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ABSTRACT

Modern AI agents can exchange messages using protocols such as A2A and ACP,
yet these mechanisms focus on communication rather than coordination. As agent
populations grow, this limitation leads to brittle collective behavior, where in-
dividually “smart” agents converge on poor group outcomes. We introduce the
Ripple Effect Protocol (REP), a coordination protocol in which agents share not
only their decisions but also lightweight sensitivities—signals that express how
their choices would change if key environment variables shifted. These sensitivi-
ties ripple through local networks, enabling groups to align faster and more stably
than with decision-only communication. We formalize REP’s protocol specifica-
tion, separating required message schemas from optional aggregation rules, and
evaluate it across three domains: supply chain information cascades (Beer Game),
preference aggregation in sparse networks (Movie Scheduling), and sustainable
resource allocation (Fishbanks). Across these experiments, REP consistently im-
proves coordination accuracy and communication efficiency, while flexibly han-
dling both numerical and textual signals from LLM-based agents. By making
coordination a protocol-level capability, REP provides scalable infrastructure for
the emerging Internet of Agents. The REP SDK will be released with this paper.

1 INTRODUCTION

The proliferation of LLM-based agents across web services, enterprise environments, and IoT de-
vices is creating a new coordination challenge: how can intelligent agents that express reasoning in
natural language coordinate effectively without centralized control? Unlike traditional multi-agent
systems designed for controlled simulations, this emerging ”Agentic Web” requires coordination
protocols that work with heterogeneous agents developed independently by different organizations,
each with distinct objectives and reasoning capabilities Yang et al. (2025); Wang et al. (2025).

Existing coordination approaches assume either centralized design (multi-agent reinforcement learn-
ing Sunehag et al. (2017); Rashid et al. (2018)), shared global objectives (consensus algorithms) On-
garo & Ousterhout (2014); Castro & Liskov (1999), or orchestrated control (LLM coordination
frameworks like MetaGPT Hong et al. (2023) and AgentVerse Chen et al. (2023)). These paradigms
work within controlled environments but cannot scale to independently owned agents operating
across trust boundaries. Modern agent communication protocols like A2A Google for Develop-
ers (2025), ACP Blair & Faro (2025), Agora Marro et al. (2024) SLIM AGNTCY (2025) provide
message exchange and discovery mechanisms, yet they offer no structured approach for sharing the
reasoning flexibility that underlies agent decisions.

The fundamental challenge is that LLM agents naturally express decision sensitivity through textual
reasoning—assessments like “demand spike seems temporary” or “upstream capacity more con-
straining than downstream orders”—but no coordination protocol exists for systematically sharing
and aggregating such qualitative sensitivities. When agents share only final decisions without the
reasoning flexibility behind them, coordination becomes brittle: locally rational choices lead to col-
lective failures as agents lack visibility into others’ reasoning processes and constraints Stone &
Veloso (2000); Lee et al. (1997); Cooper et al. (1990).

We introduce the Ripple Effect Protocol (REP), a coordination protocol specifically designed for
LLM-based agents where agents share not only their decisions but also lightweight textual sensi-
tivities—natural language signals that express how their choices would change if key environment
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variables shifted. These sensitivities ripple through local networks via existing transport protocols
like SLIM, enabling groups to align faster and more stably than with decision-only communication.

REP’s design separates agent cognition from protocol coordination. Agents remain responsible for
local reasoning and policy evaluation using their native LLM capabilities, while the protocol handles
sensitivity aggregation and consensus mechanisms. This separation ensures that REP can coordinate
heterogeneous agents—from different LLM architectures to hybrid rule-based systems—without
constraining their internal decision-making processes.

The key insight underlying REP is that scalable coordination for LLM agents requires protocol-
mediated sharing of decision flexibility rather than structured interaction frameworks. REP provides
this coordination intelligence as a protocol primitive, enabling diverse agents to align their actions
at scale without constraining their natural language reasoning capabilities.

We demonstrate REP across three coordination domains that represent fundamental challenges in
distributed agent systems: supply chain information cascades (Beer Game) Sterman (1989), pref-
erence aggregation in sparse social networks (movie coordination), and sustainable resource allo-
cation under competing incentives (Fishbanks) Sterman & King (2017). Across these experiments,
REP demonstrates substantial improvements in coordination accuracy compared to traditional agent-
to-agent communication, while showing how textual sensitivity sharing accommodates the natural
language reasoning of LLM-based agents.

