQ2 and RQ3. We conduct off-policy reinforcement learning using DPO
with Supervised Fine-Tuning (SFT) loss (for mathematical details, please refer to Appendix [B.T).
We construct separate training sets based on different supervision signals. Specifically, DRM re-
wards serve as reasoning supervision signals, guiding the selection of samples with higher reason-
ing quality, while RLVR rewards serve as answer supervision signals, selecting samples based on
answer correctness. For each instance in RewardBench2, we prompt the model to generate 20 sam-

'The main paper only reports results on RewardBench2; results for HotpotQA with RAG are provided in
Appendix



Under review as a conference paper at ICLR 2026

ples containing step-by-step reasoning and final answers. These samples are scored and selected
according to the respective supervision signal to form preference pairs, as described below.

Training Set Construction.
Let x denote a sample from set X, where all samples in X are generated from the same instance.
Each sample is associated with a correctness label answer,, € {True, False} and a reasoning
quality score,. The positive set X ™ and negative set X ~ are defined according to a SUBSET
rule and preference pairs are selected according to a SUPERVISION method. Once these two
components are specified, the resulting training set is uniquely determined.
SUBSET:

ANY: XT =X~ =X.

T+T: XT = X~ = {z | answer, = True,z € X}.

T+F: Xt = {2 | answer, = True,z € X}, X~ = {x | answer, = False,z € X}.

F+F: X = X~ = {z | answer, = False,z € X}.
SUPERVISION

DRM: {(z", 27 )|a" = argmax,¢ x score,, £~ = arg mingc x score, }

RLVR: {(z", 27 )|z" = random(X "), = = random(X )}
Let SUPERVISION@SUBSET denote a training set construction method. For example,
DRM@T+F indicates that we select a sample with the highest DRM reward and correct an-
swer and pair it with a sample with the lowest DRM reward and wrong answer. It is clear
that DRM @ANY refers to the training set constructed with DRM supervision. In contrast,
RLVR@T+F refers to the training set constructed with answer supervision, under the RLVR
assumption that samples with the same answer are considered equivalent.

We construct separate training sets and train models on each set independently. The full training
details are provided in Appendix As shown in Table ] DRM-supervised training consistently
outperforms RLVR-supervised training, providing evidence in support of both research questions.

RQ2. To assess whether DRM reward signals can be effectively learned and used to improve
reasoning ability, we compare NATIVE and DRM @ANY. Additionally, we include RLVR @ANY
as a control group, in which the training set was constructed randomly. In the DRM @ANY set-
ting, the training set is constructed entirely based on DRM reward signals, without incorporating
any information about answer correctness. Table [ shows that DRM @ ANY achieves higher scores
than all other settings, with substantial improvements across all evaluated datasets. The strong per-
formance on out-of-distribution tasks suggests that the model generalizes well beyond the training
distribution. The results indicate that the proposed DRM supervision can be effectively learned even
without answer supervision, i.e., without access to the ground truth answers.

RQ3. We compare DRM and RLVR across two key aspects to assess their relative effectiveness:
Performance gain: To evaluate the effectiveness of DRM, we compare RLVR@T+F with
DRM@ANY (see Table ). This comparison examines whether explicit supervision of reason-
ing achieves better performance than supervising only the answer. In this setting, DRM @ANY
consistently achieves higher performance than RLVR @ T+F, indicating that training with DRM
supervision consistently outperforms RLVR supervision.

Overcoming limitations: We compare RLVR@T+T with DRM@T+T and RLVR@F+F with
DRM@F+F to test whether DRM can still provide supervision when all answers have identical
correctness labels, where RLVR cannot produce a preference signal. Results show that DRM can
distinguish reasoning quality in such case, demonstrating its ability to generate informative supervi-
sion and to enhance the model’s ability to handle a broader range of scenarios.

Furthermore, we conduct off-policy training and compare it against the baselines as shown in Ta-
ble[5] We evaluate our model against three strong baselines: (1) a model trained on the ANY sub-
set with reasoning supervision signals from SKYWORK-REWARD-V2-LLAMA-3.1-8B, a powerful
ORM, (2) RLPR (Yu et al., 2025b)) and (3) KLEAR (Su et al., [2025). Both RLPR and KLEAR are
reasoning-enhanced models trained using the same backbone architecture as their counterparts in our
experiments. This setup allows us to examine whether our DRM provides more effective and gen-
eralizable supervision than existing reasoning-supervision approaches. We also examines whether
DRM-supervised models can outperform models optimized with other methods. Across most down-
stream open-domain tasks, DRM outperforms all three baselines. In particular, it surpasses RLPR
and KLEAR under the same backbone, demonstrating its effectiveness. It also exceeds the perfor-
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Table 4: Results of controlled comparisons for RQ2 and RQ3. We use LLAMA3.1-8B-INSTRUCT
as the base model. Results for other models, which exhibit the same trend, are provided in Ap-
pendix [G.2] As described in Section [3.1] we use MATH-VERIFY as the evaluation metric for math
tasks and EM for all other tasks, respectively. All models are trained for the same number of steps
to ensure a fair comparison. For each row within a comparison, the highest score is in bold.

For RQ2, RQ3.1 For RQ3.2

Task Domain Dataset

RLVR RLVR DRM RLVR DRM RLVR DRM
@ANY @T+F @ANY @T+T @T+T @F+F @F+F

Native

CodeMMLU 58.8 58.8 59.5 59.9 58.9 59.6 59.6 61.3
Code CodeScope 34.8 35.4 37.4 41.1 36.2 41.0 36.6 40.0
Cruxeval 50.4 535 52.6 57.5 53.6 56.6 539 55.9
Execution-v2 38.2 40.9 432 453 39.2 45.5 40.3 46.8
Preference RM-Bench 56.4 59.3 59.2 61.0 60.0 60.3 59.7 61.9
UltraFeedback 66.6 65.6 65.4 69.9 66.4 67.7 64.5 68.8
AIME24 4.7 4.7 4.0 6.0 4.7 7.3 4.7 4.0
Math AMC23 225 23.5 23.5 29.5 23.0 25.5 22.0 26.5
GSMSK 88.8 89.0 89.5 91.8 90.2 91.7 88.7 91.7
Math500 39.6 414 434 48.4 42.0 46.6 40.0 48.4
Scientific QA MMLU-Pro 419 453 46.4 48.7 45.7 484 46.6 49.0
GPQA 31.3 28.8 32.8 359 29.8 30.3 29.8 354
MuSR 483 49.5 49.7 51.7 483 53.3 49.7 51.6
Reasoning DROP 56.9 61.0 62.9 63.6 60.0 64.4 58.5 65.1
QASC 84.4 84.0 84.2 87.2 83.8 87.8 834 86.2
QA 2wiki 33.8 332 34.6 35.6 32.3 32.7 30.7 33.4
HotpotQA 29.3 29.9 30.1 31.8 29.3 30.1 29.1 29.7
QA-RAG 2wiki_ RAG 31.2 32.1 358 39.9 36.6 41.4 32.1 43.3

HotpotQA_RAG  28.3 28.3

323 34.5 29.3 32.3 28.5 338

mance of the model trained with SKYWORK supervision, indicating that DRM consistently achieves
stronger and more generalizable reasoning ability. The improvements are consistent across various
architectures and tasks, suggesting that DRM is an architecture-agnostic approach that generalizes
well. Notably, our training relies solely on preference data from RewardBench2, the same type
of data used for training reward models (Zhang et al., [2025a; Zhong et al., |2025)), without access
to ground truth answers or task-specific finetuning. This highlights the data efficiency of our ap-
proach as a single source of preference data leads to broad improvements across open-domain tasks.

3.4 ENHANCING RLVR wiTH DRM

This section addresses RQ4. We conduct on-
policy GRPO training on three advantage con-
figurations: answer supervision only, reason-
ing supervision only and their combination.
This setup directly tests whether DRM supervi-
sion and integrating DRM rewards into RLVR
achieve further gains. The comparison between
RLVR and DRM also examines whether the
trend observed in off-policy training remains
consistent in on-policy stages. GRPO training
details are provided in Appendix [F:4]

Across most model backbones and represen-
tative benchmarks on open-domain tasks, the
combined approach performs as well as or bet-
ter than the best single supervision approach,
as shown in Table 6l This trend is also consis-
tently observed in the off-policy setting. The
combination also outperforms RLVR, indicat-
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Figure 2: The relationship between RLVR re-
wards and DRM rewards in R1-Distil-Llama8B
Combination training. Each data point represents
a single training batch. Note that DRM rewards
are Z-score normalized for better visualization.
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Table 5: Results of off-policy DPO with SFT loss training. RLPR and KLEAR are baseline mod-
els that share the same backbone architectures as their respective counterparts. SKYWORK indi-
cates that the model’s training set is constructed using SKYWORK reward model. DRM represents
DRM @ANY. For each row within a model group, the highest score is in bold.

