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Abstract

We study offline reinforcement learning in average-reward MDPs, which presents
increased challenges from the perspectives of distribution shift and non-uniform
coverage, and has been relatively underexamined from a theoretical perspective.
While previous work obtains performance guarantees under single-policy data
coverage assumptions, such guarantees utilize additional complexity measures
which are uniform over all policies, such as the uniform mixing time. We develop
sharp guarantees depending only on the target policy, specifically the bias span and
a novel policy hitting radius, yielding the first fully single-policy sample complexity
bound for average-reward offline RL. We are also the first to handle general weakly
communicating MDPs, contrasting restrictive structural assumptions made in prior
work. To achieve this, we introduce an algorithm based on pessimistic discounted
value iteration enhanced by a novel quantile clipping technique, which enables the
use of a sharper empirical-span-based penalty function. Our algorithm also does
not require any prior parameter knowledge for its implementation. Remarkably,
we show via hard examples that learning under our conditions requires coverage
assumptions beyond the stationary distribution of the target policy, distinguishing
single-policy complexity measures from previously examined cases. We also
develop lower bounds nearly matching our main result.

1 Introduction

Reinforcement learning (RL) has achieved impressive results for many control problems where it
is possible to collect large amounts of experience through online interaction with the environment.
However, many real-world application areas where we would like to apply RL methods, such as
robotics, education, or healthcare, there may not exist simulators and data collection can be expensive
or dangerous. Offline RL is a subfield of RL which seeks to address these issues by learning from
historical data without online interaction, and hence achieving the maximum possible statistical
efficiency is the paramount concern. The lack of online experience collection poses many related
challenges to offline RL methods. One issue, often termed distribution shift, is that improving a
policy’s performance will inherently change the distribution of states and actions it experiences,
potentially moving it away from the distribution of the historical dataset. Another closely related
issue, sometimes referred to as non-uniform coverage, is that our dataset may generally be unevenly
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concentrated so that it is impossible to estimate the performance of all policies to uniform accuracy,
and instead we must balance exploitation with varying degrees of confidence.

Recent research has made significant progress on the theoretical limits of offline RL by addressing
these issues. However, many of these advances have been confined to the finite horizon setting,
or the discounted infinite horizon setting, which can also behave like a finite horizon due to the
irrelevance of distant future rewards. In this paper we focus on the challenging average-reward setting
where the goal is to maximize the long-term average of rewards, which has been underexplored from
a theoretical perspective. We briefly argue that the two aforementioned difficulties are amplified
in the average-reward setting, and have not been satisfactorily addressed by previous work. First,
since the average-reward objective captures performance in the long-horizon limit, we must contend
with distribution shifts that occur after arbitrarily long time scales. Secondly, the issue of non-
uniform coverage is magnified because while the (effective) horizon can serve as an extrinsic upper
bound on the complexity of a particular policy, in the average-reward setting different policies can
have arbitrarily different intrinsic complexities (as measured by parameters such as the span of the
policy’s relative value function). Existing work has developed algorithms which succeed under
single-policy data coverage assumptions/concentrability coefficients, but has only done so when
also using parameters that upper bound the complexity of all policies. Such large uniform-policy
complexity measures can lead to vacuous bounds and overall fail to fully address both of the above
issues. Additionally, algorithms from prior work fail to obtain optimal statistical efficiency and
require foreknowledge of unlearnable parameters (such as coverage coefficients or environmental
complexity parameters) for their implementation.

1.1 Our contributions

We address all of these challenges, developing an algorithm for (single-policy coverage) offline
average-reward RL which is the first to handle the weakly communicating setting where not all
policies have constant gains, as well as the first to obtain a convergence rate dependent on the bias
span of only the target policy (as opposed to uniform complexity measures). Informally, our main
theorem provides a high-probability guarantee on the suboptimality of the output policy π̂ of the form∥∥∥ρ⋆ − ρπ̂

∥∥∥
∞

≤ Õ

(√
S∥hπ⋆∥span

m

)
, (1)

where ∥hπ⋆∥span is the bias-span of the target policy π⋆ and S is the number of states. This holds
whenever the sample size n(s, a) per state-action pair (s, a) satisfies n(s, π⋆(s)) ≥ mµπ⋆

(s) +

Õ
(
Thit(P, π

⋆)2
)

for all states s. Here µπ⋆

is the stationary distribution of the target policy, m is the
“effective dataset size,” and Thit(P, π

⋆) is a novel policy hitting radius that measures the time for π⋆

to reach a particular state in the support of its stationary distribution, and is thus also a single-policy
complexity measure.

Interestingly, this condition requires data even for state-action pairs (s, π⋆(s)) for which s is transient
(µπ⋆

(s) = 0) under the target policy, and we show via a hard example that this requirement is
nearly unimprovable. In particular, this implies two surprising findings: i) with a fully “single-policy”
sample complexity, learning a near-optimal policy is impossible under coverage conditions with
respect to only the stationary distribution of the target policy, even with arbitrarily large amounts of
data; ii) on the other hand, only a bounded amount of data from the transient state-action pairs of
the target policy is sufficient to achieve vanishing suboptimality. We also show another lower bound
which implies the optimality of the guarantee (1) in terms of its dependence on m, making our result
the first among offline average-reward RL approaches to achieve an optimal rate for large m.

Our algorithm is based upon a pessimistic discounted value iteration procedure, involving a very large
and prior-knowledge-free choice of discount factor. Most notably we develop a quantile clipping
technique which enables the use of a sharper empirical-span-based penalty function.

1.2 Related work

First we discuss prior work on average-reward offline RL. To the best of our knowledge the only works
with explicit results for this setting are Ozdaglar et al. [2024] and Gabbianelli et al. [2023]. Ozdaglar
et al. [2024] assume that the MDP is unichain, and obtain guarantees with a constrained linear
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programming (LP) algorithm in terms of the uniform mixing time τunif (defined in Section 2), for
both general function approximation and tabular settings. We also discuss quantitative comparisons
to the tabular results from Ozdaglar et al. [2024] after presenting our main theorem. Gabbianelli
et al. [2023] assume that all policies in the MDP have constant (state-independent) gain, which is
more general than unichain MDPs but does not hold in weakly communicating MDPs. Gabbianelli
et al. [2023] consider the linear MDP setting, develop an algorithm based on primal-dual methods
for solving LPs, and obtain guarantees in terms of a uniform bound on the span of all policies Hunif .
The algorithms in both of these works require knowledge of certain concentrability coefficients.

Next we briefly discuss related work for offline RL outside of the average-reward setting. Our algo-
rithm is essentially a careful refinement of the pessimistic value iteration approach of Li et al. [2023]
for the discounted tabular setting, which in turn is a refinement of Rashidinejad et al. [2022]. Many
works (e.g., Liu et al. [2020], Jin et al. [2021], Xie et al. [2021], Uehara and Sun [2021], Rashidinejad
et al. [2022]) have demonstrated the ability for pessimistic approaches to address the distribution
shift/non-uniform coverage challenges of offline RL and achieve near-optimal performance under
single-policy concentrability assumptions.

Finally we discuss prior work on average-reward RL under uniform coverage assumptions. Many
papers on average-reward RL considering the tabular generative model setting [Kearns and Singh,
1998] actually only require a dataset with an equal number of samples from all state-action pairs (e.g.,
Wang et al. [2022, 2023], Zurek and Chen [2024, 2025a,b]), and hence we believe such papers could
be easily extended to the uniform coverage setting, obtaining a guarantee dependent on the smallest
number of samples for any state-action pair. While such works might be considered offline RL,
we reserve this term for guarantees involving only single-policy coverage assumptions. Achieving
instance-dependent guarantees in terms of the bias span of an optimal policy (e.g., Zhang and Xie
[2023], Wang et al. [2022], Zurek and Chen [2025b]) and removing the need for prior knowledge of
complexity parameters (e.g., Jin et al. [2024], Neu and Okolo [2024], Tuynman et al. [2024], Zurek
and Chen [2025a]) have been the objectives of extensive research in the uniform coverage setting.

2 Background and problem setup

2.1 Background

A Markov decision process (MDP) is a tuple (S,A, P, r) where S and A respectively denote the
finite state and action spaces, P : S ×A → ∆(S) is the transition kernel (with ∆(S) denoting the
probability simplex on S), and r : [0, 1]S×A is the reward function. We let S = |S| and A = |A|.
We generally omit the explicit reference to S and A when defining MDPs. A (Markovian/stationary)
policy is a mapping π : S → ∆(A). We call a policy deterministic if for all s ∈ S, π(s) only
places probability mass on one action, and in this case we also treat π as a mapping S → A. Let Π
denote the set of all stationary deterministic policies. An initial state s0 ∈ S and policy π induce a
distribution over trajectories (s0, A0, S1, A1, . . . ) where At ∼ π(St), St+1 ∼ P (· | St, At), and we
let Eπ

s0 denote the expectation with respect to this distribution. We often treat P as an (S ×A)-by-S
matrix where Psa,s′ = P (s′ | s, a), and let Psa denote the sa-th row of this matrix (treated as a “row
vector”, so PsaX =

∑
s′ Psa(s

′)X(s′) for X ∈ RS). For X ∈ RS and s ∈ S, a ∈ A, define the
next-state value variance VPsa

[X] =
∑

s′∈S P (s′ | s, a)X(s′)2 − (
∑

s′∈S P (s′ | s, a)X(s′))2.

A discounted MDP is a tuple (S,A, P, r, γ) where γ ∈ [0, 1) is the discount factor. For a policy
π, the discounted value function V π

γ ∈ [0, 1
1−γ ]

S is defined V π
γ (s) = Eπ

s [
∑∞

t=0 γ
tRt] where Rt =

r(St, At), and the gain ρπ ∈ [0, 1]S , is ρπ(s) = C-limt→∞ Eπ
s [Rt] = limT→∞

1
T E

π
s [
∑T−1

t=0 Rt]
where C-lim is the Cesaro limit. We define the optimal gain ρ⋆ = supπ∈Π ρπ , and we say a policy π
is gain-optimal if ρπ = ρ⋆. A gain-optimal policy always exists [Puterman, 1994]. The bias function
of a policy π, hπ ∈ RS , is hπ(s) = C-limT→∞ Eπ

s [
∑T−1

t=0 (Rt − ρπ(St))].

M : RS×A → RS denotes the action maximization operator where M(Q)(s) = maxa∈A Q(s, a),
and Mπ denotes the policy matrix where Mπ(Q)(s) =

∑
a∈A π(s)(a)Q(s, a), for any Q ∈ RS×A,

s ∈ S, and policy π. We often drop the parenthesis and write MQ := M(Q). For any Q ∈ RS×A,
the discounted (action-value) Bellman operator T : RS×A → RS×A is T (Q) := r+ γPM(Q), and
the policy-evaluation Bellman operator T π is T π(Q) := r + γPMπQ, for any policy π.
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Let N = {1, 2, . . . } denote the set of natural numbers. Define 0,1 as the all-zero and all-one vectors,
respectively. For X ∈ RS , let ∥X∥span = maxs∈S X(s)−mins∈S X(s) denote the span semi-norm.
We use Õ(·), Θ̃(·), Ω̃(·) notation to ignore constants as well as logarithmic factors in S,A, 1

1−γ , 1
δ ,

and ntot, where δ and ntot are the failure probability and the total dataset size, to be defined below.
Let es ∈ RS denote the vector which is all zero except for a 1 in entry s ∈ S. For two vectors
v, v′ ∈ Rd, v ≥ v′ denotes the elementwise inequality v(i) ≥ v′(i) for all i.

Under the transition kernel P , a policy π induces a Markov chain over state S, whose transition
matrix is denoted by Pπ. The policy π is said to be unichain if it induces a unichain Markov chain,
meaning that the chain consists of a single (irreducible) recurrent class plus a possibly empty set of
transient states. An MDP is unichain if all deterministic policies in the MDP are unichain. An MDP
is communicating (aka strongly connected) if for any pair of states s, s′ ∈ S, s′ is accessible from
s, meaning there exists some policy π and some k ∈ N such that Eπ

s I(Sk = s′) > 0. An MDP is
weakly communicating if it consists of a set of states Sc such that, for any s, s′ ∈ Sc, s′ is accessible
from s, plus a set of states St = S \ Sc which are transient under all policies. All unichain and
communicating MDPs are weakly communicating.

A unichain policy π has constant (state-independent) ρπ , and thus in unichain MDPs, all policies have
constant gains. In weakly communicating MDPs, the optimal gain ρ⋆ is constant, but sub-optimal
policies π may have non-constant ρπ. For any unichain policy π, we write its (unique) stationary
distribution as µπ ∈ RS (which we treat as a “row vector”). For any unichain policy π, we define
its mixing time τ(π) = inf{t ≥ 0 :

∥∥e⊤s P t
π − µπ

∥∥
1
≤ 1

2}. Define the uniform mixing time as
τunif = supπ∈Π τ(π). Also define the uniform span bound Hunif = supπ∈Π ∥hπ∥span. For any
s ∈ S, let ηs := inf{t ≥ 0 : St = s} be the first hitting time of state s. Define the diameter
D = maxs,s′∈S minπ∈Π Eπ

s [ηs′ ], and we sometimes write DP to emphasize the dependence on P .

2.2 Offline RL setting

We assume a sample size function n : S ×A → N is fixed a priori, and for each s ∈ S, a ∈ A, we
assume that we have n(s, a) samples S1

s,a, . . . , S
n(s,a)
s,a sampled independently from the next-state

transition distribution P (· | s, a). We define the dataset D =
(
(s, a, Si

s,a)
)
s∈S,a∈A,1≤i≤n(s,a)

and let
ntot =

∑
s∈S,a∈A n(s, a) denote the total dataset size. We assume the reward function r is known.

We introduce a new quantity which plays a key role in both our main theorem and our lower bounds.
For any transition kernel matrix P and policy π, we define the policy hitting radius

Thit(P, π) := inf
s⋆∈S

sup
s0∈S

Eπ
s0 [ηs⋆ ], (2)

where again ηs is the first hitting time of state s. In words, Thit(P, π) measures the largest expected
amount of time required to hit the “center” state s⋆, for the optimal choice of s⋆ (which will always
be a recurrent state). As shown in Lemma B.10, Thit(P, π) is always finite if Pπ is unichain. We also
always have that ∥hπ∥span ≤ 4Thit(P, π) for any π (Lemma B.13). There is generally no relationship
between Thit(P, π) and τ(π); see the discussion in Appendix B.5.1.

3 Main results

3.1 Algorithm

First we describe the algorithm used to obtain our main result. We employ a discounted reduction
approach, i.e., approximating the average-reward MDP by a discounted MDP with an appropriate
choice of discount factor. The main component of our approach, Algorithm 1, is a pessimistic value
iteration subroutine which can be understood as solving a discounted MDP.

Now we define the pessimistic Bellman operator T̂pe : RS×A → RS×A used in Algorithm 1.
T̂pe is a function of γ as well as the dataset D, utilizing the empirical transition matrix P̂ where
P̂ (s′ | s, a) = 1

n(s,a)

∑n(s,a)
i=1 I(Si

sa = s′). If n(s, a) = 0 for some s, a then for concreteness we
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Algorithm 1 Pessimistic Value Iteration With Quantile Clipping
input: Dataset D, reward function r, discount factor γ ∈ (0, 1), failure probability δ ∈ (0, 1)

1: Form empirical transition matrix P̂ used in T̂pe from D

2: Let Q̂0 = 0 and K =
⌈
log(

2ntot
1−γ )

1−γ

⌉
▷ initialization and number of iterations

3: for t = 1, . . . ,K do
4: Let Q̂t = T̂pe(Q̂t−1)
5: end for
6: Let Q̂ = Q̂K and for each s ∈ S, let π̂(s) ∈ argmaxa∈AQ̂(s, a)

7: return π̂, Q̂

define P̂ (s′ | s, a) = 1/S, although any default probability distribution over S would be fine, since
our construction of T̂pe does not depend on rows P̂sa such that n(s, a) = 0.1

For any Q ∈ RS×A and any s ∈ S, a ∈ A, we define

T̂pe(Q)(s, a) := r(s, a) + γmax
{
P̂saTβ(s,a)(P̂sa,MQ)− b(s, a,MQ),min

s′
(MQ)(s′)

}
. (3)

Here MQ ∈ RS takes the maximum over actions of the Q-function Q (and thus should be understood
as the corresponding value function). The term b(s, a,MQ) ≥ 0 is a certain Bernstein-style penalty,
which is chosen below to ensure that T̂pe(Q) lower-bounds the true (unknown) Bellman operator
T (Q) for any Q. The expression P̂saTβ(s,a)(P̂sa,MQ) denotes the inner product of the probability
distribution P̂sa with the vector Tβ(s,a)(P̂sa,MQ) ∈ RS , which is a “quantile-clipped” version of
MQ to be defined momentarily. For β ∈ [0, 1], the quantile clipping operator Tβ : RS × RS → RS

is defined as follows: for any V ∈ RS , s ∈ S, and probability distribution µ ∈ RS , let

Tβ(µ, V )(s) = min

{
V (s), sup

{
V (s′) : s′ ∈ S,

∑
s′′∈S:V (s′′)≥V (s′)

µ(s′) ≥ β

}}
. (4)

In words, all entries of V larger than the (largest) 1− β quantile with respect to µ are clipped down
to this quantile. To extend the definition to β > 1, we set Tβ(µ, V )(s) = mins′∈S V (s′), that is all
entries will be clipped to the minimum entry of V . Finally we define the penalty term

b(s, a, V ) = max

{√
β(s, a)VP̂sa

[
Tβ(s,a)(P̂sa, V )

]
, β(s, a)

∥∥∥Tβ(s,a)(P̂sa, V )
∥∥∥

span

}
+

5

ntot
(5)

where α = 8 log
(
6S2Antot

(1−γ)δ

)
and β(s, a) = α

max{n(s,a)−1,1} . Note that β(s, a) = Õ( 1
n(s,a) ) (when-

ever n(s, a) > 0).

The pessimistic Bellman operator T̂pe has several nice properties that are crucial to our analysis.

Lemma 3.1. T̂pe satisfies the following:

1. Monotonicity: If Q ≥ Q′ then T̂pe(Q) ≥ T̂pe(Q′).

2. Constant shift: For any c ∈ R, T̂pe(Q+ c1) = T̂pe(Q) + γc1.

3. γ-contractivity: T̂pe is a γ-contraction and has a unique fixed point Q̂⋆
pe ∈ [0, 1

1−γ ]
S .

See Lemma B.1 for a more complete statement. In summary, like previous pessimistic value iteration
approaches [Li et al., 2023, Rashidinejad et al., 2022], our pessimistic Bellman operator shares key
properties with usual Bellman operators enabling us to find an approximate fixed point in Õ( 1

1−γ )

value iteration steps, and then we will choose policy π̂ to be greedy with respect to this fixed point.

Now we discuss the motivation for quantile clipping, and the differences from prior work. In particular
we highlight the constant shift property enjoyed by T̂pe. This is highly desirable for the average-reward

1If n(s, a) = 0 then β(s, a) = α > 1 and Tβ(s,a)(P̂sa,MQ) = (mins′(MQ)(s′))1, causing the max
in (3) to equal mins′(MQ)(s′).
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setting, and more generally any weakly communicating MDPs, since in such MDPs the optimal value
function behaves as V ⋆

γ ≈ 1
1−γ ρ

⋆+h⋆ and ρ⋆ is a multiple of 1. The constant shift property essentially
guarantees that we only penalize the variability in the relative value differences between states, not
the overall horizon-dependent scale 1

1−γ of the cumulative rewards. The ∥ ·∥span-based second term in
our penalty function definition (5) of b is essential for this constant-shift property, since the span semi-
norm is invariant to translation by multiples of 1. Previous “Bernstein-style” penalty functions [Li
et al., 2023] use a larger term like β(s, a) 1

1−γ ≈ 1
n(s,a)

1
1−γ , which breaks the constant shift property

and can dominate the first (variance-based) term in (5) when used with large horizons. Naively using
β(s, a)∥V ∥span in the second term of (5) actually fails to ensure the monotonicity and contractivity
properties of T̂pe, for reasons that we elaborate upon in Section 4. Fortunately, the introduction of
quantile clipping remedies these issues, and only introduces small additional bias: since only entries
representing at most β(s, a) = Õ( 1

n(s,a) ) of the probability mass with respect to P̂sa have their

values clipped, we have P̂saTβ(s,a)(P̂sa, V ) ≤ P̂saV ≤ P̂saTβ(s,a)(P̂sa, V ) + β(s, a) ∥V ∥span , and
introducing quantile clipping within the two terms of the penalty function b in (5) only reduces the
penalty value, relative to instead using VP̂sa

[V ] and ∥V ∥span. (See Lemma B.14.)

3.2 Main theorem

Now we present our main theorem on the performance of Algorithm 1. We will apply Algorithm 1
with a very large discount factor γ such that the effective horizon is 1

1−γ = ntot.

Theorem 3.2. There exist absolute constants C1, C2 such that the following holds: Fix δ > 0. Let
γ = 1 − 1

ntot
and α = 8 log

(
6S2Antot

(1−γ)δ

)
. Let π⋆ be a deterministic gain-optimal policy which is

unichain with stationary distribution µπ⋆

. Suppose there exists some m ∈ N such that

n(s, π⋆(s)) ≥ mµπ⋆

(s) + α (C2Thit(P, π
⋆))

2
+ 4.

Then letting π̂ be the policy returned by Algorithm 1 with inputs D, r, γ = 1− 1
ntot

, and δ, we have
with probability at least 1− 5δ that

ρπ̂ ≥ ρ⋆ −
√

C1S(∥hπ⋆∥span + 1)α

m
.

We prove Theorem 3.2 in Appendix B. Theorem 3.2 demonstrates that as the “effective dataset size”
m increases, the suboptimality of π̂ decreases at a rate of Õ(

√
S∥hπ⋆∥span/m), which matches our

lower bound Theorem 3.4. Our coverage assumption is qualitatively different than previous works on
average-reward RL, since even for states s which are transient under π⋆ (and thus have µπ⋆

(s) = 0),
we still require Õ(Thit(P, π

⋆)2) samples from the state-action pair (s, π⋆(s)). Note that up to a
log factor this transient state coverage assumption is independent of m, meaning that vanishing
suboptimality is possible with only an essentially bounded amount of data from transient states. (In
the absence of this additional term we could treat ntot/m as a “concentrability coefficient” similar to
prior work, but we believe our results are stated more clearly in terms of the effective dataset size m.)
As shown in Theorem 3.3, this transient data requirement is necessary to obtain a ∥hπ⋆∥span-based
guarantee, and our dependence on Thit(P, π

⋆) is nearly optimal. Theorem 3.2 requires π⋆ to be
unichain, which is a mild assumption, since even in weakly communicating MDPs where not all
policies are unichain, there always exists a unichain gain-optimal policy [Bertsekas, 2018].

No prior parameter knowledge, such as of ∥hπ⋆∥span or the value of m (or equivalently a coverage
coefficient) is needed for Algorithm 1 to be implemented and enjoy the above guarantee. In particular
γ is set so that the effective horizon is ntot. Actually our theorem would hold for arbitrarily larger
choices of the effective horizon, and the guarantee would not degrade except for a logarithmic
dependence on the effective horizon, but this would be suboptimal from a computational perspective,
since Õ(1/(1− γ)) iterations are required for convergence in Algorithm 1. Also see Theorem B.20
for a version of Theorem 3.2 allowing π⋆ to be gain-suboptimal.

In the unichain tabular setting, Ozdaglar et al. [2024] obtain a suboptimality bound like
Õ(
√
C2τ2unifS/ntot) where C ≥ 1 is a certain coverage coefficient roughly equivalent to ntot/m.

With this substitution their bound becomes Õ(
√
Cτ2unifS/m), which interestingly degrades with the

6



coverage coefficient C even as the effective dataset size m is held constant, while our bound has no
such issue. We also have ∥hπ⋆∥span ≤ O(τunif), and qualitatively ∥hπ⋆∥span is much sharper since it
depends only on π⋆ rather than all policies.

3.3 Lower bounds

In this subsection we present two lower bounds implying the near-optimality of our Theorem 3.2.
Below, for an MDP (Pθ, r), ρπθ , hπ

θ and µπ
θ denote the gain, bias and stationary distribution of a policy

π, respectively; ρ∗θ and Dθ denote the optimal gain and the diameter of the MDP, respectively; and
Pθ,n denotes the distribution of the dataset D under this MDP when the sample size function is n.

First, we present the surprising fact that, to obtain convergence rates dependent on certain single-
policy complexity measures including ∥hπ⋆∥span and Thit(P, π

⋆), coverage assumptions with respect
to only the stationary distribution of the target policy are insufficient to learn a near-optimal policy,
even with an arbitrarily large amount of data.
Theorem 3.3. For any T ≥ 4 and any m ∈ N, there exist a finite index set Θ, transition matrices
Pθ for each θ ∈ Θ, and a reward function r, such that for all δ ∈

(
0, 1

e9

]
, there exists a function

n : S ×A → N satisfying the following:

1. For each θ ∈ Θ, the MDP (Pθ, r) is unichain and communicating, with A ≤ O
(⌈

m
T

⌉)
actions and diameter T .

2. For each θ ∈ Θ, the MDP (Pθ, r) has a unique deterministic gain-optimal policy π⋆
θ such

that Thit(Pθ, π
⋆
θ) ≤ T and n(s, π⋆

θ(s)) ≥ mµ
π⋆
θ

θ (s) + T
6 log

(
1
δ

)
for all s ∈ S.

3. For any algorithm A that maps the dataset D to a stationary policy, we have

max
θ∈Θ

Pθ,n

(
ρ∗θ − ρ

A (D)
θ > 1/2

)
≥ δ.

Note that the “effective dataset size” parameter m can be taken arbitrarily large, meaning that learning
better than a 1

2 -suboptimal policy is impossible even with arbitrarily large amounts of data from the
stationary distribution of the target policy. This does not contradict the error bounds from prior work
which make stationary-distribution-based coverage assumptions and involve uniform complexity mea-
sures τunif , Hunif [Ozdaglar et al., 2024, Gabbianelli et al., 2023], since the parameters τunif , Hunif

scale with m in our hard instances in such a way as to render such bounds vacuous. In contrast,
the parameters ∥hπ⋆

θ

θ ∥span, Thit(Pθ, π
⋆
θ), and Dθ remain bounded, implying that a convergence rate

involving any of these parameters is impossible without data coverage beyond the stationary distri-
bution, revealing a qualitatively different behavior of such parameters. While oftentimes results for
average-reward setups can be predicted/derived by taking appropriate large-γ limits of results for
discounted settings, taking the limit as γ → 1 of usual discounted occupancy coverage assumptions
(e.g., C⋆ in Rashidinejad et al. [2022, Theorem 6]) only leads to requirements on covering the
stationary distribution.