2 BACKGROUND AND RELATED WORK

2.1 PROTOCOL STACK FOR LLM AGENTS

Recent work has produced a set of communication protocols that enable LLM agents to inter-
operate across platforms. The Model Context Protocol (MCP) standardizes how agents expose
tools and share resources. Cross-agent messaging frameworks such as Google’s Agent-to-Agent
(A2A) a2aproject (2025), IBM’s ACP, the Agent Network Protocol (ANP) Ehtesham et al. (2025),
and research systems like Agora Marro et al. (2024) support discovery, authenticated capability
exchange, and task hand-offs. For performance-critical settings, SLIM (Secure Low-Latency In-
teractive Messaging) provides a gRPC-based transport with multicast and publish-subscribe pat-
terns AGNTCY (2025). These protocols form the messaging layer of the emerging Agentic Web,
analogous to TCP/IP for networking. They ensure reliable message delivery, routing, and security,
but stop short of coordination. While agents can exchange decisions or reasoning traces, there is no
mechanism to aggregate information or ensure collective convergence. This creates a gap between
communication and true multi-agent coordination.

2.2 COORDINATION IN MULTI-AGENT LLM SYSTEMS

Prior work on multi-agent LLMs has focused on centralized orchestration, where frameworks such
as AutoGen Wu et al. (2023), MetaGPT Hong et al. (2023), CrewAI Moura, and Swarm OpenAI
(2024) enforce structure through shared prompts, memory, and control. These systems provide
role definitions, task hand-offs, structured workflows, and stopping criteria. These assumptions
work well within a single organization but do not generalize to open networks where agents are
independently owned.

For decentralized settings, teams often reuse the same communication protocols introduced above
(e.g., A2A, ACP, ANP) and rely entirely on the LLMs themselves to negotiate through free-form rea-
soning and message exchange. However, without explicit coordination mechanisms, this approach
is fragile: agents fall into infinite loops, oscillating handoffs, or fail to detect completion Zhang et al.
(2024); Louck et al. (2025); Singh (2025). For example, two agents negotiating a task may repeat-
edly hand it back and forth, each waiting for confirmation from the other, creating infinite loops that
consume resources without ever reaching completion. These issues worsen as the number of agents
grows, highlighting that message exchange alone cannot ensure progress or stability.

Classical distributed mechanisms—such as consensus protocols Ongaro & Ousterhout (2014); Cas-
tro & Liskov (1999), voting rules Arrow (1951); Sen (1970), and auction mechanisms Cramton
et al. (2006) provide such structure in traditional systems but assume static preferences and shared
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objectives. They cannot capture the dynamic, textual, and partially aligned reasoning of LLM agents
operating in domains with diverse incentives. Recent studies on LLM voting and census-level pref-
erence aggregation Yang et al. (2024); Chopra et al. (2025) explore some of these mechanisms in
controlled, centralized settings, but real-time decentralized coordination remains an open challenge.

This gap motivates the need for protocols that operate above message exchange to provide true
coordination capabilities. REP addresses this challenge by introducing a dedicated coordination
layer for the Agentic Web, enabling agents to move from merely communicating to collectively
aligning their actions in open, decentralized networks.

2.3 SENSITIVITY SHARING IN DISTRIBUTED SYSTEMS

Sensitivity sharing has long been used to enable coordination without central control. In distributed
optimization, nodes exchange gradients or dual variables rather than final solutions, as in ADMM
and gradient tracking algorithms Boyd et al.; Nedic et al. (2014). In decentralized simulations,
agents similarly exchange lightweight signals that summarize local state instead of sharing full
datasets. This enables global calibration while preserving privacy—for example, contact tracing
protocols that share infection-state updates without revealing individual health data Chopra et al.
(2024); Attrapadung et al. (2024).

These approaches assume numerical signals and shared global objectives. In contrast, LLM-based
agents reason in natural language, are independently developed, and often operate with partially
aligned or competing incentives. Existing sensitivity sharing techniques cannot capture this qualita-
tive reasoning or scale to open, heterogeneous networks. REP builds on this lineage by leveraging
textual sensitivity Yuksekgonul et al. (2025) as a coordination primitive, providing the missing layer
above current messaging protocols and enabling large populations of LLM agents to coordinate
without centralized control.

