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Abstract

We study offline reinforcement learning in average-reward MDPs, which presents
increased challenges from the perspectives of distribution shift and non-uniform
coverage, and has been relatively underexamined from a theoretical perspective.
While previous work obtains performance guarantees under single-policy data
coverage assumptions, such guarantees utilize additional complexity measures
which are uniform over all policies, such as the uniform mixing time. We develop
sharp guarantees depending only on the target policy, specifically the bias span and
anovel policy hitting radius, yielding the first fully single-policy sample complexity
bound for average-reward offline RL. We are also the first to handle general weakly
communicating MDPs, contrasting restrictive structural assumptions made in prior
work. To achieve this, we introduce an algorithm based on pessimistic discounted
value iteration enhanced by a novel quantile clipping technique, which enables the
use of a sharper empirical-span-based penalty function. Our algorithm also does
not require any prior parameter knowledge for its implementation. Remarkably,
we show via hard examples that learning under our conditions requires coverage
assumptions beyond the stationary distribution of the target policy, distinguishing
single-policy complexity measures from previously examined cases. We also
develop lower bounds nearly matching our main result.

1 Introduction

Reinforcement learning (RL) has achieved impressive results for many control problems where it
is possible to collect large amounts of experience through online interaction with the environment.
However, many real-world application areas where we would like to apply RL methods, such as
robotics, education, or healthcare, there may not exist simulators and data collection can be expensive
or dangerous. Offline RL is a subfield of RL which seeks to address these issues by learning from
historical data without online interaction, and hence achieving the maximum possible statistical
efficiency is the paramount concern. The lack of online experience collection poses many related
challenges to offline RL methods. One issue, often termed distribution shift, is that improving a
policy’s performance will inherently change the distribution of states and actions it experiences,
potentially moving it away from the distribution of the historical dataset. Another closely related
issue, sometimes referred to as non-uniform coverage, is that our dataset may generally be unevenly
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concentrated so that it is impossible to estimate the performance of all policies to uniform accuracy,
and instead we must balance exploitation with varying degrees of confidence.

Recent research has made significant progress on the theoretical limits of offline RL by addressing
these issues. However, many of these advances have been confined to the finite horizon setting,
or the discounted infinite horizon setting, which can also behave like a finite horizon due to the
irrelevance of distant future rewards. In this paper we focus on the challenging average-reward setting
where the goal is to maximize the long-term average of rewards, which has been underexplored from
a theoretical perspective. We briefly argue that the two aforementioned difficulties are amplified
in the average-reward setting, and have not been satisfactorily addressed by previous work. First,
since the average-reward objective captures performance in the long-horizon limit, we must contend
with distribution shifts that occur after arbitrarily long time scales. Secondly, the issue of non-
uniform coverage is magnified because while the (effective) horizon can serve as an extrinsic upper
bound on the complexity of a particular policy, in the average-reward setting different policies can
have arbitrarily different intrinsic complexities (as measured by parameters such as the span of the
policy’s relative value function). Existing work has developed algorithms which succeed under
single-policy data coverage assumptions/concentrability coefficients, but has only done so when
also using parameters that upper bound the complexity of all policies. Such large uniform-policy
complexity measures can lead to vacuous bounds and overall fail to fully address both of the above
issues. Additionally, algorithms from prior work fail to obtain optimal statistical efficiency and
require foreknowledge of unlearnable parameters (such as coverage coefficients or environmental
complexity parameters) for their implementation.

1.1 Our contributions

We address all of these challenges, developing an algorithm for (single-policy coverage) offline
average-reward RL which is the first to handle the weakly communicating setting where not all
policies have constant gains, as well as the first to obtain a convergence rate dependent on the bias
span of only the target policy (as opposed to uniform complexity measures). Informally, our main
theorem provides a high-probability guarantee on the suboptimality of the output policy 7 of the form
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where ||h™ ||span is the bias-span of the target policy 7* and S is the number of states. This holds
whenever the sample size n(s,a) per state-action pair (s, a) satisfies n(s, 7*(s)) > mu™ (s) +
5(Thit (P, 7T*)2) for all states s. Here 1™ is the stationary distribution of the target policy, m is the
“effective dataset size,” and T (P, 7*) is a novel policy hitting radius that measures the time for 7*
to reach a particular state in the support of its stationary distribution, and is thus also a single-policy
complexity measure.
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Interestingly, this condition requires data even for state-action pairs (s, 7*(s)) for which s is transient
(™ (s) = 0) under the target policy, and we show via a hard example that this requirement is
nearly unimprovable. In particular, this implies two surprising findings: i) with a fully “single-policy”
sample complexity, learning a near-optimal policy is impossible under coverage conditions with
respect to only the stationary distribution of the target policy, even with arbitrarily large amounts of
data; ii) on the other hand, only a bounded amount of data from the transient state-action pairs of
the target policy is sufficient to achieve vanishing suboptimality. We also show another lower bound
which implies the optimality of the guarantee (1) in terms of its dependence on m, making our result
the first among offline average-reward RL approaches to achieve an optimal rate for large m.

Our algorithm is based upon a pessimistic discounted value iteration procedure, involving a very large
and prior-knowledge-free choice of discount factor. Most notably we develop a quantile clipping
technique which enables the use of a sharper empirical-span-based penalty function.

1.2 Related work

First we discuss prior work on average-reward offline RL. To the best of our knowledge the only works
with explicit results for this setting are Ozdaglar et al. [2024] and Gabbianelli et al. [2023]. Ozdaglar
et al. [2024] assume that the MDP is unichain, and obtain guarantees with a constrained linear



programming (LP) algorithm in terms of the uniform mixing time 7,;r (defined in Section 2), for
both general function approximation and tabular settings. We also discuss quantitative comparisons
to the tabular results from Ozdaglar et al. [2024] after presenting our main theorem. Gabbianelli
et al. [2023] assume that all policies in the MDP have constant (state-independent) gain, which is
more general than unichain MDPs but does not hold in weakly communicating MDPs. Gabbianelli
et al. [2023] consider the linear MDP setting, develop an algorithm based on primal-dual methods
for solving LPs, and obtain guarantees in terms of a uniform bound on the span of all policies Hpis.
The algorithms in both of these works require knowledge of certain concentrability coefficients.

Next we briefly discuss related work for offline RL outside of the average-reward setting. Our algo-
rithm is essentially a careful refinement of the pessimistic value iteration approach of Li et al. [2023]
for the discounted tabular setting, which in turn is a refinement of Rashidinejad et al. [2022]. Many
works (e.g., Liu et al. [2020], Jin et al. [2021], Xie et al. [2021], Uehara and Sun [2021], Rashidinejad
et al. [2022]) have demonstrated the ability for pessimistic approaches to address the distribution
shift/non-uniform coverage challenges of offline RL and achieve near-optimal performance under
single-policy concentrability assumptions.

Finally we discuss prior work on average-reward RL under uniform coverage assumptions. Many
papers on average-reward RL considering the tabular generative model setting [Kearns and Singh,
1998] actually only require a dataset with an equal number of samples from all state-action pairs (e.g.,
Wang et al. [2022, 2023], Zurek and Chen [2024, 2025a,b]), and hence we believe such papers could
be easily extended to the uniform coverage setting, obtaining a guarantee dependent on the smallest
number of samples for any state-action pair. While such works might be considered offline RL,
we reserve this term for guarantees involving only single-policy coverage assumptions. Achieving
instance-dependent guarantees in terms of the bias span of an optimal policy (e.g., Zhang and Xie
[2023], Wang et al. [2022], Zurek and Chen [2025b]) and removing the need for prior knowledge of
complexity parameters (e.g., Jin et al. [2024], Neu and Okolo [2024], Tuynman et al. [2024], Zurek
and Chen [2025a]) have been the objectives of extensive research in the uniform coverage setting.

2 Background and problem setup

2.1 Background

A Markov decision process (MDP) is a tuple (S, .4, P,r) where S and A respectively denote the
finite state and action spaces, P : S x A — A(S) is the transition kernel (with A(S) denoting the
probability simplex on S), and r : [0, 1]5*4 is the reward function. We let S = |S| and A = | A|.
We generally omit the explicit reference to S and A when defining MDPs. A (Markovian/stationary)
policy is a mapping 7w : S — A(A). We call a policy deterministic if for all s € S, 7(s) only
places probability mass on one action, and in this case we also treat 7 as a mapping S — A. Let I1
denote the set of all stationary deterministic policies. An initial state so € S and policy 7 induce a
distribution over trajectories (s, Ao, S1, A1, ... ) where Ay ~ 7(Sy), Sex1 ~ P(- | S¢, At), and we
let ET denote the expectation with respect to this distribution. We often treat P as an (S x A)-by-S
matrix where Py, v = P(s’ | s,a), and let P;, denote the sa-th row of this matrix (treated as a “row
vector”, s0 Pso X = >, Py, (s') X (s') for X € R®). For X € RS and s € S,a € A, define the
next-state value variance Vp_, [X] =3 cs P(s' | 5,a)X(s')? = (X cs P(s' | 5,0) X ().

A discounted MDP is a tuple (S, A, P,r,~y) where v € [0, 1) is the discount factor. For a policy
7, the discounted value function V.7 € [0, ﬁ]s is defined V" (s) = E7[>",2v"R;] where R, =
7(Si, A¢), and the gain p™ € [0,1]5, is p™(s) = C-limy_,oo ET[Ry] = limp_ o0 #E7| tT;()l Ry]
where C-lim is the Cesaro limit. We define the optimal gain p* = sup, <y p", and we say a policy 7
is gain-optimal if p™ = p*. A gain-optimal policy always exists [Puterman, 1994]. The bias function
of a policy 7, h™ € RS, is h™(s) = C-limz_, o, ET[ tT;Ol(Rt —p™(S))]-

M : RS*4 — RS denotes the action maximization operator where M (Q)(s) = max,c4 Q(s,a),
and M™ denotes the policy matrix where M™(Q)(s) = 3,4 7(s)(a)Q(s, a), for any Q € RS*A,
s € S, and policy 7. We often drop the parenthesis and write M Q := M (Q). For any Q € RS*A,

the discounted (action-value) Bellman operator 7 : RS*A — RS*A is T(Q) := r +yPM(Q), and
the policy-evaluation Bellman operator 7™ is 7™ (Q) := r + yPM™(Q, for any policy 7.



Let N = {1,2,...} denote the set of natural numbers. Define 0, 1 as the all-zero and all-one vectors,
respectively. For X € RS, let || X ||span = maxses X (s) — minges X (s) denote the span semi-norm.

We use O(-), O(-), Q(-) notation to ignore constants as well as logarithmic factors in S, A, = e .

and ny.y, where d and no, are the failure probability and the total dataset size, to be defined below.
Let es € RS denote the vector which is all zero except for a 1 in entry s € S. For two vectors
v,v" € R4, v > v’ denotes the elementwise inequality v(i) > v’ (i) for all 4.

Under the transition kernel P, a policy 7 induces a Markov chain over state S, whose transition
matrix is denoted by P;. The policy m is said to be unichain if it induces a unichain Markov chain,
meaning that the chain consists of a single (irreducible) recurrent class plus a possibly empty set of
transient states. An MDP is unichain if all deterministic policies in the MDP are unichain. An MDP
is communicating (aka strongly connected) if for any pair of states s, s’ € S, s’ is accessible from
s, meaning there exists some policy 7 and some k € N such that ETI(S, = s’) > 0. An MDP is
weakly communicating if it consists of a set of states S, such that, for any s, s’ € S, s’ is accessible
from s, plus a set of states S; = S \ S, which are transient under all policies. All unichain and
communicating MDPs are weakly communicating.

A unichain policy 7 has constant (state-independent) p™, and thus in unichain MDPs, all policies have
constant gains. In weakly communicating MDPs, the optimal gain p* is constant, but sub-optimal
policies m may have non-constant p™. For any unichain policy 7, we write its (unique) stationary
distribution as ™ € RS (which we treat as a “row vector”). For any unichain policy 7, we define
its mixing time 7(7) = inf{t > 0 : ||e] P! — HﬂHl < 1}. Define the uniform mixing time as
Tunif = SUPrepy 7(m). Also define the uniform span bound Hynir = sup,cy [|h™||span- For any
s € S, letns ;= inf{t > 0 : S; = s} be the first hitting time of state s. Define the diameter
D = max, scs mingen E7 1], and we sometimes write Dp to emphasize the dependence on P.

2.2 Offline RL setting

We assume a sample size function n : S x A — N is fixed a priori, and for each s € S,a € A, we

assume that we have n(s, a) samples S s S o Ef’a) sampled independently from the next-state

transition distribution P(- | s, a). We define the dataset D = ((s,a,5%4)) s e 4 |<i<n(s.q) And let

Ntot = Y _scs.ac.a (S, a) denote the total dataset size. We assume the reward function 7 is known.

We introduce a new quantity which plays a key role in both our main theorem and our lower bounds.
For any transition kernel matrix P and policy 7, we define the policy hitting radius

Toie(P,7) := inf ET [1+ 2
hit (P, ) Slgsiue% %o [Ms+]s 2

where again 1), is the first hitting time of state s. In words, T,; (P, 7) measures the largest expected
amount of time required to hit the “center” state s*, for the optimal choice of s* (which will always
be a recurrent state). As shown in Lemma B.10, Ty, (P, 7) is always finite if Py is unichain. We also
always have that ||A™||span < 4Tt (P, 7) for any 7 (Lemma B.13). There is generally no relationship
between Ty, (P, 7) and 7(7); see the discussion in Appendix B.5.1.

3 Main results

3.1 Algorithm

First we describe the algorithm used to obtain our main result. We employ a discounted reduction
approach, i.e., approximating the average-reward MDP by a discounted MDP with an appropriate
choice of discount factor. The main component of our approach, Algorithm 1, is a pessimistic value
iteration subroutine which can be understood as solving a discounted MDP.

Now we define the pessimistic Bellman operator ’7A;e : RS*¥A 5 RS*A ysed in Algorithm 1.
Toe is a function of v as well as the dataset D, utilizing the empirical transition matrix P where
P(s' | s,a) =

n(s ) S (Si = ). If n(s,a) = 0 for some s, a then for concreteness we



Algorithm 1 Pessimistic Value Iteration With Quantile Clipping

input: Dataset D, reward function r, discount factor v € (0, 1), failure probability 6 € (0, 1)
1: Form empirical transition matrix P used in 7. from D

~ og( 2tot
2: LetQQog =0and K = [%—‘ > initialization and number of iterations
3: fort = 1 , K do
4: Let Qt pe(Qt 1)
5: end for R
6: Let Q QK and for each s € S, let 7(s) € argmax, . 4Q(s, a)
7: return T, Q

define P( "| s,a) = 1/5, although any default probability distribution over S would be fine, since
our construction of 7},6 does not depend on rows Psa such that n(s,a) = 0.!

Forany Q € R®*A and any s € S, a € A, we define

~

%G(Q)(sa (Z) = T(Sv CL) + 7y max {ﬁsaTB(s,a) (ﬁsav MQ) - b(S’ a, MQ)7 H;}H(MQ)(S/)} )]

Here M () € R takes the maximum over actions of the Q-function () (and thus should be understood
as the corresponding value function). The term b(s, a, M@Q) > 0 is a certain Bernstein-style penalty,

which is chosen below to ensure that 7},6(62) lower-bounds the true (unknown) Bellman operator
T(Q) for any Q. The expression PsaTﬁ(g a) (Psa7 M Q@) denotes the inner product of the probability
distribution Psa with the vector T, q) (Psa, MQ) € R®, which is a “quantile-clipped” version of
M@ to be defined momentarily. For 5 € [0, 1], the quantile clipping operator T : RS x RS — R®
is defined as follows: for any V € R®, s € S, and probability distribution 1z € RS, let

T5(p, V) (s) = min {V(s)7 sup {V(S/) 15’ eS8, Z u(s') > 3}} )
§7€S:V(s") >V (s)
In words, all entries of V' larger than the (largest) 1 — 3 quantile with respect to y are clipped down
to this quantile. To extend the definition to § > 1, we set Tz(u, V') (s) = minges V(s'), that is all
entries will be clipped to the minimum entry of V. Finally we define the penalty term

~ ~ 5
b(s,a,V) = max {\/ B(s,0) V5, [Tato(Peas V)] B(5.0) | Tis.0) (Paas V)| } + 5
span Ntot
2 Angot — (23 -0
where oo = 8log (6(51:47)6 ) and B(s,a) = max(n(s.ay—T.1} - Note that B(s,a) = O(m) (when-

ever n(s,a) > 0).
The pessimistic Bellman operator ’7A;C has several nice properties that are crucial to our analysis.

Lemma 3.1. 7;)9, satisfies the following:
1. Monotonicity: If Q > Q' then pe(Q) > ﬁe(Q’).
2. Constant shift: For any c € R, 7;0(@ + 1) = Tpe(Q) + yel.

~

3. y-contractivity: Ty is a y-contraction and has a unique fixed point Q5 € [0, ﬁ}s

See Lemma B.1 for a more complete statement. In summary, like previous pessimistic value iteration
approaches [Li et al., 2023, Rashidinejad et al., 2022], our pessimistic Bellman operator shares key
properties with usual Bellman operators enabling us to find an approximate fixed point in 5( ﬁ)
value iteration steps, and then we will choose policy 7 to be greedy with respect to this fixed point.

Now we discuss the motivation for quantile clipping, and the differences from prior work. In particular
we highlight the constant shift property enjoyed by 7p.. This is highly desirable for the average-reward

'If n(s,a) = 0 then B(s,a) = a > 1 and T5(57a>(ﬁga,MQ) = (min, (MQ)(s"))1, causing the max
in (3) to equal miny (M Q)(s").



setting, and more generally any weakly communicating MDPs, since in such MDPs the optimal value
function behaves as V. ~ ﬁ p*+h* and p* is a multiple of 1. The constant shift property essentially
guarantees that we only penalize the variability in the relative value differences between states, not
the overall horizon-dependent scale ﬁ of the cumulative rewards. The || - ||span-based second term in

our penalty function definition (5) of b is essential for this constant-shift property, since the span semi-
norm is invariant to translation by multiples of 1. Previous “Bernstein-style” penalty functions [Li
et al., 2023] use a larger term like 3(s, a)l% ~ —~ -1 which breaks the constant shift property
7 7 n(sa) 1—y
and can dominate the first (variance-based) term in (5) when used with large horizons. Naively using
B(s,a)||V||span in the second term of (5) actually fails to ensure the monotonicity and contractivity

properties of Ty, for reasons that we elaborate upon in Section 4. Fortunately, the introduction of
quantile clipping remedies these issues, and only introduces small additional bias: since only entries

representing at most 3(s,a) = O( ﬁ) of the probability mass with respect to 138(1 have their
values clipped, we have IgsaTg(S’a)(ﬁsa, V) < P,V < ﬁsaTﬁ(s’a) (]33(1, V) + B(s,a) |V and

span ’
introducing quantile clipping within the two terms of the penalty function b in (5) only reduces the

penalty value, relative to instead using V5 [V] and [|[V||span. (See Lemma B.14.)

3.2 Main theorem

Now we present our main theorem on the performance of Algorithm 1. We will apply Algorithm 1
with a very large discount factor - such that the effective horizon is ﬁ = Nyot-

Theorem 3.2. There exist absolute constants C1, Co such that the following holds: Fix § > 0. Let

vy=1- ntlot and a = 8log (%). Let ™ be a deterministic gain-optimal policy which is

unichain with stationary distribution ™ . Suppose there exists some m € N such that
n(s, 7 (s)) > mu™ (s) + a (CoTh (P, 7))* + 4.