The setup in Theorem 3.3 even provides the learner with Ω̃(Thit(Pθ, π
⋆
θ)) samples from state-action

pairs which are transient under the target policy (µ
π⋆
θ

θ (s) = 0), and this is still insufficient for
learning near-optimal policies. This implies that the transient state dataset coverage requirement
of Theorem 3.2 is nearly unimprovable, up to an additional factor of Õ(Thit(P, π

⋆)). A complete
proof of Theorem 3.3 is provided in Appendix C and a sketch is provided in Section 4, but we briefly
summarize the key idea: even with an arbitrarily large (but finite) amount of data from the recurrent
class of the target policy, we may inevitably learn a policy with a small probability of leaving these
well-covered states. Without any data we cannot learn how to recover from such a transition and
navigate back to highly-rewarding regions quickly enough. This unfavorable but rare transition
has negligible impact for finite horizon/discounted RL objectives (if the starting state is within the
highly-rewarding region). In unichain MDPs all policies are guaranteed to eventually return to the
recurrent class of the optimal policy eventually (because all recurrent classes must overlap, otherwise
it would be possible to construct a multichain policy), but the fact that some policies take a long
time to do so means that the uniform mixing time τunif is very large, even if the optimal policy can
recover quickly. Despite being unichain, such MDPs are qualitatively close to being non-unichain
(but weakly communicating).

Next, we present a lower bound which demonstrates that dependence on m in Theorem 3.2 is tight.
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Theorem 3.4. There exist absolute constants c1, c2, c3 > 0 such that for any T ≥ c1, S ≥ c2, k ≥ 0,
and m ≥ max{TS, kS}, one can construct a finite index set Θ, transition matrices Pθ for each
θ ∈ Θ, a reward function r, and a function n : S ×A → N such that the following hold:

1. For each θ ∈ Θ, the MDP (Pθ, r) is unichain and communicating, with S states and
diameter T .

2. For each θ ∈ Θ, the MDP (Pθ, r) has a unique stationary gain-optimal policy π⋆
θ such that

Thit(Pθ, π
⋆
θ) ≤ T and n(s, π⋆

θ(s)) ≥ mµ
π⋆
θ

θ (s) + k for all s ∈ S.

3. For any algorithm A that maps the dataset D to a stationary policy, we have

max
θ∈Θ

Pθ,n

(
ρ∗θ − ρ

A (D)
θ > c3

√
TS

m

)
≥ 1

64
. (6)

Since generally Thit(P, π) ≥ ∥hπ∥span /4 (see Lemma B.13), Theorem 3.2 implies a lower bound in

terms of ∥hπ⋆∥span (∥hπ⋆
θ

θ ∥span and Thit(Pθ, π
⋆
θ) are on the same order in the instances of Theorem

3.4). We add the parameter k to demonstrate that a coverage requirement in the form of Theorem
3.2 does not affect the dependence on m in (6) for sufficiently large m. In particular after setting
k = Θ̃(T 2) to match Theorem 3.2, its dependence on ∥hπ⋆∥span, S, and m matches (6) and thus is
unimprovable up to Õ(·) factors as long as m ≥ Θ̃(T 2S). Theorem 3.4 is proven in Appendix D.

4 Proof sketches

4.1 Main theorem

First we discuss the proof of Theorem 3.2, including the motivation for quantile clipping. The key
idea of pessimistic value iteration is to choose T̂pe so that T̂pe(Q̂⋆

pe) ≤ T (Q̂⋆
pe), and then letting π̂ be

greedy with respect to Q̂⋆
pe (meaning T (Q̂⋆

pe) = T π̂(Q̂⋆
pe)), we have

Q̂⋆
pe = T̂pe(Q̂⋆

pe) ≤ T (Q̂⋆
pe) = T π̂(Q̂⋆

pe)

so by standard monotonicity arguments we have Q̂⋆
pe ≤ Qπ̂. The challenge is then to choose T̂pe

as “close” to T as possible, so that Q̂⋆
pe is as close as possible to Q⋆ (while ensuring T̂pe(Q̂⋆

pe) ≤
T (Q̂⋆

pe)), in order to maximize Qπ̂. Using α to hide Õ(·) terms, an empirical Bernstein-like bound
[Maurer and Pontil, 2009] for the quantity V̂ ⋆

pe = MQ̂⋆
pe, and upper-bounding a sum by max, yields

PsaV̂
⋆
pe ≥ P̂saV̂

⋆
pe −max


√√√√

α
VP̂sa

[
V̂ ⋆
pe

]
n(s, a)

, α

∥∥∥V̂ ⋆
pe

∥∥∥
span

n(s, a)

 =: P̂saV̂
⋆
pe − b̃(s, a, V̂ ⋆

pe) ∀s, a. (7)

This sharp span-based form of penalty function b̃ is crucial for the constant shift property described
in Lemma 3.1, since both VP̂sa

[·] and ∥·∥span are invariant to shifts by multiples of 1. As discussed
there this property is essential for the average-reward setting, and the Bernstein-style penalty used
in Li et al. [2023] replaces the second term from the max in (7) with 1

1−γ ≥ ∥V̂ ⋆
pe∥span and hence

does not enjoy this property. However, we cannot simply use an operator like T̃ (Q)(s, a) :=

r(s, a) + γP̂saV̂
⋆
pe − γb̃(s, a, V̂ ⋆

pe), because the span term within b̃ would lead to non-monotonicity
of T̃ and disrupt many other essential properties (like γ-contractivity). To see the non-monotonicity,
suppose some s′ has P̂ (s′ | s, a) < α

n(s,a) . Then, for V ∈ RS where V (s′) is the largest entry,
ignoring non-differentiability edge cases, we have

d

dV (s′)

(
P̂saV − α

∥V ∥span

n(s, a)

)
=

d

dV (s′)

(
P̂saV − α

V (s′)−mins′′∈S V (s′′)

n(s, a)

)
= P̂ (s′ | s, a)− α

n(s, a)
< 0.
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However, if we replace V with the quantile-clipped quantity Tα/n(s,a)(P̂s,a, V ), then increasing
V (s′) (when it is the largest entry of V ) will only increase Tα/n(s,a)(P̂s,a, V ) if P̂ (s′ | s, a) has at
least α/n(s, a) probability mass. Hence, by fixing the overpenalization caused by ∥·∥span, quantile
clipping is essential to define our empirical-span-based pessimistic Bellman operator.

Now we discuss a few other aspects of the proof of Theorem 3.2. Obtaining the Bernstein-style
inequality (7) is nontrivial due to statistical dependence between P̂sa and V̂ ⋆

pe. We remedy this with an
argument based on leave-one-out/absorbing MDP techniques [Agarwal et al., 2020], which requires
additional covering steps due to the presence of quantile clipping. (See Lemmas B.6 and B.5.)

It is somewhat surprising that Theorem 3.2 is able to obtain a bias-span-based guarantee without
requiring any prior bias-span knowledge, since prior work in related uniform coverage settings has
shown this is impossible when the effective horizon is large/on the same order as the size of the
dataset [Zurek and Chen, 2024]. This is closely related to the issue that the bias span ∥hπ∥span of a
policy π is not estimable to multiplicative error with a sample complexity polynomial in only S,A,
and ∥hπ∥span [Zurek and Chen, 2025b, Tuynman et al., 2024]. However, our proof suggests that
∥hπ∥span is estimable if we allow a dependence on the policy hitting radius Thit(P, π), which we
believe is an independently interesting finding. (See Lemma B.18.) This fact plays a key role in
bounding the suboptimality in terms of ∥hπ∥span.

4.2 Transient lower bound

Next we briefly describe the idea behind the hard instances within Theorem 3.3, which implies that
transient coverage is required for offline RL with single-policy complexity parameters. Consider
the MDP P in Figure 1, which is parameterized by m, which we imagine as arbitrarily large, and
T , which we imagine as measuring the complexity of P . There are two states with two actions
each, an absorbing stay action and a leave action which has a small chance of leading to the other
state. State 1 has reward 1 for both actions and state 2 has reward 0 for both actions, so clearly the
optimal policy π⋆ is to take leave in state 2 and take stay in state 1, and the associated stationary
distribution has all its mass on state 1. Also, assuming m ≥ T , Thit(P, π

⋆) = T , since this is
the expected amount of time to hit state 1 starting from state 2. Therefore to satisfy the coverage
assumption n(s, π⋆(s)) ≥ mµπ⋆

(s) + Thit(P, π
⋆), it would suffice to provide m samples for both

state 1 actions, and T samples for both state 2 actions.

1 2

a = leave, R = 1

a = leave, R = 0a = stay, R = 1

a = stay, R = 0

1− 1
m

1
m

1− 1
T

1
T

P

1 2

a = stay, R = 1

a = stay, R = 0a = leave, R = 1

a = leave, R = 0

P̂

Figure 1: An MDP P parameterized by m,T , and an empirical MDP P̂ which has constant probability
of being sampled from P . Each solid arrow indicates an action and is annotated with its reward.
Arrows which split into multiple dashed arrows indicate possible stochastic transitions, and each
dashed arrow is annotated with the associated probabilities.

For this sample size function n, with constant probability we will not observe any transitions to the
other state from either of the leave actions (that is, the samples from each of these state-action pairs
would all be of the form (s, leave, s)). Under such an event, illustrated by the empirical MDP P̂ , no
algorithm could distinguish between the leave and stay actions in either state better than random
guessing. If an algorithm is forced to return a deterministic policy, then there would be a constant
probability of choosing the policy π where (π(1), π(2)) = (leave, stay), which will remain in
state 2 (and hence have gain 0). To generalize to algorithms which may choose randomized policies,
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we add more copies of the stay action to state 2, so that a “guessed” randomized policy has a low
chance of returning to state 1 quickly enough for good performance. Also P is not unichain, but we
can add an arbitrarily small (O(m−2)) probability for the stay actions in state 2 to return to state
1, which ensures unichainedness without meaningfully changing the story. We emphasize that the
hardness is not due to the inability to identify the stay action in state 1, since in general we cannot
expect to perfectly match the stationary distribution of the target policy (and in this example, the
policy (leave, leave) still has suboptimality only O(T/m)). Rather, the hardness is due to the fact
that it is nontrivial to navigate (quickly) back to the target policy’s stationary distribution after leaving
it, and learning to do so requires data coverage beyond said stationary distribution.

5 Conclusion

We developed the first average-reward offline RL algorithms for MDPs where not all policies have
constant gain, and also the first convergence rates depending only on the bias span of a single policy.
A main limitation of our work is its focus on the tabular setting, hence an important direction is to
extend these improvements to function approximation setups to avoid dependence on S in the results.
While Theorem 3.3 demonstrates the necessity of data from the target policy from all states, this
may be limiting in practice, so an interesting future direction is to explore additional assumptions or
information that could be provided to the algorithm to circumvent this requirement.
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A Additional notation and guide to appendices

Let π be some stationary policy. Note that Pπ (defined above as the Markov chain over states induced
by policy π on the transition kernel P ) is equal to MπP . We also define rπ = Mπr. Then we
have V π

γ = (I − γPπ)
−1rπ . ∥·∥∞ and ∥·∥1 denote the usual ℓ∞/ℓ1-norms, respectively. ∥W∥∞→∞

denotes the ∥·∥∞ → ∥·∥∞ operator norm of a matrix W . In particular
∥∥(I − γPπ)

−1
∥∥
∞→∞ = 1

1−γ .
We note that the action maximization operator M and the policy matrix Mπ both satisfy monotonicity:
V ≥ V ′ (elementwise, for Q,Q′ ∈ RS×A) implies M(Q) ≥ M(Q′), and likewise that MπQ ≥
MπQ′. These two operators also both satisfy the “constant-shift” property, that for any c ∈ R and any
Q ∈ RS×A, we have M(Q+ c1) = c1+M(Q) and Mπ(Q+ c1) = c1+Mπ(Q). Also we note
that M and Mπ are both 1-Lipschitz with respect to ∥∥∞, that is ∥MQ−MQ′∥∞ ≤ ∥Q−Q′∥∞
and ∥MπQ−MπQ′∥∞ ≤ ∥Q−Q′∥∞. For any vector x we let x◦k denote its elementwise kth
power. We let I denote the usual indicator function used in probability where I(E) is a random
variable with value 1 if the event E holds and 0 otherwise.

In Appendix B we prove the main theorem, Theorem 3.2. In Appendix C we prove Theorem 3.3 and
in Appendix D we prove Theorem 3.4. Appendix E contains additional supporting results.

B Proof of main theorem

B.1 Well-definedness

We also define a fixed-policy/policy evaluation version of T̂pe which will be useful within the analysis.
For any fixed stationary policy π, we let

T̂ π
pe(Q)(s, a) := r(s, a) + γmax

{
P̂saTβ(s,a)(P̂sa,M

πQ)− b(s, a,MπQ),min
s′

(MπQ)(s′)
}
.

(8)

We also define V̂ π
pe := MπQ̂π

pe, where Q̂π
pe is the unique fixed point of T̂ π

pe (justified in the below
lemma).

The following is a more comprehensive variant of Lemma 3.1.

Lemma B.1. 1. T̂pe satisfies the following properties:

(a) Monotonicity: If Q ≥ Q′ then T̂pe(Q) ≥ T̂pe(Q′).

(b) Constant shift: For any c ∈ R, T̂pe(Q+ c1) = T̂pe(Q) + γc1.

(c) γ-contractivity: T̂pe is a γ-contraction and has a unique fixed point Q̂⋆
pe.

(d) Boundedness: 0 ≤ Q̂⋆
pe ≤ 1

1−γ1.

2. For any fixed stationary deterministic policy π, the analogous statements hold for T̂ π
pe:

(a) Monotonicity: If Q ≥ Q′ then T̂ π
pe(Q) ≥ T̂ π

pe(Q
′).

(b) Constant shift: For any c ∈ R, T̂ π
pe(Q+ c1) = T̂ π

pe(Q) + γc1.

(c) γ-contractivity: T̂ π
pe is a γ-contraction and has a unique fixed point Q̂π

pe.

(d) Boundedness: 0 ≤ Q̂π
pe ≤ 1

1−γ1.

3. For any fixed stationary deterministic policy π, we have Q̂⋆
pe ≥ Q̂π

pe.

Proof. We note that a few steps are similar to Li et al. [2023, Lemma 1], but our new choice of
penalty requires much more involved analysis.

We define an auxiliary operator T pe : RS → RSA by, for any V ∈ RS ,

T pe(V )(s, a) := r(s, a) + γmax
{
P̂saTβ(s,a)(P̂sa, V )− b(s, a, V ),min

s′
(V )(s′)

}
.

We defer the verification of the following fact, which involves somewhat lengthy calculations, to
Appendix E.1.
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Lemma B.2. Let V, V ′ ∈ RS be arbitrary and suppose that V ≥ V ′. Then (elementwise)

T pe(V ) ≥ T pe(V
′).

Given Lemma B.2, we can relatively easily verify Lemma B.1. We note that Lemma B.2 makes use
of the quantile clipping in an essential way.

Now we will show item 1 except for the boundedness property. Notice that T̂pe(Q) = T pe(MQ)
(for any Q ∈ RSA). Therefore letting Q,Q′ ∈ RSA with Q ≥ Q′, we have by monotonicity of M
that MQ ≥ MQ′, and thus by monotonicity of T pe we conclude that

T̂pe(Q) = T pe(MQ) ≥ T pe(MQ′) = T̂pe(Q′)

as desired. Next we check the constant shift property of T pe. Fix c ∈ R, V ∈ RS , and s ∈ S, a ∈ A.
Then we have that Tβ(s,a)(P̂sa, V+c1) = Tβ(s,a)(P̂sa, V )+c1, regardless of whether β(s, a) ∈ [0, 1]

or β(s, a) > 1, since when β(s, a) > 1 we have Tβ(s,a)(P̂sa, V + c1) = mins∈S(V + c1)1 =
(mins∈S(V ) + c)1, and when β(s, a) ≤ 1, by (4) we have

Tβ(s,a)(P̂sa, V + c1)(s) = min

{
V (s) + c, sup

{
V (s′) + c : s′ ∈ S,

∑
s′′∈S:V (s′′)+c≥V (s′)+ĉ

Psa(s
′) ≥ β

}}

= c+min

{
V (s), sup

{
V (s′) : s′ ∈ S,

∑
s′′∈S:V (s′′)≥V (s′ )̂

Psa(s
′) ≥ β

}}
= c+ Tβ(s,a)(P̂sa, V )(s).

Therefore

VP̂sa

[
Tβ(s,a)(P̂sa, V + c1)

]
= VP̂sa

[
Tβ(s,a)(P̂sa, V ) + c1

]
= VP̂sa

[
Tβ(s,a)(P̂sa, V )

]
and

∥∥∥Tβ(s,a)(P̂sa, V + c1)
∥∥∥

span
=
∥∥∥Tβ(s,a)(P̂sa, V ) + c1

∥∥∥
span

=
∥∥∥Tβ(s,a)(P̂sa, V )

∥∥∥
span

and therefore we have that b(s, a, V ) = b(s, a, V + c1). Additionally we have that

min
s′

(V + c1) (s′) = min
s′

V (s′) + c.

Hence

T pe(V + c1)(s, a) = r(s, a) + γmax
{
P̂saTβ(s,a)(P̂sa, V + c1)− b(s, a, V + c1),min

s′
(V + c1)(s′)

}
= r(s, a) + γmax

{
P̂saTβ(s,a)(P̂sa, V ) + cP̂sa1− b(s, a, V ),min

s′
(V )(s′) + c

}
= r(s, a) + γc+ γmax

{
P̂saTβ(s,a)(P̂sa, V )− b(s, a, V ),min

s′
(V )(s′)

}
= γc+ T pe(V )(s, a) (9)

(since P̂sa1 = 1). Using (9) and the fact that M(Q+ c1) = MQ+ c1 we can show that T̂pe satisfies
the constant shift property as well:

T̂pe(Q+ c1) = T pe(M(Q+ c1)) = T pe(MQ+ c1) = T pe(MQ) + γc1 = T̂pe(Q) + γc1

as desired. Finally we can check contractivity of T̂pe. We note that it suffices to show that T pe is
γ-Lipschitz, since then we would have for any Q1, Q2 ∈ RSA that∥∥∥T̂pe(Q1)− T̂pe(Q2)

∥∥∥
∞

=
∥∥T pe(MQ1)− T pe(MQ2)

∥∥
∞ ≤ γ ∥MQ1 −MQ2∥∞ ≤ γ ∥Q1 −Q2∥∞

as desired, where the first inequality is due to the (assumed) Lipschitzness of T pe and the second
inequality is due to the 1-Lipschitzness of M . Now we verify that T pe is indeed γ-Lipschitz. For any
V1, V2 ∈ RS we have V1 ≤ V2 + ∥V1 − V2∥∞ 1 (elementwise), so by monotonicity of T pe (Lemma
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B.2), and then using the fact that T pe satisfies the constant shift property (shown in (9)) in the next
inequality, we have

T pe(V1) ≤ T pe(V2 + ∥V1 − V2∥∞ 1)

= T pe(V2) + γ ∥V1 − V2∥∞ 1

so by rearranging

T pe(V1)− T pe(V2) ≤ γ ∥V1 − V2∥∞ 1.

By reversing the roles of V1 and V2 we also have

T pe(V2)− T pe(V1) ≤ γ ∥V1 − V2∥∞ 1

or equivalently

−γ ∥V1 − V2∥∞ 1 ≤ T pe(V1)− T pe(V2).

Combining these two inequalities involving T pe(V2) − T pe(V1) we conclude that∥∥T pe(V1)− T pe(V2)
∥∥
∞ ≤ γ ∥V1 − V2∥∞ as desired and thus T̂pe is a γ-contraction. By

the Banach fixed-point theorem (e.g. [Pugh, 2015, Chapter 4.5]) this implies the existence of a
unique fixed point of T̂pe, which we call Q̂⋆

pe. (We check that 0 ≤ Q̂⋆
pe ≤ 1

1−γ1 later.)

Now we will show item 2 except for the boundedness property. Notice that similarly to the previous
case, T̂ π

pe(Q) = T pe(M
πQ) (for any Q ∈ RSA). The only properties of M used in the proofs for the

previous case were monotonicity (that Q ≥ Q′ =⇒ MQ ≥ MQ′), that M(Q+ c1) = MQ+ c1,
and that M is 1-Lipschitz. All of these properties are also true with Mπ in place of M , so in fact all
proofs used to verify item 1 can immediately be applied (with this minor modification) to also verify
item 2.

Next, item 3 would follow by showing that for any fixed Q ∈ RSA we have

T̂pe(Q) ≥ T̂ π
pe(Q) (10)

since then by a standard argument we can show for any integer k ≥ 0 that(
T̂pe
)(k)

(0) ≥
(
T̂ π
pe

)(k)
(0)

(where (k) denotes k compositions of an operator) and therefore that

Q̂⋆
pe = lim

k→∞

(
T̂pe
)(k)

(0) ≥ lim
k→∞

(
T̂ π
pe

)(k)
(0) = Q̂π

pe.

So now we focus on showing (10), but this follows immediately from the fact that MQ ≥ MπQ and
that T pe is monotone (Lemma B.2), since we have

T̂pe(Q) = T pe(MQ) ≥ T pe(M
πQ) = T̂ π

pe(Q).

[Matthew: should be β(s, a) not β in the below paragraph?] [Guy: yes] Finally, we check both
boundedness properties. Since we already have that Q̂π

pe ≤ Q̂⋆
pe, it suffices to show that 0 ≤ Q̂π

pe

and that Q̂⋆
pe ≤ 1

1−γ1. First, note that we have T̂ π
pe(0) ≥ 0, since for any s ∈ S, a ∈ A,

T̂ π
pe(0)(s, a) = r(s, a) + γmax

{
P̂saTβ(s,a)(P̂sa,M

π0)− b(s, a,Mπ0),min
s′

(Mπ0)(s′)
}

≥ r(s, a) + γmin
s′

(Mπ0)(s′) = r(s, a) ≥ 0.

Then by monotonicity of T̂ π
pe we have for any integer k ≥ 0 that(

T̂ π
pe

)(k)
(0) ≥

(
T̂ π
pe

)(k−1)

(0) ≥ · · · ≥ 0

and so

Q̂π
pe = lim

k→∞

(
T̂ π
pe

)(k)
(0) ≥ 0
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as desired. Similarly, we have that T̂pe(1/(1− γ)) ≤ 1/(1− γ), since for any s ∈ S, a ∈ A,

T̂pe(1/(1− γ))(s, a)

= r(s, a) + γmax
{
P̂saTβ(s,a)(P̂sa,M1/(1− γ))− b(s, a,M1/(1− γ)),min

s′
(M1/(1− γ))(s′)

}
≤ 1 + γ

1

1− γ
=

1

1− γ
.

By an analogous argument to the previous bound, we have from monotonicity of T̂pe that(
T̂pe
)(k)

(1/(1− γ)) ≤ 1/(1− γ) for all positive integers k and thus that Q̂⋆
pe ≤ 1/(1− γ).

In the above proof we defined the operator T pe and verified its Lipshitzness, which we state in the
following lemma as T pe will appear again later.
Lemma B.3. T pe is γ-Lipschitz.

B.2 Optimization

In this subsection we establish the basic properties of the outputs of Algorithm 1.

Lemma B.4. Algorithm 1 returns Q̂ such that

Q̂ ≤ Q̂⋆
pe ≤ Q̂+

1

2ntot
1 and T̂pe(Q̂) ≥ Q̂.

Proof. First we note that T̂pe(0) ≥ 0, which follows easily from the definition (3) since (for arbitrary
s ∈ S, a ∈ A)

T̂pe(0)(s, a) = r(s, a) + γmax
{
P̂saTβ(s,a)(P̂sa,M0)− b(s, a,M0),min

s′
(M0)(s′)

}
≥ r(s, a) + γmin

s′
(M0)(s′) = r(s, a) ≥ 0.

T̂pe(Q̂) ≥ Q̂ follows from this fact and monotonicity of T̂pe by standard arguments, since if for any
t ∈ N we have that T̂pe(Q̂t) ≥ Q̂t then

T̂pe(Q̂t+1) = T̂pe
(
T̂pe(Q̂t)

)
≥ T̂pe

(
Q̂t

)
so by induction (since Q̂0 = 0) T̂pe(Q̂t) ≥ Q̂t holds for t = K, and we have Q̂K = Q̂ by definition.

Now we argue that Q̂ ≤ Q̂⋆
pe, which follows from T̂pe(Q̂) ≥ Q̂ and monotonicity of T̂pe by standard

arguments, since assuming for some t ≥ 1 that T̂ (t)
pe (Q̂) ≥ Q̂, then we have by monotonicity that(

T̂pe
)(t+1)

(Q̂) =
(
T̂pe
)(

T̂ (t)
pe (Q̂)

)
≥ T̂pe(Q̂) ≥ Q̂

and so by induction
(
T̂pe
)(t)

(Q̂) ≥ Q̂ for all t ≥ 1, and thus

Q̂⋆
pe = lim

t→∞

(
T̂pe
)(t)

(Q̂) ≥ lim
t→∞

Q̂ = Q̂

as desired.

Finally we check that Q̂⋆
pe ≤ Q̂ + 1

2ntot
1. Again note that Q̂ = Q̂K . By the definition of K =⌈

log( 2ntot
1−γ )

1−γ

⌉
, as well as the fact that log(1/γ) ≥ 1− γ for any γ, we have

γK = eK log(γ) ≤ e
log( 2ntot

1−γ )
1−γ log(γ) = e

log( 1−γ
2ntot

)
1−γ log(1/γ) ≤ elog(

1−γ
2ntot

) =
1− γ

2ntot
.