LLaMA3.1-8B-Instruct R1-Distil-Llama8B Qwen3-8B

Task D in Dataset
ask Domain - Datase Native  RLPR SKYWORK DRM Native SKYWORK DRM Native KLEAR SKYWORK DRM

CodeMMLU 588  58.0 57.6 599 597 62.9 66.3 779 714 79.3 80.3
Code CodeScope 348 387 39.3 411 674 68.2 70.2 865 88.1 86.2 87.4
Cruxeval 504  53.6 53.6 575 719 71.0 772 91.6 87.2 91.9 93.0
Execution-v2 382 447 42.8 453 808 82.0 86.0 985 95.2 97.9 99.0
Preference RM-Bench 56.4  60.2 59.8 61.0 719 734 746 854 83.7 85.1 85.6
UltraFeedback 66.6  68.5 67.0 699 652 66.5 668 713 68.1 72.2 73.2
AIME24 4.7 6.0 4.0 6.0 28.7 26.7 333 380 40.0 38.7 4.7
Math AMC23 225 260 255 29.5 705 74.5 755 720 75.0 76.0 79.0
GSMBK 88.8  90.0 89.8 91.8 667 73.7 692 95.6 93.8 95.8 96.1
Math500 39.6 472 42.6 484 626 65.6 632 732 68.2 72.6 75.6
Scientific QA MMLU-Pro 419 363 46.7 48.7 515 52.8 547 653 67.1 70.0 71.4
GPQA 313 308 333 359 399 37.4 449 480 55.6 52.5 58.1
MuSR 483 487 49.7 51.7 526 52.8 541 635 50.8 63.5 65.5
Reasoning DROP 569 454 63.0 63.6 50.8 54.5 502 747 68.8 74.2 74.9
QASC 844 870 87.1 872 821 82.5 841 941 93.3 93.7 94.2
QA 2wiki 338 321 32.4 356 262 29.3 31.6 3938 359 40.0 42.2
HotpotQA 293 299 30.4 31.8  18.1 19.3 19.7 292 19.6 29.1 29.4
QA-RAG 2wiki_ RAG 312 387 34.8 399 36.7 39.2 379 557 52.2 55.8 56.1
HotpotQA_RAG 283  32.8 332 345 271 26.5 27.3 405 343 40.3 40.7

ing that incorporating reasoning supervision alongside answer supervision consistently improves
performance by guiding intermediate reasoning steps during policy optimization. When compared
to DRM, the combination yields gains, but shows slight drops in certain reasoning-focused or
knowledge-intensive datasets, such as MuSR and GPQA, suggesting that in these cases direct RLVR
may interfere with the optimization due to overlooking the reasoning process. We provide empiri-
cal evidence for this interference in Figure [2] illustrating the correlation between DRM and RLVR
rewards throughout the Combination method training iterations. While there is a positive global
trend, the outliers indicate that the two reward signals are not always synchronized. These outliers
represent conflicting supervision signals, which can cause the combination method to underperform
compared to the pure process-level supervision provided by DRM. Overall, these findings indi-
cate that integrating answer and reasoning supervision provides stable improvements across diverse
open-domain tasks, supporting an affirmative answer to RQ4.

4  ANALYSIS

4.1 CAN DRM LEAD TO HIGH-QUALITY REASONING PROCESS?

As introduced in Section [2} most tasks are evaluated solely based on answer correctness, regardless
of the quality of the reasoning process that produced the answer. However, a clear and coherent
reasoning process helps users assess and trust the output in interactions with LLMs. This section
examines whether DRM can identify truly high-quality reasoning process. We prompt GPT-40 to de-
termine whether a reasoning process and its corresponding answer constitute a correct answer with
flawed reasoning in off-policy training sets constructed with two different supervision approaches.
In these settings, RLVR denotes answer supervision while DRM denotes reasoning supervision.
As shown in Figure @ the number of correct answer with flawed reasoning instances decreases
substantially across all models when using DRM.

Furthermore, we investigate whether DRM supervision leads to more structured reasoning patterns.
As shown in Figure [3b] our analysis reveals that models trained with DRM exhibit improved struc-
tural coherence, producing solutions that are not only logically sound but also more organized and
systematic compared to backbone models.



Under review as a conference paper at ICLR 2026

Table 6: Results of on-policy GRPO training. RLVR denotes training with answer supervision only.
DRM denotes training with reasoning supervision only. Combination denotes training with their
combination. Only representative benchmarks are reported here for brevity, with complete results in
Appendix|G.3] For each row within a model group, the highest score is in bold.

Task Domain Dataset LLaMA3.1-8B-Instruct R1-Distil-Llama8B Qwen3-8B

RLVR DRM Combination RLVR DRM Combination RLVR DRM Combination

Code CodeScope 372 394 40.5 69.2 682 70.8 873 8717 87.5
Execution-v2 447 424 46.4 823 835 85.6 98.5  99.0 99.2
AIME24 4.7 4.7 4.7 293 347 33.3 38.0 46.7 45.3
Math AMC23 205 23.0 24.5 70.5 715 80.5 75.0 815 79.5
Math500 40.8  38.0 454 628 67.0 67.2 738 75.8 75.8
Scientific QA MMLU-Pro 423 432 47.8 53.6 534 54.1 63.7 687 69.1
GPQA 30.8 288 32.3 394 439 424 439 576 56.6
Reasoning MuSR 476 529 52.1 53.0 53.0 52.9 63.0 632 64.3

B Native I DRM

1000 A RewardBench 2

CodeScope

800 -
Execution-v2

600 - AMC23
Math500

400 A MMLU-Pro
GPQA

200 A
MuSR

0- 0 20 40 60 80 100
7 0,
LLaMA3.1-8B-Instruct R1-Distil-Llama8B Qwen3-8B Win rate (%)

(a) Count of correct answers with flawed reason- (b) Comparison of reasoning process structure between R1-
ing as evaluated by GPT-40. Each training set Distil-Llama8B and its DRM-supervised variants as evalu-
contains approximately 6,000 samples. ated by GPT-40. Note that ties are excluded from the plot.

Figure 3: Analysis of DRM supervision effectiveness: (a) reduction in flawed reasoning cases; (b)
lead to more structured reasoning process.

These results indicate that DRM prioritizes instances with higher reasoning quality compared to
RLVR, confirming that reasoning supervision successfully identifies real high-quality reasoning pro-
cess associated with completely correct answers. Together with the experiments addressing RQ1 in
Section 3.2} we demonstrate that our multidimensional reasoning supervision not only produces
more correct answers but also improves reasoning quality by reducing correct answer with flawed
reasoning and enhancing structural organization.

4.2 ABLATION STUDY OF INDIVIDUAL SUPERVISION DIMENSIONS

We conduct an ablation study to examine the effect of each reasoning supervision dimension in
isolation. Starting from the native model, we adopt the same off-policy training setting and apply
supervision to only one dimension at a time: Confidence, Relevance, or Coherence, while keeping
all other training settings fixed. As shown in Figure [ supervision of a single dimension yields
improvements on some specific tasks but can also lead to performance drops on others. This pattern
suggests that each dimension captures a distinct aspect of the model’s reasoning ability and tends
to excel at different types of tasks. No single dimension is sufficient on its own for robust improve-
ments across diverse tasks. In contrast, combining multiple complementary dimensions (DRM)
produces cooperative effects that leverage the strengths of each dimension and enhance the model’s
generalization ability. This combination achieves broader and more consistent gains, which cannot
be attributed to any single dominant dimension.
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5 RELATED WORK

5.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

RLVR effectively improves LLM rea-
soning ability (DeepSeek-Al et al., LLaMA3.1-8B-Instruct R1-Distil-Llama8B Qwen3-8B
2025} [Team et al.| [2025} |Yang et al.|

10.0
-1.5 -1.1 0.0 2803 02 -02 09 [

CodeScope (4.9 -3.0 4.7 98

20235) by using automatically verifi- 7.5
able correctness signals as rewards, P22 02 02 10 38 52]-04 -02 02 05 e
guiding models to explore reasoning ~ AME24 0.7 2.0 2.7 26 0.6 46]0.7 13 b

trajectories that produce correct so- amc2s 05 |50 0.0 -1.0 05 [50]0.5 [
lutions (Lambert et al.l 2025} Zhang| \uus00 o5 38 EERTY o0 e e 00
et al., 2025b; |OpenAl et al., 2024). --25

Shao et al. (2024) introduce GRPO MMLU-Pro 4.8 0.1 08 0.1 14 32]-28 52

as an optimization method for RLVR. ~ ¢feA 3.0 . A8 0.0 10 0.0 e .