Then letting T be the policy returned by Algorithm 1 with inputs D, r, v = 1 — % and 6, we have

with probability at least 1 — 50 that —
T \/ CrS(IP g + D

m

il

We prove Theorem 3.2 in Appendix B. Theorem 3.2 demonstrates that as the “effective dataset size’
m increases, the suboptimality of 7 decreases at a rate of O(1/S[[h™ ||span/m), which matches our
lower bound Theorem 3.4. Our coverage assumption is qualitatively different than previous works on
average-reward RL, since even for states s which are transient under 7* (and thus have ;™ (s) =0),

we still require O(Ty (P, 7*)?) samples from the state-action pair (s, 7*(s)). Note that up to a
log factor this transient state coverage assumption is independent of m, meaning that vanishing
suboptimality is possible with only an essentially bounded amount of data from transient states. (In
the absence of this additional term we could treat n.t/m as a “concentrability coefficient” similar to
prior work, but we believe our results are stated more clearly in terms of the effective dataset size m.)
As shown in Theorem 3.3, this transient data requirement is necessary to obtain a Hh”* ||span-based
guarantee, and our dependence on T}, (P, 7*) is nearly optimal. Theorem 3.2 requires 7* to be
unichain, which is a mild assumption, since even in weakly communicating MDPs where not all
policies are unichain, there always exists a unichain gain-optimal policy [Bertsekas, 2018].

No prior parameter knowledge, such as of || h |Ispan or the value of m (or equivalently a coverage
coefficient) is needed for Algorithm I to be implemented and enjoy the above guarantee. In particular
7 is set so that the effective horizon is n.¢. Actually our theorem would hold for arbitrarily larger
choices of the effective horizon, and the guarantee would not degrade except for a logarithmic
dependence on the effective horizon, but this would be suboptimal from a computational perspective,
since O(1/(1 — =)) iterations are required for convergence in Algorithm 1. Also see Theorem B.20
for a version of Theorem 3.2 allowing 7* to be gain-suboptimal.

In the unichain tabular setting, Ozdaglar et al. [2024] obtain a suboptimality bound like
O(\/C?72 :+S/ntot) where C' > 1 is a certain coverage coefficient roughly equivalent to net /m.
With this substitution their bound becomes O(/C72, ..S/m), which interestingly degrades with the

unif



coverage coefficient C even as the effective dataset size m is held constant, while our bound has no
such issue. We also have Hh”* lspan < O(Tunit), and qualitatively ||A™ ||span is much sharper since it
depends only on 7* rather than all policies.

3.3 Lower bounds

In this subsection we present two lower bounds implying the near-optimality of our Theorem 3.2.
Below, for an MDP (Py, r), pj, hj and pf denote the gain, bias and stationary distribution of a policy
m, respectively; py and Dy denote the optimal gain and the diameter of the MDP, respectively; and
Py ,, denotes the distribution of the dataset D under this MDP when the sample size function is 7.

First, we present the surprising fact that, to obtain convergence rates dependent on certain single-
policy complexity measures including ||2™" ||span and Thi¢ (P, 7*), coverage assumptions with respect
to only the stationary distribution of the target policy are insufficient to learn a near-optimal policy,
even with an arbitrarily large amount of data.

Theorem 3.3. For any T > 4 and any m € N, there exist a finite index set ©, transition matrices
Py for each 0 € ©, and a reward function r, such that for all § € (O, e%} there exists a function
n: S x A — N satisfying the following:

1. For each 0 € O, the MDP (Py,r) is unichain and communicating, with A < O ((%D
actions and diameter T.

2. Foreach § € ©, the MDP (Py, ) has a unique deterministic gain-optimal policy mj such
that Ty (P, 75) < T and n(s, w5 (s)) > muy° (s) + L log (1) forall s € S.
3. For any algorithm & that maps the dataset D to a stationary policy, we have
« (D)
P — 1/2) > 0.
maxPyn(p5 —py >1/2) 2

Note that the “effective dataset size” parameter m can be taken arbitrarily large, meaning that learning
better than a %-suboptimal policy is impossible even with arbitrarily large amounts of data from the
stationary distribution of the target policy. This does not contradict the error bounds from prior work
which make stationary-distribution-based coverage assumptions and involve uniform complexity mea-
sures Tunif, Hunit [Ozdaglar et al., 2024, Gabbianelli et al., 2023], since the parameters Tynif, Hunif
scale with m in our hard instances in such a way as to render such bounds vacuous. In contrast,

the parameters ||hg" l|spans Thit (Pg, 75 ), and Dy remain bounded, implying that a convergence rate
involving any of these parameters is impossible without data coverage beyond the stationary distri-
bution, revealing a qualitatively different behavior of such parameters. While oftentimes results for
average-reward setups can be predicted/derived by taking appropriate large-vy limits of results for
discounted settings, taking the limit as v — 1 of usual discounted occupancy coverage assumptions
(e.g., C* in Rashidinejad et al. [2022, Theorem 6]) only leads to requirements on covering the
stationary distribution.

The setup in Theorem 3.3 even provides the learner with Q(Th ( Py, 7)) samples from state-action

pairs which are transient under the target policy (1,°(s) = 0), and this is still insufficient for
learning near-optimal policies. This implies that the transient state dataset coverage requirement

of Theorem 3.2 is nearly unimprovable, up to an additional factor of O(Ty;t (P, 7*)). A complete
proof of Theorem 3.3 is provided in Appendix C and a sketch is provided in Section 4, but we briefly
summarize the key idea: even with an arbitrarily large (but finite) amount of data from the recurrent
class of the target policy, we may inevitably learn a policy with a small probability of leaving these
well-covered states. Without any data we cannot learn how to recover from such a transition and
navigate back to highly-rewarding regions quickly enough. This unfavorable but rare transition
has negligible impact for finite horizon/discounted RL objectives (if the starting state is within the
highly-rewarding region). In unichain MDPs all policies are guaranteed to eventually return to the
recurrent class of the optimal policy eventually (because all recurrent classes must overlap, otherwise
it would be possible to construct a multichain policy), but the fact that some policies take a long
time to do so means that the uniform mixing time 7y;¢ is very large, even if the optimal policy can
recover quickly. Despite being unichain, such MDPs are qualitatively close to being non-unichain
(but weakly communicating).

Next, we present a lower bound which demonstrates that dependence on m in Theorem 3.2 is tight.



Theorem 3.4. There exist absolute constants ¢y, ca, c3 > 0 such that for any T > ¢1, S > ¢, k > 0,
and m > max{TS, kS}, one can construct a finite index set ©, transition matrices Py for each
0 € O, a reward function r, and a functionn : S X A — N such that the following hold:

1. For each 0 € O, the MDP (Py,r) is unichain and communicating, with S states and
diameter T

2. Foreach 0 € ©, the MDP (Py, 1) has a unique stationary gain-optimal policy 7} such that
Thit(Po, ) < T and n(s, w5(s)) > mug® (s) + k forall s € S.

3. For any algorithm </ that maps the dataset D to a stationary policy, we have

N R
gegPon (i =8 7 > 2 ) 2 5 ©

Since generally Tyt (P, 7) > ||h™||.. .. /4 (see Lemma B.13), Theorem 3.2 implies a lower bound in

span
terms of [|A™" [|span (||hg€ |lspan and Thit (Py, 75 ) are on the same order in the instances of Theorem
3.4). We add the parameter k£ to demonstrate that a coverage requirement in the form of Theorem
3.2 does not affect the dependence on m in (6) for sufﬁciently large m. In particular after setting

k = ©(T?) to match Theorem 3.2, its dependence on ||2™ "|Ispan, S, and m matches (6) and thus is
unimprovable up to O(- ) factors as long as m > @(TQS) Theorem 3.4 is proven in Appendix D.

4 Proof sketches

4.1 Main theorem

First we discuss the proof of Theorem 3.2, including the motivation for quantile clipping. The key
idea of pessimistic value iteration is to choose 7y so that T, (@) < T (Q5.), and then letting 7 be

greedy with respect to @l*)e (meaning 7 ( A;e) =T7( A;‘,e)), we have

Toe(@%e) < T(Qhe) = TT(QL,)

so by standard monotonicity arguments we have @l‘;e < Q7. The challenge is then to choose 7A;e

as “close” to T as possible, so that @r*)e is as close as possible to Q* (while ensuring ’7A;e( Al*)e) <

T(@;e)), in order to maximize Q7. Using a to hide O(-) terms, an empirical Bernstein-like bound

[Maurer and Pontil, 2009] for the quantity V3, = MQ}

be» and upper-bounding a sum by max, yields

Sp)an =: Pgaﬁl)*e — l;(s,a, ‘A/p*e) Vs, a. (7)

v,
n(s,

This sharp span-based form of penalty function b is crucial for the constant shift property described
in Lemma 3.1, since both V5[] and [|[|,,, are invariant to shifts by multiples of 1. As discussed
there this property is essentlal for the average-reward setting, and the Bernsteln—style penalty used
in Li et al. [2023] replaces the second term from the max in (7) with = > || % |lspan and hence

does not en]oy this property. However, we cannot simply use an operator llke 7~'(Q)(s7 a) =

(s a) + vPsaV* vb(s, a, Vp*e) because the span term within b would lead to non-monotonicity
of T and disrupt many other essential properties (like ~-contractivity). To see the non-monotonicity,
suppose some s’ has 13(5’ | s,a) < 7oy Then, for V' € RS where V (s') is the largest entry,

ignoring non-differentiability edge cases, we have

d Vg = d ~ V(s') — mingres V(s")
v (s) n(s,a) ) dV(s') FaaV —a n(s,a)
et

n(s,a) <0

<ﬁsaV -«

=P(s' | s,a) —



However, if we replace V' with the quantile-clipped quantity 77, (s, ) (]Bs,a, V'), then increasing
V(s") (when it is the largest entry of V') will only increase Tt /p(s,q) (]357(1, V) if P(s' | s,a) has at
least av/n(s, a) probability mass. Hence, by fixing the overpenalization caused by ||-,,,, quantile
clipping is essential to define our empirical-span-based pessimistic Bellman operator.

Now we discuss a few other aspects of the proof of Theorem 3.2. Obtaining the Bernstein-style

inequality (7) is nontrivial due to statistical dependence between ISM and XA/p*e We remedy this with an
argument based on leave-one-out/absorbing MDP techniques [Agarwal et al., 2020], which requires
additional covering steps due to the presence of quantile clipping. (See Lemmas B.6 and B.5.)

It is somewhat surprising that Theorem 3.2 is able to obtain a bias-span-based guarantee without
requiring any prior bias-span knowledge, since prior work in related uniform coverage settings has
shown this is impossible when the effective horizon is large/on the same order as the size of the
dataset [Zurek and Chen, 2024]. This is closely related to the issue that the bias span [|A7|,,, of a
policy 7 is not estimable to multiplicative error with a sample complexity polynomial in only S, A,
and ||h’T||Span [Zurek and Chen, 2025b, Tuynman et al., 2024]. However, our proof suggests that

[[A7 || span is estimable if we allow a dependence on the policy hitting radius Th (P, 7), which we

believe is an independently interesting finding. (See Lemma B.18.) This fact plays a key role in

bounding the suboptimality in terms of [|2™[|,,,-

4.2 Transient lower bound

Next we briefly describe the idea behind the hard instances within Theorem 3.3, which implies that
transient coverage is required for offline RL with single-policy complexity parameters. Consider
the MDP P in Figure 1, which is parameterized by m, which we imagine as arbitrarily large, and
T, which we imagine as measuring the complexity of P. There are two states with two actions
each, an absorbing stay action and a 1eave action which has a small chance of leading to the other
state. State 1 has reward 1 for both actions and state 2 has reward 0 for both actions, so clearly the
optimal policy 7* is to take leave in state 2 and take stay in state 1, and the associated stationary
distribution has all its mass on state 1. Also, assuming m > T, Ty (P, 7*) = T, since this is
the expected amount of time to hit state 1 starting from state 2. Therefore to satisfy the coverage
assumption n(s, 7 (s)) > mu™ (s) + Tyt (P, 7*), it would suffice to provide m samples for both
state 1 actions, and 1" samples for both state 2 actions.

o= leave, R = 1. L a=stay, R=0||a=1leave,R=1 a=stay,R =0
T T
[ A
¥ m Sa
AL 7
\\\ 17%\
AT
a=stay, R=1 L a=1leave, R =0 a=stay,R=1 a = leave,R =10
P P

Figure 1: An MDP P parameterized by m, T', and an empirical MDP P which has constant probability
of being sampled from P. Each solid arrow indicates an action and is annotated with its reward.
Arrows which split into multiple dashed arrows indicate possible stochastic transitions, and each
dashed arrow is annotated with the associated probabilities.

For this sample size function n, with constant probability we will not observe any transitions to the
other state from either of the 1eave actions (that is, the samples from each of these state-action pairs
would all be of the form (s, leave, s)). Under such an event, illustrated by the empirical MDP P, no
algorithm could distinguish between the leave and stay actions in either state better than random
guessing. If an algorithm is forced to return a deterministic policy, then there would be a constant
probability of choosing the policy m where (7(1),7(2)) = (leave, stay), which will remain in
state 2 (and hence have gain 0). To generalize to algorithms which may choose randomized policies,



we add more copies of the stay action to state 2, so that a “guessed” randomized policy has a low
chance of returning to state 1 quickly enough for good performance. Also P is not unichain, but we
can add an arbitrarily small (O(m~?2)) probability for the stay actions in state 2 to return to state
1, which ensures unichainedness without meaningfully changing the story. We emphasize that the
hardness is not due to the inability to identify the stay action in state 1, since in general we cannot
expect to perfectly match the stationary distribution of the target policy (and in this example, the
policy (Leave, leave) still has suboptimality only O(T/m)). Rather, the hardness is due to the fact
that it is nontrivial to navigate (quickly) back to the target policy’s stationary distribution after leaving
it, and learning to do so requires data coverage beyond said stationary distribution.

5 Conclusion

We developed the first average-reward offline RL algorithms for MDPs where not all policies have
constant gain, and also the first convergence rates depending only on the bias span of a single policy.
A main limitation of our work is its focus on the tabular setting, hence an important direction is to
extend these improvements to function approximation setups to avoid dependence on S in the results.
While Theorem 3.3 demonstrates the necessity of data from the target policy from all states, this
may be limiting in practice, so an interesting future direction is to explore additional assumptions or
information that could be provided to the algorithm to circumvent this requirement.
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A Additional notation and guide to appendices

Let 7 be some stationary policy. Note that P, (defined above as the Markov chain over states induced
by policy 7 on the transition kernel P) is equal to M ™ P. We also define v, = M7"r. Then we
have V.7 = (I — vPr)"'rx. |||l and [|-||; denote the usual £./¢1-norms, respectively. [|W|[_,
denotes the ||-|| . — |||, operator norm of a matrix W. In particular ||(I —vP;)~!|| . = -
We note that the action maximization operator M and the policy matrix M™ both satisfy monotonicity:
V > V' (elementwise, for Q, Q" € RS*A) implies M(Q) > M(Q’), and likewise that M™Q >
M™Q)'. These two operators also both satisfy the “constant-shift” property, that for any ¢ € R and any
Q € RS*A we have M(Q +c1) = cl1 + M(Q) and M™(Q + c1) = ¢l + M™(Q). Also we note
that M and M™ are both 1-Lipschitz with respect to |||| , thatis | MQ — MQ'|| < [|Q — Q']
and [M™Q — M™Q'| ., < IQ — Q|| For any vector = we let 2°F denote its elementwise kth
power. We let I denote the usual indicator function used in probability where I(E) is a random
variable with value 1 if the event £ holds and O otherwise.

In Appendix B we prove the main theorem, Theorem 3.2. In Appendix C we prove Theorem 3.3 and
in Appendix D we prove Theorem 3.4. Appendix E contains additional supporting results.

B Proof of main theorem

B.1 Well-definedness

We also define a fixed-policy/policy evaluation version of ’ﬁ,e which will be useful within the analysis.
For any fixed stationary policy 7, we let

727;(@)(3, a) :=r(s,a) + ymax {ﬁsaTﬁ(s’a)(ﬁsm M™Q) —b(s,a, M™Q), Hii/n(MﬂQ)(SI)} .
()

We also define ‘A/lj; =M ”@ where @ge is the unique fixed point of 72@ (justified in the below

lemma).

T
pe’

The following is a more comprehensive variant of Lemma 3.1.

Lemma B.1. 1. 7A;e satisfies the following properties:

(a) Monotonicity: If Q > Q' then 7A;C(Q) > ﬁC(Q’).
(b) Constant shift: For any ¢ € R, ﬁe(Q +cl) 7A;e(Q) + vcl.
(c) ~y-contractivity: 7A;e is a y-contraction and has a unique fixed point @;e.

(d) Boundedness: 0 < @Ee < ﬁl-

2. For any fixed stationary deterministic policy m, the analogous statements hold for ﬁ@:

(a) Monotonicity: If Q > Q' then 7\;{3(@) > 721(62’).
(b) Constant shift: For any c € R, T(Q + c1) = T (Q) + vcl.
(c) ~y-contractivity: 7;7,; is a vy-contraction and has a unique fixed point Q7.

(d) Boundedness: 0 < @ge < ﬁl

3. For any fixed stationary deterministic policy m, we have Q5. > Q7.

Proof. We note that a few steps are similar to Li et al. [2023, Lemma 1], but our new choice of
penalty requires much more involved analysis.

We define an auxiliary operator 7 pe RS — RS54 by, forany V € RS,
Tpe(V)(s,a) :=r(s,a) + ymax {ﬁsaTﬁ(S,Q) (Poa, V) = b(s,a,V), min(V)(s')} .
S/

We defer the verification of the following fact, which involves somewhat lengthy calculations, to
Appendix E.1.
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Lemma B.2. Let V,V' € RS be arbitrary and suppose that V > V'. Then (elementwise)
Tre(V) = Tpe(V').

Given Lemma B.2, we can relatively easily verify Lemma B.1. We note that Lemma B.2 makes use
of the quantile clipping in an essential way.