Using this bound, γ-contractivity, and the fact that 0 ≤ Q̂⋆
pe ≤ 1

1−γ1 from Lemma B.1, we have∥∥∥Q̂K − Q̂⋆
pe

∥∥∥
∞

≤ γK
∥∥∥Q̂0 − Q̂⋆

pe

∥∥∥
∞

= γK
∥∥∥0− Q̂⋆

pe

∥∥∥
∞

≤ γK 1

1− γ
≤ 1

2ntot

which implies Q̂⋆
pe ≤ Q̂+ 1

2ntot
1.
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B.3 Concentration

In this subsection we establish the key concentration inequalities, given in Lemmas B.7 and B.8,
using leave-one-out techniques. We start with two helper lemmas which abstractly handle the
leave-one-out-based covering steps before proving Lemmas B.7 and B.8.

Lemma B.5. Fix some δ′ > 0 and some s ∈ S, a ∈ A. Suppose that for some random vector
X ∈ RS , there exists a (deterministic) set U and some random variables Xu ∈ RS for each u (that
is, for each u ∈ U , Xu is a random vector in RS ) such that

1. For all u ∈ U , Xu is independent of all samples S1
sa, . . . , S

n(s,a)
sa drawn from P (· | s, a).

2. Almost surely there exists some u⋆ ∈ U such that ∥X −Xu⋆∥∞ ≤ 1
ntot

.

Also assume n(s, a) ≥ 2. Then with probability at least 1− 6δ′, we have that

∣∣∣(P̂sa − Psa)X
∣∣∣ ≤ ∥X∥span

√
log |U |/δ′
2n(s, a)

+
2

ntot

(
1 +

√
log |U |/δ′
2n(s, a)

)
(11)∣∣∣(P̂sa − Psa)X

∣∣∣ ≤√2VPsa
[X] log(|U |/δ′)
n(s, a)

+ ∥X∥span
log(|U |/δ′)
3n(s, a)

+
1

ntot

(
2 +

√
2 log(|U |/δ′)

n(s, a)
+ 2

log(|U |/δ′)
3n(s, a)

)
(12)∣∣∣∣∣

√
n(s, a)

n(s, a)− 1
VP̂sa

[X]−
√

VPsa
[X]

∣∣∣∣∣ ≤ ∥X∥span

√
2 log |U |/δ′
n(s, a)− 1

+
1

ntot

(
2

√
2 log |U |/δ′
n(s, a)− 1

+ 3

)
(13)∣∣∣(P̂sa − Psa)X

∣∣∣ ≤
√

2VP̂sa
[X] log(|U |/δ′)
n(s, a)− 1

+ ∥X∥span
7

3

log(|U |/δ′)
n(s, a)− 1

+
1

ntot

(
2 + 3

√
2 log(|U |/δ′)
n(s, a)− 1

+
14

3

log(|U |/δ′)
n(s, a)− 1

)
(14)

Proof. We start by showing that∣∣∣(P̂sa − Psa)X
∣∣∣ ≤ ∣∣∣(P̂sa − Psa)Xu⋆

∣∣∣+ ∣∣∣(P̂sa − Psa)(X −Xu⋆)
∣∣∣

≤
∣∣∣(P̂sa − Psa)Xu⋆

∣∣∣+ ∥∥∥P̂sa − Psa

∥∥∥
1
∥X −Xu⋆∥∞

≤
∣∣∣(P̂sa − Psa)Xu⋆

∣∣∣+ 2

ntot
(15)

where the final inequality is because
∥∥∥P̂sa − Psa

∥∥∥
1
≤ 2 and ∥X −Xu⋆∥∞ ≤ 1

ntot
.

Then since for any fixed u ∈ U we have (P̂sa − Psa)Xu =
∑n(s,a)

i=1 (Xu(S
i
sa) − PsaXu), by

Hoeffding’s inequality conditioned on Xu (since by assumption Xu is independent from the Si
sa

and each term in the above sum is contained within the interval [minXu,maxXu] which has length
∥Xu∥span) we have that

P

∣∣∣∣∣∣
n(s,a)∑
i=1

(Xu(S
i
sa)− PsaXu)

∣∣∣∣∣∣ ≥ ∥Xu∥span

√
log |U |/δ′
2n(s, a)

∣∣∣∣∣∣ Xu

 ≤ 2δ′

|U |
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and so

P

∣∣∣∣∣∣
n(s,a)∑
i=1

(Xu(S
i
sa)− PsaXu)

∣∣∣∣∣∣ ≥ ∥Xu∥span

√
log |U |/δ′
2n(s, a)

 ≤ E
2δ′

|U |
=

2δ′

|U |
.

Taking a union bound, the above inequality holds for all u ∈ U with probability at least 1 − 2δ′.
Finally, since

∥Xu⋆∥span ≤ ∥X∥span + ∥Xu⋆ −X∥span ≤ ∥X∥span + 2 ∥Xu⋆ −X∥∞ ≤ ∥X∥span +
2

ntot
, (16)

combining with (15) we have that∣∣∣(P̂sa − Psa)X
∣∣∣ ≤ 2

ntot
+ ∥Xu⋆∥span

√
log |U |/δ′
2n(s, a)

≤ 2

ntot
+ ∥X∥span

√
log |U |/δ′
2n(s, a)

+
2

ntot

√
log |U |/δ′
2n(s, a)

.

Next we would like to apply the concentration inequalities of Maurer and Pontil [2009]. To apply
their theorems as stated, we must shift and normalize to define (for each u ∈ U )

X ′
u :=

Xu −minx∈S Xu(x)

∥Xu∥span

so that X ′
u ∈ [0, 1] almost surely. Fixing some u ∈ U and applying Maurer and Pontil [2009,

Theorem 10], assuming n(s, a) ≥ 2, we have with probability at least 1− 2δ′/|U | that∣∣∣∣∣
√

n(s, a)

n(s, a)− 1
VP̂sa

[X ′
u]−

√
VPsa

[X ′
u]

∣∣∣∣∣ ≤
√

2 ln |U |/δ′
n(s, a)− 1

using the facts that by standard calculations, abbreviating ñ = n(s, a) for convenience,

E

 1

2ñ(ñ− 1)

ñ∑
i=1

ñ∑
j=1

(
X ′

u(S
i
sa)−X ′

u(S
j
sa)
)2 =

ñ

2ñ(ñ− 1)
0 +

ñ(ñ− 1)

2ñ(ñ− 1)
E
[(
X ′

u(S
1
sa)−X ′

u(S
2
sa)
)2]

=
1

2

(
2E
[(
X ′

u(S
1
sa)
)2]− 2E

[
X ′

u(S
1
sa)
]2)

= V
[
X ′

u(S
1
sa)
]
= VPsa

[X ′
u]

and

1

2ñ(ñ− 1)

ñ∑
i=1

ñ∑
j=1

(
V̂ s,u,s′

pe (Si
sa)− V̂ s,u,s′

pe (Sj
sa)
)2

=
ñ

ñ− 1
P̂sa

(
X ′

u − P̂saX
′
u1
)◦2

=
ñ

ñ− 1
VP̂sa

[X ′
u]

(since Maurer and Pontil [2009, Theorem 10] as stated involves the quantity
1

2ñ(ñ−1)

∑ñ
i=1

∑ñ
j=1

(
X ′

u(S
i
sa)−X ′

u(S
j
sa)
)2

and its expectation). Taking a union bound
and undoing the normalization and shifting, we have for all u ∈ U that∣∣∣∣∣

√
n(s, a)

n(s, a)− 1
VP̂sa

[Xu]−
√
VPsa

[Xu]

∣∣∣∣∣ ≤ ∥Xu∥span

√
2 log |U |/δ′
n(s, a)− 1

(17)

with probability at least 1− 2δ′. For any arbitrary probability distribution µ ∈ RS we have that∣∣∣∣√Vµ [X]−
√
Vµ [Xu⋆ ]

∣∣∣∣ ≤ 1

ntot
(18)

since √
Vµ [X] =

√
Vµ [Xu⋆ + (X −Xu⋆)] ≤

√
Vµ [Xu⋆ ] +

√
Vµ [X −Xu⋆ ]

18



(where the inequality step follows from triangle inequality since Y 7→
√
EY 2 is a norm on random

variables Y ) and then we have

√
Vµ [X −Xu⋆ ] ≤ ∥X −Xu⋆∥∞ ≤ 1

ntot
.

Thus combining (17) with (18) we conclude that

∣∣∣∣∣
√

n(s, a)

n(s, a)− 1
VP̂sa

[X]−
√

VPsa
[X]

∣∣∣∣∣ (19)

≤

∣∣∣∣∣
√

n(s, a)

n(s, a)− 1
VP̂sa

[Xu⋆ ]−
√

VPsa [Xu⋆ ]

∣∣∣∣∣+
√

n(s, a)

n(s, a)− 1

1

ntot
+

1

ntot

≤ ∥Xu⋆∥span

√
2 log |U |/δ′
n(s, a)− 1

+

√
n(s, a)

n(s, a)− 1

1

ntot
+

1

ntot

≤ ∥X∥span

√
2 log |U |/δ′
n(s, a)− 1

+
2

ntot

√
2 log |U |/δ′
n(s, a)− 1

+

√
n(s, a)

n(s, a)− 1

1

ntot
+

1

ntot
(20)

using (16) again in the final inequality. To obtain the slightly simplified bound (13) we use that by

assumption n(s, a) ≥ 2, so
√

n(s,a)
n(s,a)−1 ≤

√
2 ≤ 2.

Now, similarly to our use of Hoeffding’s inequality, using Bernstein’s inequality (e.g., Maurer and
Pontil [2009, Theorem 3]), as well as a union bound over all u ∈ U , we have that with probability at
least 1− 2δ′, for all u ∈ U ,

∣∣∣(P̂sa − Psa)Xu

∣∣∣ ≤√2VPsa
[Xu] log(|U |/δ′)
n(s, a)

+ ∥Xu∥span
log(|U |/δ′)
3n(s, a)

.

Combining this inequality (for u = u⋆) along with (15), (16), and (18), we obtain that

∣∣∣(P̂sa − Psa)X
∣∣∣

≤
∣∣∣(P̂sa − Psa)Xu⋆

∣∣∣+ 2

ntot

≤

√
2VPsa

[Xu⋆ ] log(|U |/δ′)
n(s, a)

+ ∥Xu∥span
log(|U |/δ′)
3n(s, a)

+
2

ntot

≤

√
2VPsa

[X] log(|U |/δ′)
n(s, a)

+
1

ntot

√
2 log(|U |/δ′)

n(s, a)
+ ∥X∥span

log(|U |/δ′)
3n(s, a)

+
2

ntot

log(|U |/δ′)
3n(s, a)

+
2

ntot
.
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Combining this with (20) we furthermore obtain that∣∣∣(P̂sa − Psa)X
∣∣∣

≤

√
2VPsa [X] log(|U |/δ′)

n(s, a)
+ ∥X∥span

log(|U |/δ′)
3n(s, a)

+
1

ntot

(√
2 log(|U |/δ′)

n(s, a)
+ 2

log(|U |/δ′)
3n(s, a)

+ 2

)

≤

√
2VP̂sa

[X] log(|U |/δ′)
n(s, a)− 1

+ ∥X∥span
log(|U |/δ′)
3n(s, a)

+
1

ntot

(√
2 log(|U |/δ′)

n(s, a)
+ 2

log(|U |/δ′)
3n(s, a)

+ 2

)

+

√
2 log(|U |/δ′)

n(s, a)

(
∥X∥span

√
2 log |U |/δ′
n(s, a)− 1

+
2

ntot

√
2 log |U |/δ′
n(s, a)− 1

+

√
n(s, a)

n(s, a)− 1

1

ntot
+

1

ntot

)

≤

√
2VP̂sa

[X] log(|U |/δ′)
n(s, a)− 1

+ ∥X∥span
7

3

log(|U |/δ′)
n(s, a)− 1

+
1

ntot

(√
2 log(|U |/δ′)

n(s, a)
+ 2

log(|U |/δ′)
3n(s, a)

+ 2 + 2
2 log(|U |/δ′)
n(s, a)− 1

+ 2

√
2 log(|U |/δ′)
n(s, a)− 1

)

≤

√
2VP̂sa

[X] log(|U |/δ′)
n(s, a)− 1

+ ∥X∥span
7

3

log(|U |/δ′)
n(s, a)− 1

+
1

ntot

(
2 + 3

√
2 log(|U |/δ′)
n(s, a)− 1

+
14

3

log(|U |/δ′)
n(s, a)− 1

)
.

Now we develop several leave-one-out constructions which satisfy the conditions of Lemma B.5.

Lemma B.6. 1. (LOO construction for V̂ ⋆
pe) For each s, a, there exists a set U1

sa ⊆ R with
|U1

sa| ≤ ntot

1−γ and random vectors (X1
u)u∈U1

sa
such that 1) for all u ∈ U1

sa, X1
u is inde-

pendent from S1
sa, . . . , S

n(s,a)
sa , and 2) almost surely there exists some u ∈ U1

sa such that∥∥∥V̂ ⋆
pe −X1

u

∥∥∥
∞

≤ 1
ntot

.

2. (LOO constructions for Tβ(s,a)(P̂sa, V̂
⋆
pe)) For each s, a, there exists a set U2

sa ⊆ R with
|U2

sa| ≤ S ntot

1−γ and random vectors (X2
u)u∈U2

sa
such that 1) for all u ∈ U2

sa, X2
u is inde-

pendent from S1
sa, . . . , S

n(s,a)
sa , and 2) almost surely there exists some u ∈ U2

sa such that∥∥∥Tβ(s,a)(P̂sa, V̂
⋆
pe)−X2

u

∥∥∥
∞

≤ 1
ntot

.

3. (LOO construction for V̂ π
pe) Fix any policy π. For each s, a, there exists a set U3

sa ⊆ R
with |U3

sa| ≤ ntot

1−γ and random vectors (X3
u)u∈U3

sa
such that 1) for all u ∈ U3

sa, X3
u is

independent from S1
sa, . . . , S

n(s,a)
sa , and 2) almost surely there exists some u ∈ U3

sa such

that
∥∥∥V̂ π

pe −X3
u

∥∥∥
∞

≤ 1
ntot

.

4. (LOO constructions for Tβ(s,a)(P̂sa, V̂
π
pe)) Fix any policy π. For each s, a, there exists a set

U4
sa ⊆ R with |U4

sa| ≤ S ntot

1−γ and random vectors (X4
u)u∈U4

sa
such that 1) for all u ∈ U4

sa,

X4
u is independent from S1

sa, . . . , S
n(s,a)
sa , and 2) almost surely there exists some u ∈ U4

sa

such that
∥∥∥Tβ(s,a)(P̂sa, V̂

π
pe)−X4

u

∥∥∥
∞

≤ 1
ntot

.

Proof. We start by showing item 1. Fix arbitrary s ∈ S, a ∈ A. For any u ∈ R we define the
reward function rs,u ∈ RSA, (random) transition matrix P̂ s ∈ RSA×S , and (random) operator
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T s,u

pe : RS → RSA by (for arbitrary s′ ∈ S, a′ ∈ S, V ∈ RS )

P̂ s
s′a′ =

{
e⊤s s′ = s

P̂s′a′ s′ ̸= s

rs,u(s′, a′) =

{
u s′ = s

r(s′, a′) s′ ̸= s

T s,u

pe (V )(s′, a′) = rs,u(s′, a′) + γmax
{
P̂ s
s′a′Tβ(s′,a′)(P̂

s
s′a′ , V )− bs(s′, a′, V ),min

s′′
(V )(s′′)

}
where

bs(s′, a′, V ) := max

{√
β(s′, a′)VP̂ s

s′a′

[
Tβ(s′,a′)(P̂

s
s′a′ , V )

]
, β(s′, a′)

∥∥∥Tβ(s′,a′)(P̂
s
s′a′ , V )

∥∥∥
span

}
+

5

ntot

(21)

Note e⊤s is a vector which is all 0 except for a 1 in state s, meaning that state s is absorbing in P̂ s,u,
for all actions. Also all actions receive reward u in this state. All other state-action pairs have the
same rewards and transition distributions as in the MDP (P̂ , r). Also, we have defined bs and T s,u

pe

in an identical manner to b and T pe, except we now use rs,u and P̂ s in place of r and P̂ . Since all of
the properties of T pe verified above only required P̂ to be a valid transition matrix and for r to be
a vector in [0, 1]SA, the properties hold identically for T s,u

pe , and thus by Lemma B.3 we have that
T s,u

pe is γ-Lipschitz.

Now we define L̂s,u : RS → RS as L̂s,u(V ) := MT s,u

pe (V ) (for any V ∈ RS). By the γ-
Lipschitzness of T s,u

pe and the 1-Lipschitzness of M , we immediately have that L̂s,u is a γ-contraction,
since∥∥∥L̂s,u(V1)− L̂s,u(V2)

∥∥∥
∞

=
∥∥∥MT s,u

pe (V1)−MT s,u

pe (V2)
∥∥∥
∞

≤
∥∥∥T s,u

pe (V1)− T s,u

pe (V2)
∥∥∥
∞

≤ γ ∥V1 − V2∥∞

for any V1, V2 ∈ RS . Therefore contractivity implies that there exists a unique fixed point of L̂s,u

(e.g. [Pugh, 2015, Chapter 4.5]), which we call X1
u. Note that since L̂s,u is defined without using

P̂sa, it is independent of all samples S1
sa, . . . , S

n(s,a)
sa drawn from P (· | s, a).

Now, as intermediate steps, we show the following two properties:

A. For any u, u′ ∈ R, we have
∥∥X1

u −X1
u′

∥∥
∞ ≤ |u−u′|

1−γ .

B. Letting U⋆ = V̂ ⋆
pe(s) − γmaxã∈A max

{
P̂ s
sãTβ(s,ã)(P̂

s
sã, V̂

⋆
pe)− 5

ntot
,mins′′ V̂

⋆
pe(s

′′)
}

,

we have X1
U⋆ = V̂ ⋆

pe, and U⋆ ∈ [0, 1].

For A, letting u, u′ ∈ R, we can calculate that∥∥X1
u −X1

u′

∥∥
∞ =

∥∥∥L̂s,u(X1
u)− L̂s,u′

(X1
u′)
∥∥∥
∞

=
∥∥∥MT s,u

pe (X
1
u)−MT s,u′

pe (X1
u′)
∥∥∥
∞

≤
∥∥∥T s,u

pe (X
1
u)− T s,u′

pe (X1
u′)
∥∥∥
∞

=
∥∥∥rs,u − rs,u

′
+ T s,u′

pe (X1
u)− T s,u′

pe (X1
u′)
∥∥∥
∞

≤
∥∥∥rs,u − rs,u

′
∥∥∥
∞

+
∥∥∥T s,u′

pe (X1
u)− T s,u′

pe (X1
u′)
∥∥∥
∞

≤ |u− u′|+ γ
∥∥X1

u −X1
u′

∥∥
∞

where the key equality step was that T s,u

pe (X
1
u) = rs,u−rs,u

′
+T s,u′

pe (X1
u), and in the final inequality

we used γ-Lipschitzness of T s,u′

pe . Rearranging we obtain that
∥∥X1

u −X1
u′

∥∥
∞ ≤ |u−u′|

1−γ as desired,
verifying A.
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For B we first check that X1
U⋆ = V̂ ⋆

pe. It suffices to check that MT s,U⋆

pe (V̂ ⋆
pe) = MT pe(V̂

⋆
pe), because

then we would have that

L̂s,U⋆

(V̂ ⋆
pe) = MT s,U⋆

pe (V̂ ⋆
pe) = MT pe(V̂

⋆
pe) = M T̂pe(Q̂⋆

pe) = MQ̂⋆
pe = V̂ ⋆

pe

thus showing that V̂ ⋆
pe is a fixed point of L̂s,U⋆

, and by uniqueness of this fixed point we must

have X1
U⋆ = V̂ ⋆

pe. Comparing the definitions of T pe(V̂
⋆
pe) and T s,U⋆

pe (V̂ ⋆
pe), it is immediate that

M
(
T s,U⋆

pe (V̂ ⋆
pe)
)
(s′) = M

(
T pe(V̂

⋆
pe)
)
(s′) for all s′ ̸= s, so it remains to check the equality for

s′ = s.

First we argue that for all a′ ∈ A, we have bs(s, a′, V̂ ⋆
pe) = 5

ntot
. If β(s, a′) > 1 then we have

Tβ(s,a′)(P̂
s
sa′ , V̂ ⋆

pe) =
(
mins′ V̂

⋆
pe(s

′)
)
1, and if β(s, a′) ≤ 1 then we have Tβ(s,a′)(P̂

s
sa′ , V̂ ⋆

pe) =

V̂ ⋆
pe(s)1, since P̂ s

sa′ = e⊤s (P̂ s
sa′ transitions to state s with probability 1). Either way

Tβ(s,a′)(P̂
s
sa′ , V̂ ⋆

pe) is a multiple of the all-ones vector, which implies VP̂ s
s′a′

[
Tβ(s′,a′)(P̂

s
s′a′ , V̂ ⋆

pe)
]
=

0 and
∥∥∥Tβ(s′,a′)(P̂

s
s′a′ , V̂ ⋆

pe)
∥∥∥

span
= 0, and thus that bs(s, a′, V̂ ⋆

pe) =
5

ntot
. Therefore by the construc-

tion of U⋆ we have that

M
(
T s,U⋆

pe (V̂ ⋆
pe)
)
(s) = max

a′
U⋆ + γmax

{
P̂ s
sa′Tβ(s,a′)(P̂

s
sa′ , V̂ ⋆

pe)− bs(s, a′, V̂ ⋆
pe),min

s′′
(V̂ ⋆

pe)(s
′′)
}

= max
a′

U⋆ + γmax

{
P̂ s
sa′Tβ(s,a′)(P̂

s
sa′ , V̂ ⋆

pe)−
5

ntot
,min

s′′
V̂ ⋆
pe(s

′′)

}
= V̂ ⋆

pe(s)− γmax
ã∈A

max

{
P̂ s
sãTβ(s,ã)(P̂

s
sã, V̂

⋆
pe)−

5

ntot
,min

s′′
V̂ ⋆
pe(s

′′)

}
+ γmax

a′
max

{
P̂ s
sa′Tβ(s,a′)(P̂

s
sa′ , V̂ ⋆

pe)−
5

ntot
,min

s′′
V̂ ⋆
pe(s

′′)

}
= V̂ ⋆

pe(s) = M
(
T pe(V̂

⋆
pe)
)
(s)

as desired, so we have checked that X1
U⋆ = V̂ ⋆

pe.

Now it remains to verify that U⋆ ∈ [0, 1]. Given our calculation of Tβ(s,a′)(P̂
s
sa′ , V̂ ⋆

pe) (for any
a′ ∈ A) above, we have the alternate expression for U⋆

U⋆ = V̂ ⋆
pe(s)− γ

max
{
V̂ ⋆
pe(s)− 5

ntot
,mins′′ V̂

⋆
pe(s

′′)
}

∃a′ ∈ A : β(s, a′) ≤ 1

max
{
mins′′ V̂

⋆
pe(s

′′)− 5
ntot

,mins′′ V̂
⋆
pe(s

′′)
}

o.w.

= V̂ ⋆
pe(s)− γ

{
max

{
V̂ ⋆
pe(s)− 5

ntot
,mins′′ V̂

⋆
pe(s

′′)
}

∃a′ ∈ A : β(s, a′) ≤ 1

mins′′ V̂
⋆
pe(s

′′) o.w.
.

We consider the two cases in the above expression. If ∃a′ ∈ A : β(s, a′) ≤ 1, then we can upper
bound U⋆ as

U⋆ ≤ V̂ ⋆
pe(s)− γmax

{
V̂ ⋆
pe(s)−

5

ntot
,min

s′′
V̂ ⋆
pe(s

′′)

}
≤ V̂ ⋆

pe(s)− γV̂ ⋆
pe(s) ≤ (1− γ)

1

1− γ
= 1

where the last inequality is due to the fact that V̂ ⋆
pe = MQ̂⋆

pe ≤ M 1
1−γ1 = 1

1−γ1 (by Lemma B.1).
For the lower bound in this case, we have

U⋆ = min

{
(1− γ)V̂ ⋆

pe(s) +
5

ntot
, V̂ ⋆

pe(s)−min
s′′

V̂ ⋆
pe(s

′′)

}
which is clearly ≥ 0 (note the first term within the min is ≥ 0 by Lemma B.1).

Now we consider the case that there does not exist a′ ∈ A such that β(s, a′) ≤ 1, that is, the case that
β(s, a′) > 1 for all a′ ∈ A. Then as argued above we have for all a′ ∈ A that Tβ(s,a′)(P̂sa′ , V̂ ⋆

pe) =
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(
mins′′ V̂

⋆
pe(s

′′)
)
1, and so by the definition of T̂pe and the fact that Q̂⋆

pe is its fixed point and

V̂ ⋆
pe = MQ̂⋆

pe, we have

V̂ ⋆
pe(s) = max

a′∈A
r(s, a′) + γmax

{
P̂sa′Tβ(s,a′)(P̂sa′ , V̂ ⋆

pe)− b(s, a′, V̂ ⋆
pe),min

s′′
V̂ ⋆
pe(s

′′)
}

= max
a′∈A

r(s, a′) + γmax
{
min
s′′

V̂ ⋆
pe(s

′′)− b(s, a′, V̂ ⋆
pe),min

s′′
V̂ ⋆
pe(s

′′)
}

= max
a′∈A

r(s, a′) + γmin
s′′

V̂ ⋆
pe(s

′′)

(using the fact that b(s, a′, V̂ ⋆
pe) ≥ 0 to compute the max). Hence in this case

U⋆ = V̂ ⋆
pe(s)− γmin

s′′
V̂ ⋆
pe(s

′′) = max
a′∈A

r(s, a′) + γmin
s′′

V̂ ⋆
pe(s

′′)− γmin
s′′

V̂ ⋆
pe(s

′′) = max
a′∈A

r(s, a′)

which is clearly in [0, 1]. We have thus verified B.

Now unfix u and let U1
sa be a set of ntot

1−γ points chosen by dividing [0, 1] into ntot

1−γ intervals and
placing a point at the midpoint of each such interval. Note this guarantees that for any x ∈ [0, 1] there
exists some u ∈ U such that |x− u| ≤ 1−γ

2ntot
. Therefore, letting Ũ⋆ ∈ U be this closest point in U to

the value U⋆, we have by A and B that∥∥∥X1
Ũ⋆ − V̂ ⋆

pe

∥∥∥
∞

=
∥∥∥X1

Ũ⋆ −X1
U⋆

∥∥∥
∞

≤ |Ũ⋆ − U⋆|
1− γ

≤ 1

1− γ

1− γ

2ntot
=

1

2ntot
≤ 1

ntot
.