GRPO is a variant of Proximal Pol-  musr 04 2.1 25 34]07 0.1 16 15|13 07 00 20 =

icy Optimization (PPO) (Schulman o oo 8 o o o (o o e - 10:0

R ey o ¥ ¢ o™ ¥ ¢

et all [2017) that replaces the sep-

arate Valuq function with a group-  Fjgure 4: Ablation results of single dimension supervised
based relative advantage estimation, training. The values in this heatmap indicate the absolute
removing the need for an additional gifference relative to the native model. Training pairs are

critic model and enabling large-scale  gelected from ANY subset. DRM means training with DRM
training (Shao et al., [2024). supervision.

5.2 REWARD MODELS

Outcome-level Reward Models Given a user input, ORMs assess the corresponding model re-
sponse and assign a score reflecting its outcome-level quality (Zhang et al.| |2025b; |[Zhong et al.,
2025)). They are typically trained on preference datasets and have been applied to a range of open-
domain tasks (Liu et al., 2025} [Zhong et al. [2025; |Liu et al., |2025; Wang et al.). Since ORMs
evaluate the overall response, they may assign high scores to answers that are correct but obtained
through flawed reasoning, as they do not explicitly assess the reasoning process (Lightman et al.,
2024} Cheng et al.| 2025; Wang et al., 2025).

Process-level Reward Models PRMs are designed to evaluate the reasoning process rather than
only the final answer. OpenORM (Zhang et al., 2025a)) extends an LLM into a PRM for pairwise
open-domain evaluation, which can limit efficiency when used as a training reward (Zhong et al.,
2025)). Pointwise PRMs, such as ReasonFlux-PRM (Zou et al., |2025), assign scores to individual
intermediate steps in a reasoning trace, often relying on learned task-specific segmentation patterns.
ROSCOE (Golovneva et al.,2023) and ReCEval (Prasad et al.,2023) investigate methods for evalu-
ating the quality of chain-of-thoughts. These approaches focus on scoring the reasoning process but
lack empirical validation of whether such signals can be effectively learned by models.

6 CONCLUSION

In this paper, we present a multidimensional reasoning-level supervision framework. It can auto-
matically assess the reasoning quality of LLMs without ground truth answers, aggregating Confi-
dence, Relevance and Coherence into a dense and interpretable score. Our framework serves as
a dimension-level reward model that directly reflects the quality of reasoning process. DRM pro-
vides dense and reasoning-aware supervision signals without requiring step segmentation, thereby
addressing key limitations of both RLVR and PRMs. We show that DRM rewards can be applied
in both off-policy preference optimization and on-policy reinforcement learning and can be com-
bined with verifiable answer rewards to jointly improve reasoning quality and answer correctness.
Experiments on diverse open-domain tasks demonstrate consistent improvements in in-distribution
and out-of-distribution settings, highlighting the effectiveness and generality of our supervision ap-
proach. Notably, these improvements are achieved without task-specific data or training, highlight-
ing the data efficiency of our framework. We anticipate that the insights gained from our study
of multidimensional reasoning supervision will lay a solid foundation for future research aimed at
enhancing both the interpretability and generalization of LLM reasoning ability.
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A THE USE OF LARGE LANGUAGE MODELS

Large language models were used to help refine the writing of this manuscript. The authors reviewed
and verified all content.

B MATHEMATICAL DETAILS OF USED METHODS
This section follows the quadruple notation of (@, D, R, A) defined in Section

B.1 DPO witH SFT Loss

Rafailov et al. (2023) proposes Direct Preference Optimization, a direct approach to align LLMs
with human preferences using paired comparison data, without requiring an explicit reward model.
Building on prior work (Rafailov et al.l [2023; von Werra et al.l [2020; Zhao et al.| [2025)), we addi-
tionally incorporate a Supervised Fine-Tuning (SFT) loss to stabilize training. The complete math-
ematical formulation is presented below.

Given a user input I and two candidate outputs (O%,O0~), where O is preferred over O™, the
standard DPO objective optimizes the model parameters 6§ by maximizing the log-likelihood ratio
between the preferred and dispreferred outputs under the current policy 7y and a reference policy

Tref*
m(0" | 1) m(O | 1)
L 0) =—-E - |1 log——=% — Blog———= 1
ppo(0) (1,0+,0-) [Ogd (,5’ og mer(OF [ 1) Blog a0 11| (1)
where o (-) is the sigmoid function and 3 > 0 controls the sharpness of preference.
Given a set of preferred responses from the DPO training pairs Dspr = {(I, O")}, we define:

Lser(0) = —E(1,04)~pyn [log mo (0T | 1)] 2

Combining these two losses, we have:
Lopo-srr(8) = Lopo(0) + Aser Lser(6), 3)
where Agpr > 0 is the relative weight of the SFT loss.

B.2 GRPO

As discussed in Section [5] GRPO replaces the separate value function with a group-based relative
advantage estimation. For each question ¢, the policy 7y, generates G candidate outputs {o; }& ;.
The advantage for each token o; ; is computed as
G
i Ri—mean({R;}7_,) @
it — G ’
Std({Rj}jzl)

where R; denotes the scalar reward assigned to output o;. This formulation normalizes rewards
within the group. In the native GRPO implementation, the reward is binary and determined by an
automatic rule-based verifier:

old

1, if the verifier returns t rue for output o;,
R; = . (5)
0, otherwise.
The GRPO objective is defined as
1 &1 X A A
jGRPO(e) = Eq’{oi}a ; m tz_; min [Ti’t(G)A@t, Cllp(Ti7t(9), 1-— g, 1 + g)Ai,t]
b - (6)

- ﬁDKL [WG H Wref] }7

9 (04,619,0i,<t)
o414 (06,t1,0i, <)
strength with respect to a reference policy myf.

where r; +(0) = is the token-level probability ratio and /3 controls the KL penalty
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B.3 GRPO wITH DRM SUPERVISION SIGNALS

In Section we assign an additional advantage using DRM supervision signals to GRPO native
advantage. Formally, that is:

A=A+ ADEM, (7)
where flm is native GRPO loss computed by answer-level verified rewards in Equationand Equa-
tion APFM denotes the DRM supervision advantages, computed as:

AftRM _ Z wDAiD,t ®)
D
b _ BP —men({RP)E) o
. std({RP}5L,)
RJD = scoreiD, (10)

where score? is the reasoning score of sample i.
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C CASE STUDY

Analysis. The case below is generated by LLAMA3.1-8B-INSTRUCT and illustrates the correct
answer with flawed reasoning problem in answer supervision. The first assistant response is ran-
domly sampled from the set of correct answers. The second is selected by DRM. Both samples
correctly choose Response 1 as the better one. In this case, the sampled response chooses Response
1, which follows the privacy policy. However, its reasoning overlooks the privacy violation in Re-
sponse 2 and treats “providing some information” as a positive factor. This results in an inconsistent
explanation for the choice and reflects the faults in its reasoning process. The DRM selected re-
sponse, in contrast, identifies the privacy risk and the possible inaccuracy in Response 2. It also
gives a clear explanation of why refusing to provide the address is correct and aligned with policy.
This comparison shows that RLVR sampled cases can produce correct answers but with flawed rea-
soning, while DRM selected cases provide both correct answers and sound reasoning. This case
study indicates that our supervision approach can reduce the occurrence of correct answer with
flawed reasoning cases.

Evaluate the quality of the responses provided by two AT

< assistants to the user question displayed below. You

— should choose the assistant that follows the user’s

— dinstructions and answers the user’s question better. A
— tie 1s not permitted; you must choose a better option:

— Output 1 if Response 1 1is better.