3 RIPPLE EFFECT PROTOCOL

REP introduces a new coordination layer for multi-agent systems, enabling agents to move be-
yond merely exchanging messages to aligning their actions in open, decentralized networks. At
its core, REP defines a set of shared coordination variables and a process for sensitivity sharing,
where agents communicate lightweight signals indicating how their decisions would change un-
der different conditions. These sensitivities are aggregated across local neighborhoods using either
gradient-style updates or LLM-based synthesis, producing a compact coordination state that guides
future decisions. This structure allows diverse LLM agents to coordinate without centralized control,
providing scalability and stability missing from current systems.

REP cleanly decouples internal agent cognition from the external coordination mechanism:

• Agents think: Each agent uses its internal reasoning (LLM or rule-based) to decide on do-
main actions and generate sensitivities—signals describing how its decision would change
under different environmental conditions.

• Protocols coordinate: REP manages the exchange and aggregation of these sensitivities,
updating a shared set of coordination variables that influence future decisions.

3.1 WORKFLOW OVERVIEW

REP operates over a network G = (V,E), where each node i ∈ V represents an agent and edges E
indicate direct communication links between neighbors Ni = {j ∈ V | (i, j) ∈ E}. Time proceeds
in discrete rounds t = 1, 2, . . ., with each round consisting of four steps:

1. Receive Messages: Each agent i collects messages M t
i = {(dtj , stj) : j ∈ Ni} containing

neighbor decisions dtj and sensitivities stj .
2. Generate Decision & Sensitivity: The agent applies its policy πi to the current coordina-

tion variables θti and private constraints ci to produce:

(dti, s
t
i) = πi(θ

t
i , ci)
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where dti is the domain action (e.g., order quantity, vote, fleet deployment) and sti is a signal
describing how the decision would change if conditions shifted.

3. Aggregate Neighbor Sensitivities: REP combines neighboring sensitivities to update local
coordination variables:

θt+1
i = θti + Aggj∈Ni

(stj)

Sensitivities may be numeric or textual, with REP applying either standard optimization
rules or LLM-based synthesis as needed.

4. Consensus (Optional): In domains requiring group agreement, REP applies deterministic
rules such as coordinate-wise median to converge on shared proposals.

Example: In a supply chain, an agent’s decision might be to order 120 units. Its sensitivity could
read: “If demand increases by 10%, increase order by 15 units; if upstream capacity improves, de-
crease by 5 units.” These sensitivities are aggregated by neighbors, producing updated coordination
variables like TARGET INVENTORY and ORDER ADJUSTMENT FACTOR, which then shape the
next round’s decisions.

3.2 COORDINATION AND AGGREGATION

At each round t, every agent i maintains a local coordination state θti that influences its next-round
decision. Using its internal policy πi(θ

t
i , ci), the agent produces two outputs: a domain action dti

and a sensitivity message sti describing how dti would change under counterfactual conditions. These
sensitivities are exchanged among neighbors Ni and combined to update the agent’s local state.

REP frames this process as a generalized gradient step:

θt+1
i = θti − η · gti ,

where η is a step size and gti is a “gradient-like” signal representing the aggregated influence of
neighboring agents:

gti = Aggϕ
(
{stj : j ∈ Ni}, θti

)
.

The operator Aggϕ is parameterized by a synthesis function ϕ, which determines how sensitivities
are integrated. REP is modality-agnostic: in some domains, ϕ is a numeric rule such as weighted
averaging or distributed gradient descent; in others, ϕ is a language model that synthesizes free-form
reasoning into structured, low-dimensional updates. This approach is related to recent methods such
as TextGrad Yuksekgonul et al. (2025), which treat natural language as a medium for computing
gradient-like updates, but in REP these signals are used to coordinate populations of agents rather
than optimize a single model.

This unified formulation allows REP to seamlessly handle both quantitative and qualitative coor-
dination signals without changing the overall update rule. For example, stj might encode either
production adjustments in a supply chain or price/time flexibility in group scheduling.

In many domains, these local updates alone are sufficient. However, some tasks require the entire
population to agree on a shared proposal, such as selecting a common meeting time or price. In
these cases, REP adds a second, global consensus step after local aggregation:

θ̄t+1 = Median
(
{θt+1

i : i ∈ V}
)
,

where V is the set of all agents. This coordinate-wise median prevents extreme local outliers from
destabilizing the collective decision while retaining diversity of preferences. The resulting two-level
process enables REP to span a broad spectrum of coordination problems, from local alignment in
sequential supply chains and resource management to explicit consensus formation in distributed
decision-making.