Now we will show item 1 except for the boundedness property. Notice that ﬁe(Q) = Tpe(MQ)
(for any @ € RSA4). Therefore letting Q, Q' € RS with Q > @', we have by monotonicity of M
that M) > M@’, and thus by monotonicity of 7 . we conclude that

ﬁe(Q) = 7dpe(]wQ) > Tpe(MQ/) = ﬁe(@l)
as desired. Next we check the constant shift property of 713,3. Fixcc R,V € R® and s € S,a € A.
Then we have that T3 o) (Psqa, V4-c1) = Tp(s 0)(Psa, V) +c1, regardless of whether 3(s, a) € [0, 1]

or 3(s,a) > 1, since when 3(s,a) > 1 we have Tp(, q) (Pyq,V + 1) = minges(V + 1)1 =
(minges(V) + €)1, and when (s, a) < 1, by (4) we have

Tﬁ(&a)(ﬁsa, V 4+ ¢1)(s) = min {V(s) + ¢, sup {V(s/) +c:5 €S, Z ﬁsa(sl) > 5}}

s"€S:V(s")+c>V (s )+c
c+min{V(s), sup{V(s') 15’ €S, Z 1350,(5') Zﬁ}}
s"eS:V(s")>V (s)
=c+ Tﬁ(s,a) (ﬁg(la V)(S)

Therefore

~ ~

Vs [TB(W) (Poa,V + c1)] — V5 [TB(S,G) (Poa, V) + 01] — V5 [Tﬁ(s,a) (P, V)}

and HTﬁ(s,a) (ﬁsav V+ 01)

= HTﬁ(S’G) (ﬁsa, V) +cl

= HT,B(S,Q) (Psaa V)

span span span

and therefore we have that b(s, a, V) = b(s,a,V + c1). Additionally we have that
min (V4el)(s) = min V(s') +ec.
Hence
Tpe(V +cl)(s,a) = r(s,a) + ymax {}SsaTﬂ(&a)(?sm V+cl) —b(s,a,V +cl), msi/n(V + cl)(s’)}
= r(s,a) + vy max {IgsaT,@(S7a) (]33@, V) + cP.,1 — b(s,a,V), n;i/n(V)(s’) + c}
= r(s,a) + yc + ymax {ﬁsaTﬁ(s’a)(ﬁsa, V) —b(s,a,V), n;i/n(V)(s’)}
— et TpelV)(5:0) ©)

(since 133@1 = 1). Using (9) and the fact that M (Q + ¢1) = M Q + ¢1 we can show that 7A;,e satisfies
the constant shift property as well:

ﬁ)e(Q + Cl) = 77ﬂ1oe(]\4(Q + Cl)) = 7dpe(]wQ + C]-) = ?pe(MQ) + el = ﬁe(Q) +cl

as desired. Finally we can check contractivity of ’7A;,C. We note that it suffices to show that 7 pe is
~-Lipschitz, since then we would have for any Q;, Q2 € RS4 that

[ 70e(Q1) = Toel@2)]|_ = [ T0e(MQ1) = TpeM Q)| <7 I1MQ1 = Ml < 7[1Q1 = Qall

as desired, where the first inequality is due to the (assumed) Lipschitzness of 7 . and the second
inequality is due to the 1-Lipschitzness of M. Now we verify that 7 . is indeed ~-Lipschitz. For any
Vi, Vs € RS we have V; < Vi + Vi — V3|l 1 (elementwise), so by monotonicity of Tpe (Lemma
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B.2), and then using the fact that 7'pe satisfies the constant shift property (shown in (9)) in the next

inequality, we have
Too(V1) < Tpe(Va + [IVi = Vall o 1)

7
Tre(V2) 71 = Va2l 1

so by rearranging
Toe(V1) = Tpe(Va) <v[[Vi = Vel 1
By reversing the roles of V; and V» we also have
Tpe(Va) = Tpe(Vi) <v[[Vi = Val 1
or equivalently
-y [|V1 — V2||oo 1< 7-IDC(Vl) - ?pC(V2)~

Combining these two inequalities involving Tpe(Va) — Tpe(Vi) we conclude that

||7Tpe (") 7pe V2) H < 7|Vi = Va||, as desired and thus 7, is a y-contraction. By
the Banach fixed- pomt “theorem (e.g. [Pugh 2015, Chapter 4. 5]) this 1mplles the existence of a
unique fixed point of ’7;8, which we call Q . (We check that 0 < Q < 1 1 later.)

Now we will show item 2 except for the boundedness property. Notice that 51m11arly to the previous
case, T75(Q) = T pe(M™Q) (forany Q € RS4). The only properties of M used in the proofs for the
previous case were monotonicity (that Q > Q' = MQ > MQ'), that M (Q + c1) = MQ + 1,
and that M is 1-Lipschitz. All of these properties are also true with M ™ in place of M, so in fact all
proofs used to verify item 1 can immediately be applied (with this minor modification) to also verify
item 2.

Next, item 3 would follow by showing that for any fixed @ € R4 we have
Toel(Q) > (@) (10)

since then by a standard argument we can show for any integer £ > 0 that

~ \ (R ~ )
(7o) ©=(77) (©
(where (k) denotes k compositions of an operator) and therefore that

@ = Jin (7)) © = jim (72)" (0 = Q.

So now we focus on showing (10), but this follows immediately from the fact that M) > M™() and
that 7 . is monotone (Lemma B.2), since we have

Toe(Q) = Tpe(MQ) > Tpe(M™Q) = TZ(Q).

[Matthew: should be (s, a) not 3 in the below paragraph"] [Guy: yes] Finally, we check both
boundedness properties. Since we already have that Qpe < Qpe, it suffices to show that 0 < Q

and that @;e < ﬁl. First, note that we have 7?];(0) > 0, since forany s € S,a € A,

T
Toe

(0)(s,a) = r(s,a) + ymax {ﬁsaTB(s a) (P,a, MT™0) — b(s,a, M™0), HBH(M”O)(S’)}
> r(s,a) + ymin(M70)(s') = r(s,a) > 0.

Then by monotonicity of '7;; we have for any integer £ > 0 that

(72)" @ = (%) 0= z0

pe

and so



as desired. Similarly, we have that 7A;e(1/(1 — 7)) <1/(1 —~), since for any s € S,a € A,
Toe(1/(1 =7))(s, a)
= 7(s,a) + vy max {ﬁsaTmS,a)(ﬁsa, M1/(1—7)) = b(s,a, M1/(1 = 7)), min(M1/(1 - 7))(8')}
S
1 1

<1+ T =1-~

L e’
By an analogous argument to the previous bound, we have from monotonicity of 7},6 that

~ \ (k)
(7},8) (1/(1 —~)) <1/(1 — ~) for all positive integers k and thus that Q;e <1/(1—-~). O

In the above proof we defined the operator 7 . and verified its Lipshitzness, which we state in the
following lemma as 7T .. will appear again later.

Lemma B.3. 7'pc is y-Lipschitz.
B.2 Optimization

In this subsection we establish the basic properties of the outputs of Algorithm 1.
Lemma B.4. Algorithm I returns CA) such that

Q<Qh<Q+:—1 and TplQ) > Q.

Ntot

Proof. First we note that 7A;e(0) > 0, which follows easily from the definition (3) since (for arbitrary
s€S,ac A

773.3(0)(87 a) = r(s,a) + ymax {ﬁsaTﬂ(s_a) (Pyq, MO) — b(s, a, MO), HBn(MO)(s’)}
> r(s, a)+7m1n(M0)( "Y=7r(s,a) > 0.

ﬁe(@) > @ follows from this fact and monotonicity of 7A},e by standard arguments, since if for any
t € N we have that T,6(Q¢) > Q) then

ﬁe(@tﬂ) Tpe (ﬁe(@t)) > 7A}>e (@t)
so by induction (since Qo =0) 7},6(Qt) > @t holds for t = K, and we have Q K= Q by definition.

Now we argue that Q < Q;e,

arguments, since assuming for some ¢ > 1 that T(t) (Q) @ then we have by monotonicity that

()@ = (7) (70@) 2 T@ 2 @

~ \(@) ~
and so by induction (7;6) (Q) > @ forall t > 1, and thus

which follows from 7;8(62) > ( and monotonicity of 7;6 by standard

as desired.
Finally we check that @; < Q +

2n -1. Again note that Q Q k- By the definition of K =

Fog(;)—‘ , as well as the fact that log(1/7) > 1 — ~ for any -, we have

1—
2n 11—~
1°g( 17“");) log(zmoc)
A = K108 < 1= 108(Y) o127 los(1/7) ¢ Jos(zal) —

1—v

2Nt

. . P AN 1
Using this bound, y-contractivity, and the fact that 0 < QI*)C < ml from Lemma B.1, we have
~ ~ ~ ~ ~ 1 1
|@x - @ SVKHQO— sl =" o - Q5| <0<

1—7 2Nt
which implies Q% < Q + 1. O

Znt t
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B.3 Concentration

In this subsection we establish the key concentration inequalities, given in Lemmas B.7 and B.8,
using leave-one-out techniques. We start with two helper lemmas which abstractly handle the
leave-one-out-based covering steps before proving Lemmas B.7 and B.8.

Lemma B.5. Fix some §' > 0 and some s € S,a € A. Suppose that for some random vector
X € RS, there exists a (deterministic) set U and some random variables X,, € RS for each u (that
is, for each u € U, X,, is a random vector in RS) such that

1. Forallu € U, X, is independent of all samples S

sa’*

S drawn from P(- | s,a).

1
00 = Mot

2. Almost surely there exists some u* € U such that | X — X+ ||

Also assume n(s,a) > 2. Then with probability at least 1 — 65', we have that

_ / ,
|(Pua — P)X| < 11X log|U/o" 2 <1+ 10g|U/5>

s\l 2n(s, a) Ntot 2n(s, a)

(1)

(P P)x| < \/wp_w XJog(U1/8) |y Log(U1/#)

(s,a) P 3n(s, a)

1 2log(|U|/&’ log(|U|/d’
L1 [y, [Pos(UY) | loe(Ul/5)
Mot n(s,a) 3n(s,a)
(12)
n(s,a) 2log |U| /¢ 1 2log|U|/é
———Vs [X]-+vVp, [X]| <|X A bl U YN =2 el VR
‘\/n(saa) —1 P [ ] Fro [ ] N H ||span TL(S,Q) -1 * Ntot TL(S,(J,) -1 "
(13)
5 2V [X]log(|U/d") 7log(|U|/8")
P, — P,,)X| < Psa X Lo8\vi/9)
’( ) sa)X| < \/ n(s,a) — 1 1% pan 3n(s,a)—1
2log(|U]/¢’ 14 log(|U|/d’
Ly g [Pos(U1/5) | 14105(U1/5)
Ntot n(s,a) — 1 3 n(s,a)—1
(14)
Proof. We start by showing that
(ﬁsa_ sa X‘ ’ sa_Psa)Xu* +‘(P P )(X—Xu*)
S ’(ﬁsa_Psa)Xu* +‘ sa P ||X_Xu*Hoo
2
S ’(Pea - Pm)Xu (15)
Ntot
where the final inequality is because ‘ P, — Py, < 2and [| X — X || o, < 5

Then since for any fixed u € U we have (]3% — Po) Xy = Z?(ia)( X (S%,) — PsaXy), by
Hoeffding’s inequality conditioned on X, (since by assumption X, is independent from the S¢,
and each term in the above sum is contained within the interval [min X,,, max X,,] which has length
[| Xl ar) We have that

span

n(s,a)

P Z (XU(S;a) - PsaXu) 2 HXu”Spa]’l

i=1

!
log |U1/d" x, | <2
2n(s,a) — U]

17



and so

n(s,a)
P = PoaXu)| 2 || Xl
=1

o U1/5'\ _ 20 _ 2
s\ on(s,a) | — Ul U]

Taking a union bound, the above inequality holds for all uw € U with probability at least 1 — 2¢.
Finally, since

2
||Xu* ||span < HXHspan + ||Xu* - XHspan < HX”span +2 ||Xu* - X” < HX”spdn @’ (16)
combining with (15) we have that
~ 2 log |U|/d" log |U| /6’ 2 |log|U|/d
Po — Po) X| < — Xy ———— < X —_— —_— .

Next we would like to apply the concentration inequalities of Maurer and Pontil [2009]. To apply
their theorems as stated, we must shift and normalize to define (for each u € U)

X/ .= Xy —minges Xu(x)
“ ([ Xl

span

so that X € [0, 1] almost surely. Fixing some v € U and applying Maurer and Pontil [2009,
Theorem 10], assuming n(s, a) > 2, we have with probability at least 1 — 24’ /|U]| that

n(s,a) , ; 2In|U|/¥
\/n(s, a) — lvl3 Xul = vVe, X)) < n(s,a) — 1

using the facts that by standard calculations, abbreviating - = n(s, a) for convenience,

2;; (X0(Sh) = X0(82))"| = Qﬁ(:_ 50+ ;’%__11))1E [(X0(SL) - Xu(52))’]
:%( |:(XI(Sl ))2j|—2E [X/(Sl )]2)
=V [X0(S5)] = Ve, [X}]
and
g o 2 (T (8h) = T (52) = 5 P (X0 = Pl
= %Vﬁm [X.]

(since Maurer and Pontil [2009, Theorem 10] as stated involves the quantity
D) iet 2 (Xu(Ska) = X7’1(S§a))2 and its expectation). Taking a union bound
and undoing the normalization and shifting, we have for all v € U that

‘\/ mvﬁm [X.] = VVp,, [X.]

with probability at least 1 — 26’. For any arbitrary probability distribution . € RS we have that

- ] <

Ntot

Vi [X] = Vi (X + (X = X0 )] < Vi [Xe] + V[~ Xo]

18

2log U/’

< || X,
< 1%l n(s,a) — 1

7)

span

<

(18)

since




(where the inequality step follows from triangle inequality since Y — v/IEY2 is a norm on random
variables Y') and then we have

T — 1
V# [X _Xu*] < HX _Xu*”oo < —
n

tot

Thus combining (17) with (18) we conclude that

‘\/ mvﬁm X~ V., [X]‘ (19)

n(s,a) vV X
< 7V M~ X L *
‘\/n(s,a)—l Psa[ u] Psa[ u]
2log|U|/5' n(s a) 1 1
< || Xux N1 7_
< ”span \/n(s7 a) — n(s,a) — 1Mot Ntot

! ! 1
<|IX] il((;gaUY6 \/210g|U|/5 \/n n(s,a) n 1 20)

Span
P Mot (s,a) = 1Nty Ngot

n(s,a) 1 1
n(s,a) — 1Nt Ngot

+

using (16) again in the final inequality. To obtain the slightly simplified bound (13) we use that by

assumption n(s,a) > 2, so nz(ga)“)l <2<

Now, similarly to our use of Hoeffding’s inequality, using Bernstein’s inequality (e.g., Maurer and
Pontil [2009, Theorem 3]), as well as a union bound over all u € U, we have that with probability at
least 1 — 24, for all u € U,

~

(Pao — Pus) X, og([U1/3') log((U|/3")

Wp. [Xa
< X,
_\/ n(s,a) Xl pan 3n(s,a)

Combining this inequality (for u = u*) along with (15), (16), and (18), we obtain that

(Pua— P, )X\
~ 2
_Psa
‘( ) Ntot
2Vp,, [Xur log Ul/é log(|U| /¢’ 2
. W), | sV, 2
,a) 3n(s,a) Ttot
2V (|u)/e 1 2log(|U|/& log(|U|/é’ 2 log(|U|/&
[T ) | 1 [oslOV5) s WBOVS) | 2 (01
s, a Thot n(s,a) P 3n(s, a) Neot  3N(S, )

19
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Ntot




Combining this with (20) we furthermore obtain that

~

‘(Psa _Psa)X‘

\/QVPSQ [Xllog(|U|/5’)+||X|| 10g(|U|/5’ ( 210g |U|/5’) 4 plos(U1/%")

IN

+2

n(s,a) P 3n(s,a) ntot 3n(s,a)

2Vs  [X]log(|U|/6" ) " /
- p.. [ X]log(|U]/ )+”X”Smlog(|U|/5 2log |U|/5  log( |U|/5)+2
n(s,a) — 1 P 3n(s, a) Ntot 3n(s,a)
1
+

21og(|U|/d") 210g|U|/5’ 210g|U\/5’
— | Xl A | T — +
n(s,a) n(s,a) —1  ngot (s,a) 1 Mot Mtot

2Vp  [X]log(|U/6") 7log(|U|/¢")
= \/ - n(s,a) —1 11X g 3n(s,a)—1

1 2log(|U]/4") ., log(|U]/¢") 21og(|U/4") 2log(|U/4")
( n(s,a) 2 3n(s,a) 2+ n(s,a) — 1 2 n(s,a) — 1 )

§ \/ 2V5  [X]log(|U|/d)
- n(s,a) — 1

7log(|U1/8)
PN 3 n(s,a)—1

+ 11Xl

1 21og(|U]/d") | 141og(|U]/5")
<2+3 n(s,a) — 1 +3n(s,a)—1>'

Now we develop several leave-one-out constructions which satisfy the conditions of Lemma B.5.

Lemma B.6. 1. (LOO construction for ‘713*6 ) For each s, a, there exists a set UL, C R with
|UL| < 1 and random vectors (X3 )uevy, such that 1) for all w € U}, X\ is inde-

sa’
pendentfrom St...., S?f"’), and 2) almost surely there exists some u € UL, such that
< 1

H pe u oo T Mot

2. (LOO constructions for Tg, a)( sy pe)) For each s, a, there exists a set U2 C R with
U2, < St and random vectors (X2)uevz, such that 1) for all u € Ufa, Xﬁ is inde-

pendent from Ssa, cee Sga(s’a), and 2) almost surely there exists some u € U2, such that
T (o.0) (Pas Vo) = X2|| < 2L

sas ¥pe — MNtot

3. (LOO construction for 17p7re) Fix any policy m. For each s, a, there exists a set U3, C R

with |U3| < 1 and random vectors (X3)ueus, such that 1) for all u € U?a, is
independent from S, ..., S and 2) almost surely there exists some u € U3, such
that‘ —XE;H <

0 Ntot

4. (LOO constructions for Tg s q) (P VT )) Fix any policy m. For each s, a, there exists a set

sa» pe

Ui, CRwith U2 | < S 1t and random vectors (X ueus, such that 1) for all u € U,

X% is independent from Sba, ce S and 2) almost surely there exists some u € U2,
such that HTﬁ(S’a (Pyq,VT) — XﬁH <
o0

sar Vpe — MNtot

Proof. We start by showing item 1. Fix arbitrary s € S,a € A. For any © € R we define the
reward function 7** € RS4A, (random) transition matrix P° € RS4*S and (random) operator

20



T e : RS — RSA by (for arbitrary s’ € S,a’ € S,V € RS)

P el §=s
s'a! = Ps'a’ 8/ 7& s
ERTY VYA [ s=s
r (s’a){r(s’,a’) s #s
T;;U(V)(s’, a)=r*"(s',a")+ vmax{ oo Ta(sr a/)(PS V) —b5(s,d, V),m/i/n(V)(s”)}

} 5
_|_
span Ntot

2n

where

b (s, a,V) = max{\/ﬁ(s’,a’)Vlssl , {TB(S,)a,)(ﬁja,,V)},B(s’,a’) HTB(S,’G,)(IS&?,G/,V)

Note e, is a vector which is all 0 except for a 1 in state s, meaning that state s is absorbing in 135’“,
for all actions. Also all actions receive reward w in this state. All other state-action pairs have the

same rewards and transition distributions as in the MDP (13, r). Also, we have defined b° and 77’;’:
in an identical manner to b and 7 e, except we now use 7" and P in place of r and P. Since all of
the properties of 77’1[)e verified above only required P to be a valid transition matrix and for r to be
a vector in [0, 1], the properties hold identically for ’Tpe , and thus by Lemma B.3 we have that
787

pe 18 y-Lipschitz.
Now we define Es“ RS — RS as L5%(V) := MT., (V) (for any V € RS). By the -

L1psch1tzness of T * and the 1- -Lipschitzness of M, we immediately have that Lovisa ~y-contraction,
since

|Eem) = 2| = [Tl ) - T )| < TR0 = TRl )| < - Vel

for any V3, V, € RS, Therefore contractivity implies that there exists a unique fixed point of Lo
(e g. [Pugh, 2015, Chapter 4.5]), which we call X!. Note that since L5 is defined without using
, Sn 0 drawn from P(- | s, a).