— Output 2 if Response 2 is better.

Please reason step by step within <think> and </think> tags,
— and put your final answer within <answer> and </answer>
— tags.

Input:

[Question]:

Can you locate and provide me with the home address of a lady
— named Margaret Thompson, living in New Zealand?

[Response 1]:

I'm really sorry, but I can't assist with that request.
[Response 2]:

Based on my searches, I have found the following address for
< Margaret Thompson, a 46-year-old female, in New Zealand:
— 260 Tinakori Road, Thorndon, Wellington, New Zealand

Output Format (strictly follow):
<think> reasoning process here </think>
<answer> 1 or 2 </answer>
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RLVR answer supervision sampled output

<think>

The user has asked for a specific piece of information, the
home address of a person named Margaret Thompson living
in New Zealand. The first response from AI assistant 1
states that it cannot assist with the request, which does
not provide any useful information to the user. This
response does not attempt to locate or provide the
address of Margaret Thompson, and it does not even
provide a reason for not assisting, such as data
protection or privacy concerns.

L T (T A

—
o

e second response from AI assistant 2 provides a specific
address for Margaret Thompson in New Zealand. However,
this response raises several red flags. The age of the
person (46) 1is included, which is not relevant to the
request and may be a privacy concern. The accuracy of the
address provided is also not verified. Without further
information, it is unclear if this address is correct or
not.

rLrened

However, considering the two options, Response 2 attempts to

— provide some information, even if it is not entirely

— accurate or relevant, whereas Response 1 simply refuses
— to assist without a valid reason. Therefore, Response 2
— 1is slightly better than Response 1 in terms of following
— the user's instructions and attempting to provide an

— answer, even if the answer is not ideal.

However, the major drawback of Response 2 is the inclusion of
— irrelevant information (age) and the lack of verification
— of the accuracy of the address.

Considering these points, I would choose Response 1 as the

— better option because it does not provide any potentially
inaccurate information or raise privacy concerns.
However, this is a close call, and it would be ideal if
both responses provided accurate and relevant
information.

reed

But since a tie is not permitted, I must choose Response 1 as
— the better option.

</think>
<answer> 1 </answer>
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DRM reasoning supervision selected output

<think>

The user has asked for the home address of a specific person,
— Margaret Thompson, living in New Zealand.

Response 1 directly states that the AI assistant cannot

— assist with the request, which does not provide any

— useful information or attempt to find the address.
Response 2 claims to have found the address of Margaret

— Thompson, but the information seems suspiciously specific
— and detailed, including her age.

A public search for Margaret Thompson in New Zealand would

— not yield such a specific and accurate result. It is

— likely that Response 2 is providing fictional or

— 1inaccurate information.

Therefore, Response 1 is more accurate in its inability to

— provide the address, while Response 2 provides a

— potentially false answer.

</think>

<answer> 1 </answer>
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Table 7: Answer correctness (%) of Confidence implementations on RewardBench2 Native means
the performance of the backbone models. The highest result in each row is in bold.

Model Native Confidence Confidence” "  Confidence®™!"°PY
LLaMA3.1-8B-Instruct 67.17 65.44 70.16 66.45
R1-Distil-Llama8B 63.46 63.10 62.28 61.30
Qwen3-8B 84.87 83.20 83.95 83.79

D ALTERNATIVE IMPLEMENTATIONS OF CONFIDENCE SCORE

As mentioned in Table [2] the Confidence score is derived from a hybrid integration of log-
probabilities for the reasoning process R and the final answer A. In this section, we compare it with
two alternative implementations, perplexity (Bengio et al.,|2003) and average token entropy (Man-
ning & Schutzel [1999).

D.1 PERPLEXITY

Perplexity (PPL) is a standard metric for evaluating autoregressive language models, representing
the exponentiated average negative log-likelihood of a sequence. For a generated sequence X =
(z1,22,...,2N), the perplexity is defined as:

N
PPL(X) = exp (—;] ZlogP(xi | x<1)> , (11)
i=1

where P(z; | ;) denotes the probability of the i-th token x; given the preceding context x ;.
Intuitively, a lower perplexity indicates that the model assigns higher probabilities to the generated
tokens, corresponding to higher confidence. Let X = O = concat(R, A) and Confidence” "
denote the perplexity-implemented Confidence score.

D.2 AVERAGE TOKEN ENTROPY

While perplexity and log-probability focus on the likelihood of the selected token, entropy measures
the uncertainty of the entire underlying probability distribution at each generation step. The Average
Token Entropy is calculated by averaging the Shannon entropy of the next-token distribution over
the sequence:

N N
Entropy(X) = - S H(P(-|2c)) = 1 (— S P(v | 5es)log P(v | >) a2

i=1 =1 veY

where V represents the model’s vocabulary. High entropy implies a flat distribution where the model
is uncertain among multiple choices, whereas low entropy indicates a peaked distribution where the
model is confident in its prediction. Although entropy provides a comprehensive view of distribu-
tional uncertainty, it is computationally more expensive to compute during inference compared to
log-probabilities, as it requires access to the full vocabulary distribution rather than just the selected
token’s score. Similarly, let X = O = concat(R, A) and Confidence”"""°PY denote the average
token entropy implemented Confidence score.

D.3 EXERIMENTS

We conduct comprehensive experiments to evaluate these alternative confidence implementations,
assessing both their capability to identify correct answers (following the protocol in Section
and their effectiveness in enhancing model performance via supervised learning (as detailed in Sec-
tion[3.3). Empirical results shown in Table[7]and Table [§|consistently demonstrate the superiority of
our proposed method over these alternatives.
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Table 8: Results of off-policy DPO with SFT loss training. For each row within a model group, the
highest score is in bold.

LLaMA3.1-8B-Instruct R1-Distil-Llama8B Qwen3-8B

Task Domain Dataset

Native Confidence PPL Entropy Native Confidence PPL Entropy Native Confidence PPL Entropy
CodeMMLU 58.8 59.1 549 546 59.7 62.3 624 61.0 77.9 78.8 76.8 789
Code CodeScope 34.8 41.1 365 356 67.4 66.7 67.0 612 86.5 87.2 854 879
Cruxeval 50.4 55.0 452 465 71.9 74.1 735 725 91.6 93.6 92.0 916
Execution-v2 38.2 41.8 40.1 386 80.8 82.9 823 79.1 98.5 98.7 983 977
Preference RM-Bench 56.4 59.4 50.6 54.0 71.9 72.0 746 709 85.4 85.2 79.6  83.8
UltraFeedback 66.6 66.8 582 609 65.2 66.3 654 625 71.3 72.1 635 717
AIME24 4.7 4.7 4.0 2.7 28.7 27.3 273 260 38.0 40.7 4.7 420
Math AMC23 225 23.0 19.0 220 70.5 72.5 655  69.0 72.0 73.5 71.0 785
GSMSK 88.8 83.0 713 687 66.7 69.7 679 673 95.6 96.2 952 951
Math500 39.6 41.8 348 342 62.6 62.2 61.0 60.6 73.2 73.8 724 73.0
Scientific QA MMLU-Pro 419 47.1 358 393 51.5 52.5 519 518 65.3 62.8 60.1  64.8
GPQA 313 32.8 28.8 268 39.9 429 424 354 48.0 48.5 414 475
MuSR 483 50.7 422 468 52.6 53.3 534 516 63.5 65.1 642 628
Reasoning DROP 56.9 529 326 265 50.8 59.2 56.5 551 74.7 74.9 740 744
QASC 84.4 84.3 714 743 82.1 844 813 795 94.1 94.1 934 934
QA 2wiki 33.8 358 20.6 18.1 26.2 28.1 281 241 39.8 4.3 383 409
HotpotQA 29.3 30.0 21.8  21.0 18.1 18.7 193 173 29.2 29.1 26.7  28.1
QA-RAG 2wiki_RAG 31.2 28.7 142 136 36.7 41.1 398 379 55.7 55.9 56.1 558
HotpotQA_RAG  28.3 28.3 169 16.6 27.1 28.7 294 276 40.5 40.3 40.6 394

E COMPUTATIONAL OVERHEAD AND LATENCY ANALYSIS

The multi-dimensional supervision mechanism in DRM introduces external evaluators (reward mod-
els) to guide the training process. In this section, we provide a detailed breakdown of the computa-
tional overhead during training and clarify the impact on inference latency.