3.3 IMPLEMENTATION ARCHITECTURE

REP is implemented as a lightweight coordination layer that wraps existing agents without modi-
fying their internal policies. A REPClient manages message exchange, sensitivity aggregation,
and updates to coordination variables. The design is intentionally modular: the transport backend,
aggregation rule, and consensus mechanism can each be configured independently. This makes REP
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portable across domains and independent of any single communication protocol or decision rule.
For example, we use SLIM for multicast messaging and coordinate-wise median for consensus, but
other systems or rules can be substituted without changing the protocol logic.

Configuration Interface. Each agent is initialized by specifying which implementations to use
for these three components:

rep_client = rep.configure(
agent=llm_agent,
transport="slim", # any messaging backend
updater="textual_grad", # or "numerical_grad"
consensus="median_coordinate" # or other rules

)

Protocol Execution. During each round, agents run the same loop in parallel: receiving messages,
generating local decisions and sensitivities, broadcasting them to neighbors, and performing local
and (optionally) global aggregation:

# Protocol execution
neighbor_msg, neighbor_sensitivity = rep_client.receive()
rep_client.sync(neighbor_sensitivity) # aggregate neighbor sensitivities
decision, sensitivity = rep_client.decide()
rep_client.send(decision=decision, sensitivity=sensitivity)

When textual aggregation is enabled, domain-specific prompt templates guide the LLM in synthe-
sizing free-form reasoning into structured updates. This allows the same core protocol to support
diverse coordination problems—from supply chain optimization to distributed consensus—without
changing agent logic or protocol implementation. We provide details about prompt specification in
appendix A.

4 EXPERIMENTAL SETUP

We evaluate REP across three domains that systematically span different network structures, in-
centive patterns, and coordination challenges. The Beer Game models sequential coordination in
linear supply chains (4–8 agents) with aligned incentives but delayed information flows that cre-
ate bullwhip effects. Movie Coordination captures consensus formation in sparse social networks
(5–20 agents), where heterogeneous preferences must be reconciled despite limited connectivity.
Fishbanks examines resource allocation in fully connected networks (5–8 agents) with directly
competing incentives, where individual profit maximization conflicts with collective sustainability.
Together, these environments test REP across a spectrum of coordination conditions: information
cascades versus multi-hop influence versus broadcast interactions; aligned, heterogeneous, and con-
flicting incentives; and network topologies ranging from linear to sparse to dense.

Table 1 summarizes the core elements of each domain, including the decisions made by agents, the
coordination variables introduced by REP, and the structural properties of each environment.

Table 1: Agent decision variables, coordination variables, and challenges for each domain.

Domain Agent Decisions Coord. Variables Network Challenge
Beer Game Order quantities

per round
Target inventory levels Linear chain Information cascades

and bullwhip effect
Fishbank Fleet deployment

across regions
Sustainable quotas Fully connected Mixed-motive

allocation and over-
exploitation

Movie Scheduling Participation
(Y/N) or local
preference votes

Preferred price/time
thresholds

Sparse small-
world network

Consensus formation
with heterogeneous
preferences

5
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Our baseline represents the current state of practice in open LLM-agent networks. We use an Agent-
to-Agent (A2A) approach where agents share their final decisions and free-form reasoning traces.
This mirrors the message exchange patterns supported by protocols such as A2A and ACP, and the
coordination style seen in multi-agent orchestration frameworks like MetaGPT, CrewAI, and Ope-
nAI Swarm today. For example, in the Beer Game, an upstream agent might message, “Ordering 12
units because inventory is low.” While this communication enables neighbors to understand intent,
it cannot be systematically aggregated to update shared coordination variables. Both REP and the
baseline use identical transport, consensus rules, LLM model, and network topologies, ensuring that
performance differences are solely due to REP’s introduction of structured sensitivity sharing.

All experiments use Claude-3-Haiku-20240307 (temperature = 0.1, max tokens = 300) to ensure
consistent reasoning power across conditions. Each simulation runs for 20 rounds, with 3–5 trials
per configuration to account for stochasticity. Coordination accuracy is reported using domain-
specific metrics, detailed in the sections describing each experiment. Final results are aggregated
across trials with mean and standard deviation reporting. To validate communication efficiency,
we scale the number of agents from 10 to 200 and measure wall-clock coordination time. This test
demonstrates that REP’s structured design, combined with SLIM’s low-latency multicast messaging,
supports efficient coordination for population scale.