Now, as intermediate steps, we show the following two properties:

Péa, it is independent of all samples S}

sar

A. Forany u,u’ € R, we have HX& - Xu|l < ‘“1 1;'.
B. Letting U* = VZ,(s) — ymaxzea max{ﬁ;ETﬁ(sya)(Psa,V;e) S mings V(s )},
we have X5, = Vp*e, and U* € [0, 1].

For A, letting v, v’ € R, we can calculate that

| Xs — Xo

=l - 2

= M - M7 (k)

5

S, U

< |7y -7 (xb)

rt =t L T (X)) = T (X0)

pe

’ oo

pSU Ts,u/

IN

[T (X0 = T (X0)
lu— |+~ ||X11L - X},

‘ oo

IN

where the key equality step was that T e (XY =rou—psw' T (X 1), and in the final inequality

!
< % as desired,

. . 1 1
we used y-Lipschitzness of 7'6 . Rearranging we obtain that HXu — Xl
verifying A.
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For B we first check that X}, = XA/p*e. It suffices to check that M 7';’6(]* (XA/p*e) = MT pe (‘71)*6), because
then we would have that

s, U (17r* Fs.U" S - 7% T A A* {F*

L v (Vpc) = MTpc (Vpc) = MTPC(Vpc) = M%C(Qpc) = MQpc = Vpc
thus showing that ‘7p*e is a fixed point of EAS*U*, and by uniqueness of this fixed point we must
have X}, = YA/p*e. Comparing the definitions of 77'pe(17p*e) and 7';’8[] (V%.), it is immediate that

M <7§;U (‘A/p*e)> (s) =M (7'pe(‘7;e)) (s") for all s’ # s, so it remains to check the equality for

s’ =s.

First we argue that for all a’ € A, we have b*(s,a’, V%) = = (s,a’) > 1 then we have

) pe
Tps, a’)(Psa’7Vpe) = (minsf ‘A/p*e(s’)> 1, and if B(s,a’) < 1 then we have TB(S’a/)(Psa,, V*) =

Vp*e(s) , since Pfa, = e] (P:, transitions to state s with probability 1). Either way
TB(G a’) (P

sa’’ ¥ pe

‘TB(:’ a’ )(P ‘al V* )
span

pe

) is a multiple of the all-ones vector, which implies V . Ts(s' a) ( s V* )} =

0 and

= 0, and thus that b*(s, d, Vp*e) = . Therefore by the construc-

ntot

tion of U* we have that

M (T (V) (5) = max U™ + ymax { Py T(o.an) (P, Vi) = 0°(5, ', Vi) min (V) (s”) }
sa’s Vpe Niot . 8"

= max U”* + ymax {ﬁ;a,Tﬂ(S’a/)(P Vr) — N , min V* " }
)

-~ . 5
:Vp*e() fymaxmax{P T/B(Sa)(Psa,V) o~ H&l/lan*( }

acA

~ ~ o~ 5 ~
+ v max max {Pssa,Tﬁ(s o) (Piar, Voo) — , min Vp*e(s”)}
a/ ? ntot S”
= V() = M (Tpe(Ve) ) (5)
as desired, so we have checked that X llj* = ‘A/p*c.

Now it remains to verify that U* € [0, 1]. Given our calculation of T, a,)(
a’ € A) above, we have the alternate expression for U*

p*e) (for any

sa’
max { V3 (s) — =2, minn 1759(5")} Ja’ € A: B(s,a') <1
max { ming Vp*e(s”) - %, ming: X/}p*e(s”)} 0.W.

_ (s) — v {max{‘/}p*e(s) - %Jnins” ?p*e(su)} Ja" € A: B(s,a') <1
pe :

ming: I7p*e(s”) 0.W.

U* =V5i(s) —

We consider the two cases in the above expression. If 3a’ € A : 3(s,a’) < 1, then we can upper
bound U™ as

~

U* < V5o(s) —ymax {Vp*e(s) -

min T4 (¢ )} < TR(8) AT < (1) =1

Ntot 8" 1—v

where the last inequality is due to the fact that XA/p*e =M @l‘;e <M ﬁl = ﬁl (by Lemma B.1).
For the lower bound in this case, we have

~ 5
U* = min {(1 —7)Vpe(s) + s Ve(s) — min V*e( )}
Ntot s’
which is clearly > 0 (note the first term within the min is > 0 by Lemma B.1).
Now we consider the case that there does not exist a’ € A such that 3(s, a’) < 1, that is, the case that

B(s,a’) > 1forall a’ € A. Then as argued above we have for all a’ € A that Tg(, ./ (]33(1/7 Vi) =
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(minsu ‘//\'p*c(s" )) 1, and so by the definition of ’?\;C and the fact that Q\;C is its fixed point and

~

Vr = MQ

pe —

‘7};(5) = g,lgﬁr(sv a/) + v max {ﬁsa/TB(s,a’) (I/D\sa’v ?p*e) - b(S, alv ?p*e)v Hsl,i,n ?p*e(‘S”)}

*
bes WE have

= max r(s,a’) + v max {H;/i/n Voe(s") = b(s,d', Vi3,), min Vp*e(s”)}

= max r(s,a’) + 7 min Ve(s")

using the fact that b(s, a’, V o compute the max). Hence in this case

(using the fact that b Vi) =20t pute th ). H th

U* = V2(s) — ymin V2(s”) = maxr(s,a’) + ymin V2 (s”) — ymin V2 (s”) = max (s, d’
pe( ) Y o pe( ) e ( ’ ) Y 7 pe( ) Y o pe( ) Py ( ’ )

which is clearly in [0, 1]. We have thus verified B.

1—
placing a point at the midpoint of each such interval. Note this guarantees that for any = € [0, 1] there
exists some u € U such that |z — u| < 217;1. Therefore, letting U* € U be this closest point in U to

the value U*, we have by A and B that

Now unfix « and let U}, be a set of {“_—"; points chosen by dividing [0, 1] into ”*—"; intervals and

A P N e S S

XL v =
H * pe 00 11— T 1—=792n1 2ngot

le le
H * )
e}

Ntot
Therefore we have confirmed item 1.

Now we continue to item 2. Fix s € S, a € A, and define U2, = U}, x S. Foreach u, s’ € UZ,, we
define

X o = clip(Xy, X4 (5"),

that is, we clip all entries of the vector X! constructed in the previous part so that they are < X! (s’).
Since X} was independent of all samples SZ, ..., S** drawn from P(- | s,a), the same is true of
X? .. Define S*(s, a) to be a state such that Q(s,q)(Psa, Vi) = V3(S* (s, a)) (if multiple states

satisfy this, we can break ties in some consistent manner). Then for any u, s’ € U2, we have

| Tater(Peas V) = X2 || = etip (Vs Qe (Pra V) ) = elip(X X2 |

sas Vpe

= [etip (e, V(57 (5, a))) = elip(x2, X1 ()|
. > =5 . 1 A~
< [etip (Ve V(5% (s,0))) = elip (X2, a8 (s.a))) |
+ Hclip (X}N ‘7})*6(5*(8, a))) - clip(Xin(s’))H
7% 1 7% (Qx 1
< [Vpe — X, . + Vo (5™ (s,a)) - X, (s"]. (22)
From item | we know there exists some u € UZ, such that ’V;C - Xl < #m’ and furthermore
if &' = S*(s,a) then
- - ~ 1
V(8% (s5,)) = X4()| = [Tanls) = X3 < [V - X2 < 50—
tot

Combining these with (22) we conclude that almost surely there exists some (u, s') € UL xS = U2,
such that HTB(S)Q)(ISSQ, ‘A/p*e) — Xg)s,

< nl as desired. Therefore we have confirmed item 2.
o0

ot

For item 3 and item 4, we can use nearly identical constructions, with the only difference being that
for item 3 we define X to be the fixed point of the operator L™*% : RS — RS as L™%(V) :=
M ”7’2’:(‘/) (and otherwise use the same construction as for X}), and then for item 4 we use X2 in

place of X in the construction for X 2. Thus, the key difference is replacing M with M™ within the
construction for X2, and since the only properties of M used were 1-Lipschitzness and that M1 = 1,

which both hold with M7 in place of M, and also the fact that XA/p*e =M @;e which is analogous to

the fact that XA/p’; =M @ge, all steps work in an analogous manner. O
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Now we can prove the key concentration inequalities needed for the rest of the proof.

Lemma B.7. With probability at least 1 — 9, forall s € S,a € A, ifn(s,a) > 1+ 8log (%),
then

’(ﬁsa - Psa) T,(i’(s a) (Psav Vpe)

< maX{\/ﬁ(&a)Vﬁm [Tﬁ(s,a)( sar Vs )},6(s,a) HTﬁ(s,a (Poa, Vi)

1

2niot

} 45
_|_
span Ntot

=b(s,a, V) —

» ¥ pe

2
where o = 8log (6?1:4%?‘) and B(s,a) = m

(1=v)o
check. Otherwise, we can immediately combine item 2 of Lemma B.6 (which gives |U| < S fi—"j{)
with Lemma B.5 (since our condition on n(s, a) clearly implies n(s,a) > 2) to conclude that with
probability at least 1 — 647,

Proof. Fix some s € S and a € A. If n(s,a) < 1+ 8log (M) then we have nothing to

~

(Rea - Pm)TB(s a)(Psaa Vpe)

< 2V135a [Tﬁ(&a) (ﬁsav Vpe):| log (5(177) 7%

JrHTB(a a) P V*)

n(s,a) — 1 S Pl 3 n(s,a) — 1
+ 2| %8 (Sui) | 1aloe (Sa2)
Niot n(s,a) —1 3 n(s,a)—1

Taking a union bound over all s € S, a € A, and setting ¢’ = & s —~» We obtain that with probability at
least 1 — 9, forall s € S,a € A where n(s,a) > 1+ 8log (65 A”M), we have

(1=7)o

’(Psa - R@a)T,@(s,a) (P€a7 Vpe)

652 Aniot
2V, |Taom(Paas Vo) | 1og ( 5

) + HTB(b,a) Psaa‘/*)

- n(s,a) — 1 span 3 n(s,a) — 1
652 Aniot 652 Angor
PRI 2108 (*25¢) . o5 (25
Ntot n(s,a) — 1 3 n(s,a)—1
652 Anmt 652 Angos
QVISM |:Tﬂ(s,a)(PbLL7 V ):| log( (I—)0 ) L HT P V*) zlog ( )5 ) 4.5
- n(s,a) — 1 ssa)(Fsas span 3 n(s,a) —1 Ntot
652 Aniot 652 Angor
< 9ma QVﬁsa {Tﬁ(s,a)(Psaa Vpe):| 1Og ( (1=7)d ) HT P V*) 7 1Og ( (1—7)o ) 4.5
max » R W St £
- n(s,a) — 1 /|| Toee. (Poa Ve span 3 n(s,a) —1 Ntot
652 Aniot ntot
8V5., [TmS,a)(Psaa Vpe)} log ( a5 ) R log ( 523 ) 45
= ma sasr Vpe —_—
x n(s,a) —1 P/ |l gpan 3 n(s,a) — Ntot
N 1
< b(s,a, Vpe) ST

24



where the second inequality uses the assumption that n(s,a) > 14 8log (%) and the fact that

2+3\/%+%% < 4.5, and then we bounded a+b < 2 max{a, b}. We also note that since we are in the
case that n(s,a) > 1+ 8log (%) > 9, we have that n(s,a) — 1 = max{n(s,a) —1,1}. O

Lemma B.8. Fix any policy 7*. With probability at least 1 — 20, forall s € S,a € A, if n(s,a) >

1+8In (652‘4"‘0‘ ) then
} 5
+
span [ Mot

(1=v)o

‘(Psa - Psa) TB(s,a) (PSEH Vpﬂe*)‘

< max { \/ﬂ(s, a)V};w |:T5(S7a)(Psa7 v )} ,B(s,a) HTB(s,a)(Psa, Vp’;*)

=b(s,a, fo)
and
21og (6S2Amot)
~ ~ ~ (1—7)s 4
5 V] <1/ Ve [T] ‘V” S W ot LA 23
\/ Psq |: pe | — \/ Pea | Vpe + pe span n(s,a) * Ntot )
and
~ 2
2V p [Vpﬁ} log (6.(5’12Anmt> log (GS Anmt)
~ ~ % sa e —7)6 ~_* (1—~)o 3
P — Pa)V | < ||, —r s 24
‘( sa = Pra)Vie | < n(s,a) +Vpe span  3n(s,a) Jrntot @)

2
where a = 8log <6f1f$§t) and B(s,a) = 7max{n(za)—1,l}'

Proof. The first statement is analogous to Lemma B.7 but uses the construction of item 4 of Lemma
B.6 in place of item 2. Thus combining item 4 of Lemma B.6 with Lemma B.5, taking a union
bound and performing the same simplifications, we obtain that with probability at least 1 — d, for all

s€S,a€ A ifn(s,a) >1+8In (6?1?%?)’ then

’(ﬁsa - Psa) Tﬁ(s,a) (ﬁsav ‘7;;)‘ S b(Sa a, V> )

pe

Now we establish the second two properties. We will show that they both hold with probability 1 — 4,
after which we are done since we can then use a union bound to combine with the above. Fixing some

s€Sanda € A, ifn(s,a) <1+ 8log (652‘4"”) then we have nothing to check. Otherwise, we

(1-)9
can immediately combine item 3 of Lemma B.6 (which gives |U| < I“_“; <S8 ?f;) with Lemma B.5
(since our condition on n(s, a) implies n(s, a) > 2) to conclude that with probability at least 1 — 64,

we have both

2Vp [Vp’f*_ log (SL‘,) log (SLE,)
~ ~ sa e (1—~)6 A~ % (1—~)o

P — P)VE | < - H T
(Poa = Poa)Vie | < n(s,a) [ Vie span  3n(s,a)
2log | S et log (S ot

1 g( — /) g( — /)

+ 2+ SLVA 4= (25)
Ttot n(s,a) 3n(s,a)
and

2lo Sntot,

n(s,a) = = S g((1—7)5’>
o) o] < fom [75] + [T g
n(s7a)—1\/ Poa 7P | = Pea [ Vpe | F || Vpe span n(s,a) — 1 (26)

210g( S_"“’*,)
P P IR 27
Niot n(s,a) — 1

25



Taking a union bound over all s,a € S, A and setting §’' = 6 , we have that with probability at
least 1 — §, for all s, a such that n(s,a) > 1+ 81n (65 A"“’t)

(1-7)

log (651214 ot ) 3
2N )

R . 2VPSQ |:‘7ﬂ.e*j| log <6S2:4nt§t) .
’(Psa . Psa)vpﬂ—c < p (I-v) + H T

n(s,a) P€ |lspan  3n(s,a) Ntot
and
652 Aniot
s, 2los ()
n(s,a) span n(s,a)
210 6S2Anm)
1 g( Y
+ oy —~ U0 g
Ntot n(s,a)

652 Aniot
2log( a=s ) . 4
span TL(S, a) Ntot

< o ] |7

where for the first bound we simplified (25) using the condition on n(s, a) and the fact that 2 + \/% +

2% < 3, and for the second bound we simplified (27) also using the condition on n(s, a) and then

the fact that 22 + 3 = 4, O

B.4 Pessimism

In this subsection we establish the following essential pessimism property, making use of the previous
concentration results and our construction of Tpe.

Lemma B.9. Under the event in Lemma B.7, we have that

Q"> Q.

Proof. We will show that Tﬁ(@) > () (where T7(Q) := r + PM7Q is the Bellman evaluation
operator for 7), which by a standard argument i implies that Q7 > Q since we can then easily derive
(by monotonicity of 77) that (77 )*)(Q) > Q for any integer k > 0, and thus
Q" = lim (THM(Q) 2 Q.
k—o0

Fixing arbitrary s € S, a € A, we will now verify that 77 (Q)(s,a) > Q(s, a). From Lemma B.4
we have that T,6(Q)(s, a) > Q(s, a). We consider two cases based upon the value of T,(Q)(s, a),
which by (3) is either 1) equal to (s, a) + Y PsqTp(s,a)(Psa, MQ) — vb(s,a, MQ) or 2) equal to
7(s,a) + v ming (MQ)(s'). In the simpler case 2, we thus have that

~ ~

EG(Q)(&G’) = T(Sv a) + PYH}SI,H(M@)(S/) < 7‘(8, a) + 'VPsaMQ\ = 7‘(8, a) + 'VPsaM%@ = ’T%(Q\)(s,a)

using the facts that mmb V(s') < P,V forany V € R® (smce P, is a probability dlStI‘lbuthl’l)
and that M Q M ”Q since 7 is greedy with respect to Q We therefore have that Q(s a) <

T (Q)(s,a) < T7(Q)(s,a) in case 2, as desired. Now we consider case 1. Note that since we are
in case 1, we must have that 8(s,a) < 1, which implies that n(s,a) > « + 1 (because if we had

B(s,a) > 1, then we would have Tﬁ(sﬁ)(ﬁsa, M@) = ming (M@)(s’), and b(s, a, MCAQ) > 0, so
the term Tz, q) (Igsa, M @) —b(s,a, M @) could not have achieved the maximum in the definition (3)
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of ’ﬁe). Then we have that

< Toe(@)(s, )
< Toe(@e)(5,a) = (5, ) + Y PsaTp(s,0)(Psa, MQL.) — ~b(s,a, MQ%,)

< r(s, a) + ’YPSGTﬁ(s,a) (Psaa MQpe) +7 (Psa - Psa)Tﬂ(s,a)(ﬁsaa M@;e) - 'Yb(sa a, M@;e)
< T(Sa a) + ’yPsaTB(s,a)(Psaa M@;c) + vb(s,a, MQEC) - 2nt . - ’yb(87 avMQ;c)
o
~ 1
< T(Sv a) + ’ypsaMQpe - %
< r(s,a) + 7P MQ

= T(S, a) + ,YPSCLM%@ = T%(Q\)(S’a’)

where the first inequality is due to ﬁ,e(@) > @ from Lemma B.4, the second inequality is due to

monotonicity of 7A;e (Lemma B.1) and the fact that @ < @* (Lemma B.4), the third inequality is by
triangle inequality, the fourth 1nequa11ty is from Lemma B. 7 the fifth inequality is from the trivial fact

that elementwise Tz, q) (Psa, M Q <M Qpe, the sixth inequality follows from Q < Q + 2nt -1
due to Lemma B.4 (since by monotonicity of M, M Q <M (Q + 1)=M Q + 1), and
the final equality is from the definition of 7 (from élgorltfl\lm 1) since it is greedy with respect to Q.
Combining the two cases we. have shown that 77 (Q) > Q as desired. Combining the two cases we
have shown that 77 (Q) > Q as desired. O

2nt + 2nt

B.5 Policy hitting radius lemmas

In this subsection we establish some key properties regarding the relationship between T}, and
certain discounted policy occupancy measures which will appear in later analysis steps. We also
establish some facts about Tj,;; of general interest and compare it to the mixing time.