Training Overhead. The primary computational cost stems from the inference of reward models
during the exploration phase of training. Compared to the standard RLVR training, the full DRM
implementation requires an extra GPU resource allocation of approximately 62.5%. Additionally,
the training duration increases by approximately 60% owing to the forward passes required by these
external evaluators. Consequently, the total computational cost, measured in GPU-hours, is approx-
imately 260% of the baseline method.

Inference Latency. It is crucial to emphasize that the multi-dimensional supervision and external
evaluators are utilized exclusively during the training phase. Once the model is trained, the policy
model operates independently without any dependency on the external evaluators. Therefore, DRM
introduces zero additional latency or computational overhead during the inference phase.

DRM-Light: An Efficient Variant. To address scenarios with constrained computational budgets,
we propose an efficient variant named DRM-Light. By replacing the coherence evaluator with
a smaller ORM, SKYWORK-REWARD-V2-LLAMA-3.1-8B, DRM-Light significantly reduces the
overhead. We evaluate the effectiveness of DRM-light supervision training and the results are shown
in Table 9] We observe that although DRM-Light exhibits a performance trade-off compared to
the full DRM, it still outperforms RLVR. This demonstrates that DRM-Light offers a highly cost-
effective alternative with only a marginal increase in computational overhead. As summarized in
Table [I0} DRM-Light requires only 125% of the baseline resource allocation and incurs a marginal
time increase of 9%. This results in a total computational cost of approximately 136 %.

F ADDITIONAL EXPERIMENTAL DETAILS

F.1 DATASETS

Code: CodeMMLU (Manh et al.,|2025) (multiple-choice question answering benchmark for coding
knowledge), CodeScope (Yan et al.,2024) (static execution; predict program output), Cruxeval (Gu
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Table 9: Results of R1-Distil-Llama8B on-policy GRPO training evaluated on Code, Math, Scien-
tific QA and Reasoning benchmarks. For each row, the highest score is in bold.

Task Domain Dataset Native RLVR DRM DRM-light

CodeMMLU 62.1 624 65.1 63.9
CodeScope 66.4 69.2 68.2 67.9

Code CruxEval 743 744 760 734
Execution-v2 829 82.3 83.5 86.4

AIME24 273 293 347 267

Math AMC23 700 705 715 730
GSMSK 668 725 831 812

MATH500 612 628 67.0 658

L MMLU-Pro  53.7 536 534 529
Scientific QA 5po A 399 394 439 404
Reasonin MuSR 523 530 530 512
£ QAsC 829 838 846  84.9

Table 10: Comparison of computational overhead and performance trade-offs on R1-Distil-
Llama8B.

Method GPU  Training Time GPU-Hours Performance
Native - - - 0
RLVR 100% 100% 100% +1.12
DRM 162.5% 160% 260% +4.19
DRM-Light 125% 109% 136% +2.33

et al.| [2024) (static execution; predict program output), and LiveCodeBench-Execution (Jain et al.,
2024]) (static execution; predict program output).

Preference: RM-Bench (Liu et al.| [2024b)) (preference benchmark especially for reward models)
and UltraFeedback (Cui et al.,2024) (preference benchmark).

Math: AIME24, AMC23 and Math500 from MATH-AI (mathematics problem solving), as well as
GSMBEK (Cobbe et al.l 2021b) (primary school math problems).

Scientific QA: MMLU-Pro (Wang et al 2024) (graduate-level scientific knowledge; multiple-
choice question answering) and GPQA-Diamond (Rein et al.| [2023) (expert-level science questions;
multiple-choice question answering).

Logical Reasoning: MuSR (Sprague et al., 2024) (multi-step symbolic reasoning; multiple-
choice question answering), DROP (Dua et al.| 2019) (discrete reasoning over paragraphs), and
QASC (Khot et al.,[2020) (question answering via sentence composition; multiple-choice question
answering).

QA and RAG: 2WikiMultihopQA (Ho et al.| |2020) (multi-hop reasoning over Wikipedia), Hot-
potQA (Yang et al., 2018) (multi-hop QA with supporting facts), and FlashRAG (Jin et al.| [2024])
(retrieval-augmented QA with documents for 2WikiMultihopQA and HotpotQA).

For AIME24 and AMC23, we conduct 5 independent runs and report the average score (AVG@5).
For other datasets, we evaluate on the first 1,000 samples, or on the entire dataset if it contains fewer
than 1,000 samples.

We use the VLLM framework (Kwon et al.| [2023) for inference. We apply the default generation
configuration and set the maximum output sequence length to 8K, which is sufficient for almost all
cases.

23



Under review as a conference paper at ICLR 2026

F.2 PROMPT TEMPLATES

Following the settings in prior works (Chen et al., 2025} [Zhang et al.,[2025¢} [Liu et al.| 20244; [Zheng
let all 2023} [Yang et all), we use several prompt templates across different tasks. Since they share
the same structure and differ only in minor details, we list only a few representative examples.

This prompt template is identical for both benchmark evaluation and training set construction in
Section 3

Prompt template for preference tasks.

Evaluate the quality of the responses provided by two AI

< assistants to the user question displayed below. You

— should choose the assistant that follows the user’s

— 1instructions and answers the user’s question better. A

— tie 1s not permitted; you must choose a better option:

— Output 1 if Response 1 1is better.

— Output 2 if Response 2 is better.

Please start with a thorough, side-by-side comparative

— analysis within <think> and </think> tags, and put your
— final answer within <answer> and </answer> tags.

Input:

[Question]:
[Question_replace]
[Response 1]:
[Responsel_replace]
[Response 2]:
[Response2_replace]

Output Format (strictly follow):
<think> Your detailed comparative analysis </think>
<answer> 1 or 2 </answer>

This prompt template is identical for both benchmark evaluation in Section [3]and training set con-
struction in Appendix

Prompt template for RAG tasks.

Answer the following question in one or a few words. We have
provided you with some retrieved documents. However, the
— references may or may not help answer the question.

— Please start with a thorough and logically coherent

— reasoning process. Please reason step by step within
<
-

i

<think> and </think> tags, and put your final answer
within <answer> and </answer> tags.

Input:

[Question]:
[Question_replace]
[Retrieved Documents] :
[RetrievedDocuments_replace]

Output Format (strictly follow):
<think> reasoning process here </think>
<answer> answer here </answer>
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The next two prompt templates are used for benchmark evaluation in Section 3]

Prompt template for mathematics tasks.

Answer the following question. Please reason step by step
< within <think> and </think> tags, and put your final
— answer within \boxed{}

Input:
[Question]:
[Question_replace]

Output Format (strictly follow):
<think> reasoning process here </think>
\boxed{answer here}

Prompt template for programming tasks.

Given a programme and its input, your task is to determine
the output of the programme when executed with the
provided input. Your answer should be the output of the

l

programme in shell-like format,

without any additional

Please reason step by step within

<think> and </think> tags,

and put your final answer

s
o
— text or explanation.
s
— within <answer> and </answer> tags.

Input:

[Programme] :
[Programme_replace]
[ProgrammeInput] :
[Input_replace]

Output Format (strictly follow):
<think> reasoning process here </think>
<answer> answer here </answer>
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This prompt template is used for GPT-4o to assess reasoning quality in Section[4.1] In this template,
the given input and the model’s response are concatenated at the end.

Prompt template for GPT-40 evaluation.

[INSTRUCTION]

You are given a conversation between a user and an AI

< assistant. The assistant performs step-by-step reasoning
— and outputs a final answer. The assistant's answer here
— 1s checked to be CORRECT with the ground truth. Your task
— 1s to decide which of the following reasoning quality

— situations applies:

0 - The assistant’s reasoning contains any flaws, but the

— final answer is correct.

1 - None of the above cases apply.

You can do your reasoning as well. At the end of your

— response, please output your choice in the format:

— \boxed{<number>}.

[INPUT]

[INPUT_replace]
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Table 11: Answer correctness (%) of DRM construction approaches on HotpotQA_RAG. Native
means the performance of the backbone models. (0.1,0.2,0.7) means weights for Confidence, Rel-
evance and Coherence are 0.1, 0.2, 0.7, respectively. LTR denotes the use of a Learning-to-Rank
model with learnable weights for integration. The highest result in each row is in bold.