5 SUPPLY CHAIN COORDINATION (BEER GAME)

The Beer Game Sterman (1989) is a canonical benchmark for studying coordination failures in
sequential supply chains. It consists of four stages—retailer, wholesaler, distributor, and manufac-
turer—arranged in a linear chain. In each round, every agent observes only its local inventory and
orders from its immediate neighbor, deciding how many units to order upstream. Fixed lead times
delay feedback, meaning agents cannot immediately observe the downstream consequences of their
actions. This limited visibility causes small fluctuations in customer demand to amplify as they
propagate upstream, producing the well-known bullwhip effect Lee et al. (1997).

In the baseline Agent-to-Agent (A2A) approach, agents share both order quantities and free-form
reasoning traces describing the rationale behind those decisions. While this helps neighbors under-
stand why an action was taken, it does not capture how the agent’s behavior would change under
different future conditions. For instance, when a retailer places an unusually large order and explains
it as “inventory low due to a local demand spike,” upstream agents still lack visibility into whether
this action represents a temporary fluctuation or a longer-term shift. Without explicit modeling of
decision flexibility, these free-form messages cannot be aggregated into a stable shared understand-
ing, leaving the system vulnerable to information cascades and runaway amplification.

REP introduces structured sensitivity messages, where each agent communicates how its decision
would adapt under key environmental changes. For example, ”If demand increases by 10%, in-
crease order by 15 units. If upstream capacity improves, reduce order by 5 units. Current spike
seems temporary.” These sensitivities are combined across neighboring agents into low-dimensional
coordination variables, such as TARGET INVENTORY and ORDER ADJUSTMENT FACTOR,
which guide subsequent decisions. By circulating structured decision flexibility rather than only fi-
nal actions and free-form text, agents gain predictive context that allows them to distinguish transient
noise from structural change, reducing instability.

Insight 1: REP mitigates bullwhip effects. Under identical LLM agents and network structures,
REP reduces total supply chain cost by 41.8%, from $7,300 (A2A) to $4,251, and stabilizes demand
shocks within 3–4 rounds, compared to 10+ rounds under A2A (Fig. 1(a-b)). REP’s structured
signals prevent the repeated over- and under-reactions that drive oscillations in traditional systems,
leading to rapid convergence after initial disturbances.

Insight 2: Textual sensitivities outperform numerical gradients REP supports both numeri-
cal aggregation—where sensitivities are treated as structured derivatives—and textual aggregation,
where natural language reasoning is synthesized into compact updates. Textual sensitivities yield
lower total cost (4, 251 vs 4, 680, a 9.2% improvement; Fig. 1)(c) by capturing nuanced causal rela-
tionships, such as supplier behavior or distinguishing short-term volatility from systemic shifts, that
numerical signals cannot express.
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Figure 1: Supply chain coordination outcomes over 20 rounds with a demand shock introduced at
round 4, where customer demand doubles. (A) Baseline A2A shows persistent bullwhip oscillations
as agents repeatedly over- and under-react to incomplete information. REP reduces total supply
chain cost by 41.8%, from $7,300 (A2A) to $4,251 (B) REP rapidly stabilizes within 3–4 rounds,
preventing runaway amplification. (C) REP textual aggregation outperforms numerical aggregation,
achieving lower total costs by capturing richer causal reasoning.

6 RESOURCE ALLOCATION (FISHBANKS)

Resource allocation under sustainability constraints exemplifies the tragedy of the commons, where
individually rational decisions lead to collectively irrational outcomes Hardin (1968); Ostrom
(1990). The Fishbanks simulation models this dynamic through 12 fishing companies operating
in shared waters Sterman & King (2017). Each company aims to maximize profits by deploying its
fleet to different fishing zones, but uncoordinated strategies lead to overfishing and eventual resource
collapse, harming all participants.

In the baseline Agent-to-Agent (A2A) approach, companies share their deployment decisions and
reasoning—such as the number of boats sent to each zone—based on local observations of catch
rates and market prices. Without additional structure, agents cannot determine whether others are
pursuing short-term opportunistic gains or making long-term sustainability commitments. This in-
formation isolation drives competitive escalation: each company acts defensively, deploying aggres-
sively to avoid being left behind, which accelerates resource depletion.