Therefore we have confirmed item 1.

Now we continue to item 2. Fix s ∈ S, a ∈ A, and define U2
sa = U1

sa × S . For each u, s′ ∈ U2
sa, we

define
X2

u,s′ = clip(X1
u, X

1
u(s

′)),

that is, we clip all entries of the vector X1
u constructed in the previous part so that they are ≤ X1

u(s
′).

Since X1
u was independent of all samples S1

sa, . . . , S
n(s,a)
sa drawn from P (· | s, a), the same is true of

X2
u,s′ . Define S⋆(s, a) to be a state such that Qβ(s,a)(P̂sa, V̂

⋆
pe) = V̂ ⋆

pe(S
⋆(s, a)) (if multiple states

satisfy this, we can break ties in some consistent manner). Then for any u, s′ ∈ U2
sa we have∥∥∥Tβ(s,a)(P̂sa, V̂

⋆
pe)−X2

u,s′

∥∥∥
∞

=
∥∥∥clip(V̂ ⋆

pe, Qβ(s,a)(P̂sa, V̂
⋆
pe)
)
− clip(X1

u, X
1
u(s

′))
∥∥∥
∞

=
∥∥∥clip(V̂ ⋆

pe, V̂
⋆
pe(S

⋆(s, a))
)
− clip(X1

u, X
1
u(s

′))
∥∥∥
∞

≤
∥∥∥clip(V̂ ⋆

pe, V̂
⋆
pe(S

⋆(s, a))
)
− clip

(
X1

u, V̂
⋆
pe(S

⋆(s, a))
)∥∥∥

∞

+
∥∥∥clip(X1

u, V̂
⋆
pe(S

⋆(s, a))
)
− clip(X1

u, X
1
u(s

′))
∥∥∥
∞

≤
∥∥∥V̂ ⋆

pe −X1
u

∥∥∥
∞

+
∣∣∣V̂ ⋆

pe(S
⋆(s, a))−X1

u(s
′)
∣∣∣ . (22)

From item 1 we know there exists some u ∈ U1
sa such that

∥∥∥V̂ ⋆
pe −X1

u

∥∥∥
∞

≤ 1
2ntot

, and furthermore

if s′ = S⋆(s, a) then∣∣∣V̂ ⋆
pe(S

⋆(s, a))−X1
u(s

′)
∣∣∣ = ∣∣∣V̂ ⋆

pe(s
′)−X1

u(s
′)
∣∣∣ ≤ ∥∥∥V̂ ⋆

pe −X1
u

∥∥∥
∞

≤ 1

2ntot
.

Combining these with (22) we conclude that almost surely there exists some (u, s′) ∈ U1
sa×S = U2

sa

such that
∥∥∥Tβ(s,a)(P̂sa, V̂

⋆
pe)−X2

u,s′

∥∥∥
∞

≤ 1
ntot

as desired. Therefore we have confirmed item 2.

For item 3 and item 4, we can use nearly identical constructions, with the only difference being that
for item 3 we define X3

u to be the fixed point of the operator L̂π,s,u : RS → RS as L̂π,s,u(V ) :=

MπT s,u

pe (V ) (and otherwise use the same construction as for X1
u), and then for item 4 we use X3

u in
place of X1

u in the construction for X2
u. Thus, the key difference is replacing M with Mπ within the

construction for X3
u, and since the only properties of M used were 1-Lipschitzness and that M1 = 1,

which both hold with Mπ in place of M , and also the fact that V̂ ⋆
pe = MQ̂⋆

pe which is analogous to
the fact that V̂ π

pe = MπQ̂π
pe, all steps work in an analogous manner.
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Now we can prove the key concentration inequalities needed for the rest of the proof.

Lemma B.7. With probability at least 1− δ, for all s ∈ S, a ∈ A, if n(s, a) ≥ 1+8 log
(

6S2Antot

(1−γ)δ

)
,

then∣∣∣(P̂sa − Psa

)
Tβ(s,a)(P̂sa, V̂

⋆
pe)
∣∣∣

≤ max

{√
β(s, a)VP̂sa

[
Tβ(s,a)(P̂sa, V̂ ⋆

pe)
]
, β(s, a)

∥∥∥Tβ(s,a)(P̂sa, V̂
⋆
pe)
∥∥∥

span

}
+

4.5

ntot

= b(s, a, V̂ ⋆
pe)−

1

2ntot

where α = 8 log
(

6S2Antot

(1−γ)δ

)
and β(s, a) = α

max{n(s,a)−1,1} .

Proof. Fix some s ∈ S and a ∈ A. If n(s, a) < 1 + 8 log
(

6S2Antot

(1−γ)δ

)
then we have nothing to

check. Otherwise, we can immediately combine item 2 of Lemma B.6 (which gives |U | ≤ S ntot

1−γ )
with Lemma B.5 (since our condition on n(s, a) clearly implies n(s, a) ≥ 2) to conclude that with
probability at least 1− 6δ′,∣∣∣(P̂sa − Psa)Tβ(s,a)(P̂sa, V̂

⋆
pe)
∣∣∣

≤

√√√√2VP̂sa

[
Tβ(s,a)(P̂sa, V̂ ⋆

pe)
]
log
(
S ntot

(1−γ)δ′

)
n(s, a)− 1

+
∥∥∥Tβ(s,a)(P̂sa, V̂

⋆
pe)
∥∥∥

span

7

3

log
(
S ntot

(1−γ)δ′

)
n(s, a)− 1

+
1

ntot

2 + 3

√√√√2 log
(
S ntot

(1−γ)δ′

)
n(s, a)− 1

+
14

3

log
(
S ntot

(1−γ)δ′

)
n(s, a)− 1

 .

Taking a union bound over all s ∈ S, a ∈ A, and setting δ′ = δ
6SA , we obtain that with probability at

least 1− δ, for all s ∈ S, a ∈ A where n(s, a) ≥ 1 + 8 log
(

6S2Antot

(1−γ)δ

)
, we have∣∣∣(P̂sa − Psa)Tβ(s,a)(P̂sa, V̂

⋆
pe)
∣∣∣

≤

√√√√2VP̂sa

[
Tβ(s,a)(P̂sa, V̂ ⋆

pe)
]
log
(

6S2Antot

(1−γ)δ

)
n(s, a)− 1

+
∥∥∥Tβ(s,a)(P̂sa, V̂

⋆
pe)
∥∥∥

span

7

3

log
(

6S2Antot

(1−γ)δ

)
n(s, a)− 1

+
1

ntot

2 + 3

√√√√2 log
(

6S2Antot

(1−γ)δ

)
n(s, a)− 1

+
14

3

log
(

6S2Antot

(1−γ)δ

)
n(s, a)− 1



≤

√√√√2VP̂sa

[
Tβ(s,a)(P̂sa, V̂ ⋆

pe)
]
log
(

6S2Antot

(1−γ)δ

)
n(s, a)− 1

+
∥∥∥Tβ(s,a)(P̂sa, V̂

⋆
pe)
∥∥∥

span

7

3

log
(

6S2Antot

(1−γ)δ

)
n(s, a)− 1

+
4.5

ntot

≤ 2max


√√√√2VP̂sa

[
Tβ(s,a)(P̂sa, V̂ ⋆

pe)
]
log
(

6S2Antot

(1−γ)δ

)
n(s, a)− 1

,
∥∥∥Tβ(s,a)(P̂sa, V̂

⋆
pe)
∥∥∥

span

7

3

log
(

6S2Antot

(1−γ)δ

)
n(s, a)− 1

+
4.5

ntot

= max


√√√√8VP̂sa

[
Tβ(s,a)(P̂sa, V̂ ⋆

pe)
]
log
(

6S2Antot

(1−γ)δ

)
n(s, a)− 1

,
∥∥∥Tβ(s,a)(P̂sa, V̂

⋆
pe)
∥∥∥

span

14

3

log
(

6S2Antot

(1−γ)δ

)
n(s, a)− 1

+
4.5

ntot

≤ b(s, a, V̂ ⋆
pe)−

1

2ntot
.
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where the second inequality uses the assumption that n(s, a) ≥ 1+8 log
(

6S2Antot

(1−γ)δ

)
and the fact that

2+3
√

1
4+

14
3

1
8 < 4.5, and then we bounded a+b ≤ 2max{a, b}. We also note that since we are in the

case that n(s, a) ≥ 1+8 log
(

6S2Antot

(1−γ)δ

)
≥ 9, we have that n(s, a)− 1 = max{n(s, a)− 1, 1}.

Lemma B.8. Fix any policy π⋆. With probability at least 1− 2δ, for all s ∈ S, a ∈ A, if n(s, a) ≥
1 + 8 ln

(
6S2Antot

(1−γ)δ

)
, then∣∣∣(P̂sa − Psa

)
Tβ(s,a)(P̂sa, V̂

π⋆

pe )
∣∣∣

≤ max

{√
β(s, a)VP̂sa

[
Tβ(s,a)(P̂sa, V̂ π⋆

pe )
]
, β(s, a)

∥∥∥Tβ(s,a)(P̂sa, V̂
π⋆

pe )
∥∥∥

span

}
+

5

ntot

= b(s, a, V̂ π⋆

pe )

and √
VP̂sa

[
V̂ π⋆

pe

]
≤
√

VPsa

[
V̂ π⋆

pe

]
+
∥∥∥V̂ π⋆

pe

∥∥∥
span

√√√√2 log
(

6S2Antot

(1−γ)δ

)
n(s, a)

+
4

ntot
(23)

and∣∣∣(P̂sa − Psa)V̂
π⋆

pe

∣∣∣ ≤
√√√√2VPsa

[
V̂ π⋆

pe

]
log
(

6S2Antot

(1−γ)δ

)
n(s, a)

+
∥∥∥V̂ π⋆

pe

∥∥∥
span

log
(

6S2Antot

(1−γ)δ

)
3n(s, a)

+
3

ntot
(24)

where α = 8 log
(

6S2Antot

(1−γ)δ

)
and β(s, a) = α

max{n(s,a)−1,1} .

Proof. The first statement is analogous to Lemma B.7 but uses the construction of item 4 of Lemma
B.6 in place of item 2. Thus combining item 4 of Lemma B.6 with Lemma B.5, taking a union
bound and performing the same simplifications, we obtain that with probability at least 1− δ, for all
s ∈ S, a ∈ A, if n(s, a) ≥ 1 + 8 ln

(
6S2Antot

(1−γ)δ

)
, then∣∣∣(P̂sa − Psa

)
Tβ(s,a)(P̂sa, V̂

π⋆

pe )
∣∣∣ ≤ b(s, a, V̂ π⋆

pe ).

Now we establish the second two properties. We will show that they both hold with probability 1− δ,
after which we are done since we can then use a union bound to combine with the above. Fixing some
s ∈ S and a ∈ A, if n(s, a) < 1 + 8 log

(
6S2Antot

(1−γ)δ

)
then we have nothing to check. Otherwise, we

can immediately combine item 3 of Lemma B.6 (which gives |U | ≤ ntot

1−γ ≤ S ntot

1−γ ) with Lemma B.5
(since our condition on n(s, a) implies n(s, a) ≥ 2) to conclude that with probability at least 1− 6δ′,
we have both∣∣∣(P̂sa − Psa)V̂

π⋆

pe

∣∣∣ ≤
√√√√2VPsa

[
V̂ π⋆

pe

]
log
(
S ntot

(1−γ)δ′

)
n(s, a)

+
∥∥∥V̂ π⋆

pe

∥∥∥
span

log
(
S ntot

(1−γ)δ′

)
3n(s, a)

+
1

ntot

2 +

√√√√2 log
(
S ntot

(1−γ)δ′

)
n(s, a)

+ 2
log
(
S ntot

(1−γ)δ′

)
3n(s, a)

 (25)

and √
n(s, a)

n(s, a)− 1

√
VP̂sa

[
V̂ π⋆

pe

]
≤
√

VPsa

[
V̂ π⋆

pe

]
+
∥∥∥V̂ π⋆

pe

∥∥∥
span

√√√√2 log
(

Sntot

(1−γ)δ′

)
n(s, a)− 1

(26)

+
1

ntot

2

√√√√2 log
(

Sntot

(1−γ)δ′

)
n(s, a)− 1

+ 3

 . (27)
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Taking a union bound over all s, a ∈ S,A and setting δ′ = δ
6SA , we have that with probability at

least 1− δ, for all s, a such that n(s, a) ≥ 1 + 8 ln
(

6S2Antot

(1−γ)δ

)
, both

∣∣∣(P̂sa − Psa)V̂
π⋆

pe

∣∣∣ ≤
√√√√2VPsa

[
V̂ π⋆

pe

]
log
(

6S2Antot

(1−γ)δ

)
n(s, a)

+
∥∥∥V̂ π⋆

pe

∥∥∥
span

log
(

6S2Antot

(1−γ)δ

)
3n(s, a)

+
3

ntot

and

√
VP̂sa

[
V̂ π⋆

pe

]
≤

√
n(s, a)− 1

n(s, a)

√
VPsa

[
V̂ π⋆

pe

]
+
∥∥∥V̂ π⋆

pe

∥∥∥
span

√√√√2 log
(

6S2Antot

(1−γ)δ

)
n(s, a)

+
1

ntot

2

√√√√2 log
(

6S2Antot

(1−γ)δ

)
n(s, a)

+ 3



≤
√
VPsa

[
V̂ π⋆

pe

]
+
∥∥∥V̂ π⋆

pe

∥∥∥
span

√√√√2 log
(

6S2Antot

(1−γ)δ

)
n(s, a)

+
4

ntot

where for the first bound we simplified (25) using the condition on n(s, a) and the fact that 2+
√

2
8 +

2
3
1
8 < 3, and for the second bound we simplified (27) also using the condition on n(s, a) and then

the fact that 2
√

2
8 + 3 = 4.

B.4 Pessimism

In this subsection we establish the following essential pessimism property, making use of the previous
concentration results and our construction of T̂pe.

Lemma B.9. Under the event in Lemma B.7, we have that

Qπ̂ ≥ Q̂.

Proof. We will show that T π̂(Q̂) ≥ Q̂ (where T π̂(Q) := r + PM π̂Q is the Bellman evaluation
operator for π̂), which by a standard argument implies that Qπ̂ ≥ Q̂, since we can then easily derive
(by monotonicity of T π̂) that (T π̂)(k)(Q̂) ≥ Q̂ for any integer k ≥ 0, and thus

Qπ̂ = lim
k→∞

(T π̂)(k)(Q̂) ≥ Q̂.

Fixing arbitrary s ∈ S, a ∈ A, we will now verify that T π̂(Q̂)(s, a) ≥ Q̂(s, a). From Lemma B.4
we have that T̂pe(Q̂)(s, a) ≥ Q̂(s, a). We consider two cases based upon the value of T̂pe(Q̂)(s, a),
which by (3) is either 1) equal to r(s, a) + γP̂saTβ(s,a)(P̂sa,MQ̂) − γb(s, a,MQ̂) or 2) equal to
r(s, a) + γmins′(MQ̂)(s′). In the simpler case 2, we thus have that

T̂pe(Q̂)(s, a) = r(s, a) + γmin
s′

(MQ̂)(s′) ≤ r(s, a) + γPsaMQ̂ = r(s, a) + γPsaM
π̂Q̂ = T π̂(Q̂)(s, a)

using the facts that mins′ V (s′) ≤ PsaV for any V ∈ RS (since Psa is a probability distribution)
and that MQ̂ = M π̂Q̂ since π̂ is greedy with respect to Q̂. We therefore have that Q̂(s, a) ≤
T̂pe(Q̂)(s, a) ≤ T π̂(Q̂)(s, a) in case 2, as desired. Now we consider case 1. Note that since we are
in case 1, we must have that β(s, a) ≤ 1, which implies that n(s, a) ≥ α + 1 (because if we had
β(s, a) > 1, then we would have Tβ(s,a)(P̂sa,MQ̂) = mins′(MQ̂)(s′), and b(s, a,MQ̂) > 0, so
the term Tβ(s,a)(P̂sa,MQ̂)−b(s, a,MQ̂) could not have achieved the maximum in the definition (3)
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of T̂pe). Then we have that

Q̂(s, a) ≤ T̂pe(Q̂)(s, a)

≤ T̂pe(Q̂⋆
pe)(s, a) = r(s, a) + γP̂saTβ(s,a)(P̂sa,MQ̂⋆

pe)− γb(s, a,MQ̂⋆
pe)

≤ r(s, a) + γPsaTβ(s,a)(P̂sa,MQ̂⋆
pe) + γ

∣∣∣(P̂sa − Psa)Tβ(s,a)(P̂sa,MQ̂⋆
pe)
∣∣∣− γb(s, a,MQ̂⋆

pe)

≤ r(s, a) + γPsaTβ(s,a)(P̂sa,MQ̂⋆
pe) + γb(s, a,MQ̂⋆

pe)−
1

2ntot
− γb(s, a,MQ̂⋆

pe)

≤ r(s, a) + γPsaMQ̂⋆
pe −

1

2ntot

≤ r(s, a) + γPsaMQ̂

= r(s, a) + γPsaM
π̂Q̂ = T π̂(Q̂)(s, a)

where the first inequality is due to T̂pe(Q̂) ≥ Q̂ from Lemma B.4, the second inequality is due to
monotonicity of T̂pe (Lemma B.1) and the fact that Q̂ ≤ Q̂⋆

pe (Lemma B.4), the third inequality is by
triangle inequality, the fourth inequality is from Lemma B.7, the fifth inequality is from the trivial fact
that elementwise Tβ(s,a)(P̂sa,MQ̂⋆

pe) ≤ MQ̂⋆
pe, the sixth inequality follows from Q̂⋆

pe ≤ Q̂+ 1
2ntot

1

due to Lemma B.4 (since by monotonicity of M , MQ̂⋆
pe ≤ M(Q̂+ 1

2ntot
1) = MQ̂+ 1

2ntot
1), and

the final equality is from the definition of π̂ (from Algorithm 1) since it is greedy with respect to Q̂.
Combining the two cases we have shown that T π̂(Q̂) ≥ Q̂ as desired. Combining the two cases we
have shown that T π̂(Q̂) ≥ Q̂ as desired.

B.5 Policy hitting radius lemmas

In this subsection we establish some key properties regarding the relationship between Thit and
certain discounted policy occupancy measures which will appear in later analysis steps. We also
establish some facts about Thit of general interest and compare it to the mixing time.

Recall that ηs := inf{t ≥ 0 : St = s} is the first hitting time of state s. We define an additional
useful quantity: for any s⋆ ∈ S, let

Thit(P, π, s
⋆) := sup

s0

Eπ
s0ηs⋆ .

This is the maximum expected hitting time of state s⋆ in the Markov chain Pπ (which can be infinite).
Then we have

Thit(P, π) := inf
s⋆

Thit(P, π, s
⋆) = inf

s⋆
sup
s0

Eπ
s0ηs⋆ .

Thit(P, π) is finite if and only if Pπ is unichain:

Lemma B.10. Fix a policy π and an MDP transition kernel P . Then the Markov chain Pπ is unichain
if and only if Thit(P, π) is finite.

Proof. First, suppose that Thit(P, π) is finite. Then there exists some s⋆ such that for all s0 ∈ S,
Eπ
s0ηs⋆ < ∞. Therefore s⋆ is reachable from any state, so all recurrent classes must contain s⋆, but

since the irreducible closed recurrent classes (along with the transient states) form a partition of S,
this implies that there can only be one closed irreducible recurrent class, that is that Pπ is unichain.

Next, suppose that Pπ is unichain. Let s̃⋆ be some state in the single closed irreducible recurrent
class of Pπ. Now we argue that Eπ

s0 [ηs̃⋆ ] < ∞ for any s0 ∈ S. First, it is a standard fact (in
finite Markov chains) that letting C be the recurrent class, we have M := maxs0∈C Eπ

s0 [ηs̃⋆ ] < ∞
(e.g. Kemeny and Snell [1976], where Eπ

s0 [ηs̃⋆ ] is referred to as the mean first passage time). Now
letting s0 be any fixed transient state, since there exists a unique irreducible recurrent class C, letting
ηC = inf{t ≥ 0 : St ∈ C} be its first hitting time, it is also a standard fact (for finite Markov chains)
that Eπ

s0ηC < ∞ (replacing C with a single absorbing state, the new chain becomes an absorbing
chain, and the absorption time formulas in Kemeny and Snell [1976] imply Eπ

s0ηC < ∞). Then a
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calculation using the strong Markov property (where FηC
is the stopped sigma-algebra associated

with the stopping time ηC) implies that

Eπ
s0 [ηs̃⋆ ] = Eπ

s0E
π
s0 [ηs̃⋆ | FηC

] = Eπ
s0

[
Eπ
SηC

[ηs̃⋆ ] + ηC

]
≤ Eπ

s0 [M + ηC ] < ∞.

Since there are only a finite number of such transient states s0, the maximum of Eπ
s0 [ηs̃⋆ ] over all

such states is finite. Hence Thit(P, π) ≤ maxs0∈S Eπ
s0 [ηs̃⋆ ] < ∞.

Define dπγ,s0 ∈ RS as

dπγ,s0(s) =

∞∑
t=0

γte⊤s0P
t
πes.

We often drop the dependence on γ, π and simply write ds0 . We also define d⋆(s) = 1
1−γµ

⋆(s).

Lemma B.11. Let s⋆ ∈ S satisfy Thit(P, π) = Thit(P, π, s
⋆). Then

sup
s0

∑
s∈S

|ds0(s)− ds⋆(s)| ≤ 2Thit(P, π)

and

sup
s0,s1

∑
s∈S

|ds0(s)− ds1(s)| ≤ 4Thit(P, π).

Proof. We use a coupling argument, and these calculations are somewhat inspired by those in [Cheikhi
and Russo, 2023, Lemma B.13]. Starting with the first statement, fix some s0 ∈ S. Let S⋆

0 , S
⋆
1 , . . . ,

be the stochastic process with distribution given by the Markov chain Pπ with starting state s⋆, and let
S0, S1, . . . , be the stochastic process with distribution given by the Markov chain Pπ but with starting
state s0. Let ηs⋆ = inf{t : St = s⋆} be the first hitting time of the state s⋆ by the process (St)

∞
t=0.

Now define the process S′
0, S

′
1, . . . identically to (St)

∞
t=0 but to follow (S⋆

t )
∞
t=0 once it reaches s⋆,

that is S′
ηs⋆

= S⋆
0 , S

′
ηs⋆+1 = S⋆

1 , and so on. It is a standard fact due to the Markov property that
(S′

t)
∞
t=0 has the same distribution as (St)

∞
t=0. Now add an absorbing terminal state q (which we do

not consider as an element of S) and for all t ≥ 1 let Zt ∼ Bernoulli(γ) (independently), and define
the processes (S̃′

t)
∞
t=0 and (S̃⋆

t )
∞
t=0 by S̃′

0 = S′
0, S̃⋆

0 = S⋆
0 , and for all t ≥ 0,

S̃⋆
t+1 =

{
q ∃k ∈ {1, . . . , t+ 1} such that Zk = 1

S⋆
t+1 otherwise

,

S̃′
t+1 =

{
q ∃k ∈ {1, . . . , t+ 1} such that Zk = 1

S′
t+1 otherwise

.

Intuitively speaking, (S̃′
t)

∞
t=0 and (S̃⋆

t )
∞
t=0 will reach the absorbing state q at the same time, and the

probability of reaching it on any given timestep is γ if it has not yet been reached. It is a standard fact
that dπγ,s0(s) = E

∑∞
t=0 I(S̃′

t = s) and that dπγ,s⋆(s) = E
∑∞

t=0 I(S̃⋆
t = s). Hence using the above

coupling we can bound dπγ,s0(s)− dπγ,s⋆(s). Specifically we have

∑
s∈S

∣∣dπγ,s0(s)− dπγ,s⋆(s)
∣∣ =∑

s∈S

∣∣∣∣∣E
∞∑
t=0

(
I(S̃′

t = s)− I(S̃⋆
t = s)

)∣∣∣∣∣
≤
∑
s∈S

E

∣∣∣∣∣
∞∑
t=0

(
I(S̃′

t = s)− I(S̃⋆
t = s)

)∣∣∣∣∣
= E

∑
s∈S

∣∣∣∣∣
ηq−1∑
t=0

(
I(S̃′

t = s)− I(S̃⋆
t = s)

)∣∣∣∣∣ (28)
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where in the final equality we let ηq = inf{t ≥ 1 : Zt = 1} be the first hitting time of the terminal
state. Now we consider two cases. On the event that ηq ≤ ηs⋆ , we have

∑
s∈S

∣∣∣∣∣
ηq−1∑
t=0

(
I(S̃′

t = s)− I(S̃⋆
t = s)

)∣∣∣∣∣ ≤∑
s∈S

ηq−1∑
t=0

∣∣∣I(S̃′
t = s)− I(S̃⋆

t = s)
∣∣∣

=

ηq−1∑
t=0

2I(S̃′
t ̸= S̃⋆

t )

= 2ηq ≤ 2ηs⋆ .

On the event that ηs⋆ < ηq , we have

∑
s∈S

∣∣∣∣∣
ηq−1∑
t=0

(
I(S̃′

t = s)− I(S̃⋆
t = s)

)∣∣∣∣∣
=
∑
s∈S

∣∣∣∣∣
ηq−1∑
t=0

(I(S′
t = s)− I(S⋆

t = s))

∣∣∣∣∣
=
∑
s∈S

∣∣∣∣∣∣
ηs⋆−1∑
t=0

I(S′
t = s) +

ηq−1∑
t=ηs⋆

I(S′
t = s)−

ηq−ηs⋆−1∑
t=0

I(S⋆
t = s)−

ηq−1∑
t=ηq−ηs⋆

I(S⋆
t = s)

∣∣∣∣∣∣
=
∑
s∈S

∣∣∣∣∣∣
ηs⋆−1∑
t=0

I(S′
t = s)−

ηq−1∑
t=ηq−ηs⋆

I(S⋆
t = s)

∣∣∣∣∣∣
=
∑
s∈S

∣∣∣∣∣
ηs⋆−1∑
t=0

(
I(S′

t = s)− I(S⋆
t+ηq−ηs⋆

= s)
)∣∣∣∣∣

≤
∑
s∈S

ηs⋆−1∑
t=0

∣∣∣I(S′
t = s)− I(S⋆

t+ηq−ηs⋆
= s)

∣∣∣
= 2

ηs⋆−1∑
t=0

I(S′
t ̸= S⋆

t+ηq−ηs⋆
) ≤ 2ηs⋆

using the fact that S′
ηs⋆

= S⋆
0 , S

′
ηs⋆+1 = S⋆

1 , . . . to cancel terms. Combining the bounds for the two
cases with (28), we have that∑

s∈S

∣∣dπγ,s0(s)− dπγ,s⋆(s)
∣∣ ≤ E2ηs⋆ ≤ 2Thit(P, π)

as desired.