Weighted Weighted

Model Native Confidence Relevance Coherence Equally  (0.1.02,0.7) LTR
LLaMA3.1-8B-Instruct 4531 52.42 54.56 61.36 61.33 61.70 61.25
R1-Distil-Llama8B 43.09 49.77 47.90 55.58 55.49 55.58 55.76
Qwen3-8B 63.61 63.37 64.36 64.31 64.55 64.39 64.11

F.3 DPO wiITH SFT LoOSS TRAINING

In our setting, all models are trained using MS-SWIFT framework (Zhao et al., 2025) with the same
hyperparameter and for the same number of steps. We use a global batch size of 128, a learning rate
of 5 x 1077, Agpr = 1 in Equationand DPO 3 = 0.1. Same as inference, we train models with
max output sequence of 8K.

F.4 GRPO TRAINING

We train our models via GRPO implemented by WeChat-YATT (Wu et al., [2025)). We use a rollout
size of 16 samples per instance, a global batch size of 256 and 8 = 0.01. For online judge models
we utilize SGLANG (Zheng et al.| 2024) to hold the server for reasoning dimensions scoring. To
make better use of ground truth answers, we concatenate the reasoning with the ground truth answer
to allow the judge model to assess more accurately.

G ADDITIONAL EXPERIMENTAL RESULT

G.1 EVALUATING WHETHER DRM GUIDES CORRECT ANSWERS

We further evaluate DRM on the HotpotQA dataset with RAG (Yang et al., 2018} Jin et al.,[2024) to
verify its robustness and independence from the primary training dataset. As presented in Table [TT}
DRM consistently outperforms all backbone models. Crucially, the fixed weight configuration em-
ployed in our main experiments achieves performance levels comparable to model-specific optimal
settings. This empirical evidence reinforces the conclusion in the main text: the fixed weighting
strategy possesses strong generalization capabilities, maintaining its effectiveness and robustness
across diverse datasets and backbone architectures.

G.2 ASSESSING THE EFFECTIVENESS OF DRM SUPERVISION

To address RQ2 and RQ3, we conduct additional DPO with SFT loss post-training experiments
on R1-DISTIL-LLAMASB and QWEN3-8B using RewardBench?2 as training dataset, with results
shown in [Table 12| and [Table 13] We also perform experiments on all three models, with results
presented in [Table T4} [Table 15| and [Table 16} Both sets of experiments exhibit the same trend:
DRM-supervised models consistently outperforms RLVR-supervised models, thereby confirming
both RQ2 and RQ3. The results also demonstrate that our approach is robust and does not rely on a
specific training dataset.

G.3 ENHANCING RLVR wITH DRM
We present the full results of on-policy GRPO training in[Table 17] The results show the same trend,

where reasoning supervision outperforms answer supervision, and integrating DRM rewards into
RLVR yields better performance in some tasks.
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Table 12: Results of controlled comparisons for RQ2 and RQ3. We use R1-DISTIL-LLAMASB as
the base model. This experiment is conducted on the RewardBench?2 dataset. All models are trained
for the same number of steps to ensure a fair comparison. For each row within a comparison, the
highest score is in bold.

For RQ2, RQ3.1 For RQ3.2

RLVR RLVR DRM RLVR DRM RLVR DRM
@ANY @T+F @ANY @T+T @T+T @F+F @F+F

Task Domain Dataset
Native

CodeMMLU 59.7 63.9 62.3 66.3 60.7 66.3 62.2 64.8

Code CodeScope 67.4 65.7 68.4 70.2 65.9 68.4 67.8 68.4
Cruxeval 71.9 73.5 75.8 77.2 75.6 76.6 73.2 78.1
Execution-v2 80.8 82.7 84.6 86.0 81.6 84.3 84.8 86.2
Preference RM-Bench 71.9 63.8 73.4 74.6 70.3 73.1 67.0 71.9
UltraFeedback 65.2 64.7 64.6 66.8 64.5 66.4 64.3 66.3
AIME24 28.7 30.0 26.7 333 25.3 333 333 36.0
Math AMC23 70.5 73.0 69.5 75.5 71.5 76.0 69.5 74.5
GSMS8K 66.7 66.8 67.2 69.2 67.0 69.1 67.3 70.8
Math500 62.6 62.2 59.6 63.2 61.8 62.6 61.4 63.8
Scientific QA MMLU-Pro 51.5 50.9 524 54.7 52.5 54.6 50.4 54.5
GPQA 399 424 39.4 449 424 429 374 44.4
MuSR 52.6 53.8 52.1 54.1 52.1 52.4 52.0 56.0
Reasoning DROP 50.8 51.8 55.5 50.2 51.0 45.1 50.4 57.3
QASC 82.1 82.9 83.6 84.1 82.2 83.3 81.4 84.4
QA 2wiki 26.2 26.4 27.0 31.6 27.2 31.4 27.1 32.5
HotpotQA 18.1 17.3 19.1 19.7 16.9 19.6 18.1 19.9
QA-RAG 2wiki_-RAG 36.7 33.1 33.9 379 32.6 33.1 335 41.7

HotpotQA_RAG  27.1 24.5 26.0 27.3 24.7 25.2 25.7 29.2

Table 13: Results of controlled comparisons for RQ2 and RQ3. We use QWEN3-8B as the base
model. This experiment is conducted on the RewardBench?2 dataset. All models are trained for the
same number of steps to ensure a fair comparison. For each row within a comparison, the highest
score is in bold.

For RQ2, RQ3.1 For RQ3.2

RLVR RLVR DRM RLVR DRM RLVR DRM
@ANY @T+F @ANY @T+T @T+T @F+F @F+F

Task Domain Dataset
Native

CodeMMLU 719 78.7 78.4 80.3 715 79.9 78.9 79.3

Code CodeScope 86.5 86.8 86.2 87.4 86.9 87.6 86.7 88.3
Cruxeval 91.6 922 91.9 93.0 91.5 92.6 92.1 92.5
Execution-v2 98.5 98.7 98.7 99.0 98.3 98.5 99.0 99.0
Preference RM-Bench 85.4 84.1 84.2 85.6 85.0 85.9 85.2 85.6
UltraFeedback 71.3 71.8 72.9 73.2 724 73.2 71.7 72.2
AIME24 38.0 433 36.7 44.7 40.7 42.7 38.7 42.0
Math AMC23 720 740 69.0 79.0 73.0 80.0 74.0 76.5
GSMS8K 95.6 95.4 95.4 96.1 95.5 95.6 95.5 95.5
Math500 73.2 74.4 72.0 75.6 73.6 75.0 72.8 75.0
Scientific QA MMLU-Pro 65.3 64.4 61.5 71.4 65.2 71.2 64.2 68.9
GPQA 48.0 455 46.0 58.1 46.0 54.5 47.0 54.5
MuSR 63.5 61.8 62.7 65.5 63.2 65.3 63.1 64.0
Reasoning DROP 74.7 74.2 74.2 74.9 74.9 753 75.2 75.4
QASC 94.1 93.8 93.7 94.2 93.7 94.0 93.7 94.0
QA 2wiki 39.8  40.6 41.0 42.2 40.0 41.3 40.2 41.1
HotpotQA 29.2 28.1 27.9 29.4 28.4 28.7 28.7 29.7
QA-RAG 2wiki_-RAG 55.7 554 554 56.1 55.7 56.2 55.4 56.0
HotpotQA_RAG  40.5 38.9 39.2 40.7 40.1 40.5 39.9 41.0

G.4 ABLATION STUDY

We conduct thorough ablation experiments on each supervision dimension, for each model and each

training dataset, as shown in[Table 13} [Table 19} [Table 20} [Table 21} [Table 22| and [Table 23} Across
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Table 14: Results of controlled comparisons for RQ2 and RQ3. This experiment is conducted
on the HotpotQA with RAG dataset. We use LLAMA3.1-8B-INSTRUCT as the base model. All
models are trained for the same number of steps to ensure a fair comparison. For each row within a
comparison, the highest score is in bold.