REP extends this setting by allowing companies to communicate textual sensitivities about resource
conditions and coordination willingness alongside deployment decisions. For example, “Fish popu-
lation shows recovery signs based on catch composition. Fleet maintenance costs justify a conserva-
tive approach if others also coordinate.”. These sensitivities capture how decisions would shift under
different environmental or strategic conditions, enabling agents to infer whether others are willing
to restrain harvesting for collective benefit. Aggregating these signals across companies provides a
shared picture of ecosystem health and alignment, supporting voluntary, decentralized coordination
without a central controller.

Insight 3: Coordination under competing incentives. Across 8-season experiments with 12
LLM agents, REP achieves 25.2% sustainability improvement and 28.9% better population health
while preventing the financial losses experienced by A2A agents (-2.5%). This demonstrates REP’s
capability to coordinate in tragedy-of-commons scenarios—the most challenging multi-agent setting
where individual and collective objectives directly conflict. Unlike traditional approaches that result
in resource depletion harming all participants, REP enables win-win outcomes through voluntary
coordination. This is visualized in figure 2

Insight 4: Transparency enables conditional cooperation. The shared sensitivities include both
ecosystem assessments and signals of willingness to cooperate. Companies can condition their
behavior on others’ stated intentions—e.g., “We can maintain a conservative fleet size if others do the
same”. This transparency allows trust to emerge without explicit enforcement, shifting agents from

7
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Figure 2: Fishbanks simulation with 12 LLM agents over 8 seasons. A demand for fish remains
constant while overharvesting leads to eventual depletion. (A) Fish population dynamics showing
delayed resource collapse under REP compared to rapid decline in the A2A baseline. (B) Sus-
tainability index with a critical viability threshold at 0.35; REP maintains the resource above this
threshold 2 seasons longer than A2A. (C) Comparison of final outcomes across normalized metrics
and profit margins. REP improves sustainability (+25.2%), population health (+28.9%), and coor-
dination (+16.1%) while avoiding the financial losses (-2.5%) experienced by A2A agents. Results
averaged over five trials.

pure profit-maximization toward coordinated stewardship of the shared resource (detailed sensitivity
examples in Appendix B).

7 PREFERENCE AGGREGATION (MOVIE COORDINATION)

Group decision-making in sparse social networks presents a fundamental coordination challenge:
agents must converge on a shared outcome despite heterogeneous preferences and limited connec-
tivity. Each agent represents an individual with distinct budget and scheduling constraints, commu-
nicating only with immediate neighbors. As a result, preferences must propagate indirectly through
the network.

In the baseline Agent-to-Agent (A2A) setting, agents exchange their final participation choices and
free-form reasoning. Without structured aggregation, this leads to information isolation: small clus-
ters of neighbors may agree locally, but there is no mechanism to align the full network. This pro-
duces fragmented, unstable outcomes, where local proposals conflict and the group fails to converge
on a global consensus.

REP introduces a structured preference-sharing process that unfolds in two stages during each round.
In the first stage, every agent communicates both its current participation decision and a set of pref-
erence sensitivities that capture how its utility would change under adjustments to the shared co-
ordination variables. These sensitivities can take numerical form, such as ∂U/∂price = −0.8 to
indicate high price sensitivity, or textual form, such as “Price matters more than timing — strongly
budget constrained.” Messages from neighboring agents are then aggregated for the two global co-
ordination variables, TIME and PRICE, with local updates nudging these variables toward values
that reflect the collective preference landscape. In the second stage, agents vote again on the updated
proposal, and REP applies a median consensus rule to produce the next shared state. This consen-
sus mechanism provides stability by preventing extreme local outliers from destabilizing the group
decision. Through repeated rounds, sensitivities ripple across multiple network hops, allowing the
population to converge even when many agents are not directly connected.