The second statement of the lemma follows immediately from the first, since by triangle inequality

sup
s0,s1

∑
s∈S

|ds0(s)− ds1(s)| = sup
s0,s1

∥ds0 − ds1∥1 ≤ sup
s0,s1

∥ds0 − ds⋆∥1 + ∥ds⋆ − ds1∥1 ≤ 4Thit(P, π).

Lemma B.12. Let π be a policy such that Pπ is unichain, and let µπ ∈ RS denote its stationary
distribution. Then ∑

s∈S

∣∣∣∣dπγ,s0(s)− 1

1− γ
µπ(s)

∣∣∣∣ ≤ 4Thit(P, π).

Proof. Since µπ is a stationary distribution, we have for any s ∈ S that∑
s′∈S

µπ(s′)dπγ,s′(s) = (µπ)⊤(I − γPπ)
−1es = (µπ)⊤

∞∑
t=0

γtP t
πes =

∞∑
t=0

γt(µπ)⊤es =
1

1− γ
µπ(s)
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(since (µπ)⊤Pπ = (µπ)⊤). Then we can calculate by Jensen’s inequality that for any fixed s ∈ S,∣∣∣∣dπγ,s0(s)− 1

1− γ
µπ(s)

∣∣∣∣ =
∣∣∣∣∣dπγ,s0(s)− ∑

s′∈S
µπ(s′)dπγ,s′(s)

∣∣∣∣∣
=

∣∣∣∣∣∑
s′∈S

µπ(s′)
(
dπγ,s0(s)− dπγ,s′(s)

)∣∣∣∣∣
≤
∑
s′∈S

µπ(s′)
∣∣dπγ,s0(s)− dπγ,s′(s)

∣∣ .
Therefore∑
s∈S

∣∣∣∣dπγ,s0(s)− 1

1− γ
µπ(s)

∣∣∣∣ ≤∑
s∈S

∑
s′∈S

µπ(s′)
∣∣dπγ,s0(s)− dπγ,s′(s)

∣∣ = ∑
s′∈S

µπ(s′)
∑
s∈S

∣∣dπγ,s0(s)− dπγ,s′(s)
∣∣

≤
∑
s′∈S

µπ(s′)4Thit(P, π) = 4Thit(P, π)

where in the second inequality step we used Lemma B.11.

Lemma B.13. For any policy π, ∥hπ∥span ≤ 4Thit(P, π).

Proof. Note that by Lemma B.10, if Pπ is not unichain then Thit(P, π) = ∞ and so the desired
bound holds trivially (note ∥hπ∥span is always finite). So we can now focus on the case that Pπ

is unichain. This implies ρπ is a state-independent constant. In this case it is a standard fact (e.g.
[Puterman, 1994, Corollary 8.2.4]) that for any s, s′ ∈ S,

hπ(s)− hπ(s′) = lim
γ→1−

V π
γ (s)− V π

γ (s′).

Therefore

∥hπ∥span = max
s,s′∈S

hπ(s)− hπ(s′)

= max
s,s′∈S

lim
γ→1−

V π
γ (s)− V π

γ (s′)

= max
s,s′∈S

lim
γ→1−

e⊤s (I − γPπ)
−1rπ − e⊤s′(I − γPπ)

−1rπ

= max
s,s′∈S

lim
γ→1−

(dπγ,s − dπγ,s′)rπ

≤ max
s,s′∈S

lim
γ→1−

∥∥dπγ,s − dπγ,s′
∥∥
1
∥rπ∥∞

≤ max
s,s′∈S

lim
γ→1−

4Thit(P, π)

= 4Thit(P, π)

where the inequality steps are by Holder’s inequality and Lemma B.11.

B.5.1 Relationship between policy hitting radius and uniform mixing time

Here we argue that there is generally no relationship between the policy hitting radius and the
mixing time. First, if Pπ is a unichain and periodic Markov chain, then the mixing time will be
infinite/undefined whereas Thit(P, π) < ∞ by Lemma B.10.

Now we show an example where the mixing time can be arbitrarily smaller than the policy hitting
radius. Suppose that P , π are defined so that Pπ is the random walk on the complete graph on L
nodes, where L is any positive integer. Then µπ(s) = 1/L for all s ∈ S, and after just one step
from any starting state we have that S1 has distribution µπ so τ(π) = 1. However, for any fixed
starting state s0 and any state s ̸= s0, we have that ηs ∼ Geom(1/L), so Eπ

s0ηs = L, and hence
Thit(P, π) = L.
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B.6 Error analysis

Now we can continue with analyzing the relationship between Q̂⋆
pe and ρπ

⋆

, for a comparator policy
π⋆. Having established pessimism (Lemma B.9), which implies an upper bound on Q̂⋆

pe, we now
seek to lower-bound this quantity. Since (by Lemma B.1) Q̂⋆

pe ≥ Q̂π⋆

pe , it suffices to lower-bound
Q̂π⋆

pe in terms of V π⋆

, which is then related to ρπ
⋆

.

Lemma B.14. For any probability distribution µ ∈ ∆S , any V ∈ RS , and any β ∈ [0, 1], we have
that

Vµ [Tβ(µ, V )] ≤ Vµ [V ] .

Proof. We prove this by showing the more general statement that for any random variable X and any
scalar a,

V [min(X, a)] ≤ V [X] .

Let T = min(X, a) and ∆ = X − T . Then

V [X] = V [T ] + V [∆] + 2Cov(T,∆).

Thus to show V [X] ≥ V [T ] it suffices to show that Cov(T,∆) ≥ 0. Now we compute

Cov(T,∆) = E [∆(T − ET )]
= E [∆(T − ET )I{X ≥ a}] + E [∆(T − ET )I{X < a}] .

On the event {X < a} we have ∆ = 0, so E [∆(T − ET )I{X < a}] = 0. On the event {X ≥ a},
(T − ET ) ≥ 0 since T = a and ET ≤ a, and ∆ ≥ 0, so E [∆(T − ET )I{X ≥ a}] ≥ 0. Therefore
Cov(T,∆) ≥ 0 as desired.

Lemma B.15. Fix any deterministic policy π⋆. Under the event in Lemma B.8,

V π⋆

− V̂ π⋆

pe ≤ (I − γPπ⋆)−1γb̃π⋆

where

b̃π⋆(s) = 2

√
β(s, π⋆(s))VPsπ⋆(s)

[
V̂ π⋆

pe

]
+ 4β(s, π⋆(s))

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
12

ntot
.

We also have that

V̂ π⋆

pe − γPπ⋆ V̂ π⋆

pe + γb̃π⋆ ≥ rπ⋆ . (29)

Proof. Fix s ∈ S, a ∈ A. First we handle the case that β(s, a) ≤ 1. This implies that n(s, a) ≥
1 + α = 1 + 8 log

(
6S2Antot

(1−γ)δ

)
. By the definition (8) of T̂ π⋆

pe we have that

Q̂π⋆

pe (s, a) ≥ r(s, a) + γP̂saTβ(s,a)(P̂sa, V̂
π⋆

pe )− γb(s, a, V̂ π⋆

pe ). (30)
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By the definition of Tβ(s,a)(P̂sa, V̂
π⋆

pe ) we have that (elementwise)

P̂saTβ(s,a)(P̂sa, V̂
π⋆

pe ) =
∑
s′

P̂sa(s
′)Tβ(s,a)(P̂sa, V̂

π⋆

pe )(s′)

=
∑

s′:V̂ π⋆
pe (s′)≤Qβ(s,a)(P̂sa,V̂ π⋆

pe )

P̂sa(s
′)Tβ(s,a)(P̂sa, V̂

π⋆

pe )(s′)

+
∑

s′:V̂ π⋆
pe (s′)>Qβ(s,a)(P̂sa,V̂ π⋆

pe )

P̂sa(s
′)Tβ(s,a)(P̂sa, V̂

π⋆

pe )(s′)

=
∑

s′:V̂ π⋆
pe (s′)≤Qβ(s,a)(P̂sa,V̂ π⋆

pe )

P̂sa(s
′)V̂ π⋆

pe (s′)

+
∑

s′:V̂ π⋆
pe (s′)>Qβ(s,a)(P̂sa,V̂ π⋆

pe )

P̂sa(s
′)Qβ(s,a)(P̂sa, V̂

π⋆

pe )

≥
∑

s′:V̂ π⋆
pe (s′)≤Qβ(s,a)(P̂sa,V̂ π⋆

pe )

P̂sa(s
′)V̂ π⋆

pe (s′)

+
∑

s′:V̂ π⋆
pe (s′)>Qβ(s,a)(P̂sa,V̂ π⋆

pe )

P̂sa(s
′)

(
V̂ π⋆

pe (s′)−
∥∥∥V̂ π⋆

pe

∥∥∥
span

)

> P̂saV̂
π⋆

pe − β(s, a)
∥∥∥V̂ π⋆

pe

∥∥∥
span

(31)

where in the final inequality we used that
∑

s′:V̂ π⋆
pe (s′)>Qβ(s,a)(P̂sa,V̂ π⋆

pe ) P̂sa(s
′) < β(s, a). Using (24)

from Lemma B.8 to relate P̂saV̂
π⋆

pe to PsaV̂
π⋆

pe , we can further bound

P̂saTβ(s,a)(P̂sa, V̂
π⋆

pe ) ≥ PsaV̂
π⋆

pe −
∣∣∣(P̂sa − Psa)V̂

π⋆

pe

∣∣∣− β(s, a)
∥∥∥V̂ π⋆

pe

∥∥∥
span

≥ PsaV̂
π⋆

pe −

√√√√2VPsa

[
V̂ π⋆

pe

]
log
(

6S2Antot

(1−γ)δ

)
n(s, a)

−
∥∥∥V̂ π⋆

pe

∥∥∥
span

log
(

6S2Antot

(1−γ)δ

)
3n(s, a)

− 3

ntot
− β(s, a)

∥∥∥V̂ π⋆

pe

∥∥∥
span

≥ PsaV̂
π⋆

pe −
√
β(s, a)VPsa

[
V̂ π⋆

pe

]
− 2β(s, a)

∥∥∥V̂ π⋆

pe

∥∥∥
span

− 3

ntot
. (32)

To finish lower-bounding (30) we must also lower-bound b(s, a, V̂ π⋆

pe ). It is immediate to see that∥∥∥Tβ(s,a)(P̂sa, V̂
π⋆

pe )
∥∥∥

span
≤
∥∥∥V̂ π⋆

pe

∥∥∥
span

, and also by Lemma B.14 (since we are in the β(s, a) ≤ 1

case) we have that VP̂sa

[
Tβ(s,a)(P̂sa, V̂

π⋆

pe )
]
≤ VP̂sa

[
V̂ π⋆

pe

]
. These two facts yield that

b(s, a, V̂ π⋆

pe ) = max

{√
β(s, a)VP̂sa

[
Tβ(s,a)(P̂sa, V̂ π⋆

pe )
]
, β(s, a)

∥∥∥Tβ(s,a)(P̂sa, V̂
π⋆

pe )
∥∥∥

span

}
+

5

ntot

≤ max

{√
β(s, a)VP̂sa

[
V̂ π⋆

pe

]
, β(s, a)

∥∥∥V̂ π⋆

pe

∥∥∥
span

}
+

5

ntot

≤
√
β(s, a)VP̂sa

[
V̂ π⋆

pe

]
+ β(s, a)

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
5

ntot
. (33)
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Furthermore, using the bound (23) from Lemma B.8, we can further bound (33) as

b(s, a, V̂ π⋆

pe )

≤
√

β(s, a)VP̂sa

[
V̂ π⋆

pe

]
+ β(s, a)

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
5

ntot

≤
√
β(s, a)

√VPsa

[
V̂ π⋆

pe

]
+
∥∥∥V̂ π⋆

pe

∥∥∥
span

√√√√2 log
(

6S2Antot

(1−γ)δ

)
n(s, a)

+
4

ntot

+ β(s, a)
∥∥∥V̂ π⋆

pe

∥∥∥
span

+
5

ntot

≤
√

β(s, a)

(√
VPsa

[
V̂ π⋆

pe

]
+
∥∥∥V̂ π⋆

pe

∥∥∥
span

√
β(s, a) +

4

ntot

)
+ β(s, a)

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
5

ntot

≤
√

β(s, a)VPsa

[
V̂ π⋆

pe

]
+ 2β(s, a)

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
9

ntot
(34)

(using the definition of β(s, a) and the fact that we are in the β(s, a) ≤ 1 case).

Combining (34) and (32) with (30) we obtain that

Q̂π⋆

pe (s, a) ≥ r(s, a) + γPsaV̂
π⋆

pe − 2γ

√
β(s, a)VPsa

[
V̂ π⋆

pe

]
− 4γβ(s, a)

∥∥∥V̂ π⋆

pe

∥∥∥
span

− 12γ

ntot

= r(s, a) + γPsaV̂
π⋆

pe − γb̃(s, a)

where we define b̃(s, a) =

√
β(s, a)VPsa

[
V̂ π⋆

pe

]
+ 4β(s, a)

∥∥∥V̂ π⋆

pe

∥∥∥
span

+ 12
ntot

.

Now for the simpler case that β(s, a) > 1, we have that

Q̂π⋆

pe (s, a) = r(s, a) + γmin
s′

V̂ π⋆

pe (s′)

≥ r(s, a) + γPsaV̂
π⋆

pe − γ
∥∥∥V̂ π⋆

pe

∥∥∥
span

≥ r(s, a) + γPsaV̂
π⋆

pe − γβ(s, a)
∥∥∥V̂ π⋆

pe

∥∥∥
span

≥ r(s, a) + γPsaV̂
π⋆

pe − γb̃(s, a).

Combining the two cases of β(s, a), we have for all s, a that Q̂π⋆

pe (s, a) ≥ r(s, a) + γPsaV̂
π⋆

pe −
γb̃(s, a). Therefore by monotonicity of Mπ⋆

,

V̂ π⋆

pe = Mπ⋆

Q̂π⋆

pe ≥ Mπ⋆
(
r + γP V̂ π⋆

pe − γb̃
)
= rπ⋆ + γPπ⋆ V̂ π⋆

pe − γb̃π⋆ .

We also have V̂ π⋆

pe − γPπ⋆ V̂ π⋆

pe + γb̃π⋆ ≥ rπ⋆ , which will be needed later. By the Bellman equation
for π⋆ we also have that V π⋆

= rπ⋆ + γPπ⋆V π⋆

. Combining these, rearranging, and using the
monotonicity of multiplication by (I − γPπ⋆)−1 (since all its entries are nonnegative), we obtain

V π⋆

− V̂ π⋆

pe ≤ rπ⋆ + γPπ⋆V π⋆

− rπ⋆ + γb̃π⋆ − γPπ⋆ V̂ π⋆

pe = γb̃π⋆ + γPπ⋆(V π⋆

− V̂ π⋆

pe )

=⇒ (I − γPπ⋆)(V π⋆

− V̂ π⋆

pe ) ≤ γb̃π⋆

=⇒ V π⋆

− V̂ π⋆

pe ≤ (I − γPπ⋆)−1γb̃π⋆

as desired.

Lemma B.16. Fix a deterministic unichain policy π⋆. Suppose that for all s ∈ S, n(s, π⋆(s)) ≥
mµπ⋆

(s)+ 4+4Thit(P, π
⋆), 1

1−γ ≥ m, and 1
1−γ ≥ 2. Then under the event in Lemma B.8, we have

that

max
s0∈S

(
V π⋆

(s0)− V̂ π⋆

pe (s0)
)

≤ 1

1− γ

√√√√2048S
∥∥∥V̂ π⋆

pe

∥∥∥
span

log
(

6S2Antot

(1−γ)δ

)
m

+
640S

∥∥∥V̂ π⋆

pe

∥∥∥
span

log
(

6S2Antot

(1−γ)δ

)
(1− γ)m

+
12

(1− γ)ntot
.
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Proof. First we note that, using Lemma B.15, we have

max
s0∈S

(
V π⋆

(s0)− V̂ π⋆

pe (s0)
)
≤ max

s0∈S
e⊤s0(I − γPπ⋆)−1γb̃π⋆ = max

s0∈S

〈
dπ

⋆

γ,s0 , b̃π⋆

〉
.

We will now fix some arbitrary s0 ∈ S and try to bound
〈
dπ

⋆

γ,s0 , b̃π⋆

〉
. By the assumptions in the

lemma statement we have that for all s ∈ S,

n(s, π⋆(s)) ≥ mµπ⋆

(s) + 4Thit(P, π
⋆) = (1− γ)m

1

1− γ
µπ⋆

(s) + 4Thit(P, π
⋆)

≥ (1− γ)mdπ
⋆

γ,s0(s)− (1− γ)m

∣∣∣∣dπ⋆

γ,s0(s)−
1

1− γ
µπ⋆

(s)

∣∣∣∣+ 4Thit(P, π
⋆)

≥ (1− γ)mdπ
⋆

γ,s0(s)− (1− γ)m4Thit(P, π
⋆) + 4Thit(P, π

⋆)

≥ (1− γ)mdπ
⋆

γ,s0(s)

where the third inequality is a consequence of Lemma B.12. For convenience we will let
C := (1 − γ)m, and so we have shown that n(s, π⋆(s)) ≥ Cdπ

⋆

γ,s0(s) for all s ∈ S. Also for

convenience abbreviate ℓ = log
(

6S2Antot

(1−γ)δ

)
. Using the fact that n(s, π⋆(s)) ≥ 4 which implies

1
max{n(s,π⋆(s))−1,1} = 1

n(s,π⋆(s))−1 ≤ 4/3
n(s,π⋆(s)) ≤

2
n(s,π⋆(s)) , we can simplify b̃π⋆ as

b̃π⋆(s) = 2

√
β(s, π⋆(s))VPsπ⋆(s)

[
V̂ π⋆

pe

]
+ 4β(s, π⋆(s))

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
12

n

= 2

√
8ℓ

n(s, π⋆(s))− 1
VPsπ⋆(s)

[
V̂ π⋆

pe

]
+ 4

8ℓ

n(s, π⋆(s))− 1

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
12

ntot

≤ 2

√
16ℓ

n(s, π⋆(s))
VPsπ⋆(s)

[
V̂ π⋆

pe

]
+ 4

16ℓ

n(s, π⋆(s))

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
12

ntot
.

Using this and the fact that n(s, π⋆(s)) ≥ Cdπ
⋆

γ,s0(s) for all s ∈ S, we have〈
dπ

⋆

γ,s0 , b̃π⋆

〉
≤
∑
s∈S

dπ
⋆

γ,s0(s)

(
2

√
16ℓ

n(s, π⋆(s))
VPsπ⋆(s)

[
V̂ π⋆

pe

]
+ 4

16ℓ

n(s, π⋆(s))

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
12

ntot

)

≤
∑
s∈S

dπ
⋆

γ,s0(s)

(
2

√
16ℓ

Cdπ⋆

γ,s0(s)
VPsπ⋆(s)

[
V̂ π⋆

pe

]
+ 4

16ℓ

Cdπ⋆

γ,s0(s)

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
12

ntot

)

=
∑
s∈S

2

√
dπ⋆

γ,s0(s)
16ℓ

C
VPsπ⋆(s)

[
V̂ π⋆

pe

]
+ S4

16ℓ

C

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
∑
s∈S

dπ
⋆

γ,s0(s)
12

ntot

≤
√

64Sℓ

C

√∑
s∈S

dπ⋆

γ,s0(s)VPsπ⋆(s)

[
V̂ π⋆

pe

]
+

64Sℓ

C

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
12

(1− γ)ntot
(35)

where in the final inequality we used Cauchy-Schwarz to bound the first term.

Now we focus on bounding the quantity
∑

s∈S dπ
⋆

γ,s0(s)VPsπ⋆(s)

[
V̂ π⋆

pe

]
. Let c = mins∈S V̂ π⋆

pe (s)

and V = V̂ π⋆

pe − c1. Then

V ◦ V − γ2Pπ⋆V ◦ Pπ⋆V = (V − γPπ⋆V ) ◦ (V + γPπ⋆V )

≤ (V − γPπ⋆V + γb̃π⋆ + (1− γ)c1) ◦ (V + γPπ⋆V )

≤ 2
∥∥V ∥∥∞ (V − γPπ⋆V + γb̃π⋆ + (1− γ)c1) (36)

where for the first inequality we used that V +γPπ⋆V ≥ 0 and that b̃π⋆ +(1−γ)c1 ≥ 0, and for the
second inequality we used that V +γPπ⋆V ≤ 2

∥∥V ∥∥∞ 1 and that V −γPπ⋆V +γb̃π⋆+(1−γ)c1 ≥ 0,
which follows from the fact that

V − γPπ⋆V + γb̃π⋆ + (1− γ)c1 = V̂ π⋆

pe − γPπ⋆ V̂ π⋆

pe + γb̃π⋆ ≥ rπ⋆ ≥ 0
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using (29) in the inequality step. Thus〈
dπ

⋆

γ,s0 ,VPπ⋆

[
V̂ π⋆

pe

]〉
=
〈
dπ

⋆

γ,s0 ,VPπ⋆

[
V
]〉

=
〈
dπ

⋆

γ,s0 , Pπ⋆(V )◦2 − (Pπ⋆V )◦2
〉

=

〈
dπ

⋆

γ,s0 , Pπ⋆(V )◦2 − 1

γ2
(V )◦2 +

1

γ2

(
(V )◦2 − γ2(Pπ⋆V )◦2

)〉
(i)

≤
〈
dπ

⋆

γ,s0 , Pπ⋆(V )◦2 − 1

γ2
(V )◦2 +

1

γ2
2
∥∥V ∥∥∞ (V − γPπ⋆V + γb̃π⋆ + (1− γ)c1)

〉
(ii)

≤
〈
dπ

⋆

γ,s0 ,
1

γ2
2
∥∥V ∥∥∞ (V − γPπ⋆V + γb̃π⋆ + (1− γ)c1)

〉
=

2
∥∥V ∥∥∞
γ2

e⊤s0(I − γPπ⋆)−1
(
(I − γPπ⋆)V + γb̃π⋆ + (1− γ)c1

)
=

2
∥∥V ∥∥∞
γ2

e⊤s0(I − γPπ⋆)−1
(
(I − γPπ⋆)V̂ ⋆

pe + γb̃π⋆

)
=

2
∥∥V ∥∥∞
γ2

e⊤s0 V̂
⋆
pe +

4
∥∥V ∥∥∞
γ2

⟨dπ
⋆

γ,s0 , γb̃π⋆⟩

≤
2
∥∥V ∥∥∞
γ2

1

1− γ
+

4
∥∥V ∥∥∞
γ

⟨dπ
⋆

γ,s0 , b̃π⋆⟩. (37)

In (i) we use (36) and in (ii) we use that〈
dπ

⋆

γ,s0 , Pπ⋆(V )◦2 − 1

γ2
(V )◦2

〉
≤
〈
dπ

⋆

γ,s0 , Pπ⋆(V )◦2 − 1

γ
(V )◦2

〉
=

1

γ
e⊤s0(I − γPπ⋆)−1(γPπ⋆ − I)(V )◦2 ≤ 0.

Combining the bound (37) with (35) (and noting that
∥∥V ∥∥∞ =

∥∥∥V̂ π⋆

pe

∥∥∥
span

), we obtain that

〈
dπ

⋆

γ,s0 , b̃π⋆

〉
≤
√

64Sℓ

C

√√√√2
∥∥∥V̂ π⋆

pe

∥∥∥
span

γ2

1

1− γ
+

4
∥∥∥V̂ π⋆

pe

∥∥∥
span

γ

〈
dπ⋆

γ,s0 , b̃π⋆

〉
+

64Sℓ

C

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
12

(1− γ)ntot

≤

√√√√512
∥∥∥V̂ π⋆

pe

∥∥∥
span

Sℓ

C

(√
1

1− γ
+

√〈
dπ⋆

γ,s0 , b̃π⋆

〉)

+
64Sℓ

C

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
12

(1− γ)ntot

where we simplified by using that
√
a+ b ≤

√
a+

√
b and that 1

γ ≤ 2 (since 1
1−γ ≥ 2 implies that

γ ≥ 1
2 ). The above is a quadratic inequality in x :=

√〈
dπ⋆

γ,s0 , b̃π⋆

〉
of the form

x2 ≤ x
√
8y +

√
8y

1− γ
+ y +

12

(1− γ)ntot

where y =
64S

∥∥∥V̂ π⋆

pe

∥∥∥
span

ℓ

C . From the quadratic formula we obtain that

x ≤

√
8y +

√
8y + 4

(√
8y
1−γ + y + 12

(1−γ)ntot

)
2
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and then squaring both sides we obtain that

〈
dπ

⋆

γ,s0 , b̃π⋆

〉
= x2 ≤

(√
8y +

√
8y + 4

(√
8y
1−γ + y + 12

(1−γ)ntot

))2

4

≤ 1

2

(
8y + 8y + 4

(√
8y

1− γ
+ y +

12

(1− γ)ntot

))
= 10y +

√
32y

1− γ
+

12

(1− γ)ntot

= 10
64S

∥∥∥V̂ π⋆

pe

∥∥∥
span

ℓ

C
+

√√√√
32

64S
∥∥∥V̂ π⋆

pe

∥∥∥
span

ℓ

C(1− γ)
+

12

(1− γ)ntot

using that (a+ b)2 ≤ 2a2+2b2. Recalling the definitions of C = (1−γ)m and ℓ = log
(

6S2Antot

(1−γ)δ

)
,

and also since the above bound held for arbitrary s0, we have thus shown that

max
s0∈S

(
V π⋆

(s0)− V̂ π⋆

pe (s0)
)

≤ 1

1− γ

√√√√2048S
∥∥∥V̂ π⋆

pe

∥∥∥
span

log
(

6S2Antot

(1−γ)δ

)
m

+
640S

∥∥∥V̂ π⋆

pe

∥∥∥
span

log
(

6S2Antot

(1−γ)δ

)
(1− γ)m

+
12

(1− γ)ntot
.