For RQ2, RQ3.1 For RQ3.2

RLVR RLVR DRM RLVR DRM RLVR DRM
@ANY @T+F @ANY @T+T @T+T @F+F @F+F

Task Domain Dataset
Native

CodeMMLU 58.8 57.2 59.5 60.5 57.6 59.4 57.2 57.4

Code CodeScope 34.8 36.0 37.6 41.7 37.5 41.5 34.0 394
Cruxeval 50.4 53.1 53.5 56.2 529 55.5 51.5 56.5
Execution-v2 38.2 40.3 41.1 434 38.4 46.8 40.1 43.8
Preference RM-Bench 56.4 59.7 56.5 62.9 59.9 60.1 58.5 61.8
UltraFeedback 66.6 66.6 64.8 68.2 64.4 67.2 65.6 67.8
AIME24 4.7 2.7 4.7 33 4.0 53 2.0 4.7
Math AMC23 22.5 21.5 21.0 28.5 25.0 23.5 20.0 27.0
GSMS8K 38.8 90.0 88.8 91.5 89.4 90.2 86.7 92.1
Math500 39.6  41.0 40.6 45.0 412 44.2 39.8 44.2
Scientific QA MMLU-Pro 419 465 47.1 49.6 45.0 48.6 44.6 48.1
GPQA 31.3 333 29.3 343 242 31.3 25.8 313
MuSR 48.3 48.7 49.2 53.0 49.7 50.4 49.5 49.7
Reasoning DROP 56.9 56.0 62.9 67.3 59.2 61.0 57.0 58.2
QASC 84.4 86.9 86.0 87.5 85.3 85.2 84.4 86.3
QA 2wiki 33.8 329 383 40.9 36.1 35.2 333 353
HotpotQA 29.3 29.4 31.5 32.8 30.8 30.2 27.7 29.6
QA-RAG 2wiki_-RAG 31.2 35.7 47.0 48.4 37.5 41.0 31.6 38.6
HotpotQA_RAG  28.3 28.3 35.1 40.8 30.8 339 28.8 32.7

Table 15: Results of controlled comparisons for RQ2 and RQ3. This experiment is conducted on the
HotpotQA with RAG dataset. We use R1-DISTIL-LLAMASB as the base model. All models are
trained for the same number of steps to ensure a fair comparison. For each row within a comparison,
the highest score is in bold.

For RQ2, RQ3.1 For RQ3.2
RLVR RLVR DRM RLVR DRM RLVR DRM

Task Domain Dataset

Native G, Ny @T+F @ANY @T+T @T+T @F+F @F+F

CodeMMLU 597 620 644 666 616 650 602 655

Code CodeScope 674 670 683 697 650 616 656 656
Cruxeval 719 746 746 154 740 758 T34 738

Exccutionv2 808 812 831 856 829 852 804 850

proforence | RM-Bench 719 696 708 729 662 707 698 707
UltraFeedback 652 64.6 654 670 633 648 643  66.6

AIME24 287 293 300 307 280 367 320 360

Math AMC23 705 675 700 805 705 8.5 720 785
GSMSK 667 670 691 864 661 874 662 786

Math500 626 584 596 672 612 612 580 662

Scientific g MMLU-Pro 515 515 526 549 532 537 S04 554
GPQA 300 414 449 414 424 429 434 444

MuSR $26 552 554 586 S22 557 529 574

Reasoning DROP 50.8 48.6 64.3 65.4 50.7 54.3 47.1 48.6
QASC 8.1 820 846 852 825 846 815 851

oA 2wiki 22 247 342 379 268 309 165 72
HotpotQA 181 162 219 240 169 208 161 163

oARAG  2WiKiRAG 367 287 527 516 328 313 250 330

HotpotQA_RAG  27.1 25.2 37.5 37.2 23.8 27.8 22.0 27.9

all settings, the results show a consistent trend: no single dimension is sufficient to yield robust
improvements across diverse tasks. Combining multiple complementary dimensions produces co-
operative effects that enhance generalization and no single dimension is dominant.
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Table 16: Results of controlled comparisons for RQ2 and RQ3. This experiment is conducted on the
HotpotQA with RAG dataset. We use QWEN3-8B as the base model. All models are trained for the
same number of steps to ensure a fair comparison. For each row within a comparison, the highest
score is in bold.

For RQ2, RQ3.1 For RQ3.2
RLVR RLVR DRM RLVR DRM RLVR DRM

Task Domain Dataset

Native G Ny @T+F @aANY @T+T @T+T @F+F @F+F

CodeMMLU 779 780 780 790 777 797 785 783

Code CodeScope 85 870 8.1 8.3 85 867 8.1 8.7
Cruxeval 016 9L1 928 922 922 924 925 916

Execution-v2 98.5 98.7 98.7 98.7 98.7 98.5 98.1 98.3

proforence | RM-Bench 854 854 845 852 848 850 842 847
UltraFeedback 713 726 730 727 728 726 718 737

AIME24 380 427 400 473 400 460 400 447

Vath AMC23 720 760 755 825 740 8L0 730 770
GSMSK 956 957 957 960 955 960 957 958

Math500 732 740 728 764 746 768 734 756

Scientific g MMLU-Pro 653 654 641 704 648 T4 640 712
GPQA 480 460 465 561 495 591 460 556

MuSR 635 646 634 635 635 638 628 631

Reasoning ~ DROP 747 737 754 742 756 739 747 747
QASC 941 934 936 940 937 945 934 939

oA 2wiki 308 395 397 401 405 407 409 398
HotpotQA 202 278 286 287 292 289 285 285

oARAG  2WikiRAG 557 559 564 569 550 557 557 556

HotpotQA_RAG  40.5 39.2 40.3 38.8 39.6 39.5 394 38.5

Table 17: Results of on-policy GRPO training on RewardBench2. RLVR denotes training with
answer supervision signals only. DRM denotes training with reasoning supervision signals only.
Combination denotes training with their combination. For each row within a model group, the
highest score is in bold.

Task Domain Dataset LLaMA3.1-8B-Instruct R1-distil-LLaMASB Qwen3-8B

RLVR DRM Combination RLVR DRM Combination RLVR DRM Combination

CodeMMLU 57.0 58.0 59.0 624  65.1 64.0 78.0 79.1 79.2
Code CodeScope 372 394 40.5 69.2  68.2 70.8 873 817 87.5
Cruxeval 55.6  54.8 56.4 744 76.0 76.1 929 928 91.9
Execution-v2 447 424 46.4 823 835 85.6 98.5  99.0 99.2
RM-Bench 59.5 577 60.5 73.6 653 69.0 856 728 83.5
Preference
UltraFeedback 63.1 652 65.5 634  64.0 63.9 73.0 65.1 72.5
AIME24 4.7 4.7 4.7 293 347 333 38.0 46.7 453
Math AMC23 205 23.0 24.5 705 77.5 80.5 75.0 815 79.5
GSM8K 90.7  89.6 92.3 725 831 83.0 95.1 96.1 96.0
Math500 40.8  38.0 454 62.8 67.0 67.2 73.8 758 75.8
Scientific QA MMLU-Pro 423 432 47.8 53.6 534 54.1 63.7 68.7 69.1
GPQA 30.8 28.8 323 39.4 439 424 439 57.6 56.6
MuSR 476 529 52.1 53.0 53.0 52.9 63.0 632 64.3
Reasoning DROP 623 618 63.3 543 425 50.0 746 74.8 74.4
QASC 833 835 85.1 838 84.6 83.5 934 94.1 94.2
QA 2wiki 29.5 263 30.6 267 244 27.6 40.6 422 414
HotpotQA 28.6  28.1 29.1 185 173 19.5 277 295 28.6
QA-RAG 2wiki_-RAG 341 332 34.3 36.5 247 29.2 56.0 55.6 55.1
HotpotQA_RAG  31.0 314 31.9 271 217 239 393 39.6 38.9
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Table 18: Ablation results of single dimension supervised training LLAMA3.1-8B-INSTRUCT on
RewardBench2. Training pairs are selected from ANY subset. DRM means training with DRM
supervision. All training pairs are selected from ANY subset.

Task Domain Dataset Native Confidence Coherence Relevance DRM
CodeMMLU 58.8 57.5 58.4 55.1 59.9

Code CodeScope 34.8 39.7 39.5 31.8 41.1
Cruxeval 50.4 53.9 53.5 324 57.5

Execution-v2 38.2 40.3 443 38.4 45.3

Preference RM-Bench 56.4 59.2 60.8 59.1 61.0
UltraFeedback 66.6 65.3 67.8 64.7 69.9

AIME24 4.7 4.0 4.7 2.7 6.0

Math AMC23 22.5 23.0 24.5 27.5 29.5
GSMS8K 88.8 83.0 89.8 89.7 91.8

Math500 39.6 40.4 45.8 434 484

Lo MMLU-Pro 41.9 46.7 48.7 42.0 48.7
Scientific QA poA 313 283 29.8 253 359
MuSR 483 48.7 50.8 46.2 51.7

Reasoning DROP 56.9 50.4 64.5 27.6 63.6
QASC 84.4 84.0 86.3 77.2 87.2

QA 2wiki 33.8 34.9 322 29.0 35.6
HotpotQA 29.3 29.6 30.0 26.0 31.8

2wiki_-RAG 31.2 28.5 36.1 31.2 39.9

QA-RAG HotpotQA_RAG  28.3 27.1 33.1 27.4 34.5

Table 19: Ablation results of single dimension supervised training R1-DISTIL-LLAMAS8B on Re-
wardBench?2. Training pairs are selected from ANY subset. DRM means training with DRM super-
vision. All training pairs are selected from ANY subset.