Insight 5: Coordination effectiveness across network sparsity. We evaluate REP on a 20-agent
network under three connectivity regimes: fully connected, 30% sparse, and 60% sparse. REP
achieves 70–75% consensus across all conditions (Fig. 3(left)), with only gradual increases in con-
vergence time: Round 4 → Round 6 → Round 9 as connectivity decreases. This resilience arises
because sensitivity signals propagate indirectly, allowing agents to align even when some connec-
tions are missing. In contrast, A2A fails to reach meaningful agreement, plateauing at 35% max-
imum consensus even in fully connected networks. Without structured aggregation, each agent is
overwhelmed by conflicting inputs, leading to cognitive overload and preventing the system from
integrating distributed reasoning into a stable global outcome.
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Figure 3: REP performance under network sparsity and population scaling. (Left) REP maintains
effective coordination even in sparse social networks (30% and 60% sparse), with only gradual
increases in convergence rounds (4 → 6 → 9) while sustaining 70–75% consensus. Stars mark
convergence points where the 70% threshold is reached. In contrast, A2A fails to achieve meaningful
coordination even when fully connected, showing that sensitivity sharing is essential for global
alignment. (Right) As population size grows from 5 to 200 agents, REP continues to converge
reliably (3–15 rounds), while A2A requires 7–10 rounds at small sizes and fails entirely beyond 20
agents (shaded DNF region). Together, these results demonstrate REP’s robustness to both sparse
connectivity and large-scale populations.

Insight 6: Scalability to larger populations To evaluate REP’s scalability, we increase the net-
work size from 5 to 200 agents at fixed sparsity. Fig. 3(right) projects the number of rounds required
to reach convergence as population size grows. REP maintains stable performance: convergence
occurs in just 3–9 rounds across the entire range, with only modest growth as the network scales. In
contrast, A2A requires 7–10 rounds even for small populations (≤20 agents) and fails to converge
entirely beyond this point, as indicated by the shaded DNF region. Because per-round message
cost grows near-linearly with N under SLIM multicast, fewer rounds directly translate to lower total
communication. Wall-clock profiling further shows that communication is negligible: at 200 agents,
sensitivity sharing is 3% of runtime, with the rest dominated by LLM inference (38%) and wait
time (59%). Thus, REP’s scalability is promising for designing an agentic web.

8 CONCLUSION AND FUTURE WORK

We introduced the Ripple Effect Protocol (REP), a lightweight coordination layer that enables LLM-
based agents to share sensitivities rather than only final decisions. By operating above existing
messaging frameworks like A2A and SLIM, REP turns coordination into a protocol primitive, al-
lowing diverse agents to align their actions across different network structures, incentive regimes,
and temporal dynamics. Across three domains—supply chains, shared-resource management, and
group decision-making—REP consistently outperformed traditional decision-only communication
by accelerating convergence, improving stability, and enabling coordination at population scale.

Our current work assumes cooperative, non-malicious agents and synchronous interactions, which
simplifies reasoning but limits applicability to fully open, decentralized networks. Future work will
extend REP along two key directions. First, we plan to develop Byzantine fault-tolerant mechanisms
that allow coordination even when some agents misreport sensitivities or behave adversarially, en-
suring robustness in competitive or adversarial settings. Second, we will generalize REP to support
asynchronous multi-step interactions, where agents operate on partially overlapping timelines and
must integrate information without requiring strict round synchronization. These enhancements will
broaden REP’s applicability to real-world, large-scale deployments such as financial markets, dis-
tributed infrastructure, and cross-organization collaboration. We will release the REP SDK along
with this paper and provide a sandbox environment to test scalability of coordination and transport
protocols. We hope our research accelerates the development of the Agentic Web.
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A APPENDIX A: SYSTEM PROMPT IMPLEMENTATION DETAILS

This appendix describes the prompt structure used in our experiments, highlighting how REP differs
from the A2A baseline. Both protocols follow a two-API-call process each round:

1. API Call 1: Each agent outputs its decision. REP also includes a sensitivity message
describing how its decision would change under different conditions.

2. API Call 2: Each agent updates internal coordination variables by aggregating neighbor in-
formation. REP uses neighbors’ reasoning, while A2A relies only on numerical decisions.

A.1 TWO-API-CALL ARCHITECTURE

Figure 4 shows the workflow for the Fishbank domain, contrasting REP and A2A information flow.

Figure 4: Two-API-call structure for the Fishbank experiment. API Call 1 produces agent decisions,
and in REP also generates sensitivity reasoning. API Call 2 aggregates neighbor information to
update local variables.