B.7 Controlling the empirical span

While Lemma B.16 is approaching the desired result, it involves the empirical span term
∥∥∥V̂ π⋆

pe

∥∥∥
span

which we would like to bound in terms of
∥∥V π⋆∥∥

span. Such a bound is the objective of this subsection,
and makes crucial use of our assumption of data even for states which are transient under Pπ⋆ .

Lemma B.17. Fix a deterministic unichain policy π⋆. Suppose that n(s, π⋆(s)) ≥
72(Thit(P, π

⋆))2 log
(
2S
δ

)
for all s ∈ S. Then with probability at least 1− δ,

Thit(P̂ , π⋆) ≤ 24Thit(P, π
⋆).

Proof. The proof of this lemma is inspired by that of Zurek and Chen [2024, Lemma 4]. For any
MDP M and s ∈ S we let Eπ

s0,M denote the expectation with respect to the Markov chain induced
by π in the MDP M from starting state s0, and similarly we let Pπ

s0,M(E) = Eπ
s0,M[I(E)] denote

the associated probability measure. Let s⋆ ∈ S satisfy Thit(P, π
⋆) = Thit(P, π, s

⋆). Let M̂ be the
MDP (P̂ , r). Then

Thit(P̂ , π⋆) ≤ Thit(P̂ , π⋆, s⋆) = max
s0∈S

Eπ
s0,M̂

[ηs⋆ ]. (38)
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Supposing that k ∈ N satisfies maxs0∈S P
s0,M̂(ηs⋆ ≥ k) ≤ 1

2 , then we have for any s′0 that

Eπ
s′0,M̂

[ηs⋆ ] =

∞∑
t=0

P
s′0,M̂

(ηs⋆ > t)

=

∞∑
i=0

k−1∑
t=0

P
s′0,M̂

(ηs⋆ > ik + t)

≤
∞∑
i=0

k−1∑
t=0

P
s′0,M̂

(ηs⋆ > ik)

= k

∞∑
i=0

P
s′0,M̂

(ηs⋆ > ik)

≤ k

∞∑
i=0

2−i = 2k (39)

where the final inequality step used that

P
s′0,M̂

(ηs⋆ > ik) ≤
(
max
s0∈S

P
s0,M̂(ηs⋆ > k)

)i

≤ 2−i

which follows from the following standard arguments: for any integer i ≥ 1 (since this formula
obviously holds for i = 0), we have

P
s′0,M̂

(ηs⋆ > ik)

≤ P
s′0,M̂

(ηs⋆ ≥ ik)

= P
s′0,M̂

(ηs⋆ ̸∈ {0, . . . , (i− 1)k − 1} and ηs⋆ ̸∈ {(i− 1)k, . . . , ik − 1})
(i)
= E

s′0,M̂
P
s′0,M̂

(
ηs⋆ ̸∈ {0, . . . , (i− 1)k − 1} and ηs⋆ ̸∈ {(i− 1)k, . . . , ik − 1} | F(i−1)k

)
(ii)
= E

s′0,M̂

[
I (ηs⋆ ̸∈ {0, . . . , (i− 1)k − 1})P

s′0,M̂
(
ηs⋆ ̸∈ {(i− 1)k, . . . , ik − 1} | F(i−1)k

)]
(iii)
= E

s′0,M̂

[
I (ηs⋆ ̸∈ {0, . . . , (i− 1)k − 1})P

Sk,M̂ (ηs⋆ ̸∈ {0, . . . , k − 1})
]

(iv)

≤ 1

2
E
s′0,M̂

[I (ηs⋆ ̸∈ {0, . . . , (i− 1)k − 1})]

=
1

2
P
s′0,M̂

(ηs⋆ ≥ (i− 1)k)

where F(i−1)k is the sigma-algebra generated by S0, . . . , S(i−1)k, step (i) is the tower prop-
erty, step (ii) is because the event ηs⋆ ̸∈ {0, . . . , (i − 1)k − 1} is F(i−1)k-measurable, step
(iii) is the Markov property (e.g., [Durrett, 2019, Theorem 5.2.3]), and step (iv) is because
P
Sk,M̂ (ηs⋆ ̸∈ {0, . . . , k − 1}) = P

Sk,M̂(ηs⋆ ≥ k) ≤ 1
2 (this last inequality holding almost surely,

due to the assumption that maxs0∈S P
s0,M̂(ηs⋆ ≥ k) ≤ 1

2 ). Since these arguments held for arbitrary
i, we can repeat them to obtain the desired bound.

Now we try to find such a k. Define the reward function r by r(s, a) = I(s ̸= s⋆) and also let P ′

be the same transition matrix as P except with state s⋆ made to be absorbing for all actions. Then,
for some γ to be chosen later, letting V π⋆

γ,M′ be the discounted value function for policy π⋆ in MDP
M′ = (P ′, r), and letting Eπ⋆

s0,M′ ,Eπ⋆

s0,M denote expectations with respect to the MDPs M′ and M
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respectively, we have that

V π⋆

γ,M′(s0) = Eπ⋆

s0,M′

∞∑
t=0

γtI(St ̸= s⋆)

= Eπ⋆

s0,M

∞∑
t=0

γtI(ηs⋆ > t)

≤ Eπ⋆

s0,M

∞∑
t=0

I(ηs⋆ > t)

= Eπ⋆

s0,M[ηs⋆ ] ≤ Thit(P, π
⋆, s⋆).

This implies
∥∥V π⋆

γ,M′

∥∥
span

≤ Thit(P, π
⋆, s⋆), which will be needed shortly.

Let P̂ ′ similarly be the same transition matrix as P̂ except s⋆ is absorbing for all actions. Let M̂′ be
the MDP (P̂ ′, r). Then for any k ∈ N we have

V π⋆

γ,M̂′(s0) = Eπ⋆

s0,M̂′

∞∑
t=0

γtI(St ̸= s⋆)

= Eπ⋆

s0,M̂

∞∑
t=0

γtI(ηs⋆ > t)

≥ Eπ⋆

s0,M̂

k−1∑
t=0

γtI(ηs⋆ > t)

≥ Eπ⋆

s0,M̂

k−1∑
t=0

γk−1I(ηs⋆ > k − 1)

= kγk−1P
s0,M̂(ηs⋆ > k − 1).

Rearranging this implies that

P
s0,M̂(ηs⋆ > k − 1) ≤

V π⋆

γ,M̂′(s0)

kγk−1
≤

3V π⋆

γ,M̂′(s0)

k
(40)

where for the second inequality we set γ = 1− 1
k and used the fact that (1− 1

k )
k−1 ≥ 1/e ≥ 1/3

for all integers k > 1.

Now we bound V π⋆

γ,M̂′(s0) using concentration inequalities. For concreteness in the following
application of Hoeffding we set k = 12Thit(P, π

⋆) so γ = 1− 1/(12Thit(P, π
⋆)). By Hoeffding’s

inequality, we have for any s ̸= s⋆ that with probability at least 1− δ′

∣∣∣e⊤s (P̂ ′
π⋆ − P ′

π⋆)V π⋆

γ,M′

∣∣∣ ≤
√√√√√∥∥∥V π⋆

γ,M′

∥∥∥2
span

log
(

2
δ′

)
2n(s, π⋆(s))

≤

√
(Thit(P, π⋆, s⋆))2 log

(
2
δ′

)
2n(s, π⋆(s))

and trivially we have
∣∣∣e⊤s⋆(P̂ ′

π⋆ − P ′
π⋆)V π⋆

γ,M′

∣∣∣ = 0. Therefore by a union bound over all s ∈ S and

setting δ′ = δ
S , we have with probability at least 1− δ that

∥∥∥(P̂ ′
π⋆ − P ′

π⋆)V π⋆

γ,M′

∥∥∥
∞

≤ min
s∈S

√
(Thit(P, π⋆, s⋆))2 log

(
2S
δ

)
2n(s, π⋆(s))

≤ 1

12

where the second inequality uses the condition that n(s, π⋆(s)) ≥ 122

2 (Thit(P, π
⋆, s⋆))2 log

(
2S
δ

)
=

72(Thit(P, π
⋆))2 log

(
2S
δ

)
for all s ∈ S.
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Following standard arguments for the difference between two value functions with different transition
matrices we have

V π⋆

γ,M̂′ − V π⋆

γ,M′ = (I − γP̂ ′
π⋆)−1rπ⋆ − (I − γP ′

π⋆)−1rπ⋆

= (I − γP̂ ′
π⋆)−1(I − γP ′

π⋆)(I − γP ′
π⋆)−1rπ⋆ − (I − γP̂ ′

π⋆)−1(I − γP̂ ′
π⋆)(I − γP ′

π⋆)−1rπ⋆

= γ(I − γP̂ ′
π⋆)−1(P̂ ′

π⋆ − P ′
π⋆)(I − γP ′

π⋆)−1rπ⋆

= γ(I − γP̂ ′
π⋆)−1(P̂ ′

π⋆ − P ′
π⋆)V π⋆

γ,M′ .

Hence ∥∥∥V π⋆

γ,M̂′ − V π⋆

γ,M′

∥∥∥
∞

=
∥∥∥γ(I − γP̂ ′

π⋆)−1(P̂ ′
π⋆ − P ′

π⋆)V π⋆

γ,M′

∥∥∥
∞

≤
∥∥∥γ(I − γP̂ ′

π⋆)−1
∥∥∥
∞→∞

∥∥∥(P̂ ′
π⋆ − P ′

π⋆)V π⋆

γ,M′

∥∥∥
∞

≤ γ

1− γ

1

12

≤ k

12
= Thit(P, π

⋆, s⋆).

Combining this with (40), we have that

max
s0∈S

P
s0,M̂(ηs⋆ ≥ k) = max

s0∈S
P
s0,M̂(ηs⋆ > k − 1)

≤
3
∥∥∥V π⋆

γ,M̂′

∥∥∥
∞

k
≤

3
∥∥V π⋆

γ,M′

∥∥
∞

k
+

3
∥∥∥V π⋆

γ,M̂′ − V π⋆

γ,M′

∥∥∥
∞

k

≤ 3Thit(P, π
⋆) + 3Thit(P, π

⋆)

12Thit(P, π⋆)
=

1

2
.

Using k = 12Thit(P, π
⋆) in (39) and combining with (38), we conclude that

Thit(P̂ , π⋆) ≤ max
s0∈S

Eπ
s0,M̂

[ηs⋆ ] ≤ 2k = 24Thit(P, π
⋆)

as desired.

Lemma B.18. Fix a deterministic unichain policy π⋆. Suppose that n(s, π⋆(s)) ≥ 1 +

α (576Thit(P, π
⋆))

2 for all s ∈ S, where α = 8 log
(

6S2Antot

(1−γ)δ

)
. Then with probability at least

1− 2δ, ∥∥∥V̂ π⋆

pe

∥∥∥
span

≤ 3
∥∥∥V π⋆

∥∥∥
span

+ 2.

Proof. By the definition (8) of T̂ π⋆

pe , we have for any s ∈ S that

V̂ π⋆

pe (s) = e⊤s M
π⋆

Q̂π⋆

pe

= e⊤s M
π⋆

T̂ π⋆

pe

(
Q̂π⋆

pe

)
= r(s, π⋆(s)) + γmax

{
P̂sπ⋆(s)Tβ(s,π⋆(s))(P̂sπ⋆(s),M

π⋆

Q̂π⋆

pe )− b(s, π⋆(s),Mπ⋆

Q̂π⋆

pe ),

min
s′

(Mπ⋆

Q̂π⋆

pe )(s
′)
}

= rπ⋆(s) + γmax
{
P̂sπ⋆(s)Tβ(s,π⋆(s))(P̂sπ⋆(s), V̂

π⋆

pe )− b(s, π⋆(s), V̂ π⋆

pe ),min
s′

(V̂ π⋆

pe )(s′)
}

= rπ⋆(s) + γP̂sπ⋆(s)V̂
π⋆

pe + γmax
{
P̂sπ⋆(s)

(
Tβ(s,π⋆(s))(P̂sπ⋆(s), V̂

π⋆

pe )− V̂ π⋆

pe

)
− b(s, π⋆(s), V̂ π⋆

pe ),

min
s′

(V̂ π⋆

pe )(s′)− P̂sπ⋆(s)V̂
π⋆

pe

}
= rπ⋆(s) + γP̂sπ⋆(s)V̂

π⋆

pe − γb̃′(s)
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where we have defined b̃′ ∈ RS as

b̃′(s) = −max
{
P̂sπ⋆(s)

(
Tβ(s,π⋆(s))(P̂sπ⋆(s), V̂

π⋆

pe )− V̂ π⋆

pe

)
− b(s, π⋆(s), V̂ π⋆

pe ),min
s′

(V̂ π⋆

pe )(s′)− P̂sπ⋆(s)V̂
π⋆

pe

}
.

Note that both terms within the max in the definition of b̃′(s) are ≤ 0, so b̃′ ≥ 0, and also we can
bound

b̃′(s) ≤ −
(
P̂sπ⋆(s)

(
Tβ(s,π⋆(s))(P̂sπ⋆(s), V̂

π⋆

pe )− V̂ π⋆

pe

)
− b(s, π⋆(s), V̂ π⋆

pe )
)

= P̂sπ⋆(s)

(
V̂ π⋆

pe − Tβ(s,π⋆(s))(P̂sπ⋆(s), V̂
π⋆

pe )
)
+ b(s, π⋆(s), V̂ π⋆

pe )

(i)

≤ β(s, π⋆(s))
∥∥∥V̂ π⋆

pe

∥∥∥
span

+ b(s, π⋆(s), V̂ π⋆

pe )

(ii)

≤
√
β(s, π⋆(s))

∥∥∥V̂ π⋆

pe

∥∥∥2
span

+ 2β(s, π⋆(s))
∥∥∥V̂ π⋆

pe

∥∥∥
span

+
5

ntot
(41)

where (i) is due to the fact that P̂sπ⋆(s)Tβ(s,π⋆(s))(P̂sπ⋆(s), V̂
π⋆

pe ) ≥ P̂sπ⋆(s)V̂
π⋆

pe −
β(s, π⋆(s))

∥∥∥V̂ π⋆

pe

∥∥∥
span

, which holds by an argument identical to that of (31), and (ii) holds since

b(s, π⋆(s), V̂ π⋆

pe ) = max
{√

β(s, π⋆(s))VP̂sπ⋆(s)

[
Tβ(s,π⋆(s))(P̂sπ⋆(s), V̂ π⋆

pe )
]
,

β(s, π⋆(s))
∥∥∥Tβ(s,π⋆(s))(P̂sπ⋆(s), V̂

π⋆

pe )
∥∥∥

span

}
+

5

ntot

≤ max
{√

β(s, π⋆(s))VP̂sπ⋆(s)

[
V̂ π⋆

pe

]
, β(s, π⋆(s))

∥∥∥V̂ π⋆

pe

∥∥∥
span

}
+

5

ntot

≤ max
{√

β(s, π⋆(s))
∥∥∥V̂ π⋆

pe

∥∥∥2
span

, β(s, π⋆(s))
∥∥∥V̂ π⋆

pe

∥∥∥
span

}
+

5

ntot

≤
√
β(s, π⋆(s))

∥∥∥V̂ π⋆

pe

∥∥∥2
span

+ β(s, π⋆(s))
∥∥∥V̂ π⋆

pe

∥∥∥
span

+
5

ntot

where we used Lemma B.14 and the fact that
∥∥∥Tβ(s,π⋆(s))(P̂sπ⋆(s), V̂

π⋆

pe )
∥∥∥

span
≤
∥∥∥V̂ π⋆

pe

∥∥∥
span

in the

first inequality, then that VP̂sπ⋆(s)

[
V̂ π⋆

pe

]
≤
∥∥∥V̂ π⋆

pe

∥∥∥2
span

, and then bounded the max by the sum.

(While Lemma B.14 is stated for β(s, π⋆(s)) ≤ 1, if β(s, π⋆(s)) > 1 then Tβ(s,π⋆(s))(P̂sπ⋆(s), V̂
π⋆

pe )
is a constant vector so the bound is still true.)

Now since b̃′ satisfies V̂ π⋆

pe = rπ⋆ − γb̃′ + γP̂π⋆ V̂ π⋆

pe , we can rearrange to obtain that V̂ π⋆

pe = (I −
γP̂π⋆)−1(rπ⋆−γb̃′). Likewise by the standard Bellman equation we have that V π⋆

= rπ⋆+γPπ⋆V π⋆

so V π⋆

= (I − γPπ⋆)−1rπ⋆ . Then we can calculate that

V π⋆

− V̂ π⋆

pe = (I − γPπ⋆)−1rπ⋆ − (I − γP̂π⋆)−1(rπ⋆ − γb̃′)

= (I − γP̂π⋆)−1(I − γP̂π⋆)(I − γPπ⋆)−1rπ⋆

− (I − γP̂π⋆)−1(I − γPπ⋆)(I − γPπ⋆)−1(rπ⋆ − γb̃′)

= γ(I − γP̂π⋆)−1(Pπ⋆ − P̂π⋆)(I − γPπ⋆)−1rπ⋆ + (I − γP̂π⋆)−1γb̃′

= γ(I − γP̂π⋆)−1(Pπ⋆ − P̂π⋆)V π⋆

+ (I − γP̂π⋆)−1γb̃′. (42)

Now we can bound∥∥∥V̂ π⋆

pe

∥∥∥
span

= max
s,s′

(es − es′)
⊤V̂ π⋆

pe

= max
s,s′

(es − es′)
⊤
(
V π⋆

+ V̂ π⋆

pe − V π⋆
)

≤ max
s,s′

(es − es′)
⊤
(
V π⋆

)
+max

s,s′
(es − es′)

⊤
(
V̂ π⋆

pe − V π⋆
)

=
∥∥∥V π⋆

∥∥∥
span

+max
s,s′

(es − es′)
⊤
(
V̂ π⋆

pe − V π⋆
)
. (43)
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Fixing arbitrary s, s′ ∈ S and letting ξ = es − es′ , and using (42), we have that

ξ⊤
(
V̂ π⋆

pe − V π⋆
)
= ξ⊤

(
γ(I − γP̂π⋆)−1(P̂π⋆ − Pπ⋆)V π⋆

− (I − γP̂π⋆)−1γb̃′
)

≤ γ
∥∥∥ξ⊤(I − γP̂π⋆)−1

∥∥∥
1

∥∥∥(P̂π⋆ − Pπ⋆)V π⋆
∥∥∥
∞

+ γ
∥∥∥ξ⊤(I − γP̂π⋆)−1

∥∥∥
1

∥∥∥b̃′∥∥∥
∞

.

(44)

Next we bound all the terms in (44). First,
∥∥∥ξ⊤(I − γP̂π⋆)−1

∥∥∥
1
≤ 4Thit(P̂ , π⋆) by Lemma B.11,

and furthermore by Lemma B.17, since its conditions are satisfied under the conditions of the present
lemma (since α ≥ log( 2Sδ )), we have with probability at least 1−δ that Thit(P̂ , π⋆) ≤ 24Thit(P, π

⋆).

Hence
∥∥∥ξ⊤(I − γP̂π⋆)−1

∥∥∥
1
≤ 96Thit(P, π

⋆). Next, for any s ∈ S, by Hoeffding’s inequality, with

probability at least 1− δ′ we have

∣∣∣e⊤s (P̂π⋆ − Pπ⋆)V π⋆
∣∣∣ ≤

√
∥V π⋆∥2span log

(
2
δ′

)
2n(s, π⋆(s))

and so by a union bound over all s ∈ S and setting δ′ = δ
S , we have that with additional failure

probability at most δ that

∥∥∥(P̂π⋆ − Pπ⋆)V π⋆
∥∥∥
∞

≤
∥∥∥V π⋆

∥∥∥
span

√
max
s∈S

log( 2Sδ )

2n(s, π⋆(s))
.

Finally, using the bound (41), we have∥∥∥b̃′∥∥∥
∞

≤ max
s∈S

√
β(s, π⋆(s))

∥∥∥V̂ π⋆

pe

∥∥∥2
span

+ 2β(s, π⋆(s))
∥∥∥V̂ π⋆

pe

∥∥∥
span

+
5

ntot

≤ max
s∈S

3
√
β(s, π⋆(s))

∥∥∥V̂ π⋆

pe

∥∥∥
span

+
5

ntot

because our condition on n(s, π⋆(s)) guarantees that β(s, π⋆(s)) ≤ 1 so β(s, π⋆(s)) ≤√
β(s, π⋆(s)).

Combining these three bounds with (44), using that γ ≤ 1, and taking the maximum over all s, s′, we
have that

max
s,s′

(es − es′)
⊤
(
V̂ π⋆

pe − V π⋆
)

≤ 96Thit(P, π
⋆)

∥∥∥V π⋆
∥∥∥

span

√
max
s∈S

log( 2Sδ )

2n(s, π⋆(s))
+ 3
√
max
s∈S

β(s, π⋆(s))
∥∥∥V̂ π⋆

pe

∥∥∥
span

+
5

ntot


Combining this with (43) and rearranging, we have that∥∥∥V̂ π⋆

pe

∥∥∥
span

(
1− 3 · 96Thit(P, π

⋆)
√
max
s∈S

β(s, π⋆(s))

)

≤
∥∥∥V π⋆

∥∥∥
span

1 + 96Thit(P, π
⋆)

√
max
s∈S

log( 2Sδ )

2n(s, π⋆(s))

+ 96Thit(P, π
⋆)

5

ntot
. (45)

Noticing that 576 = 3 · 2 · 96, our condition on n(s, π⋆(s)) in the lemma statement is chosen exactly
so that(

1− 3 · 96Thit(P, π
⋆)
√
max
s∈S

β(s, π⋆(s))

)
=

(
1− 3 · 96Thit(P, π

⋆)

√
max
s∈S

α

n(s, π⋆(s))− 1

)
≥ 1− 1

2
=

1

2
.
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Also since for all s ∈ S, β(s, π⋆(s)) = α
max{n(s,π⋆(s))−1,1} = α

n(s,π⋆(s))−1 ≥ log( 2S
δ )

2n(s,π⋆(s)) (since
α ≥ 8 log(2Sδ ) and n(s, π⋆(s)) ≥ 4 so max{n(s, π⋆(s))−1, 1} = n(s, π⋆(s))−1 ≥ 1

2n(s, π
⋆(s))),

we can also simply bound1 + 96Thit(P, π
⋆)

√
max
s∈S

log( 2Sδ )

2n(s, π⋆(s))

 ≤ 1 +
1

2
.

We can also bound 96Thit(P, π
⋆) 5

ntot
≤ 1 (by lower-bounding ntot by n(s0, π

⋆(s0)) for one arbitrary
s0 ∈ S). Combining all these bounds with (45), we obtain

1

2

∥∥∥V̂ π⋆

pe

∥∥∥
span

≤ 3

2

∥∥∥V π⋆
∥∥∥

span
+ 1

which implies ∥∥∥V̂ π⋆

pe

∥∥∥
span

≤ 3
∥∥∥V π⋆

∥∥∥
span

+ 2

as desired.

B.8 Average-reward-to-discounted reduction

Now we can combine our previous results and relate the discounted MDP quantities to ρπ
⋆

and hπ⋆

.
Lemma B.19. There exist some absolute constants C1, C2 such that the following holds: Fix a
deterministic unichain policy π⋆. Suppose that n(s, π⋆(s)) ≥ mµπ⋆

(s) + 4 + α (576Thit(P, π
⋆))

2

for all s ∈ S , where α = 8 log
(

6S2Antot

(1−γ)δ

)
, and that 1

1−γ ≥ m and 1
1−γ ≥ 2. Then with probability

at least 1− 5δ, we have that

ρπ̂ ≥ ρπ
⋆

−

√√√√C1S
(
∥hπ⋆∥span + 1

)
α

m
1−

C2S
(∥∥hπ⋆∥∥

span + 1
)
α

m
1.

Proof. By Lemma B.16 (the conditions of which are met here as α(s, π⋆(s)) (576Thit(P, π
⋆))

2 ≥
4Thit(P, π

⋆)), we have under the event of Lemma B.8, which holds with probability at least 1− 2δ,
that

max
s0∈S

(
V π⋆

(s0)− V̂ π⋆

pe (s0)
)

≤ 1

1− γ

√√√√2048S
∥∥∥V̂ π⋆

pe

∥∥∥
span

log
(

6S2Antot

(1−γ)δ

)
m

+
640S

∥∥∥V̂ π⋆

pe

∥∥∥
span

log
(

6S2Antot

(1−γ)δ

)
(1− γ)m

+
12

(1− γ)ntot
.

Combining this with the conclusion of Lemma B.18 which implies
∥∥∥V̂ π⋆

pe

∥∥∥
span

≤ 3
(∥∥V π⋆∥∥

span + 1
)

and adds additional failure probability at most 2δ by the union bound, we have that

max
s0∈S

(
V π⋆

(s0)− V̂ π⋆

pe (s0)
)
≤ 1

1− γ

√√√√6144S
(
∥V π⋆∥span + 1

)
log
(

6S2Antot

(1−γ)δ

)
m

+
1920S

(∥∥V π⋆∥∥
span + 1

)
log
(

6S2Antot

(1−γ)δ

)
(1− γ)m

+
12

(1− γ)ntot
.

(46)

For convenience abbreviate the right-hand-side of (46) as ε. Then since Qπ̂ ≥ Q̂ by Lemma B.9
(which holds under the event of Lemma B.7, adding additional failure probability at most δ) and
Q̂ ≥ Q̂⋆

pe − 1
2ntot

1 by Lemma B.4, we have that

V π̂ = M π̂Qπ̂ ≥ M π̂Q̂ = MQ̂ ≥ M

(
Q̂⋆

pe −
1

2ntot
1

)
= MQ̂⋆

pe −
1

2ntot
1 = V̂ ⋆

pe −
1

2ntot
1.