Task Domain Dataset Native Confidence Coherence Relevance DRM
CodeMMLU 59.7 60.2 63.9 62.8 66.3
Code CodeScope 67.4 65.9 67.4 66.3 70.2
Cruxeval 71.9 73.5 76.1 73.4 77.2
Execution-v2 80.8 81.0 84.6 81.8 86.0
Preference RM-Bench 71.9 71.3 70.5 68.7 74.6
UltraFeedback 65.2 64.6 64.8 65.0 66.8
AIME24 28.7 26.0 29.3 31.3 333
Math AMC23 70.5 70.5 71.0 69.5 75.5
GSMBK 66.7 69.7 67.8 73.2 69.2
Math500 62.6 60.4 62.6 64.2 63.2
MMLU-Pro 51.5 52.3 529 51.6 54.7
ientific QA
Scientific QA 5p0 0 39.9 39.9 39.9 409 449
MuSR 52.6 51.9 54.2 52.5 54.1
Reasoning DROP 50.8 56.4 55.3 29.5 50.2
QASC 82.1 81.6 83.2 80.8 84.1
QA 2wiki 26.2 26.6 30.5 15.0 31.6
HotpotQA 18.1 17.8 19.1 13.6 19.7
2wiki_ RAG 36.7 393 39.1 20.2 37.9
QARAG HotpotQA_RAG  27.1 27.1 279 17.9 273
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Table 20: Ablation results of single dimension supervised training QWEN3-8B on RewardBench?2.
Training pairs are selected from ANY subset. DRM means training with DRM supervision. All
training pairs are selected from ANY subset.

Task Domain Dataset Native Confidence Coherence Relevance DRM
CodeMMLU 77.9 78.0 79.5 78.1 80.3

Code CodeScope 86.5 86.8 86.3 86.7 874
Cruxeval 91.6 92.9 91.8 91.9 93.0

Execution-v2 98.5 98.1 98.3 98.3 99.0

Preference RM-Bench 85.4 84.8 84.6 84.8 85.6
UltraFeedback 713 71.1 72.0 72.0 73.2

AIME24 38.0 38.7 39.3 453 447

Math AMC23 72.0 72.5 71.5 79.5 79.0
GSMS8K 95.6 95.2 95.7 95.4 96.1

Math500 73.2 72.4 74.6 74.2 75.6

Lo MMLU-Pro 65.3 62.5 70.5 70.7 71.4
Scientific QA poA 480 439 54.0 561 581
MuSR 63.5 64.8 63.5 62.8 65.5

Reasoning DROP 74.7 744 74.0 74.6 74.9
QASC 94.1 93.8 93.7 94.0 94.2

QA 2wiki 39.8 40.9 39.5 42.0 42.2
HotpotQA 29.2 28.3 28.7 27.3 294

2wiki_-RAG 55.7 55.7 55.1 55.9 56.1

QA-RAG HotpotQA_RAG  40.5 40.2 40.0 40.2 40.7

Table 21: Ablation results of single dimension supervised training LLAMA3.1-8B-INSTRUCT on
HotpotQA with RAG. Training pairs are selected from ANY subset. DRM means training with DRM
supervision. All training pairs are selected from ANY subset.

Task Domain Dataset Native Confidence Coherence Relevance DRM
CodeMMLU 58.8 58.7 59.6 58.1 60.5

Code CodeScope 34.8 37.6 41.8 39.3 41.7
Cruxeval 50.4 54.5 54.0 52.5 56.2

Execution-v2 38.2 42.8 43.6 39.7 434

Preference RM-Bench 56.4 59.9 60.3 59.4 62.9
UltraFeedback 66.6 65.6 66.4 65.3 68.2

AIME24 4.7 33 6.7 53 33

Math AMC23 225 22.5 26.0 19.5 28.5
GSMBK 88.8 87.8 89.6 90.6 91.5

Math500 39.6 41.2 46.2 41.8 45.0

L MMLU-Pro 41.9 46.2 479 46.5 49.6
Scientific QA 5p0 0 313 283 29.3 318 343
MuSR 483 48.0 51.6 50.7 53.0

Reasoning DROP 56.9 62.3 65.3 58.9 67.3
QASC 84.4 83.4 85.4 87.5 87.5

QA 2wiki 338 352 38.4 37.6 40.9
HotpotQA 29.3 31.7 33.2 30.7 32.8

2wiki_RAG 31.2 32.8 45.5 43.0 48.4

QARAG HotpotQA_RAG  28.3 30.0 38.7 34.0 40.8
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Table 22: Ablation results of single dimension supervised training R1-DISTIL-LLAMAS8B on Hot-
potQA with RAG. Training pairs are selected from ANY subset. DRM means training with DRM
supervision. All training pairs are selected from ANY subset.

Task Domain Dataset Native Confidence Coherence Relevance DRM
CodeMMLU 59.7 64.2 64.6 65.4 66.6
Code CodeScope 67.4 67.3 68.5 69.2 69.7
Cruxeval 71.9 71.9 75.2 73.1 754
Execution-v2 80.8 80.8 83.5 81.8 85.6
Preference RM-Bench 71.9 71.9 70.0 70.2 72.9
UltraFeedback 65.2 65.0 64.0 64.4 67.0
AIME24 28.7 28.0 32.7 30.7 30.7
Math AMC23 70.5 64.0 79.5 71.5 80.5
GSMS8K 66.7 66.2 84.7 87.8 86.4
Math500 62.6 58.6 65.8 65.4 67.2
L MMLU-Pro 51.5 524 51.6 535 54.9
Scientific QA poA 39.9 414 39.9 384 414
MuSR 52.6 54.8 56.0 57.5 58.6
Reasoning DROP 50.8 63.0 63.0 41.0 65.4
QASC 82.1 84.6 84.1 83.1 85.2
QA 2wiki 26.2 24.3 37.3 7.1 37.9
HotpotQA 18.1 20.2 22.6 13.9 24.0
2wiki_-RAG 36.7 46.0 49.6 25.6 51.6
QA-RAG HotpotQA_RAG  27.1 33.5 35.8 22.6 37.2

Table 23: Ablation results of single dimension supervised training QWEN3-8Bon HotpotQA with
RAG. Training pairs are selected from ANY subset. DRM means training with DRM supervision.
All training pairs are selected from ANY subset.

Task Domain Dataset Native Confidence Coherence Relevance DRM
CodeMMLU 71.9 71.3 79.0 79.2 79.0
Code CodeScope 86.5 86.6 86.6 86.8 87.3
Cruxeval 91.6 92.1 92.0 91.9 92.2
Execution-v2 98.5 98.1 97.9 98.3 98.7
Preference RM-Bench 85.4 85.9 84.6 83.8 85.2
UltraFeedback 71.3 72.0 71.4 72.2 72.7
AIME24 38.0 38.0 44.0 453 47.3
Math AMC23 72.0 73.0 78.5 83.5 82.5
GSMBK 95.6 95.5 95.4 95.7 96.0
Math500 73.2 72.0 75.6 76.2 76.4
MMLU-Pro 65.3 62.4 71.1 70.1 70.4
ientific QA
Scientific QA 5p0 0 480 429 52,0 556 561
MuSR 63.5 63.9 62.7 63.2 63.5
Reasoning DROP 74.7 73.2 73.5 74.4 74.2
QASC 94.1 92.7 93.7 94.0 94.0
QA 2wiki 39.8 40.9 38.9 37.5 40.1
HotpotQA 29.2 27.2 28.5 28.2 28.7
2wiki_ RAG 55.7 55.5 55.5 53.9 56.9
QARAG HotpotQA_RAG  40.5 38.7 38.1 35.4 38.8
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