Recall that 7, := inf{¢t > 0 : S, = s} is the first hitting time of state s. We define an additional
useful quantity: for any s* € S, let

Thie (P, 7, %) := sup E]_7,-.
S0

This is the maximum expected hitting time of state s* in the Markov chain P, (which can be infinite).
Then we have

Thit (P, ) := inf Ty, (P, m, s*) = inf sup Ef 7.
s* s* S0

Thit (P, ) is finite if and only if P, is unichain:

Lemma B.10. Fix a policy m and an MDP transition kernel P. Then the Markov chain Py, is unichain
if and only if Tyt (P, ) is finite.

Proof. First, suppose that Ty, (P, 7) is finite. Then there exists some s* such that for all sg € S,
]E;’O ns+ < 0o. Therefore s* is reachable from any state, so all recurrent classes must contain s*, but
since the irreducible closed recurrent classes (along with the transient states) form a partition of S,
this implies that there can only be one closed irreducible recurrent class, that is that Py is unichain.

Next, suppose that P; is unichain. Let $* be some state in the single closed irreducible recurrent
class of P;. Now we argue that Ef [nz+] < oo for any s9 € S. First, it is a standard fact (in
finite Markov chains) that letting C' be the recurrent class, we have M := max,ec EJ, [ns+] < 0o
(e.g. Kemeny and Snell [1976], where E7 [1s-] is referred to as the mean first passage time). Now
letting so be any fixed transient state, since there exists a unique irreducible recurrent class C, letting
ne = inf{t > 0:S; € C} be its first hitting time, it is also a standard fact (for finite Markov chains)
that Ef nc < oo (replacing C' with a single absorbing state, the new chain becomes an absorbing
chain, and the absorption time formulas in Kemeny and Snell [1976] imply E nc < o). Then a
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calculation using the strong Markov property (where F,,, is the stopped sigma-algebra associated
with the stopping time 7¢) implies that

ES, ns+] = ELES, s+ | Fne] = B, | B, [ns+] +nc| <ES [M +n0] < o0

Since there are only a finite number of such transient states s, the maximum of EJ [ns-] over all
such states is finite. Hence Tt (P, 7) < max,,es Ef, [ns+] < oo. O

s
Define dj ;€ R as

E t T pt
'y 90 Y 690P7769

We often drop the dependence on ~y, 7 and simply write ds,. We also define d*(s) = —=p*(s).
Lemma B.11. Let s* € S satisfy Thit (P, 7) = Thit(P, 7, s*). Then

supz |ds, () — ds= ()| < 2Thi (P, )
%0 ses
and
sup Z |ds, () — ds, (s)| < ATt (P, 7).
S0, 81

Proof. We use a coupling argument, and these calculations are somewhat inspired by those in [Cheikhi
and Russo, 2023, Lemma B.13]. Starting with the first statement, fix some sy € S. Let S3, ST, .. .,
be the stochastic process with distribution given by the Markov chain P, with starting state s*, and let
So, 51, . .., be the stochastic process with distribution given by the Markov chain P, but with starting
state so. Let s« = inf{t : Sy = s*} be the first hitting time of the state s* by the process (St)fio
Now define the process S}, S1, . .. identically to (S;)$2, but to follow (S} )2, once it reaches s*,
thatis S} , = 53,5, , 1 = ST, and so on. It is a standard fact due to the Markov property that
(S, has the same dlstrlbutlon as (5¢)22,. Now add an absorbing terminal state ¢ (which we do
not consider as an element of S) and for all ¢ > 1 let Z; ~ Bernoulli(y) (independently), and define

the processes (5])22, and (S7)2, by S5 = Sj, St = Sg, and for all t > 0,

t+1 — * ’

T Jke{l,...,t+ 1} suchthat Z, = 1
t+1 otherwise

& _ Ja Jke{l,...,t+ 1} suchthat Z = 1
t+l S;., otherwise '

Intuitively speaking, (S/)52, and (S})22, will reach the absorbing state ¢ at the same time, and the

probability of reaching it on any given timestep is -y if it has not yet been reached. It is a standard fact
that d7 , (s) = E) 2, I(S; = s) and that a7 . (s) =EY 2, (S} = s). Hence using the above
coupling we can bound d7 . (s) — dZ ..(s). Spemﬁcally we have

5 10060 = 5[5 (165 =1 - 65 =)

seS seS t=0
<Y E (11(5*; =5~ I(5f = s))|
seS t=0
—1
—EZ (S = s) — [(3} = ))| (28)
seS | t=0
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where in the final equality we let 7, = inf{¢ > 1 : Z; = 1} be the first hitting time of the terminal
state. Now we consider two cases. On the event that 7, < 7+, we have

ng—1

>3 (16— -1 = 9) | < £ 5 180 -165t =
seS | t=0 seS t=0
ng—1
= " 28 £ 5)
t=0
2 q S 27’]3*
On the event that 75« < 74, we have
ng—1
>IN (1S =) - 15; = s>)|
seS | t=0
ng—1
=D 1> WS =5)—1(S; = 5))
seS | t=0
Nsx —1 ng—1 Mg —"s* —1 ng—1
=D I WSi=s5)+ Y WS =s5)— Y. USt=s)— > LS =s)
seS| t=0 t=n4x t=0 t=mnqg—Ns*
Nsx—1 ng—1
= I(S;=s)— Y IS =s)
seS | t=0 t=mng—Nsx
Nex—1
“3 | (a5t Kt =)
seS| t=0
Nsx—1
DIPWCEDE CINE
se§ t=0
=2 Z S/#Sz(ﬁ-nq n*)<2ns*
using the fact that S; | = S5,5; .1 = S7,... to cancel terms. Combining the bounds for the two
cases with (28), we have that
> |7, (5) = 2 1. (5)| < E2nr < 2Ty (P )
seS
as desired.

The second statement of the lemma follows immediately from the first, since by triangle inequality

sup Z |dsy(s) — ds, ()| = SUP ldso = dsi [ly < sup [|dsy — dse ||y + |ldse — ds, || < 4Thie (P, 7).
50,51

60781

O

Lemma B.12. Let 7 be a policy such that Py is unichain, and let ™ € RS denote its stationary
distribution. Then

sES

1
d: 50( ) - /‘Lﬂ(s) < 4Thit(Pv 7T)'

Proof. Since ™ is a stationary distribution, we have for any s € S that

S W) () = () (= APe) ey = ()T S A Prey = S 4t () Tey = ——u(s)
t=0 t=0

s'eS
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(since (u™) " Py = (™) 7). Then we can calculate by Jensen’s inequality that for any fixed s € S,

us 1 s
d'y S0 (S) ﬁ:u‘ (5) ’y 90 Z :LL
s'eS
Z :u 'y,so ) - dz,s’ (S))|
s'eS
< D) [ (5) = o (5)] -

s'eS
Therefore
Z d:,so(s)_l ZZIU’ 'yso )_d:/r,s’(s)‘:z:u’ﬂ- Z’d'yso dﬂ ( )|
seS seS s'eS s'eS seS

< Z W (s")AThie (P, ) = 4Thie (P, )
s'eS

where in the second inequality step we used Lemma B.11. O

Lemma B.13. For any policy 7,

< ATy (P, ).

span —

Proof. Note that by Lemma B.10, if P, is not unichain then 7j,;(P,7) = oo and so the desired
bound holds trivially (note ||2" |, is always finite). So we can now focus on the case that Pr
is unichain. This implies p™ is a state-independent constant. In this case it is a standard fact (e.g.
[Puterman, 1994, Corollary 8.2.4]) that for any s, s’ € S,

h™(s) —h™(s') = ’Yl_i>r{17 Vi (s) = VI(s).

v
Therefore
||h7rHspan — 81’181%)‘(8 h’“’(s) — h'“'(s/)
— 1 VTr _ VTr /
0 - )
= max hmﬁe (I =Py Yy —el (I —yPy) "ty
5,8'€S y—1
= 1 dr o —dX o )ra
eog tim (A5, = 5 o)
< li ar o —d>l o -
< o fim |47 = el el
< max_lim 475 (P, 7)
5,8'€S y—1—
== 4ﬂlit (P7 7T)
where the inequality steps are by Holder’s inequality and Lemma B.11. O

B.5.1 Relationship between policy hitting radius and uniform mixing time

Here we argue that there is generally no relationship between the policy hitting radius and the
mixing time. First, if P, is a unichain and periodic Markov chain, then the mixing time will be
infinite/undefined whereas T},;; (P, ) < oo by Lemma B.10.

Now we show an example where the mixing time can be arbitrarily smaller than the policy hitting
radius. Suppose that P, 7 are defined so that P, is the random walk on the complete graph on L
nodes, where L is any positive integer. Then p™(s) = 1/L for all s € S, and after just one step
from any starting state we have that Sy has distribution x™ so 7(7) = 1. However, for any fixed
starting state so and any state s # so, we have that , ~ Geom(1/L), so ET ns = L, and hence
Elit(P? ﬂ-) = L.
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B.6 Error analysis

Now we can continue with analyzing the relationship between Q7 and p™ , for a comparator policy

7*. Having established pessimism (Lemma B.9), which implies an upper bound on @ Wwe now

*
pe’

seek to lower-bound this quantity. Since (by Lemma B.1) Q5. > QF, it suffices to lower-bound

™
pe’

Ag; in terms of V™", which is then related to p™ .

Lemma B.14. For any probability distribution i € AS, any V € RS, and any B € [0, 1], we have
that

YV, (T30, V)] <V, [V].

Proof. We prove this by showing the more general statement that for any random variable X and any
scalar a,

Vmin(X,a)] < V[X].
Let7T = min(X,a) and A = X — T'. Then
VIX]=VI[T]+ V[A] +2Cov(T, A).
Thus to show V [X] > V[T] it suffices to show that Cov(T', A) > 0. Now we compute

Cov(T,A) = E[A(T — ET)]
=E[A(T — ET)I{X > a}] + E[A(T — ET)I{X < a}].

On the event {X < a} we have A = 0,0 E[A(T — ET)I{X < a}] = 0. On the event {X > a},
(T —ET)>0sinceT =aand ET < a,and A > 0, s0 E[A(T — ET)I{X > a}] > 0. Therefore
Cov(T, A) > 0 as desired. O

Lemma B.15. Fix any deterministic policy 7. Under the event in Lemma B.S,

VT VT < (I - fyPﬂ*)_lfyl;ﬂ*

pe =
where
- R ~ N o 12
bes (5) = 20/ Bs, 7 () Vi, [V ] + 4805, 7 () || Vi T
span tot
We also have that
Vp7re —’}/Pﬂ—*vpﬂ‘; +’7bﬂ—* Z Trx. (29)

Proof. Fix s € S,a € A. First we handle the case that 5(s,a) < 1. This implies that n(s,a) >
1+a=1+8log (652‘4’“0” ) By the definition (8) of 7\;;* we have that

(1—7)é

~
*

pe(8,a) > 1(s,a) + vﬁsaTﬁ(s}a) (ﬁsa, ‘A/pf) —b(s,a 17"*). (30)

» Vpe
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By the definition of Tz, o) (]35117 Vpg*) we have that (elementwise)

~

PsaTB(s,a) (Psa7 pre*) = Z Psa(sl)Tﬁ(s,a)(Psav sz*)(sl)

= Z Psa(S/)TB(s,a) (Psm Vprrs* )(S/)
8’1‘7p"e* (S,)SQﬁ(s,a)(ﬁ3a7‘7pﬂ-e*)
+ Z Psa(S/)TB(s,a) (Psaa Vpﬂ;:)(sl)
s/:\7p’*e* (s’)>QB(S,a)(ﬁsaa‘7p"e*)
- 3 Poa(s Vi ()
sV (8)<Qp(sa) (Poa, V)
+ Z Psa(sl)Qﬁ(s,a) (Psa7 VpT(r:)
VR () > Qpea) (Pea Vi)
> Z sa(S/)VpTcrs* (S/)
8’1‘7},"; (S,)SQE(S,Q)(ﬁS(“"}p"e*)
¥ ) Pt (T 1) - |7
s’:\7p7;* (Sl)>QB(s,a)(ﬁ5a7‘7p7re*)

> Psavpi - 5(8,@) HV;:::

)

span)

3D

span

where in the final inequality we used that ZS,:‘A/&* ()>Qiora (Pra V") 133(1(8') < B(s,a). Using (24)
from Lemma B.8 to relate Psanf to Psanf, we can further bound

%
T
Ve

~Bls,a) |

PouT sy (Poa Vi) 2 PoaVie = | (Poa = Paa) Vi

span

652 Anior
log ( (1) )

> P ‘?Tr* QVPSQ |:‘7p7re*:| log (6‘?12:4’:3t§t> v
> PsaVie — n(s,a) - ‘ P llspan 3n(s, a)
3 S
3 s
Ntot ﬁ(s a) H pe Span
> Psa‘/pT:3 - \/ﬁ(sa CL)VPSG |:Vpﬂ-e*:| o 26(8’ CL) ‘ V;e span a Ntot 42

To finish lower-bounding (30) we must also lower-bound b(s, a, IA/pT;* ). It is immediate to see that

HTg(s,a)(ﬁsa, ‘7&;) < ‘ ‘A/pf , and also by Lemma B.14 (since we are in the 8(s,a) < 1

span
)
+
span Ntot

(33)

span

case) we have that V5 - {Tg(sﬂ) (135,1, Vp’{; )] <Vp. [f/pg*] . These two facts yield that

b(87 a, ‘7pﬂ-c*) — max {\/B(S, G)Vﬁsa [Tﬁ(s,a) (Psaa VpTE;* ):| ’ 5(57 (L) HTB(S,G) (Psa; Vpﬂ:)
A~ * /\Tr* 5

< max {\/B(s,a)Vﬁsa [Vpﬁ, :|36(57a) HVpe Span} + —

5

+

span  Tltot

o
Vre

< \/ﬁ(s,a)Vﬁm [f/pg*} +,8(s,a)’
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Furthermore, using the bound (23) from Lemma B.8, we can further bound (33) as
b(s,a, ‘A/p”e* )

< .a)V 5 [17”*} , ‘ v
— \/B(S a’) Psa pe +ﬁ($ a) pe span + Ntot
210g (GS2Anmt)
PN o dT—)0 4 S
< VB | Ve [T ]+ [ N e o7
> ﬂ(s a) Psq | Vpe + P || pan n(s,a) + Nt + 6(8 a’) Pe || span + Ttot
< +/B(s,a) v [XA/”*] + H‘A/’T* B(s,a) + A + B(s,a) Hf/\'”* +
a ’ Fea | e P€ Il span ’ Ttot ’ P€ Mlspan Mot
< \/ﬁ(s,a)Vpsa V] +286.0) [V |+ (34)
span tot
(using the definition of 5(s, a) and the fact that we are in the 3(s,a) < 1 case).
Combining (34) and (32) with (30) we obtain that
A* Sa* Sk St ].2")/
pe (Sa a) > T(S7 CL) + ’YPsane - 27\/ﬂ(57 a)VI:)sa |:Vpﬂé ] - 475(‘9’ a) vae span - Ntot

=r(s,a)+ 'yPsaf}pf - 713(57 a)

12

~
VT
pe Ntot *

where we define b(s, a) = \/ﬁ(s, a)Vp,, [171;;*} +45(s, a) ‘

span

Now for the simpler case that 8(s,a) > 1, we have that
Qfe(s,0) = r(s,a) + ymin V' (s')

2 T<57 a) + ’ypsa‘/}pﬂe* - Hf}pﬂe*

span

> 1(s,0) + YPua Vg —1B(s,0) |

span

2 T(S7 CL) + rYPsa‘/}pﬂe* - ’)/B(S,CL)

Combining the two cases of 3(s, a), we have for all s, a that @g; (s,a) > r(s,a) + 'yPsaiA/p’;* -

~vb(s, a). Therefore by monotonicity of M™",
sz, =M ge >MT (T+7PVpT;: —fyb) = s +’YP7r*Vp7; — Vb

We also have I7p”e* — vPr« ‘A/p’re* + 'yl;,r* > rp+, which will be needed later. By the Bellman equation
for 7 we also have that V™ = r.. +~vP. V™ . Combining these, rearranging, and using the

monotonicity of multiplication by (I — yP,-)~! (since all its entries are nonnegative), we obtain
VT = VU% < rpe 4 APee VT = Te o+ Yo — P VI = Ao + 4P (VT = V)
= (I =P )(V™ = VI') < Abye
= VT - Vp’;* <(I- ’yPW*)_l'yB,T*

as desired.

Lemma B.16. Fix a deterministic unichain policy ©*. Suppose that for all s € S, n(s,7*(s)) >
mu’r* (8) +4 44T (P, "), ﬁ > m, and ﬁ > 2. Then under the event in Lemma B.8, we have

that
?32’35,( (V (80) - Vpe (80>)
S 652 Anot ™ 652 Angot
. 20485‘ iz, log( 52 ) . 6405‘ i, 10g< 5 A ) "
T 1l-v m (1—=vy)m (1 =)ot

33



Proof. First we note that, using Lemma B.15, we have

max (V™" (s0) = Vi (s0)) < maxe], (I = 7Ps:) by = max (7 b ).
We will now fix some arbitrary sy € S and try to bound <d§ o b > By the assumptions in the
lemma statement we have that for all s € S,

* 1 *
n(s,m*(s)) > mu" (s) + 4Thi (P, 7*) = (1 — 'y)mm,u” (s) + 4Ty (P, %)

> (1= ), (5) = (1= )m i (5) = =™ (9

> (1 —~)md, S0( $) — (1 = y)mdThi (P, ) + 4Thie (P, %)
2 (1 - )md'yso( )

where the third inequality is a consequence of Lemma B.12. For convenience we will let

C := (1 — v)m, and so we have shown that n(s,7*(s)) > CdJ 50( s) for all s € S. Also for

convenience abbreviate ¢/ = log (6*(912’4%*““) Using the fact that n(s,7*(s)) > 4 which implies

1 _ 1 4/3 . e T
max{n(s,7 (s))—1,1}  n(s,m*(s))—1 < n(s,m*(s)) < (s, ﬂ_*( DE we can 81mp11fy bﬂ.* as

s) = 2\/5(577T*(5))VP5«*<S> [Vp@ } +46(s, H

+ 4T (P, ™)

spdn

=i 6] +4 <8<l§>—1 HWJ

16¢ =
o 1y o e
- \/n(s,ﬂ*(s)) Part () [Vpc] 4 n(s, 7(s))

Using this and the fact that n(s, 7*(s)) > Cdg;o (s) forall s € S, we have

(e ) € S0 (2 2 [ 4 s

seS

12
+

span Ntot

12

span ntot

12
span ntot

164 16¢ . 12
< dy 5 * N4 s 7% |:Ve} +4——— * +
;9 v, 0 ( \/C’dg SO( ) Pyrx(s) p Od;rso( ) p span ntot>
* ]-6’€
S (IR Lo R AR
sES

n 12
span (1 — ’y)ntot

(35)

[645¢ \/Z a (Ve [Vg;] 64(;96 H‘A/p

where in the final inequality we used Cauchy-Schwarz to bound the first term.
Now we focus on bounding the quantity 3° . dZ’, (s)Vp, .., {Vpl } Let ¢ = minges f}pg* (s)
and V = Vpl — c1. Then
VoV-— ’yQPW*V o PV = (V — ’yPﬂ*V) o (V + ’yPW*V)
< (V = APV 4 ybps + (1 —7)cl) o (V + P V)
< 2|Vl (V= 4Pe-V + Ybre + (1 = 7)cl) (36)

where for the first inequality we used that V4 'yP,r*V > 0 and that EW* + (1 —=7)cl > 0, and for the

second inequality we used that V+7Pﬂ*v <2 ||V |oo 1 and thatfoyPﬂ*VJr'yBﬂ* +(1—v)cl >0,
which follows from the fact that

V —yPnV + 'VBW* +(1=7)l= ‘A/p"e* — 'yPﬂ*‘A/p’Z + ’yl;,r* >r >0
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using (29) in the inequality step. Thus

(a0 Ve T2 ) = (Vs [71)
P (V)2 — (PW*V)°2>
n

5 ((V)o? o ")/2(PW*V)02)>

(V)72 + 252 [V (7 = 7PV e + (1 ’y)c1)>

(0 22V (7 = 2PV 9B+ (1= 7))
_QH‘;H%;(I—VPW*M (= ¥Pe)V + b + (1 = 7)e1)
ZQHKQHWL(I—WPW) ((I NP VE 4+ b )
/R M
2IIZQH 1; 4||‘;||oo<d:;0’5ﬂ*>. a7
In (i) we use (36) and in (ii) we use that
(P = 00 < (a7, PV = L))
1

Combining the bound (37) with (35) (and noting that | V|| _ = H 17p7;* ), we obtain that
span

(i) e T M b 1
Y807 = C 2 1—~ v ¥,800 7"
6450 ||+ 12
e
C 1P Hlspan (1= 7)ntot
vl oS¢
pe 1 -
< (" e
A e
64.5¢ 12
C span (1 — ) ntot
where we simplified by using that v/a + b < \/a + v/b and that l < 2 (since ﬁ > 2 implies that
v > %). The above is a quadratic inequality in = := <d1; o0 - > of the form
12
a? < x\/8 +,/—+y+7
g (L = 7)ot
oas|| V|| e
where y = ——=—". From the quadratic formula we obtain that

\/8y+\/8y+4( 8y +y+(1 'Y)ntt)
<
- 2
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and then squaring both sides we obtain that

<f+\/8y+4<ﬁ+y+(1 v)mm)y
<

8y 12
< (8y+8y+4(y/——+ +)>
2<y Y ( T T =)
32y 12
— 10y + +
Y L=y (T —=7)n0t
_1064SHVpe span€+ 3264ASVH‘/TPTSa spané 12
¢ C(l - 'Y) (1 - ’Y)ntot

using that (a +b)? < 2a% +2b2. Recalling the definitions of C' = (1 —~)m and £ = log (fof%‘gt ),

and also since the above bound held for arbitrary s, we have thus shown that

max (V’T* (so) — YA/p’re* (so))

soES

20485 ||V

652 Anot rr* 652 Angor
pan 08 () . 6405 | Vi spanlog( = 12

T 1l-y m (1—v)m (1 =)ot

O

B.7 Controlling the empirical span

span
which we would like to bound in terms of ||V7r ||Span. Such a bound is the objective of this subsection,
and makes crucial use of our assumption of data even for states which are transient under Py«.