(47)
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Furthermore we have

V̂ ⋆
pe

(i)

≥ V̂ π⋆

pe

(ii)

≥ V π⋆

− ε1
(iii)

≥ 1

1− γ
ρπ

⋆

−
∥∥∥V π⋆

∥∥∥
span

1− ε1 (48)

where (i) is due to Lemma B.1 which gives Q̂⋆
pe ≥ Q̂π⋆

pe , which implies V̂ ⋆
pe = MQ̂⋆

pe ≥ Mπ⋆

Q̂⋆
pe ≥

Mπ⋆

Q̂π⋆

pe using monotonicity of Mπ⋆

. (ii) is due to (46), and (iii) uses
∥∥∥V π⋆ − 1

1−γ ρ
π⋆
∥∥∥
∞

≤∥∥V π⋆∥∥
span due to Zurek and Chen [2025a, Lemma 6]. Also by Zurek and Chen [2025a, Lemma 6],

we have the elementwise inequality ρπ̂ ≥ (1− γ)
(
mins∈S V π̂(s)

)
1. Thus

ρπ̂ ≥ (1− γ)min
s∈S

V π̂(s)1

(i)

≥ (1− γ)min
s∈S

V̂ ⋆
pe(s)1− 1− γ

2ntot
1

(ii)

≥ min
s∈S

ρπ
⋆

(s)1− (1− γ)
∥∥∥V π⋆

∥∥∥
span

1− (1− γ)ε1− 1− γ

2ntot
1

(iii)

≥ ρπ
⋆

− (1− γ)
∥∥∥V π⋆

∥∥∥
span

1− 1− γ

2ntot
1−

√√√√6144S
(
∥V π⋆∥span + 1

)
log
(

6S2Antot

(1−γ)δ

)
m

1

−
1920S

(∥∥V π⋆∥∥
span + 1

)
log
(

6S2Antot

(1−γ)δ

)
m

1− 12

ntot
1

(iv)

≥ ρπ
⋆

−

√√√√6144S
(
∥V π⋆∥span + 1

)
log
(

6S2Antot

(1−γ)δ

)
m

1−
1933S

(∥∥V π⋆∥∥
span + 1

)
log
(

6S2Antot

(1−γ)δ

)
m

1

where (i) uses (47), (ii) uses (48), (iii) uses the fact that ρπ
⋆

is assumed to be state-independent and
the definition of ε (and canceling/simplifying), and (iv) uses that 1

1−γ ≥ m (so (1− γ) ≤ 1
m ), that

1− γ ≤ 1, and ntot ≥ m.

Furthermore, using Zurek and Chen [2025a, Lemma 26] we have (since ρπ
⋆

is constant) that∥∥V π⋆∥∥
span ≤ 2

∥∥hπ⋆∥∥
span. Combining this with the above bound and letting C1 = 2 · 6144/8, C2 =

2 · 1933/8, we obtain the desired bound.

B.9 Completing the proof

Here we complete the proof of the main Theorem 3.2 by checking conditions and simplifying previous
results. The following result is actually more general than Theorem 3.2 because it allows an arbitrary
unichain deterministic comparator policy π⋆, rather than requiring π⋆ to be gain-optimal. Theorem
3.2 follows immediately from the below theorem by adding this additional requirement that ρπ

⋆

= ρ⋆.
Theorem B.20. There exist absolute constants C ′

1, C
′
2 such that the following holds: Fix δ > 0. Let

γ = 1 − 1
ntot

and α = 8 log
(
6S2Antot

(1−γ)δ

)
. Let π⋆ be a deterministic policy which is unichain with

stationary distribution µπ⋆

. Suppose there exists some m ∈ N such that

n(s, π⋆(s)) ≥ mµπ⋆

(s) + α (C ′
2Thit(P, π

⋆))
2
+ 4.

Then letting π̂ be the policy returned by Algorithm 1 with inputs D, r, γ = 1− 1
ntot

, and δ, we have
with probability at least 1− 5δ that

ρπ̂ ≥ ρπ
⋆

−

√√√√C ′
1S
(
∥hπ⋆∥span + 1

)
α

m
.

Proof. Note that the condition on n implies that ntot ≥ 4, so setting 1
1−γ = ntot has 1

1−γ ≥ 2. Also
we have

ntot ≥
∑
s∈S

n(s, π⋆(s)) ≥
∑
s∈S

mµπ⋆

(s) = m
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using the assumption on n(s, π⋆(s)) for all s, so setting 1
1−γ = ntot also ensures 1

1−γ ≥ m. There-

fore we can apply Lemma B.19 to obtain that if n(s, π⋆(s)) ≥ mµπ⋆

(s) + 4 + α (576Thit(P, π
⋆))

2

for all s ∈ S, then with probability at least 1− 5δ, we have

ρπ̂ ≥ ρπ
⋆

−

√√√√C1S
(
∥hπ⋆∥span + 1

)
α

m
1−

C2S
(∥∥hπ⋆∥∥

span + 1
)
α

m
1

where α = 8 log
(

6S2Antot

(1−γ)δ

)
= 8 log

(
6S2An2

tot

δ

)
. Thus we can set C ′

2 = 576. To choose C ′
1, note

that since trivially ρπ
⋆ ≤ 1 and ρπ̂ ≥ 0, if the term

C2S

(∥∥∥hπ⋆
∥∥∥

span
+1

)
α

m ≥ 1 then the bound

ρπ̂ ≥ ρπ
⋆

−

√√√√C2S
(
∥hπ⋆∥span + 1

)
α

m
1

holds vacuously, and otherwise if it is ≤ 1 then we have

ρπ̂ ≥ ρπ
⋆

−

√√√√C1S
(
∥hπ⋆∥span + 1

)
α

m
1−

√√√√C2S
(
∥hπ⋆∥span + 1

)
α

m
1

since
√
x ≥ x for x ∈ [0, 1]. Since

√
a+

√
b ≤

√
2(a+ b), we can take C ′

1 = 2(C1 + C2).

C Proof of Theorem 3.3

Let T ≥ 4 and m ∈ N be arbitrary.

Step 1: MDP construction Define p = 1
3(m+T ) , A =

⌈
16
pT

⌉
, and q = 1

AT . The set of states is
S = {0, 1}, and the set of actions is A = {0, 1, . . . , A− 1}. The reward function r : S ×A → [0, 1]

is defined by r(0, a) = 1 and r(1, a) = 0 for all a ∈ A. We define an index set Θ =
{
(i, b)

∣∣∣ i ∈
{0, 1}, b ∈ {0, 1, . . . , A − 1}

}
. For each θ = (i, b) ∈ Θ, we define the transition matrix Pθ as

follows:

s a Pθ(s
′|s, a)

0 i I(s′ = 0)
0 1− i (1− p) I(s′ = 0) + pI(s′ = 1)
0 ≥ 2 I(s′ = 1)
1 b 1

T I(s
′ = 0) +

(
1− 1

T

)
I(s′ = 1)

1 ̸= b qI(s′ = 0) + (1− q) I(s′ = 1)
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1− p

p

1− 1
T

1
T

1− q

q

Figure 2: Diagram of the MDP (P(0,0), r). Arrows splitting into multiple dashed arrows indicate
stochastic transitions, and each dashed arrow is annotated with the associated probability. Blue arrows
represent action 0 and red arrows represent action 1. In state 1, the red arrow also represents actions
2, . . . , A− 1 (which are all identical). The reward function does not depend on the action, and is +1
in state 0 and +0 in state 1. In general, the MDP (P(i,b), r) is similar, except that the blue arrow in
state 0 represents action i and the blue arrow in state 1 represents action b.

See Figure 2 for a diagram of the MDP (Pθ, r) for θ = (0, 0). We now state some easily verifiable
facts about the MDP (Pθ, r):

• The unique deterministic gain-optimal stationary policy π⋆
θ is the one that takes action i in

state 0 and action b in state 1.
• The optimal gain is ρ∗θ = 1.

• µ
π⋆
θ

θ (0) = 1 and µ
π⋆
θ

θ (1) = 0.

• The policy hitting radius Thit(Pθ, π
⋆
θ), the optimal bias span

∥∥∥hπ⋆
θ

Pθ

∥∥∥
span

, and the diameter

are all at most T .
• Suppose a stationary policy π usually makes the wrong decisions – specifically π(i|0) < 1

2

and π(b|1) < 4
A . Then ρπθ <

4
A · 1

T +(1− 4
A )q

4
A · 1

T +(1− 4
A )q+ p

2

≤ 5q
5q+ p

2
≤

5p
16

5p
16+

p
2

< 1
2 . In words, our choice

of A is one that is sufficiently large so that randomly guessing the optimal action b in state 1
will not yield a good policy.

Note that action 2 in state 0 is added to keep the diameter bounded by T , and actions 3, . . . , A− 1
in state 0 simply keep the action space independent of the state, consistent with our upper bounds.
Since actions 2, . . . , A− 1 in state 0 are always suboptimal, whenever we consider some policy π,
we will assume that π(a|0) = 0 for a ≥ 2.

Step 2: dataset construction For any δ ∈
(
0, 1

e9

]
, denote tδ =

⌈
T
6 log

(
1
δ

)⌉
. We define n :

S ×A → N by n(0, 0) = n(0, 1) = m+ tδ and n(1, a) = tδ for all a ∈ A. Observe that this choice
of n satisfies the desired requirements. Indeed, since µ

π⋆
θ

θ (0) = 1 and µ
π⋆
θ

θ (1) = 0, we have

n(0, π⋆
θ(0)) = n(0, i) ≥ m+

T

6
log

(
1

δ

)
= mµ

π⋆
θ

θ (0) +
T

6
log

(
1

δ

)
and

n(1, π⋆
θ(1)) = n(1, b) ≥ T

6
log

(
1

δ

)
= mµ

π⋆
θ

θ (1) +
T

6
log

(
1

δ

)
.

Step 3: impossible to do well in all MDPs Suppose towards a contradiction that there exists an
algorithm A that maps the dataset D to a stationary policy π̂ = A (D) such that for all θ ∈ Θ,
Pθ,n

(
ρπ̂θ > 1

2

)
.
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Before proceeding, we define some events. Let B be the bad event that D contains no transitions
from state 0 to state 1 and no transitions from state 1 to state 0. Let E0 be the event that π̂(0|0) ≥ 1

2

(π̂ prefers action 0 in state 0). Similarly, let E1 be the event that π̂(1|0) ≥ 1
2 (π̂ prefers action 1 in

state 0). For each a ∈ A, let Fa be the event that π̂(a|1) ≥ 4
A (π̂ gives significant weight to action a

in state 1).

A key idea is that under event B, the dataset is the same no matter the underlying MDP. That is, under
event B, we always have

D = ( 0, . . . , 0︸ ︷︷ ︸
2n(0,0) times

, 1, . . . , 1︸ ︷︷ ︸
An(1,0) times

).

It follows that for all θ, θ′ ∈ Θ,

Pθ,n(Ei | B) = Pθ′,n(Ei | B) ∀i ∈ {0, 1}
and

Pθ,n(Fa | B) = Pθ′,n(Fa | B) ∀a ∈ A.

For ease of notation, going forward we will drop the subscript θ, n when it does not matter what the
underlying MDP is.

Since P(E0 ∪ E1 | B) = 1, we must have P(Ei′ | B) ≥ 1
2 for some i′ ∈ {0, 1}. Furthermore, for some

a′ ∈ A we have P(Fa′ | B) ≤ 1
4 , or equivalently, P(Fc

a′ | B) > 3
4 . Indeed, if this were not the case,

we would have

E

[∑
a∈A

π̂(a|1)

∣∣∣∣∣B
]
=
∑
a∈A

E
[
π̂(a|1)

∣∣B] ≥ ∑
a∈A

E
[
π̂(a|1)

∣∣Fa ∩ B
]
P(Fa | B) >

∑
a∈A

4

A
· 1
4
= 1,

which is a contradiction because we always have
∑

a∈A π̂(a|1) = 1.

We have shown that when the dataset does not contain any useful transitions, there must be at least
one MDP where the algorithm is likely to make a poor guess. Our last step will be to combine this
fact with Lemma C.1 which tells us that the dataset will be useless with large enough probability. We
noted above that when the underlying MDP is (P(i′,a′), r) and a policy π satisfies π(i′|0) < 1

2 and
π(a′|1) < 4

A we have ρπ(i′,a′) <
1
2 . In particular, under the the event Ec

i′ ∩ Fc
a′ we have ρπ̂(i′,a′) <

1
2 .

Subsequently, for θ′ = (i′, a′), we have

Pθ′,n

(
ρπ̂θ′ <

1

2

)
≥ Pθ′,n(Ec

i′ ∩Fc
a′) ≥ Pθ′,n(Ec

i′ ∩Fc
a′ ∩B) = P(Ec

i′ ∩Fc
a′ |B)Pθ′(B) ≥ 1

4
·4δ = δ,

where the final inequality follows from Lemma C.1.

In summary, we have shown that

max
θ∈Θ

Pθ,n

(
ρ∗θ − ρ

A (D)
θ ≥ 1

2

)
≥ δ,

as desired.

C.1 Auxiliary lemmas

Lemma C.1. For all θ ∈ Θ, we have Pθ,n(B) ≥ 4δ.

Proof. By symmetry Pθ(B) are equal for all θ, so for ease of notation we drop the subscript θ. Let
B0 be the event that D contains no transitions from state 0 to state 1, and let B1 be the event that D
contains no transitions from state 1 to state 0. Then

P(B) = P(B0 ∩ B1) = P(B0)P(B1),

with the last equality following by independence. Now,

P(B0) = (1− p)m+tδ .

Recall that p = 1
3(m+T ) . In the case that m ≥ tδ , we have

(1− p)m+tδ ≥
(
1− 1

6m

)2m

≥ 1

e
, (49)
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with the last inequality following from Lemma C.2 with x = 2m and c = 3. Otherwise, when
m < tδ , we have

(1− p)m+tδ ≥
(
1− 1

6T

)2tδ

≥ 4δ1/3, (50)

with the last inequality following from claim 3 of Lemma C.3 with x = 2T . Combining Equations
(49) and (50) and the fact that 4δ1/3 ≤ 1

e , we have

P(B0) ≥ 4δ1/3.

Next,

P(B1) =

(
1− 1

T

)tδ

(1− q)(A−1)tδ .

Claim 2 of Lemma C.3 with x = T gives us that
(
1− 1

T

)tδ ≥ δ1/3. Moreover, recalling that q = 1
AT ,

we have

(1− q)(A−1)tδ ≥ (1− q)Atδ =

(
1− 1

AT

)Atδ

≥ δ1/3,

with the last inequality following from claim 2 of Lemma C.3 with x = AT . Hence, P(B1) ≥ δ2/3,
and consequently, P(B) ≥ 4δ.

Lemma C.2. For all x ≥ 2 and c ≥ 2, we have(
1− 1

cx

)x

≥ 1

e
.

Proof. We have

log

((
1− 1

cx

)x)
= x log

(
1− 1

cx

)
≥ x

(
− 1

cx
− 1

c2x2

)
= −1

c

(
1 +

1

cx

)
≥ −2

c
≥ −1

= log

(
1

e

)
,

where the first inequality follows from log(1 − y) ≥ −y − y2 for y ∈ [0, 0.68]. Since log x is
monotonically increasing, we are done.

Lemma C.3. For any x ≥ 4, the following holds:

1. For any δ ∈
(
0, 1

e

]
, we have

(
1− 1

x

)⌈ x
2 log( 1

δ )⌉ ≥ δ.

2. For any δ ∈
(
0, 1

e3

]
, we have

(
1− 1

x

)⌈ x
6 log( 1

δ )⌉ ≥ δ1/3.

3. For any δ ∈
(
0, 1

e9

]
, we have

(
1− 1

3x

)⌈ x
6 log( 1

δ )⌉ ≥ 4δ1/3.
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Proof. We will prove claim 1 by showing that
(
1− 1

x

) x
2 log( 1

δ )+1 ≥ δ. For any x ≥ 4 and δ ∈
(
0, 1

e

]
,

we have

log

((
1− 1

x

) x
2 log( 1

δ )+1
)

=

(
x

2
log

(
1

δ

)
+ 1

)
log

(
1− 1

x

)
≥
(
x

2
log

(
1

δ

)
+ 1

)(
− 1

x
− 1

x2

)
=

(
1

2
+

1

2x

)
log δ − 1

x
− 1

x2

≥ 5

8
log δ − 5

16

=
5

8
log δ +

5

16
log

(
1

e

)
≥
(
5

8
+

5

16

)
log δ

≥ log δ,

where the first inequality follows from log(1 − y) ≥ −y − y2 for y ∈ [0, 0.68]. Since log x is
monotonically increasing, claim 1 follows.

For claim 2, take x ≥ 4 and δ ∈
(
0, 1

e3

]
. Then δ′ = δ1/3 ∈

(
0, 1

e

]
, so by claim 1 we have

(
1− 1

x

)⌈ x
6 log( 1

δ )⌉
=

(
1− 1

x

)⌈ x
2 log( 1

δ′ )⌉
≥ δ′ = δ1/3.

Finally, for claim 3, take x ≥ 4 and δ ∈
(
0, 1

e9

]
, and let y = 3x. Since δ′ = δ1/3 ∈

(
0, 1

e3

]
, claim 2

gives us that (
1− 1

3x

)⌈ x
6 log( 1

δ )⌉
=

(
1− 1

y

)⌈ y
6 log( 1

δ′ )⌉
≥ (δ′)1/3 ≥ 4δ1/3,

where the last inequality holds because δ1/3 < 1
8 .

D Proof of Theorem 3.4

We define the absolute constants c1 = 4 and c2 = 33. Let T ≥ c1, S ≥ c2, k ≥ 0, and
m ≥ max{TS, kS} be arbitrary.

Step 1: MDP construction Define S′ = S − 1, D = T − 2, ε = 1
256

√
TS
m . Note that ε ≤ 1

256 .

Let p = 1−ε
D and q = 1

D . The set of states is S = {0, 1, . . . , S′} and the set of actions is
A = {0, 1, . . . , S′}. The reward function r : S × A → [0, 1] is defined to be 1 when s ̸= 0

and a ≤ 1, and 0 otherwise. We define an index set Θ = {0, 1}S′
. For each θ ∈ Θ, we define the

transition matrix Pθ as follows:

s a Pθ(s
′|s, a)

0 0 (1− q)I(s′ = s) + q
S′

∑
s′′≥1 I(s′ = s′′)

0 a ≥ 1 (1− q
2 )I(s

′ = s) + q
2S′

∑
s′′≥1 I(s′ = s′′)

s ≥ 1 θs (1− p)I(s′ = s) + pI(s′ = 0)
s ≥ 1 1− θs (1− q)I(s′ = s) + qI(s′ = 0)
s ≥ 2 s 1

2 I(s
′ = 1) + 1

2S′

∑
s′′≥1 I(s′ = s′′)

s ≥ 1 a ̸= s, a ≥ 2 1
2 I(s

′ = a) + 1
2S′

∑
s′′≥1 I(s′ = s′′)
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1− q
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1− p

q

1− q
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1− p
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1− q

1− q

q
S′ q

S′

q
S′

Figure 3: Diagram of the MDP (P(0,...,0), r) only including actions 0 and 1. Arrows splitting into
multiple dashed arrows indicate stochastic transitions, and each dashed arrow is annotated with the
associated probability. Blue arrows represent action 0 and red arrows represent action 1. The reward
is 0 at state 0 and the reward is 1 at all other states. In general, the MDP (Pθ, r) is similar, except in
each state s ≥ 1, the blue arrow represents the optimal action θs.

Observe that the decision-maker needs to decide between two actions in states 1, . . . , S′. Both actions
give an immediate reward of 1, but one action has a slightly higher probability of transiting to the bad
state 0. At state 0, which has a reward of 0, the agent will likely be trapped for a long time before
returning to one of states 1, . . . , S′. See Figure 3 for a diagram of the MDP (Pθ, r) for θ = (0, . . . , 0).
We now state some easily verifiable facts about the MDP (Pθ, r):

• The MDP has S states, is unichain, and has diameter 1
q + 1

1/2 = D + 2 = T .

• There is a unique gain-optimal policy π⋆
θ . It takes action 0 in state 0 and action θs in state s

for s ≥ 1.

• µ
π⋆
θ

θ (0) = p
p+q = 1−ε

2−ε . By symmetry, it follows that µπ⋆
θ

θ (s) = 1
S′

(
1− µ

π⋆
θ

θ

)
= 1/S′

2−ε for
s ≥ 1.

• The optimal gain is ρ∗θ = 1− µ
π⋆
θ

θ (0) = 1
2−ε .

Note that actions 2, . . . , S′ for states s ≥ 1 are always suboptimal, and only exist to keep the diameter
bounded by T . Furthermore, actions 1, . . . , S′ in state 0 simply keep the action space independent of
the state, consistent with our upper bounds. As such, whenever we consider some policy π, we will
assume that it may only take actions 0 and 1 in states s ≥ 1 and action 0 in state 0.

Step 2: dataset construction We define n : S ×A → N by n(0, 0) = m and

n(s, a) =
2m

S′

for all s ≥ 1 and a ∈ {0, 1}. For all other (s, a) we set n(s, a) = 0. Observe that this choice of n
satisfies n(s, π⋆

θ(s)) =
m
S′ +

m
S′ ≥ mµ

π⋆
θ

θ (s) + k for all s ∈ S.

Step 3: reduction to estimation Given a stationary policy π and some θ ∈ Θ, let Lπ
θ (s) be the

proportion of incorrect actions π takes in state s. To be precise, we define Lπ
θ (s) = π(1− θs|s). We

also set Lπ
θ =

∑S′

s=1 L
π
θ (s). By Lemma D.1, we can upper bound the gain of a policy π in terms of

Lπ
θ :

ρπθ ≤ 1 + ε2

2− ε(1− Lπ
θ /S

′)
.

Subsequently, for any stationary policy π,

ρ∗θ − ρπθ ≥ 1

2− ε
− 1 + ε2

2− ε(1− Lπ
θ /S

′)
≥ εLπ

θ /S
′ − 2ε2

4
. (51)

49



Now, suppose the underlying MDP is (Pθ, r). Let A be an algorithm that maps the dataset to a
stationary policy π̂ = A (D), and consider the estimator θ̂A whose sth coordinate is π̂(1|s). By
the definition of Lπ̂

θ , we have Lπ̂
θ =

∥∥∥θ̂A − θ
∥∥∥
1
. Our next step is to show that no estimator can

achieve low ℓ1 error uniformly over Θ with high probability, a result which will lower bound Lπ̂
θ and

consequently also the sub-optimality of π̂ for some θ.

Step 4: Fano’s method We will achieve such a lower bound with Fano’s method. First, by the
Gilbert-Varshamov Lemma (Lemma D.2), there exists some subset Θ′ ⊂ Θ such that |Θ′| ≥ 2S

′/8

and ∥θ− θ′∥1 ≥ S′/8 for any θ ̸= θ′ ∈ Θ′. Since maxθ,θ′∈Θ′ KL(Pθ,n ∥Pθ′,n) ≤ (S′/16− 1) log 2

by Lemma D.3, Local Fano’s (Lemma D.4) gives us that for any estimator θ̂,

max
θ

Eθ,n

[∥∥∥θ̂ − θ
∥∥∥
1

]
≥ S′

16

(
1− (S′/16− 1) log 2 + log 2

log
(
2S′/8

) )
≥ S′

32
,

which implies that

max
θ∈Θ

Pθ,n

(∥∥∥θ̂ − θ
∥∥∥
1
>

S′

64

)
≥ 1

64
.

Since the above holds for estimator of the dataset, it of course holds for θ̂A , where A is any algorithm
that maps the dataset to a stationary policy. Therefore,

max
θ

Pθ,n

(
L

A (D)
θ >

S′

64

)
≥ 1

64
. (52)

Now, by Equation 51, in the event that LA (D)
θ > S′

64 ,

ρ∗θ − ρ
A (D)
θ >

ε/64− 2ε2

4
≥ ε

512
= 2−17

√
TS

m
,

with the second inequality holding by ε ≤ 1
256 . Thus, plugging back into Equation 52 yields

max
θ

Pθ,n

(
ρ∗θ − ρ

A (D)
θ > c3

√
TS

m

)
≥ 1

64
,

with c3 = 2−17.

D.1 Auxiliary lemmas

Lemma D.1. Let π be a stationary policy on MDP Mθ. Then

ρπθ ≤ 1 + ε2

2− ε(1− Lπ
θ /S

′)
.

Proof. A routine computation (see Lemma D.7) yields

ρπθ =

q
S′

∑S′

s=1
1
κs

1 + q
S′

∑S′

s=1
1
κs

,

where κs = Lπ
θ (s)q+(1−Lπ

θ (s))p =
1−ε(1−Lπ

θ (s))
D is the probability of transiting from state s to state

0 under π. Since x
1+x is monotonically increasing for x > −1, to achieve the desired upper bound

for ρπθ it suffices to find an acceptable upper bound for λ := q
S′

∑S′

s=1
1
κs

= 1
S′

∑S′

s=1
1

1−ε(1−Lπ
θ (s))

.

Defining f(x) = 1
1−x and λs = ε(1− Lπ

θ (s)), we have that

λ =

S′∑
s=1

1

S′ f(λs).
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We would like to get a bound that looks like λ ≤ f
(

1
S′

∑S′

s=1 λs

)
. This goal suggests applying

Jensen’s inequality, but since f is convex for x < 1 it gives us an inequality in the wrong direction. It
turns out, however, that because f is nearly linear in the sufficiently small interval of interest, we can
obtain an inequality in the right direction with some error term of lower order.

Since λs ∈ [0, ε] for all s ∈ {1, . . . , S′}, Lemma D.6 give us

λ ≤ f

 S′∑
s=1

λs

S′

+ f(0) + f(ε)− 2f
(ε
2

)
=

1

1− ε(1− Lπ
θ /S

′)
+ 1 +

1

1− ε
− 2

1− ε/2

≤ 1

1− ε(1− Lπ
θ /S

′)
+ ε2,

where the last inequality holds for ε < 1
3 . Consequently,

ρπθ ≤ λ

1 + λ
≤

1
1−ε(1−Lπ

θ /S
′) + ε2

1 + 1
1−ε(1−Lπ

θ /S
′) + ε2

≤ 1 + ε2

2− ε(1− Lπ
θ /S

′)
.