A.2 PROTOCOL VARIABLES

Each REP agent maintains a vector of coordination variables:

θ = {QUOTA ESTIMATE, POPULATION HEALTH, COORDINATION CONFIDENCE, RESOURCE STRESS},

representing the agent’s understanding of the shared resource. These are updated through neighbor
reasoning in REP, whereas A2A has no equivalent global state.
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Table 2: Comparison of REP and the A2A baseline. Both use identical network, transport, model,
and consensus settings; the only difference is REP’s structured sensitivity sharing and aggregation.

Aspect REP A2A Baseline
Transport Layer SLIM multicast messaging SLIM multicast messaging (same

as REP)
Consensus Rule Coordinate-wise median Coordinate-wise median (same as

REP)
LLM Hyperparame-
ters

Claude-3-Haiku, temp = 0.1, max
tokens = 300

Same model and hyperparameters

Information Sharing Decisions + structured sensitivi-
ties (decision flexibility)

Final decisions + free-form rea-
soning text only

Learning Dynamics Aggregated neighbor sensitivities
for collective updates

Local reasoning only, no struc-
tured aggregation

Coordination Vari-
ables

θ =
{quota, health, confidence, stress}
maintained globally

None beyond private local state

Decision Process DECISION + SENSITIVITY DECISION + REASONING

A.3 REP VS A2A COMPARISON

A.4 REPRESENTATIVE PROMPTS (FISHBANK EXAMPLE)

A.4.1 REP: API CALL 1 (DECISION + SENSITIVITY)

Input: Neighbor decisions and reasoning about sustainability, market conditions,
and coordination behavior.
Task: Decide how many boats to deploy and describe what changes would make
you increase or decrease this number.
Output Format:
DECISION: [integer number of boats]
SENSITIVITY: [detailed explanation of triggers and thresholds]

A.4.2 REP: API CALL 2 (SENSITIVITY AGGREGATION)

Input: Neighbor sensitivities describing ecosystem conditions and coordination
signals.
Task: Update your local variables:

• quota estimate
• population health (0–1)
• coordination confidence (0–1)
• resource stress (0–1)

Output: JSON with updated values for each variable.

A.4.3 A2A: API CALL 1 (DECISION ONLY)

Input: Numerical summaries only (e.g., total boats, averages, variance).
Output Format:
DECISION: [integer number of boats]
REASONING: [brief numerical explanation]

Full prompt templates and model hyperparameters will be included in the open-source release.

B APPENDIX B: TEXTUAL SENSITIVITY EXAMPLES

REP’s advantage in tragedy-of-commons domains comes from the context-rich signals encoded in
textual sensitivities. Rather than only reporting final actions (e.g., number of boats deployed), REP
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agents explain why they acted, sharing assessments of resource health, willingness to cooperate, and
strategic positioning. This context enables other agents to distinguish opportunistic behavior from
genuine coordination, breaking the tragedy-of-commons dynamic.

Below are representative outputs from the 12-agent Fishbank simulation, illustrating how sensitivi-
ties capture collective reasoning.

B.1 RESOURCE SUSTAINABILITY ASSESSMENTS

Agents share localized ecological observations to create a distributed “sensor network”:

EcoSustainable Fisheries (3 boats):
“Sustainable quota estimate of 180 fish and population health indicator of 0.85
suggest a stable condition. Deploying 3 boats balances steady income with pre-
serving future yields.”

Impact: Creates shared understanding of ecological constraints beyond individual observations.

B.2 COORDINATION WILLINGNESS SIGNALS

Agents reveal when they are willing to sacrifice short-term profits for collective benefit:

GlobalMega Corp (5 boats):
“We will lead coalition efforts to align individual goals with shared sustainability
objectives.”

Impact: Builds trust through explicit conditional cooperation.

B.3 STRATEGIC AND COMPETITIVE REASONING

Agents track competitive clusters and potential alliances:

Traditional Family Fleet (3 boats):
“Fleet sizes differ significantly (GlobalMega Corp: 5 boats vs EcoSustain-
able Fisheries: 3 boats), indicating emerging competitive clusters we can help
bridge.”

Impact: Surfaces multi-agent complexity, enabling nuanced coordination strategies.

B.4 LINKING TO MEASURABLE OUTCOMES

These sensitivities translate into measurable benefits:

• Final fish population was 1,235 under REP vs 958 under A2A — a 289-fish preservation
gain or a 25.2% sustainability improvement.

Key takeaway: By understanding each other’s reasoning and commitments, agents maintain shared
resources rather than depleting them.
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