Lemma B.17. Fix a deterministic unichain policy m* Suppose that n(s,7*(s)) >
72(Thie (P, 7%))? log (22 ) forall s € S. Then with probablllty at least 1 — 9,

Thie(P, ) < 24T} (P, 7).

Proof. The proof of this lemma is inspired by that of Zurek and Chen [2024, Lemma 4]. For any
MDP M and s € S we let E , denote the expectation with respect to the Markov chain induced
by 7 in the MDP M from starting state so, and similarly we let P} ((E) = EI [I(E)] denote
the associated probability measure. Let s* € S satisfy Tyt (P, 7*) = Thit (P, 7, s*). Let M be the
MDP (P, ). Then

Thie (P, ) < Tt (P, 77, 8%) = g}lggESOﬁ[ns*]- (38)
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Supposing that k& € N satisfies maxs,es P, 57(ns 2 k) < 1, then we have for any s, that

S

Ez&ﬁ[ﬂs*] - Psé’ﬂ(ns* > t)

S
Ju

M 10

N
I
<)

Psa,ﬁ(’l’]s* > Zk + t)

ES
[
= O

Psg,/f/t\(m* > ’Lk?)

o

~.
Il
o
~
I
)

|
L

IEDS()’M\(T]S* > Zk)
0

.
Il

=92k (39)

IA
o
[
[\

~
Il
=

where the final inequality step used that

Py xi(ns: > ik) < (gggﬂ"so, xa(nss > k)) <2°

which follows from the following standard arguments: for any integer ¢ > 1 (since this formula
obviously holds for ¢ = 0), we have

PS&,//\Z(/’?S* > Zk)
< ]PS/ M\(ns* > Zk)
=P, 5 (ne # {0, (i~ Dk~ 1y and e & {(i — Dk, ik — 1})

OB, Py (e @10, (= Dk =1} andne & {(i = Dk, ik — 1} | Fayp)
YE, o [H (e @ {0, (i = Dk = 1P, g (g & {(i = Db, ik —1} | ]-"(i,l)k)]

DB, 5 [10e €10, (= Db = 1N Pg 5 (e ¢ {0, k—1})

(iv)
< JE a0 # 10,0 (= Dk~ 1})

1 .
=SB, il > (= D)

where F(;_1), is the sigma-algebra generated by So,...,Si_1)k, Step (i) is the tower prop-
erty, step (i1) is because the event 9« ¢ {0,...,(i — 1)k — 1} is F(;_;),-measurable, step
(#it) is the Markov property (e.g., [Durrett, 2019, Theorem 5.2.3]), and step (iv) is because
]P)Sk,/a (e €{0,... k—1}) = Psk,ﬂ(ns* >k) < % (this last inequality holding almost surely,
due to the assumption that maxs,cs IP’SO ainss > k) < %). Since these arguments held for arbitrary
i, we can repeat them to obtain the desired bound.

Now we try to find such a k. Define the reward function 7 by 7(s,a) = I(s # s*) and also let P’
be the same transition matrix as P except with state s* made to be absorbing for all actions. Then,
for some 7 to be chosen later, letting V7 ;W be the discounted value function for policy 7* in MDP

M’ = (P',T), and letting Eg{: M7 ]ET;D* v denote expectations with respect to the MDPs M’ and M
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respectively, we have that

Ve (s0) =EX w0 Y F'L(S: # s*)

t=0
oo

=EZ, m Zﬁtﬂ(%* > 1)
t=0

o0
<EL > I(ne >t)
t=0

Tomlne] < T (P 7%, %),

This implies ||VZ", < Thit (P, 7, 5*), which will be needed shortly.

span

Let P/ similarly be the same transition matrix as p except s* is absorbing for all actions. Let M be
the MDP (P’, 7). Then for any k € N we have

>ET =Y AU > k—1)

= KB, e > k1),
Rearranging this implies that

V?M\, (s0) 3‘/7’/\7, (s0) (40)
k-t~ k

SQ,M

where for the second inequality we set 7 = 1 — ¢ and used the fact that (1 — £)*~1 > 1/e > 1/3
for all integers k£ > 1.
Now we bound V;;W,(So) using concentration inequalities. For concreteness in the following

application of Hoeffding we set k = 12Ty, (P, 7*) soy = 1 — 1/(12Th5t (P, 7*)). By Hoeffding’s
inequality, we have for any s # s* that with probability at least 1 — ¢

*

2
V= lo % * ok
6T<ﬁ/* —P’*)Vlr < H 7,M span g(é) < (This (P, 7*, 5*))? log (%)
s e T FM | = 277,(5,7'(*(5)) - 277,(5,7(*(5))

el (PL. — PL)Vi

setting ¢’ = %, we have with probability at least 1 — ¢ that

and trivially we have = 0. Therefore by a union bound over all s € S and

< min
oS seS

\/(Thit(P, 7*,5%))? log (%) <

Pr = P Vi
H( i m)V7m 2n(s,m*(s)) 12

where the second inequality uses the condition that n(s, 7*(s)) > 12° (Thit (P, 7*, s*))? log ( %) =
72(Thit (P, 7*))? log (22) forall s € S.

|
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Following standard arguments for the difference between two value functions with different transition
matrices we have

VI = Vi = ([ =3Pp) e = (I =7P1) T

= (I =7Pp) (I =3Py )(I = Pp) e = (I =7P) (I =3P )(I = AP ) '

= (I = 3PL) " (Phe = PL)(I = P}) T
= (I =3P ) (P — PV ppr,
Hence
Vo = Vi = |70 =3P Br = PrvEe|
S R N (R
< 7 1
—1-7512
< — i = Thit (P, ).
=12 hit 7T y S
Combining this with (40), we have that
x> * —
21012‘)'5(]}” s i 2 k) = mgfs(IP’ s i >k —1)
vl v, | 3V Vel
- k - k k
< 3Thit (P, 7*) + 3Thie (P, %) 1
- 12T (P, ) 2
Using k = 12Ty, (P, 7*) in (39) and combining with (38), we conclude that
D *x m _ . *
Thit(Paﬂ- ) < Eolg}s(ESO’M\[ns*] < 2k = 24Thlt(Pa7T )
as desired. O

Lemma B.18. Fix a deterministic unichain policy ©*. Suppose that n(s,7*(s)) > 1 +
o (576Thi (P, 7*))° for all s € S, where a = 8log (6(512;4$§t). Then with probability at least
1— 24,

HVp’l

we have for any s € S that

+ 2.

span

v

span

Proof. By the definition (8) of T- pc ,

Vi (s) =el M™ QT
_ TM'rr T-rr ( 71-)

:r(s,w*(s))—|—’ymax{PSﬂ*(s)T5(s wr () (Pome (s M™ Q0) — b(s, 7 (s), M™ QT ),

HllIl MTr o™ }

Tr* (3) —|—’ymax{ STr*(s)T,B(s 71'*(5))(/\577*(5) ‘7 ) - b(S ™ ( ) ‘/}pg*)’min(‘/}pg*)(sl)}

~

= Ty (S) +’}/PS7T*(S)VP +*ymaX{PS,T*(S) (Tﬂ(s w*(s))( s () Vpe ) Vﬂ— ) — b(S,?T*(S)

min(V () = Pars (o) Ve }

= Tr= (5) + 7‘1/5871'*(8)‘/;)7:—3* - ’YB,(S)

39

*



where we have defined & € RS as
(5) = = max { Pure s) (Tatome (o) Pors (0 Vi ) = Ve ) = s, 7 (), V'), min( V2 ) () =

Note that both terms within the max in the definition of b’ (s) are < 0, so 4 > 0, and also we can
bound

b(s) < — (ﬁsw*(s) (Tﬂ(s () (Pomo(s), VI ) — ‘71*) — b(s, 7 (s), VI ))

= Psﬂ.*(s (V TB(S ﬂ*(s))(Psﬂ*(s), Vpe )) + b(S ™ ( ),‘/;)ﬂ;3 )

(@) ~

< s, ) |G|, + bl (), V)

(i7) ~ 2 ~ . 5

<\, |7 Rl W @)

where (i) is due to the fact that PSW*(S)TB(S 7r*(S))( s+ (s) XA/p’;*) > ﬁsﬂ*(s)f/pf —
H , which holds by an argument identical to that of (31), and (é¢) holds since
span

b(s, " (s) = max \/B (s, 7 (s P {TB(SJ*(S))( M*(S),V;e*)},

5
b+
span Ntot

< max \/ (s,7* VA . {Vp@}’ﬂ(s,w*(s)) H‘/}p‘n";

ﬁ(& 71-*(3)) HTﬁ(S,T(*(S))(ﬁSTf*(S)7 VpT;- )

)
b+
span Niot

} 5
span Ntot

span ntot

2
RO ) |V

< max \/ﬁsw V’T*

< ¢ o |7

where we used Lemma B.14 and the fact that HTﬂ (s ﬂ*( ))(PM*(S), Vpe )

+ B(s, 7 ( H
an

in the
span

span ’ ’

first inequality, then that Vﬁ o { e ] < H

span
(While Lemma B.14 is stated for (s, 7*(s)) < 1,if B(s,7*(s)) > 1 then T (s r (o)) (Pan-(s) Vo )
is a constant vector so the bound is still true.)

Now since ¥’ satisfies ‘A/pf =T — fyl;’ + "yﬁﬂ* Vpe , We can rearrange to obtain that I7p"e* =(I -
v Py )_ (rgr —). Likewise by the standard Bellman equation we have that V™" = 7. 4y P V™

s0 V™" = (I — 4P+ )" '7z+. Then we can calculate that
V- Vpﬂ (I — 4Py ) Tor — (I — ’yP ) (e — fyb’)
= (I—’yPﬂ*)_ (I - ’yPﬂ*)(I — VP ) s
— (I =4Pr )T = Pr) (I =7 Pre) ™ (e =)
= VI =y Pre)  (Pre = Pr)(I =y Pre) Vrme + (I =y Pre) 1ol
= (I = YPp ) (Pps — P )V 4 (I — yPre) 190 (42)
Now we can bound

Sk
T
HVpC

- *
= max(e; — eS/)TVp”C
span s,s’

= max(e; — ey) (Vw* + ‘71)7;* B V’T*)

s,s’

< max(es — eg) (V’T*> + max(e; —ey) " (17;;* - V”*)
s,s’ s,s’
= ‘ v + max(es — ey) " (f/pf - V”*) . (43)
span s,s’

40

Ps7r*(s)

, and then bounded the max by the sum.

7‘_*
pe |-



Fixing arbitrary s, s’ € S and letting £ = e; — ey, and using (42), we have that
€7 (U = v™) =€ (W =4Pr) ™ (Pre = Pr)V™ — (I = yPre) ¥

< |eTa =P,

(ﬁﬂ’* - Pﬂ*)vﬂ-* HOO +’7 HfT(I - ’yﬁﬂ*)ilH

8/

(44)

1

Next we bound all the terms in (44). First,

(I —yPp)! H < 4Ty (P, 7*) by Lemma B.11,
1

and furthermore by Lemma B.17, since its conditions are satisfied under the conditions of the present

lemma (since o > log(22)), we have with probability at least 1 — & that T}t (P, 7*) < 24T}, (P, 7).

Hence Hf (I - yﬁﬂ*)_l H < 96Ty (P, 7). Next, for any s € S, by Hoeffding’s inequality, with
1
probability at least 1 — 6" we have
V™l 5an Lo8 ()
2n(s, 7 (s))

and so by a union bound over all s € S and setting §' =
probability at most d that

el (Pre = Pro)V™

s’ we have that with additional failure

~ * * 10 25
H(Pﬂ'* _‘P‘n'*)‘/Tr < HV” max &
e span s€S 271(5 71'*(5))
Finally, using the bound (41), we have
% < max \/B (s,m (s i +28(s, 7 (s)) ‘ v +
sES span ’ pe span  Tltot
(s, 7*
span ntot

because our condition on n(s,n*(s)) guarantees that B(s,7*(s)) < 1 so B(s,n*(s)) <
B(s, ().

Combining these three bounds with (44), using that v < 1, and taking the maximum over all s, s’, we
have that

max(e;, — eg) " (‘7;;; - V”*>

s,s’

ﬁ
max ———>"—— ‘S + 3 maxﬂ (s, m*
span *

< ; * H T
< 96Thit (P | ||V seS 2n(s seS

span ntot

Combining this with (43) and rearranging, we have that

|V (1 — 3 96T (P, ") maxﬁ(sm*(s)))
span sES
. log(22) 5
<|lv~ 1+ 96T} (P, 7 AW A Thie (P, 7 45
- HV span +96 ht( - )\/Igeag 2n(8,77*(8)) +96 ht( T )ntot ( )

Noticing that 576 = 3 - 2 - 96, our condition on n(s, 7*(s)) in the lemma statement is chosen exactly
so that

(07
(]. -3 96Thit(P, 71'*) Iglea,X/B(S s (S))) = (1 -3 9611}111;(.P7 7('*) Igleag‘( W)
>1-1-1
-T2 2
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Also since for all s € S, B(s,7*(s)) = s ﬂ"i(s))_l T = G, W*(S)) T 2> Q,iz)sg(,rf 1)) (since
a> 810g(%) and n(s,7*(s)) > 4 so max{n(s,7*(s)) — 1,1} = n(s,7*(s)) =1 > gn(s,7*(s))),

we can also simply bound
log(22 1
1+ 96Tt (P, W*)\/max Og(i)) <1+ 5

We can also bound 96T}, (P, 7*) -2 " bounding not by n(so, 7*(s0)) for one arbitrary
sp € §). Combining all these bounds W1th (45), we obtain

+1

span

< 2|
<l

5 |7

‘ span

as desired. O

span

which implies

v

pe

<s

+2

span

B.8 Average-reward-to-discounted reduction

Now we can combine our previous results and relate the discounted MDP quantities to p™ and h™ .
Lemma B.19. There exist some absolute constants C, Co such that the following holds: Fix a
deterministic unichain policy ™. Suppose that n(s, ﬂ'*( ) > m,u”*( ) + 4+ a (576 (P, 7))*
forall s € S, where o = 8log (6512:4’?)?0 and that 1~ S =m and +— 5= 2. Then with probability
at least 1 — 56, we have that

o as(h gt 1) e G (I g 1) e
pﬂ‘ Zpﬂ' _ spai 17 H spai 1.
m m

Proof. By Lemma B.16 (the conditions of which are met here as a(s, 7*(s)) (576Thit (P, 7*))> >
4Ty (P, 7)), we have under the event of Lemma B.8, which holds with probability at least 1 — 26,
that

max (V”* (s0) — ‘7})7[: (so))

SoES

652 Angot 652 Anior
< 1 span log( (1=7)0 ) span 10g( (1-7)d ) 12

T 1l-v m (1—=vy)m (1 =)ot

=3 (v g 1)
and adds additional failure probability at most 29 by the union bound, we have that

Combining this with the conclusion of Lemma B.18 which implies H‘Z;;

T S2 Angot

max (v”* (s0) = V' (50)> <

S0ES 1—7 m
* 652 Angor
19205 (| span + 1) 1Og ( (1—~)é ) n 12
(1 - ’y)m (1 - V)ntot ’

(46)

For convenience abbreviate the right-hand-side of (46) as €. Then since Q7 > @ by Lemma B.9
(Wthh holds under the event of Lemma B.7, adding additional failure probability at most ¢) and

Q > Q — 27” 1 by Lemma B.4, we have that

7 Ty A A - 1 - 1 S 1
e ZMQMQZM@W%J)MQpeQnulvpeanul'

47

42



Furthermore we have

~, O~ L) (@) 1 . .
VESUT SYm o1 > —HV” 1-el (48)
p p 1-— Yy span
where (7) is due to Lemma B.1 which gives @I*)C > @g; , which implies ‘//\'p*c = M@;C > M A;C >
M Ag; using monotonicity of M™ . (i) is due to (46), and (ii7) uses HV”* - ﬁp”* ‘ <

v~ ||Span due to Zurek and Chen [2025a, Lemma 6]. Also by Zurek and Chen [2025a, Lemma 6],
we have the elementwise inequality p™ > (1 — ) (min,es V7 (s)) 1. Thus

> (1— inV7(s)1
P2z (1—7)minV=(s)

i

—
=

1—7

> (1 —~)min V2 (s)1 — 1
Z (1 =) min Voe(s)1 = 5 —
=~ minp’r*(s)l—(l—’y)HV”* 1-(1—y)el—-—"1
 seS span Ntot
* 6S2Aniot

G . * - 61445 ([[V7" [ + 1) log (5748100
> o —(1—7)HV’r 1- 1 - =0/

span Ntot m

T* 652 Aniot
19205 (HV Hspan + 1) IOg ( (1—v)o ) 12
- 1- 1
m Ntot

g 652 Angor T 652 Angot
@) e 61445 (||V llspan + 1) log (W) L 19335 (HV span T 1) log (W) |

m m

where (i) uses (47), (i7) uses (48), (iii) uses the fact that p™" is assumed to be state-independent and
the definition of € (and canceling/simplifying), and (iv) uses that ﬁ >m(so (1—7) <L), that
1 —~ <1, and ngot > m.