Lemma D.2 (Gilbert-Varshamov Lemma [Massart, 2007, Lemma 4.7]). Let d ≥ 8. There exists
Ωd ⊂ {0, 1}d such that |Ωd| ≥ 2d/8 and ∥ω − ω′∥1 ≥ d/8 for all ω ̸= ω′ ∈ Ωd.
Lemma D.3. For any θ, θ′ ∈ Θ, we have

KL(Pθ,n ∥Pθ′,n) ≤
(
S′

16
− 1

)
log 2.

Proof. Let θ, θ′ ∈ Θ. By the construction of Pθ,n and Pθ′,n, we can decompose

KL(Pθ,n ∥Pθ′,n) =

S′∑
s=0

∑
a∈{0,1}

n(s, a)KL(Pθ(· | s, a) ∥Pθ′(· | s, a)).

Recalling our choice of n, we can further simplify

KL(Pθ,n ∥Pθ′,n) =

S′∑
s=1

2m

S′ (KL(Pθ(· | s, 0) ∥Pθ′(· | s, 0)) + KL(1θ(· | s, 1) ∥Pθ′(· | s, 1))) ,

where we remove the s = 0 term from the sum because the data coming from state 0 has the same
distribution for all possible MDPs. Observing that

2(p− q)2

p(1− p)
=

2(ε/D)2(
1−ε
D

) (
D−1+ε

D

) ≤ 2ε2(
1
2

) (
D
2

) =
8ε2

D
,

we can apply Lemma D.5 to further simplify

KL(Pθ,n ∥Pθ′,n) =

S′∑
s=1

2m

S′ (KL(Pθ(· | s, 0) ∥Pθ′(· | s, 0)) + KL(1θ(· | s, 1) ∥Pθ′(· | s, 1)))

≤ 2m (KL (Ber(p) ∥Ber(q)) + KL (Ber(q) ∥Ber(p)))

≤ 2m
8ε2

D

= 2m
8 · 2−16 TS

m

T − 2

≤ 2−10S′

≤
(
S′

16
− 1

)
log 2.

The final inequality holds due to the assumption that S ≥ 33 =⇒ S′ ≥ 32.
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Lemma D.4 (Local Fano’s inequality [Wainwright, 2019, Proposition 15.12, Equation 15.34]). Let
P be a class of distributions with parameter space Θ, and let {P1, . . . ,PN} ⊂ P . Letting θ(P) ∈ Θ

denote the parameters of P, define δ = minj ̸=k ∥θ(Pj)− θ(Pk)∥1. For any estimator θ̂, we have

sup
P∈P

E
D∼P

[∥∥∥θ̂(D)− θ(P)
∥∥∥
1

]
≥ δ

2

(
1− maxj,k KL(Pj ∥Pk) + log 2

logN

)
.

Lemma D.5. For any p, q ∈
(
0, 1

2

]
satisfying p < q, we have

KL (Ber(p) ∥Ber(q)) ≤ KL (Ber(q) ∥Ber(p)) ≤ (p− q)2

p(1− p)
,

which implies that

KL (Ber(p) ∥Ber(q)) + KL (Ber(q) ∥Ber(p)) ≤ 2(p− q)2

p(1− p)
.

Proof. By Lemma 10 in Li et al. [2023], we have

KL (Ber(p′) ∥Ber(q′)) ≤ KL (Ber(q′) ∥Ber(p′)) ≤ (p′ − q′)
2

p′(1− p′)

for any p′, q′ ∈
[
1
2 , 1
)

satisfying p′ > q′. The desired result follows immediately by taking
p′ = 1 − p and q′ = 1 − q, along with the observation that KL (Ber(1− p) ∥Ber(1− q)) =
KL (Ber(p) ∥Ber(q)).

Lemma D.6 (Theorem 1 in Simic [2008]). Let I = [a, b] be a closed interval with a, b ∈ R, a < b.
For some n ∈ Z+, let x1, . . . , xn ∈ I , and let p1, . . . , pn > 0 satisfy

∑n
i=1 pi = 1. If f : [a, b] → R

is convex, then
n∑

i=1

pif(xi) ≤ f

(
n∑

i=1

pixi

)
+ f(a) + f(b)− 2f

(
a+ b

2

)
.

Lemma D.7. Suppose the underlying MDP is (Pθ, r). Let π be a stationary policy such that for
each s ̸= 0, if the current state is s then the probability of transiting to state 0 after taking action
according to π is κs. Then

ρπθ =

q
S′

∑S′

s=1
1
κs

1 + q
S′

∑S′

s=1
1
κs

.

Proof. We first solve for µπ
θ (0) by considering the balance equations for the MDP (Pθ, r). For each

s ̸= 0, we have
µπ
θ (s) =

q

S′µ
π
θ (0) + (1− κs)µ

π
θ (s).

Rearranging gives us

µπ
θ (s) =

q

S′µ
π
θ (0)

1

κs
.

Since
∑S′

s=0 µ
π
θ (s) = 1, we have

µπ
θ (0) = 1−

S′∑
s=1

µπ
θ (s) = 1− µπ

θ (0)
q

S′

S′∑
s=1

1

κs
.

We then solve for µπ
θ (0) to obtain

µπ
θ (0) =

1

1 + q
S′

∑S′

s=1
1
κs

.

Since the reward is 0 in state 0 and 1 in all other states, we conclude that

ρπθ = 1− µπ
θ (0) =

q
S′

∑S′

s=1
1
κs

1 + q
S′

∑S′

s=1
1
κs

.
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E Deferred proofs and auxiliary lemmas

E.1 Proof of Lemma B.2

Proof of Lemma B.2. Letting V, V ′ ∈ RS satisfy V ≥ V ′ elementwise, we seek to show that

T pe(V ) ≥ T pe(V
′).

Since this is an elementwise bound, we can fix arbitrary s ∈ S, a ∈ A and show that T pe(V )(s, a) ≥
T pe(V

′)(s, a). From here on, since s, a are fixed, we abbreviate β(s, a) ∈ R as β for notational
convenience.

Consider the simpler function T̃ : RS → R (which depends on our fixed s, a) defined as

T̃ (V ′′) := P̂saTβ(P̂sa, V
′′)−max

{√
βVP̂sa

[
Tβ(P̂sa, V ′′)

]
, β
∥∥∥Tβ(P̂sa, V

′′)
∥∥∥

span

}
for any V ′′ ∈ RS . Note that

T pe(V
′′)(s, a) = r(s, a) + γmax

{
P̂saTβ(P̂sa, V

′′)− b(s, a, V ′′),min
s′

(V ′′)(s′)
}

= r(s, a) + γmax

{
T̃ (V ′′)− 5

ntot
,min

s′
(V ′′)(s′)

}
.

Therefore, if we could show that

T̃ (V ) ≥ T̃ (V ′), (53)

then since clearly V ≥ V ′ implies mins′(V )(s′) ≥ mins′(V
′)(s′), we could immediately conclude

that

T pe(V )(s, a) = r(s, a) + γmax

{
T̃ (V )− 5

ntot
,min

s′
(V )(s′)

}
≥ r(s, a) + γmax

{
T̃ (V ′)− 5

ntot
,min

s′
(V ′)(s′)

}
= T pe(V

′)(s, a)

as desired.

Thus we now focus on showing (53). First we can quickly handle the case that β > 1, since in this
case for any V ′′ ∈ RS we have Tβ(P̂sa, V

′′) = (mins′ V
′′(s′))1, and then

T̃ (V ) = P̂saTβ(P̂sa, V )−max

{√
βVP̂sa

[
Tβ(P̂sa, V )

]
, β
∥∥∥Tβ(P̂sa, V )

∥∥∥
span

}
=
(
min
s′

V (s′)
)
P̂sa1− 0 = min

s′
V (s′)

≥ min
s′

V ′(s′) =
(
min
s′

V ′(s′)
)
P̂sa1− 0

= P̂saTβ(P̂sa, V
′)−max

{√
βVP̂sa

[
Tβ(P̂sa, V ′)

]
, β
∥∥∥Tβ(P̂sa, V

′)
∥∥∥

span

}
= T̃ (V ′),

confirming (53). Now we can focus on the case that β ≤ 1.

The fact that β ≤ 1 means that the following expression for Tβ holds: for any s′ ∈ S and V ′′ ∈ RS ,
we have

Tβ(P̂sa, V
′′)(s′) = min

{
V ′′(s′), Qβ(P̂sa, V

′′)
}

where Qβ(P̂sa, V
′′) = sup{V ′′(x) : x ∈ S,

∑
x′∈S:V (x′)≥V (x) P̂sa(x

′) ≥ β} is the 1− β quantile

of V ′′ with respect to P̂sa (in words, we choose the largest V ′′(x) such that P̂sa places probability at
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least β on states x′ with V ′′(x′) ≥ V ′′(x)). We will make use of the function Qβ shortly. We also
make the useful definitions

T̃1(V ) := P̂saTβ(P̂sa, V )− β
∥∥∥Tβ(P̂sa, V )

∥∥∥
span

T̃2(V ) := P̂saTβ(P̂sa, V )−
√

βVP̂sa

[
Tβ(P̂sa, V )

]
so that we can decompose T̃ as T̃ (V ) = min

{
T̃1(V ), T̃2(V )

}
. To show (53), it suffices to show

that this holds when V and V ′ differ in only one coordinate, since then we could decompose
V = V ′ +

∑
s′∈S es′e

⊤
s′(V − V ′) and apply the inequalities T̃

(
V ′ +

∑k−1
s′=1 es′e

⊤
s′(V − V ′)

)
≤

T̃
(
V ′ +

∑k
s′=1 es′e

⊤
s′(V − V ′)

)
for each k = 1, . . . , S. Therefore we fix one state x ∈ S and

try to show T̃ (V ) is montonically non-decreasing as V (x) increases (with the other entries of V
held constant). We will show this by using Lemma E.1, which says that if a univariate function is
continuous and at all but a finite number of points has a non-negative right derivative, then it must be
non-decreasing.

First we justify that T̃ is continuous. Since we have decomposed T̃ as the composition of many
continuous functions, it suffices to check that Qβ(P̂sa, V ) is a continuous function of V (x). This
follows immediately from Lemma E.3, which shows 1-Lipschitzness. (We remark that the 1 − β
quantile is well-known to be discontinuous in β, a fact which is irrelevant here since β is fixed and
we instead vary V (x).)

We will now compute the right derivative at all values of V (x) such that V (x) is not equal to
V (s′) for some other s′ ∈ S with s′ ̸= x (which is a finite set). We define some new notation
for this purpose. With respect to this fixed value of V (x), let S> = {s′ ∈ S : V (s′) > V (x)}
and S< = {s′ ∈ S : V (s′) < V (x)}. Define a neighborhood of V (x), the open interval U :=
(maxs′∈S<

V (s′),mins′∈S>
V (s′)). Let V ′ ∈ RS have V ′(s′) = V (s′) for all s′ ̸= x, and we

vary V ′(x) within the neighborhood U of V (x) in order to compute the (full/two-sided) derivatives
dT̃1(V

′)
dV ′(x)

∣∣∣
V ′(x)=V (x)

and dT̃2(V
′)

dV ′(x)

∣∣∣
V ′(x)=V (x)

. Once we have computed these two derivatives, we will

be able to compute the right derivative of T̃ (V ′), since if both T̃1(V ′) and T̃2(V ′) are differentiable
at a point V (x), then by Lemma E.2 the right derivative of T̃ (V ′) satisfies

dT̃ (V ′)

dV ′(x)

∣∣∣
V ′(x)=V (x)+

=
d

dV ′(x)

∣∣∣
V ′(x)=V (x)+

(
min

{
T̃1(V ′), T̃2(V ′)

})

=


dT̃1(V

′)
dV ′(x)

∣∣∣
V ′(x)=V (x)

T̃1(V ) < T̃2(V )

dT̃2(V
′)

dV ′(x)

∣∣∣
V ′(x)=V (x)

T̃1(V ) > T̃2(V )

min

{
dT̃1(V

′)
dV ′(x)

∣∣∣
V ′(x)=V (x)

, dT̃2(V
′)

dV ′(x)

∣∣∣
V ′(x)=V (x)

}
T̃1(V ) = T̃2(V )

.

(54)

To compute the derivatives of T̃1(V ′) and T̃2(V ′), we also analyze the functions Qβ(P̂sa, V
′) and

Tβ(P̂sa, V
′) on the set U (all considered as functions of V ′(x)). For any set S ′ ⊆ S, let P̂sa(S ′) =∑

s′∈S′ P̂sa(s
′). We define three possible cases depending on the (fixed) state x:

β ≤ P̂sa(S>) (55)

P̂sa(S>) < β ≤ P̂sa(S>) + P̂sa(x) (56)

P̂sa(S>) + P̂sa(x) < β. (57)

1. In case (55), we have Qβ(P̂sa, V
′) = Qβ(P̂sa, V ) on the entire interval U and also that for

any V ′(x) ∈ U , Qβ(P̂sa, V ) > V ′(x) (since the (1 − β)-percentile is achieved at some
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state s′ ∈ S>), so Tβ(P̂sa, V
′)(x) = V ′(x) and Tβ(P̂sa, V

′)(s′) = Tβ(P̂sa, V )(s′) for all
s′ ̸= x. Therefore

dTβ(P̂sa, V
′)(s′)

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

=

{
1 s′ = x

0 otherwise

and

dT̃1(V ′)

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

=
d

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

(
P̂saTβ(P̂sa, V

′)− β
∥∥∥Tβ(P̂sa, V

′)
∥∥∥

span

)
=

d

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

(
P̂saTβ(P̂sa, V

′)− βQβ(P̂sa, V
′) + βmin

s′
V ′(s′)

)
=

d

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

(
P̂saTβ(P̂sa, V

′)− βQβ(P̂sa, V ) + βmin
s′

V ′(s′)
)

= P̂sa(x) + β

{
1 S< = ∅
0 otherwise

≥ P̂sa(x) ≥ 0.

2. In case (56), we have Qβ(P̂sa, V
′) = V ′(x) on the entire interval U . Thus

Tβ(P̂sa, V
′)(s′) = V ′(x) if s′ ∈ S> ∪ {x}, and Tβ(P̂sa, V

′)(s′) = V ′(s′) = V (s′)
for s′ ∈ S<. Thus

dTβ(P̂sa, V
′)(s′)

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

=

{
1 s′ ∈ S> ∪ {x}
0 otherwise

and

dT̃1(V ′)

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

=
d

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

(
P̂saTβ(P̂sa, V

′)− β
∥∥∥Tβ(P̂sa, V

′)
∥∥∥

span

)
=

d

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

(
P̂saTβ(P̂sa, V

′)− βQβ(P̂sa, V
′) + βmin

s′
V ′(s′)

)
=

d

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

(
P̂saTβ(P̂sa, V

′)− βV ′(x) + βmin
s′

V ′(s′)
)

= P̂sa(S> ∪ {x})− β + β

{
1 S< = ∅
0 otherwise

≥ P̂sa(S> ∪ {x})− β ≥ 0.

3. In case (57), we have Qβ(P̂sa, V
′) = Qβ(P̂sa, V ) and also that Tβ(P̂sa, V

′)(x) =

Qβ(P̂sa, V ) < V ′(x) (since V ′(x) < Qβ(P̂sa, V ) in this case), so Tβ(P̂sa, V
′) =

Tβ(P̂sa, V ) on the interval U . Also mins′ V
′(s′) < V ′(x) on U , so mins′ V

′(s′) =
mins′ V (s′) on U . Thus

dTβ(P̂sa, V
′)(s′)

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

= 0

for all s′ ∈ S, and

dT̃1(V ′)

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

=
d

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

(
P̂saTβ(P̂sa, V

′)− βQβ(P̂sa, V
′) + βmin

s′
V ′(s′)

)
=

d

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

(
P̂saTβ(P̂sa, V )− βQβ(P̂sa, V ) + βmin

s′
V (s′)

)
= 0.
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Next we calculate dT̃2(V
′)

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

. First, letting T ∈ RS , if VP̂sa
[T ] ̸= 0 then (recalling P̂sa is a

row vector so P̂⊤
sa is a column vector)

∇T

√
VP̂sa

[T ] =
1

2

1√
VP̂sa

[T ]
∇T

(
P̂ T ◦2 − (P̂ T )◦2

)
=

1√
VP̂sa

[T ]

(
P̂⊤
sa ◦ T − (P̂saT )P̂

⊤
sa

)
=

1√
VP̂sa

[T ]
P̂⊤
sa ◦

(
T − (P̂saT )1

)

≤
∥T∥span√
VP̂sa

[T ]
P̂⊤
sa (58)

where the final inequality is elementwise and uses the fact that for any s′, T (s′) − P̂saT ≤
maxs′′ T (s

′′)−mins′′ T (s
′′) = ∥T∥span. Now we will combine this calculation with the chain rule to

lower bound dT̃2(V
′)

dV ′(x)

∣∣∣
V ′(x)=V (x)

. Note that in light of (54), we only need to bound dT̃2(V
′)

dV ′(x)

∣∣∣
V ′(x)=V (x)

when T̃1(V ) > T̃2(V ) or equivalently when our fixed value of V (x) satisfies√
VP̂sa

[
Tβ(P̂sa, V )

]
>
√

β
∥∥∥Tβ(P̂sa, V )

∥∥∥
span

. (59)

Since we have already excluded the finite set of values of V (x) where V (x) is equal to V (s′) for
some other state s′ ̸= x, the only way for VP̂sa

[
Tβ(P̂sa, V )

]
= 0 is if P̂sa(x) = 1, but in that

case we have
∥∥∥Tβ(P̂sa, V )

∥∥∥
span

= 0 which contradicts (59). Therefore we can calculate that if V (x)

satisfies (59), we have

dT̃2(V ′)

dV ′(x)

∣∣∣
V ′(x)=V (x)

=
d

dV ′(x)

∣∣∣
V ′(x)=V (x)

(
P̂saTβ(P̂sa, V )−

√
βVP̂sa

[
Tβ(P̂sa, V )

])

=
∑
s′∈S

(
∂

∂T (s′)

∣∣∣
T (s′)=Tβ(P̂sa,V )(s′)

(
P̂saT −

√
βVP̂sa

[T ]
))

· dTβ(P̂sa, V
′)(s′)

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

=
∑
s′∈S

P̂sa(s
′)−

√
β
∂
√

VP̂sa
[T ]

∂T (s′)

∣∣∣
T (s′)=Tβ(P̂sa,V )(s′)

 · dTβ(P̂sa, V
′)(s′)

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

≥
∑
s′∈S

P̂sa(s
′)−

√
β

∥∥∥Tβ(P̂sa, V )
∥∥∥

span√
VP̂sa

[
Tβ(P̂sa, V )

] P̂sa(s
′)

 · dTβ(P̂sa, V
′)(s′)

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

>
∑
s′∈S

(
P̂sa(s

′)− P̂sa(s
′)
)
· dTβ(P̂sa, V

′)(s′)

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

= 0

where the first inequality step is using the fact that dTβ(P̂sa,V
′)(s′)

dV ′(x)

∣∣∣∣
V ′(x)=V (x)

≥ 0 for all s′ (verified

above in all three cases) and inequality (58), and the second inequality step uses (59).

E.2 Auxiliary lemmas

Lemma E.1. If f : R → R is a continuous function that has a nonnegative right derivative for all
but finitely many points, then f is monotonically non-decreasing.
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Proof. We make the following claim: for a, b ∈ R with a < b, if f : [a, b] → R is continuous on
[a, b] and has a nonnegative right derivative on (a, b), then f is monotonically non-decreasing on
[a, b].

We first prove the lemma assuming that the claim holds. Let f : R → R be a continuous function that
has a nonnegative right derivative for all but finitely many points. Let x, y ∈ R satisfy x < y, and
denote by a1, . . . , an−1 the points in (x, y) where f either is not right-differentiable or has negative
right derivative. Also denote a0 = x and an = y. By the claim, f is monotonically increasing on
[ai−1, ai] for each i = 1, . . . , n. Hence f(x) = f(a0) ≤ f(a1) ≤ · · · ≤ f(an) = f(y). Since x and
y were arbitrary, we conclude that f is monotonically increasing.

It remains to prove the claim. Let a, b ∈ R with a < b, and let f : [a, b] → R be continuous on
[a, b] with a nonnegative right derivative on (a, b). Suppose towards a contradiction that there exist
x, y ∈ [a, b] such that x < y and f(x) > f(y). Since f is continuous, we can assume that x > a (if
x = a we have x+ δ < y and f(x+ δ) > f(y) for sufficiently small δ > 0).

Now, set r := f(y)−f(x)
y−x < 0 and

z := inf

{
t ∈ (x, y]

∣∣∣ f(t)− f(x)

t− x
<

r

2

}
.

Consider the case where z = x. f has a nonnegative right derivative at x, so there exists w ∈ (x, y]

such that f(t)−f(x)
t−x > r

2 for all t ∈ (x,w]. However, this implies a contradiction:

z = inf

{
t ∈ (x, y]

∣∣∣ f(t)− f(x)

t− x
<

r

2

}
≥ w > x = z.

We next consider the case where z > x. Note that by continuity of f , the function g(t) := f(t)−f(x)
t−x

is continuous on (x, y]. It follows that g(z) = f(z)−f(x)
z−x = r

2 . Indeed, if we had g(z) > r
2 , then by

continuity of g there would exist δ > 0 such that g(t) > r
2 for t ∈ [z, z + δ], which would imply that

z ≥ z + δ. And by a similar argument, g(z) < r
2 would imply z ≤ z − δ.

At z the right-derivative is nonnegative, so there exists w ∈ (z, y] such that f(t)−f(z)
t−z > r

2 for all
t ∈ (z, w]. Consequently, for all t ∈ (z, w], we have

f(t)− f(x)

t− x
=

1

t− x
(f(t)− f(z) + f(z)− f(x)) >

1

t− x

(r
2
(t− z) + (z − x)

)
=

r

2
,

which implies the following contradiction:

z = inf

{
t ∈ (x, y]

∣∣∣ f(t)− f(x)

t− x
<

r

2

}
≥ w > z.

Lemma E.2. Let f, g : R → R be differentiable at some x ∈ R, and suppose f(x) = g(x). Then
ϕ : R → R defined by ϕ(t) = min{f(t), g(t)} is right-differentiable at x, and its right derivative
satisfies ϕ′

+(x) = min{f ′(x), g′(x)}.

Proof. We first consider the case where f ′(x) < g′(x). Since limh→0
f(x+h)−f(x)

h <

limh→0
g(x+h)−g(x)

h , there exists some δ > 0 such that f(x+h)−f(x)
h < g(x+h)−g(x)

h for all h ∈ (0, δ).
Subsequently, since f(x) = g(x), we have f(x+ h) < g(x+ h) for all h ∈ (0, δ). It follows that
ϕ(x+ h) = f(x+ h) for all h ∈ (0, δ), and thus

lim
h→0+

ϕ(x+ h)− ϕ(x)

h
= lim

h→0+

f(x+ h)− f(x)

h
= f ′(x) = min{f ′(x), g′(x)}.

Next, the case where f ′(x) > g′(x) is identical to the previous case except we swap the roles of f
and g.
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Finally, we consider the case where f ′(x) = g′(x). Here we can even show that ϕ is differentiable at
x. Let {hn}n∈N be a sequence such that hn → 0. To show that ϕ(x+hn)−ϕ(x)

hn
→ f ′(x), fix ε > 0.

Since f(x+hn)−f(x)
hn

→ f ′(x) and g(x+hn)−g(x)
hn

→ g′(x), there exist N1, N2 ∈ N such that

n ≥ N1 =⇒
∣∣∣∣f(x+ hn)− f(x)

hn
− f ′(x)

∣∣∣∣ ≤ ε

and

n ≥ N2 =⇒
∣∣∣∣g(x+ hn)− g(x)

hn
− g′(x)

∣∣∣∣ ≤ ε.

Taking N = max{N1, N2}, we have for all n ≥ N,∣∣∣∣ϕ(x+ hn)− ϕ(x)

hn
− f ′(x)

∣∣∣∣
≤ max

{∣∣∣∣f(x+ hn)− f(x)

hn
− f ′(x)

∣∣∣∣ , ∣∣∣∣g(x+ hn)− g(x)

hn
− g′(x)

∣∣∣∣}
≤ max{ε, ε} = ε,

where the first inequality holds due to f(x) = g(x), f ′(x) = g′(x), and the fact that for each n, either
ϕ(x + hn) = f(x + hn) or ϕ(x + hn) = g(x + hn). Thus, we have that ϕ(x+hn)−ϕ(x)

hn
→ f ′(x).

Since the sequence {hn}n∈N was arbitrary, we conclude that

ϕ′(x) = lim
h→0

ϕ(x+ h)− ϕ(x)

h
= f ′(x) = min{f ′(x), g′(x)}.

Lemma E.3. For any probability distribution µ ∈ RS and any β ∈ [0, 1], the largest-(1−β)-quantile
function

Qβ(µ, V
′′) = sup{V ′′(x) : x ∈ S,

∑
x′∈S:V (x′)≥V (x)

µ(x′) ≥ β}

satisfies

|Qβ(µ, V )−Qβ(µ, V
′)| ≤ ∥V − V ′∥∞

for any V, V ′ ∈ RS .

Proof. First, we note that the definition of Qβ can be written equivalently as

Qβ(µ, V
′′) = sup

{
min
s′∈S′

V ′′(s′) : S ′ ⊆ S and
∑
s′∈S′

µ(s′) ≥ β

}
.

Without loss of generality we can assume that Qβ(µ, V ) ≥ Qβ(µ, V
′), so it suffices to lower-bound

Qβ(µ, V
′). By the definition of Qβ(µ, V ) (and the fact that S is finite so the supremum within its

definition is attained exactly), there exists some set S ′ ⊆ S such that

Qβ(µ, V ) = min
s′∈S′

V (s′)

and
∑

s′∈S′ µ(s′) ≥ β. Therefore since

V ′(s′) ≥ V (s′)− ∥V − V ′∥∞ ≥ Qβ(µ, V )− ∥V − V ′∥∞
for all s′ ∈ S ′, we have that

Qβ(µ, V
′′) ≥ Qβ(µ, V )− ∥V − V ′∥∞

as desired.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the introduction and abstract are substantiated in Section 3.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations of the work are discussed in the conclusion in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All theorems state all required assumptions, and proofs for all formal results
are provided in the appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: There are no experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: There are no experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: There are no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: There are no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: There are no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper does not have any direct negative societal impacts nor any potential
harms caused by the research process.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper is focused on theoretical aspects of offline RL and therefore there
are no immediate negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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