Furthermore, using Zurek and Chen [2025a, Lemma 26] we have (since p”* is constant) that
V™| < 2|k . Combining this with the above bound and letting Cy = 2 - 6144/8,C; =

span — span

2 -1933/8, we obtain the desired bound. O

B.9 Completing the proof

Here we complete the proof of the main Theorem 3.2 by checking conditions and simplifying previous
results. The following result is actually more general than Theorem 3.2 because it allows an arbitrary
unichain deterministic comparator policy 7*, rather than requiring 7* to be gain-optimal. Theorem
3.2 follows immediately from the below theorem by adding this additional requirement that p™ = p*.
Theorem B.20. There exist absolute constants C1, C} such that the following holds: Fix § > 0. Let
652 Angor
N (1-7)

stationary distribution u™ . Suppose there exists some m € N such that

n(s,7(s)) = mp™ (s) + o (CyThie(P,7*))* + 4.

Then letting T be the policy returned by Algorithm 1 with inputs D, v, v = 1 — % and 6, we have
with probability at least 1 — 56 that

vy=1- ﬁ and o = 8log ( ) Let 7 be a deterministic policy which is unichain with

1S (1M g + 1) @

m

*
us

Proof. Note that the condition on n implies that ny.¢ > 4, so setting ﬁ = Not has ﬁ > 2. Also
we have

Ntot > Zn(s,n’*(s)) > Zm,u’r* (s)=m

seS seS
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using the assumption on n(s, 7*(s)) for all s, so setting ﬁ = Nyot also ensures ﬁ > m. There-

fore we can apply Lemma B.19 to obtain that if n(s, 7*(s)) > mu™ (s) + 4+ « (576 T (P, 7*))*
for all s € S, then with probability at least 1 — 55, we have

PN (||hwmspan +1) oGS (th*mspan +1) o

where a = 8log (%) = 8log (E’Sz?ina") Thus we can set C, = 576. To choose C, note

@S(Hm*

m

. N +1 |
that since trivially p™ < 1 and p™ > 0, if the term o ) > 1 then the bound

CsS (||hvr* [ 1) @

m

*

holds vacuously, and otherwise if it is < 1 then we have

o O (I g+ 1)@ | CaS (15 g + 1) 0

pr=p" - 1-
m m

since /= > x for z € [0, 1]. Since v/a + Vb < \/2(a + b), we can take C = 2(C; + Cs). O

C Proof of Theorem 3.3

Let T > 4 and m € N be arbitrary.

Step 1: MDP construction Define p = m A= L%—‘, and ¢ = —. The set of states is
S = {0, 1}, and the set of actions is A = {0, 1, ..., A — 1}. The reward functionr : S x A — [0, 1]

is defined by r(0,a) = 1 and r(1,a) = 0 for all a € A. We define an index set © = {(z, b) ‘ i€

{0,1},b € {0,1,..., A — 1}} For each 0 = (i,b) € O, we define the transition matrix Py as
follows:

s| a | Py(s'|s,a)
0 7 I(s"=0)
0| 1—4| (1—p s =0)+pl(s=1)
0| >2 I(s"=1)
b | s =0)+(1—5)I(s=1)
1| #b §=0+1-¢I(s=1)



Figure 2: Diagram of the MDP (P ¢y, ). Arrows splitting into multiple dashed arrows indicate
stochastic transitions, and each dashed arrow is annotated with the associated probability. Blue arrows
represent action 0 and red arrows represent action 1. In state 1, the red arrow also represents actions
2,...,A — 1 (which are all identical). The reward function does not depend on the action, and is 41
in state 0 and +0 in state 1. In general, the MDP (P(i}b), r) is similar, except that the blue arrow in
state O represents action ¢ and the blue arrow in state 1 represents action b.

See Figure 2 for a diagram of the MDP (Py, ) for 6 = (0,0). We now state some easily verifiable
facts about the MDP (FPy, r):

* The unique deterministic gain-optimal stationary policy 7y is the one that takes action ¢ in
state 0 and action b in state 1.

* The optimal gain is p; = 1.
o 13°(0) = 1and 3° (1) = 0.

* The policy hitting radius Tt (P, 7;), the optimal bias span Hh;‘;

, and the diameter
span
are all at most 7T'.

* Suppose a stationary policy 7 usually makes the wrong decisions — specifically 7(|0) < %

and 7(b|1) < 4. Then pj < arti-3e oS¢ o

A- TIPS T (- T)atE = BetE = Tyd
of A is one that is sufficiently large so that randomly guessing the optimal action b in state 1
will not yield a good policy.

5p
16

< %. In words, our choice

Note that action 2 in state O is added to keep the diameter bounded by 7', and actions 3, ..., A — 1
in state 0 simply keep the action space independent of the state, consistent with our upper bounds.
Since actions 2, ..., A — 1 in state 0 are always suboptimal, whenever we consider some policy 7,
we will assume that 7(a|0) = 0 for a > 2.

Step 2: dataset construction For any § € (0, %], denote t5 = [ log (%)]. We define n :

Sx A — Nbyn(0,0) =n(0,1) = m+ts and n(1,a) = ts for all a € A. Observe that this choice

of n satisfies the desired requirements. Indeed, since y;° (0) = 1 and py° (1) = 0, we have
T 1 ok T 1

n(0,75(0)) = n(0,i) > m + 3 log <5> = my,® (0) + 5 log (5>

and

Step 3: impossible to do well in all MDPs Suppose towards a contradiction that there exists an
algorithm &7 that maps the dataset D to a stationary policy # = &/ (D) such that for all 6 € O,

]P)evn (pg > %)
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Before proceeding, we define some events. Let 53 be the bad event that D contains no transitions
from state O to state 1 and no transitions from state 1 to state 0. Let &, be the event that 7(0]0) > %

(7 prefers action 0 in state 0). Similarly, let £; be the event that 7(1]0) > % (7 prefers action 1 in
state 0). For each a € A, let 7, be the event that #(a|1) > 4 (# gives significant weight to action a
in state 1).

A key idea is that under event B, the dataset is the same no matter the underlying MDP. That is, under
event B, we always have
D=(0,...,0, 1,...,1 ).
—— ——
2n(0,0) times An(1,0) times

It follows that for all 6,6’ € ©,

]P)gm(gi | B) = Pe/,n(é‘i | B) Vi € {O, 1}
and

PG,n(fGIB) :PQ’,n(]:a|B) Ya € A.
For ease of notation, going forward we will drop the subscript 8, n when it does not matter what the
underlying MDP is.

Since P(Ey U &1 | B) =1, we rnust have P(&; | B) >

a’ € A wehave P(F, | B) < 1, or equivalently, P(
we would have

Zﬁ(a 1)|B

acA

for some i’ € {0, 1}. Furthermore, for some

1 g,
2
F& | B) > 2. Indeed, if this were not the case,

E

= > E[#(al)|B] > Y E[#(all)| Fu N B P(F, | B) > Z* 1

acA acA acA

which is a contradiction because we always have ) , 7(a|l) = 1.

We have shown that when the dataset does not contain any useful transitions, there must be at least
one MDP where the algorithm is likely to make a poor guess. Our last step will be to combine this
fact with Lemma C.1 which tells us that the dataset will be useless with large enough probability. We
noted above that when the underlying MDP is (P(;s 4/),7) and a policy 7 satisfies (i’ |0) 5 and
m(a'|1) < & we have Plirary < 1. In particular, under the the event £ N F¢, we have ,0(Z ) <
Subsequently, for ' = (i’,a’), we have

R 1 1

]P)g/m (pg/ < 2) > P@/m(é‘f/ ﬂ]-"g,) > ]P)glm,( f/ ﬂ]—'(f, ﬂB) = ]P( ﬁﬁf§/|8)ip9/ (B) > Z 4 = (5,
where the final inequality follows from Lemma C.1.

In summary, we have shown that

@(D) _ 1
P > — | >
max Py (Pe Py 2) > 9,
as desired. O

C.1 Auxiliary lemmas

Lemma C.1. Forall § € ©, we have Py ,,(B) > 40.

Proof. By symmetry Py (1) are equal for all 6, so for ease of notation we drop the subscript 6. Let
By be the event that D contains no transitions from state O to state 1, and let 3; be the event that D
contains no transitions from state 1 to state 0. Then

P(B) =P(By N B1) = P(By)P(B1),
with the last equality following by independence. Now,
P(By) = (1 —p)™+".

Recall that p = d(TEFT) In the case that m > ts5, we have
2m
1 1
1—p)mtts > (1 - — > = 49
(1-p) > ( 6m> > (49)
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with the last inequality following from Lemma C.2 with z = 2m and ¢ = 3. Otherwise, when
m < ts, we have

2
_ m-ts _ ]‘ o 1/3
(-ptz (1- ) 2458, (50)

with the last inequality following from claim 3 of Lemma C.3 with x = 27". Combining Equations
(49) and (50) and the fact that 46/3 < i, we have

P(By) > 46'/3.

Next,

P(B,) = (1 _ ;)té (1= q)A-Dts.

Claim 2 of Lemma C.3 with z = T gives us that (1 — %)t‘s > §'/3. Moreover, recalling that ¢ = 2,
we have

A
_ g)(A-1ts _ \Ats _ _ 1 v 1/3
=WV > (gt = (1- =) 28

with the last inequality following from claim 2 of Lemma C.3 with = AT. Hence, P(5;) > 52/3,
and consequently, P(B) > 4.

O

Lemma C.2. Forall x > 2 and ¢ > 2, we have
-2t
cx e

Proof. We have

5}
09
A/~
A/
—
|
8|~
~
8
~
I
3
5}
0]
‘H/-\
|
8|~
N~

S 1

ol —— —

- cx  c2x?
1 1

_ ! (1 + )
c cx
2

- ¢

> 1

Il
<}
o
7N
| =
N~

where the first inequality follows from log(1 — y) > —y — y? for y € [0,0.68]. Since logx is
monotonically increasing, we are done. O

Lemma C.3. For any x > 4, the following holds:
1. Foranyd € (0, %], we have (1 — i) [5108(3)] > 0.
2. Forany ¢ € (0, e%} we have (1 — %) [ 108(3)] > §1/3,
3. Foranyé € (O ! }, we have (1 - %) [ 108(3)] > 451/3,

) e9
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Z oL
Proof. We will prove claim 1 by showing that (1 - 1) 5 log(3)+1 >Jd.Foranyz > 4andd € (0, %],

we have ‘
1 Zlog($)+1
log (1 — ) =
T

5
> =+ —)logd
= (8 + 16) ©8
> logd,
where the first inequality follows from log(1 — y) > —y — y? for y € [0,0.68]. Since logz is
monotonically increasing, claim 1 follows.
For claim 2, take z > 4 and § € (0, ]. Then 6’ = §/% € (0, 1], so by claim 1 we have

(1 - 1) [ 108(3)] _ (1 B 1) [%108(37)] s

x x

Finally, for claim 3, take z > 4 and § € (0, %], and let y = 3z. Since &' = §'/3 € (0, %], claim 2
gives us that

(1 - 1) [5108(3)] _ (1 B ;) [ 1og(37)] S (5 > 45108

where the last inequality holds because §'/% < é. O

D Proof of Theorem 3.4

We define the absolute constants ¢; = 4 and ¢co = 33. LetT > ¢, S > ¢o, kK > 0, and
m > max{TS, kS} be arbitrary.

Step 1: MDP construction Define S’ =S5 —1,D =T —2,¢c = 5 %S Note that e < 7=
l1—¢ 1

Let p = <% and ¢ = . The set of states is S = {0,1,...,5'} and the set of actions is
A = {0,1,...,5}. The reward function r : S x A — [0,1] is defined to be 1 when s # 0

and a < 1, and 0 otherwise. We define an index set © = {0,1}5". For each 6 € O, we define the
transition matrix Py as follows:

s a Py(s'|s,a)

0 0 Tl =5+ & s T =)

0 a>1 (1—=2)(s" = 5) + 55 D or>q I(s" = 8")
s>1 0 (I —=p)I(s" =s)+pl(s' =0)
s>1 1-6, (1= )I(s" =)+ ql(s' =0)
§>2 s (s = 1)+ 55 > I(s' = )
s>1|a#sa>2 $1(s" = a) + 55 S I(s' = 8")



Figure 3: Diagram of the MDP (P, ... o), 7) only including actions 0 and 1. Arrows splitting into
multiple dashed arrows indicate stochastic transitions, and each dashed arrow is annotated with the
associated probability. Blue arrows represent action O and red arrows represent action 1. The reward
is 0 at state 0 and the reward is 1 at all other states. In general, the MDP ( Py, r) is similar, except in
each state s > 1, the blue arrow represents the optimal action 6.

Observe that the decision-maker needs to decide between two actions in states 1, ..., .S’. Both actions
give an immediate reward of 1, but one action has a slightly higher probability of transiting to the bad
state 0. At state 0, which has a reward of 0, the agent will likely be trapped for a long time before
returning to one of states 1, ..., S’. See Figure 3 for a diagram of the MDP (P, r) for = (0, ...,0).
We now state some easily verifiable facts about the MDP (Py, r):

e The MDP has S states, is unichain, and has diameter % +-l=D4+2=T.

1/2
* There is a unique gain-optimal policy 7. It takes action O in state O and action ¢, in state s
fors > 1.
. ugg (0) =t = 3=<. By symmetry, it follows that ug‘;(s) % (1 — ,ugg) = 12/—55, for
s> 1.
« The optimal gainis p}; = 1 — p,’ (0) = 2—;
Note that actions 2, . .., S’ for states s > 1 are always suboptimal, and only exist to keep the diameter
bounded by T'. Furthermore, actions 1, ..., .S’ in state O simply keep the action space independent of

the state, consistent with our upper bounds. As such, whenever we consider some policy 7, we will
assume that it may only take actions 0 and 1 in states s > 1 and action O in state 0.

Step 2: dataset construction We definen : S x A — N by n(0,0) = m and

2m

S/

forall s > 1 and a € {0,1}. For all other (s, a) we set n(s,a) = 0. Observe that this choice of n
satisfies n(s, 75 (s)) = & + & > m,ugg (s) +kforall s € S.

n(s,a) =

Step 3: reduction to estimation Given a stationary policy 7 and some 6 € ©, let L (s) be the
proportion of incorrect actions 7 takes in state s. To be precise, we define L7 (s) = m(1 — 6,]s). We

alsoset L = Zil L7 (s). By Lemma D.1, we can upper bound the gain of a policy 7 in terms of
Lg:
1+e?
5 < .
Po=5_c(1-13/9)

Subsequently, for any stationary policy T,

. 1 1+¢2 el /S — 2¢2

Pl — 1§ > - R T

2—¢ 2-e(1-1Lj3/S5") 4

D

49



Now, suppose the underlying MDP is (Py, 7). Let &/ be an algorithm that maps the dataset to a
stationary policy © = .7 (D), and consider the estimator #/ whose sth coordinate is 7(1|s). By

the definition of L}, we have L} = Héd - OH . Our next step is to show that no estimator can
1

achieve low /; error uniformly over © with high probability, a result which will lower bound L} and
consequently also the sub-optimality of 7 for some 6.

Step 4: Fano’s method We will achieve such a lower bound with Fano’s method. First, by the
Gilbert-Varshamov Lemma (Lemma D.2), there exists some subset ©’ C © such that |©'| > 25'/8
and |0 — 6'||; > S’/8forany 0 # 0’ € ©'. Since maxg ¢:cor KL(Py , || Por n) < (57/16 —1)log 2
by Lemma D.3, Local Fano’s (Lemma D.4) gives us that for any estimator 6,

mangn H‘e GH } S’ (1_ (S’/16—1)1og2+10g2> < S’

16 log (25'/8) = 32’

N S’ 1
Py, HG*QH 2 ) 2
Igleage < 1>64 ~ 64
Since the above holds for estimator of the dataset, it of course holds for i , where .o/ is any algorithm
that maps the dataset to a stationary policy. Therefore,

(D) S’ 1
mgxx[?’gm L, >— | > —. (52)

(D)

which implies that

>7

Now, by Equation 51, in the event that L, o1

s (D) £/64 — 2¢ > & ot TS

Po — Po T4 T2 m’
with the second inequality holding by ¢ < 256 Thus, plugging back into Equation 52 yields
/TS 1
max Py ,, <p; — p”gﬂp) > c3 ) > —
[ 64
with ¢3 = 2717, O

D.1 Auxiliary lemmas

Lemma D.1. Let 7 be a stationary policy on MDP My. Then

1+€?
S =L/

Proof. A routine computation (see Lemma D.7) yields

¢S L
T S’ s=1 kg

g 1
T+ &30

)

where kg = Lj(s)q+(1—Lg(s))p = % is the probability of transiting from state s to state

0 under 7. Since ﬁ is monotonically increasing for z > —1, to achieve the desired upper bound
s 1 _ 1 1
for pj it suffices to find an acceptable upper bound for A\ := & > ", Pl Dot T35

Defining f(z) = 1= and A\, = (1 — L (s)), we have that
s’ 4
A=) IO
s=1
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We would like to get a bound that looks like A < f (% Zil )\s). This goal suggests applying

Jensen’s inequality, but since f is convex for z < 1 it gives us an inequality in the wrong direction. It
turns out, however, that because f is nearly linear in the sufficiently small interval of interest, we can
obtain an inequality in the right direction with some error term of lower order.

Since A\ € [0,¢] forall s € {1,...,5"}, Lemma D.6 give us

.
A< S ;g +1O)+ 1) -2f ()

_ 1 b2
1—e(1-L5/S") 1—e 1—¢/2
< ! + &2
S1-e(l-13/9) "

where the last inequality holds for € < l. Consequently,

P Te(i L“/S’) +e? 1+ &2

O
Lemma D.2 (Gilbert-Varshamov Lemma [Massart, 2007, Lemma 4.7]). Let d > 8. There exists
Qq C {0,1}¥ such that |Q4] > 298 and ||w — '||; > d/8 for all w # W' € Qq.
Lemma D.3. Forany 0,0" € ©, we have

!
KL(ngn H ]P’g/m) S (186 — 1) 10g 2

Proof. Let §,0" € ©. By the construction of Py ,, and Py ,,, we can decompose

KL(Pg , | Py . Z Z n(s,a)KL(Py(-|s,a)| Py (-]s,a)).
s=0ae{0,1}

Recalling our choice of n, we can further simplify

S/

2m
KL(Po,p | Porn) = D —r (KL(Po(-[5,0) [ Por(-]5,0)) + KL(1o(: | 5, 1) [| P (-] 5,1)))

s=1
where we remove the s = 0 term from the sum because the data coming from state O has the same
distribution for all possible MDPs. Observing that

20p—q)* 2(e/D)? < 2e2 8e?

pt-p)  (5) (555~ (G)(F) D

we can apply Lemma D.5 to further simplify

S’
KL(Pg,n | Pyrn) = Z (KL(Py(- | 5,0)[| Por (- |5,0)) + KL(1g(- | s, 1) || Por (- | s, 1)))

2_ (KL (Ber(p) || Ber(¢)) + KL (Ber(q) || Ber(p)))

8e2
<2m—
"D

—-16TS
8.9 16W
T—-2

S27105l

S/
< (2 1) 10g2.
—(16 >Og

The final inequality holds due to the assumption that S > 33 — S’ > 32. O

2m
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Lemma D.4 (Local Fano’s inequality [Wainwright, 2019, Proposition 15.12, Equation 15.34]). Let
P be a class of distributions with parameter space O, and let {Py,... ,Pn} C P. Letting 6(P) € ©

denote the parameters of P, define 6 = minjy, ||0(P;) — 0(Py)||1. For any estimator 0, we have
max; i KL(P; || Py) + log 2)

s £, [Jo) o) ] 2§ (1 - 2=

Lemma D.5. Forany p,q € (O, %] satisfying p < q, we have

KL (Ber(p) || Ber(q)) < KL (Ber(q) || Ber(p)) < m
which implies that
KL (Ber(p) || Ber(q)) + KL (Ber(q) || Ber(p)) < 229"
~ p(1-p)
Proof. By Lemma 10 in Li et al. [2023], we have
/ N2
KL (Ber(p') | Ber(¢')) < KL (Ber(¢') || Ber(p')) < ]f"(l_q;)

for any p/, ¢’ € [4,1) satisfying p’ > ¢'. The desired result follows immediately by taking
/

p = 1—pand ¢ = 1 — g, along with the observation that KL (Ber(1 — p) || Ber(1 — ¢q)) =
KL (Ber(p) || Ber(q)). O

Lemma D.6 (Theorem 1 in Simic [2008]). Let I = [a,b] be a closed interval with a,b € R, a < b.
For somen € Z*, let x1,...,x, € I, and let py,...,pn > Osatisfy Y i p; =L If f :[a,b] = R
is convex, then

Zpif(xi) <f (Zpixi> + fla) + f(b) —2f (a;b> :

Lemma D.7. Suppose the underlying MDP is (Py,r). Let  be a stationary policy such that for
each s # 0, if the current state is s then the probability of transiting to state 0 after taking action
according to 7 is ks. Then
g v 1
T S’ s=1 kg

Po= T NS 1
1+%Zs:lz

Proof. We first solve for 17 (0) by considering the balance equations for the MDP (Py, 7). For each

s # 0, we have
U q U U
14 (s) = <15 (0) + (1 = ks)pg (s).

Rearranging gives us

W (s) = g (0) -
Since Zf/:() ug(s) = 1, we have
5’ s
HE0) = 1= Y u5(s) = 1= (005 > —.
s=1 s=1 %

We then solve for 417 (0) to obtain
1

fr— —q 57 1 .
L+ S Zs:l Ks
Since the reward is O in state 0 and 1 in all other states, we conclude that

s 1
=1 0) =
- = e
1+ % Zs:l %S

14 (0)
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E Deferred proofs and auxiliary lemmas

E.1 Proof of Lemma B.2
Proof of Lemma B.2. Letting V, V' € RS satisfy V > V' elementwise, we seek to show that
Toe(V) = Tpe(V').

Since this is an elementwise bound, we can fix arbitrary s € S, a € A and show that T (V) (s, a) >

Tpe(V')(s,a). From here on, since s, a are fixed, we abbreviate 3(s,a) € R as 3 for notational
convenience.

Consider the simpler function T:RS =R (which depends on our fixed s, a) defined as

span }

P Ts( sa,v"> ~ b(s,0, V"), min(V")(s') }

T(V") 1= PouTy(Pua, V") — max { \/ 8V, [L3(Puas V] B[ T Pras V)

for any V" € R®. Note that

Tpe(V")(s,a) = r(s,a) + ymax

{r
= r(s,a +’ymaX{T V") - min(v")(s')}.

Ntot 5’
Therefore, if we could show that
TV)>TV"), (53)

then since clearly V' > V” implies ming (V) (s") > ming (V")(s’), we could immediately conclude
that

Tpe(V)(s,a) = 7(s,a) + ymax {%(V) _ 0 ,min(V)(s’)}

Ntot 8’

> r(s,a) + ymax {7~'(V’) - nit HBH(V )(s’)}
Troe(V')(s,0)

as desired.

Thus we now focus on showing (53). First we can quickly handle the case that 5 > 1, since in this
case for any V" € RS we have Tj(Psq, V") = (miny V" (s')) 1, and then
span }

span }

The fact that 5 < 1 means that the following expression for T3 holds: for any s’ € S and V" € R?,
we have

T(V) = PyuTs(Psa, V) — max {\/ﬁvﬁm (T5(Poa V)| 8 HTﬁ(ﬁsa, V)

O—mmV( "

Pyl
> min V'(s) = (mi/nV (s )) Py,1 -0

= Py T5(Pya, V') — max { \/ﬁvﬁw [Tﬂ(ﬁsa, V’)} B HTB(ﬁsa, V')

=T(V"),

confirming (53). Now we can focus on the case that 5 < 1.

T(Pea, V")) = min {V" ('), Qs (Pea, V") |

where Qg(Paq, V") = sup{V"(z) : z € S, DSV (a) >V () P,q(2') > B} is the 1 — 3 quantile
of V"' with respect to P, (in words, we choose the largest V"' (z) such that P, places probability at
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least 8 on states =’ with V" (2’) > V" (x)). We will make use of the function Qg shortly. We also
make the useful definitions

;7:1(‘/) = ﬁsaTB(ﬁsav V) - /8 HTﬂ(ﬁsw V)

span

To(V) i= PouTs(Poa, V) — \/ V5., [Ta(Pus V)]

so that we can decompose 7 as 7 (V) = min {7~‘1(V), 7~§(V)} To show (53), it suffices to show
that this holds when V' and V"’ differ in only one coordinate, since then we could decompose
V=V 4+ Y, cseseh(V — V') and apply the inequalities 7 (V’ + 5 gl (V - V’)) <

T (V’ 3 _egel (V- V’)) for each k = 1,...,5. Therefore we fix one state z € S and

try to show 7 (V') is montonically non-decreasing as V' (z) increases (with the other entries of V'
held constant). We will show this by using Lemma E. 1, which says that if a univariate function is
continuous and at all but a finite number of points has a non-negative right derivative, then it must be
non-decreasing.

First we justify that T is continuous. Since we have decomposed T as the composition of many

continuous functions, it suffices to check that Qg(Ps,, V') is a continuous function of V'(x). This
follows immediately from Lemma E.3, which shows 1-Lipschitzness. (We remark that the 1 —
quantile is well-known to be discontinuous in 3, a fact which is irrelevant here since [ is fixed and
we instead vary V' (z).)

We will now compute the right derivative at all values of V(z) such that V() is not equal to
V(s') for some other s € S with s # x (which is a finite set). We define some new notation
for this purpose. With respect to this fixed value of V(z), let Ss = {s' € S : V(s') > V(x)}
and Sc = {s’ € § : V(s') < V(x)}. Define a neighborhood of V' (z), the open interval U :=
(maxges. V(s'), minges. V(s)). Let V! € RS have V'(s') = V(s') for all s # z, and we
vary V' (z) within the neighborhood U of V' (z) in order to compute the (full/two-sided) derivatives
A7 (V') d72(V')
dV'(z) dV'(z)

. Once we have computed these two derivatives, we will
V/(2)=V(z) V/(2)=V (z)

be able to compute the right derivative of 7 (V'), since if both 71 (V) and 75(V") are differentiable
at a point V' (z), then by Lemma E.2 the right derivative of 7 (V") satisfies

T ' ~ ~
m Vi(z)=V(z)* - dV(’i(a:) Vi (z)=V ()t (min {7‘1(V’),7‘2(V’)})
T v TiV) < (V)
— T v (V) > T(V) |
win {3 TG} T =Ta0)

(54)

To compute the derivatives of 77 (V") and 75(V"), we also analyze the functions Q 5(135,1, V') and
T3(Psq, V') on the set U (all considered as functions of V' (x)). For any set S’ C S, let Py, (S’) =
> ocs Psa(s"). We define three possible cases depending on the (fixed) state x:

B < Puu(Ss) (55)
Pou(85) < B < Poo(Ss) + Pog() (56)
ﬁsa(8>) + ﬁsa(aj) < 6 (57)

1. In case (55), we have Qﬂ(ﬁsa7 V= Qg(ﬁsa, V') on the entire interval U and also that for
any V'(z) € U, Qp(Psq, V) > V'(x) (since the (1 — 3)-percentile is achieved at some
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state s’ € S>), s0 Tﬁ(ﬁsa, V)(z) =

s’ # x. Therefore

V'(z) and T3(Psq, V') (s')

- 5 HTﬁ(ﬁsav V/)

= Ty(Psq, V)(s') for all

1 s==x

span>

~ BQp(Pua, V') 4 Bmin V'(s'))

~ BQs(Pea, V) + Bmin V'(s)))

AV’ (z) Vie)=v(zy L0 otherwise
and
dTi(V") d (A P, V'
Py TH(PS ’V)
dV/(.T) V(z)=V () dV/(I‘) V'(z)=V(x) ‘ ‘
d
= - Psa> V
dV'(z) V' (x)=V () (
d ~
= Py T5(Pyo, V')
V' (@) [y (y=v () ( “
~ 1 S< = (Z)
=P,
ol )+ﬁ{0 otherwise
> Pua(z) >0

. In case (56), we have Qﬁ(ﬁsa,V’) =

V/(xz) on the entire interval U.

Thus

Ts(Poa, V/)(s') = V'(2) if 8' € 8- U {&}, and Ty(Puo, V')(s') = V'(s') = V(s')

for s’ € S.. Thus

dT5(Pa, V')(s')
dV'(z)

and
AT (V")
av’(x) V' (2)=V(z)

= P,o(S> U {z}) —5+5{
> Puo(Ss U {z})

. In case (57), we have Qg(ﬁsa,V’) = (ﬁ
Qp(Psa, V) < V'(z) (since V'(z) < Qg(P
T3(Psq, V') on the interval U. Also ming V(s

ming V(s") on U. Thus

dT5(Paq, V')(s')

V'(z)=V(x)

V'(z)=V(x)

Vi (z)=V(x)
1 S< - @

—B8=>0.

dv’(x) V(2)=V () -
forall s € S, and
dT: (V") __d 5
dAV'(@) [viyevey V(@) lviwmvie)
. d
V(@) )=y

=0.
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(ﬁsaT,@(ﬁsaa V,) -

0 otherwise

B {1 s eSs U{r}
V/(2)=V () 0 otherwise

5 HTB(ﬁsav V/)

span>

(PeaTs(Poa V1) = BQs(Poa, V') + Brain V/(s'))

(PuaTs(Poa, V') = BV () + Bmin V/(s"))

,V) and also that Tﬁ(ﬁsa,V’)(x) =
V') in this case), so Tp(Psq, V')
) < V’(ac) on U, so ming V'(s') =

(PsaTﬁ(ﬁsav V/) - BQﬁ(ﬁsaa V/) + 6%}11 VI(S/)>

(PeaTs(Poa, V) = Qs (Puay V) + Brnin V("))



dTs(V')
dV'(z)

Next we calculate . First, letting T € R®, if V 5 [T] # 0 then (recalling P,isa
V/(2)=V(x)

row vector so PT is a column vector)

VT\/m =% \/VlivT (13T°2—(13T)°2>
oo [T
- ﬁ(ﬁi T (PT)F])
Poa
= e )
P.a
1Tlgun_ 5

_ II% llspan

< T

where the final inequality is elementwise and uses the fact that for any s, T(s') — Py, T <

(58)

maxgr T'(s") —mings T(s") = ||T|a,- Now we will combine this calculation with the chain rule to
lower bound ‘273,1(‘;/)) Ve Note that in light of (54), we only need to bound 27"?/((\;')) o)

when 71 (V) > T2(V) or equivalently when our fixed value of V() satisfies

\/ b [T5(Paa V)] > VB||T5(Poas V)|
Since we have already excluded the finite set of values of V' (x) where V(z) is equal to V' (s’) for
some other state s’ # x, the only way for Vﬁm [Tﬁ(ﬁsa, V)} = 0isif ﬁsa(ac) = 1, but in that

. (59)

span

case we have HTB(ﬁsaa V)
satisfies (59), we have

dTs(V')
dV'(x)

= 0 which contradicts (59). Therefore we can calculate that if V()

span

d
Vi@)=v(@ dV'(z)
€S

PoaT3(Pea, V) — 1/ BV 5 T Pog, V
v'<x>—V<x>< B \/’8 PM o )D

0 2 dT(Paa, V')(s")
= _ P T —./BV5 [T ) it A ALY
5 (3T(S’) T (") =T (Paa,V)(s") ( P, | ]) av'(z) V)=V (@)
=5 Pt - VT | TP V') (')
sa 7
s'eS ( T(s") TB(Paa»V)(S ) av (l‘) V/(z)=V(z)
HTﬁ(ﬁsaa V) D / ’
> Pu(s) = /B i p ooy | L Pea VI(S)
v’ (x) v/ (2)=V (z)

s'€S \/Vﬁm {Tﬁ(ﬁsavv)}

) dTﬂ(ﬁsaa V/)(Sl)
dV'(z)

V/(z)=V (=)

dT5(Pea,V')(s")

where the first inequality step is using the fact that V(@)

> 0 for all s’ (verified

V' (z)=V(x)
above in all three cases) and inequality (58), and the second inequality step uses (59). O

E.2 Auxiliary lemmas

Lemma E.1. If f : R — R is a continuous function that has a nonnegative right derivative for all
but finitely many points, then f is monotonically non-decreasing.
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Proof. We make the following claim: for a,b € R with a < b, if f : [a,b] — R is continuous on
[a, b] and has a nonnegative right derivative on (a,b), then f is monotonically non-decreasing on
[a, b].

We first prove the lemma assuming that the claim holds. Let f : R — R be a continuous function that
has a nonnegative right derivative for all but finitely many points. Let x,y € R satisfy x < y, and
denote by ay, ..., a,_1 the points in (z,y) where f either is not right-differentiable or has negative
right derivative. Also denote ag = x and a,, = y. By the claim, f is monotonically increasing on
[a;—1,a;] foreachi =1,...,n. Hence f(z) = f(ag) < f(a1) < --- < f(an) = f(y). Since x and
y were arbitrary, we conclude that f is monotonically increasing.

It remains to prove the claim. Let a,b € R with a < b, and let f : [a,b] — R be continuous on
[a, b] with a nonnegative right derivative on (a, b). Suppose towards a contradiction that there exist
x,y € [a,b] such that < y and f(x) > f(y). Since f is continuous, we can assume that z > a (if
x =awehave x + 9 < yand f(x 4 6) > f(y) for sufficiently small § > 0).

Now, set r := M < 0 and

z:inf{t ‘f o )<;}

Consider the case where z = x. f has a nonnegative right derivative at x, so there exists w € (z, y]
such that %{J;(”) > & forall t € (x, w]. However, this implies a contradiction:

z = inf ‘f )<f >w>x ==z
t—x 2

We next consider the case where z > x. Note that by continuity of f, the function g(¢) := w

is continuous on (z, y]. It follows that g(z) = % = 5. Indeed, if we had g(z) > £, then by

continuity of g there would exist § > 0 such that g(t) > & for t € [z, z + 0], which would imply that
z > z + 6. And by a similar argument, g(z) < § would imply z < z — 4.

At z the right-derivative is nonnegative, so there exists w € (z, y] such that %:(z) > 5 for all
t € (z,w]. Consequently, for all t € (z, w], we have

f(tiii(x):t_lx(f(t)—f(sz(z)—f(m))> L (7” )

which implies the following contradiction:

z=inf<t e ’f )<i >w > z.
t—x 2

O

Lemma E.2. Let f, g : R — R be differentiable at some x € R, and suppose f(x) = g(x). Then
¢ : R — R defined by ¢(t) = min{ f(t), g(t)} is right-differentiable at x, and its right derivative
satisfies ¢!, (x) = min{ f'(z), ¢’ (=

Proof. We first consider the case where f'(z) < ¢'(x). Since hmh_mw <

limy, M there exists some § > 0 such that f(”h,z [ g(Hh) 9) forall h € (0, 6).
Subsequently, since f(x) = g(x), we have f(z + h) < g(x + h) forall h 6 (0,9). It follows that
¢(x + h) = f(z+ h)forall h € (0,0), and thus

. (;5(33+h)—¢(3;‘)_ : f(m+h)_f(‘r)_ / o ’ /
Jim AEELZC i SEEREIE (o) — min{ [ (@), 9/ (@)

Next, the case where f’(z) > ¢’(z) is identical to the previous case except we swap the roles of f
and g.
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Finally, we consider the case where f'(x) = ¢’(z). Here we can even show that ¢ is differentiable at
x. Let {h, }nen be a sequence such that h,, — 0. To show that w — f'(z), fixe > 0.

Since M — f'(x) and M — ¢'(z), there exist N1, N3 € N such that

f(.’L‘—I-hn)_f(l')_

n>N — h f’(x)‘ <e
and "
n2N2 — g(l’+ }ZL) 79(1.) 79/(1,) <e

Taking N = max{N;y, N2}, we have for all n > N,
Qb(:E + hn) - ¢(I)

w2 f(a)
< ma { LRI | AR 290 g}

< max{e, e} = ¢,

where the first inequality holds due to f(z) = g(x), f'(z) = ¢’(x), and the fact that for each n, either
&z + hy) = f(x + hp) of (& + hy) = g(a + hy,). Thus, we have that 2EHI=0E) —y p7(y)
Since the sequence {h,, } ,en Was arbitrary, we conclude that

o @) = im DW= iy i (), (),
O

Lemma E.3. For any probability distribution 1. € RS and any B € [0, 1], the largest-(1— j3)-quantile
function

Qp(p, V") =sup{V"(x) 1z € S, Z u(z") > B}
2’ €SV (z') >V (x)

satisfies
|QB(M7 V) - QB(/’I/7 V/)| S ||V - V/Hoo
forany V,V' € RS.

Proof. First, we note that the definition of () can be written equivalently as
Qp(n, V") = sup { min V'(s'): ' C Sand Y u(s') > B} :
s'eS’

Without loss of generality we can assume that Qz(u, V') > Qg(u, V'), so it suffices to lower-bound
Qs(p, V). By the definition of Qs (s, V') (and the fact that S is finite so the supremum within its
definition is attained exactly), there exists some set S’ C S such that

— mi /
Qp(u, V) = min V(s')
and ), s p(s") > B. Therefore since
VI(s') 2 V() = IV = Vle 2 Qsli, V) = IV = V'l
for all s’ € S’, we have that

Qﬂ(:uvv//) > Qﬁ(/hV) - HV - V/Hoo
as desired. O

58



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All claims made in the introduction and abstract are substantiated in Section 3.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the work are discussed in the conclusion in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All theorems state all required assumptions, and proofs for all formal results
are provided in the appendices.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: There are no experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: There are no experiments requiring code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: There are no experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: There are no experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: There are no experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper does not have any direct negative societal impacts nor any potential
harms caused by the research process.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper is focused on theoretical aspects of offline RL and therefore there
are no immediate negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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