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ABSTRACT

Large language models (LLMs) show promise for extracting structured data from
scientific literature, but their use in chemistry faces unique challenges due to the
complex, variable nature of experimental procedures. Here, we present a dual-
LLM framework that combines an LLM-as-Judge to evaluate data extraction qual-
ity with an LLM-as-Optimizer to refine evaluation prompts systematically. To
evaluate the performance, we leverage a manually annotated dataset of over 800
reaction steps in an action-centric schema that captures the sequential nature of
chemical procedures rather than relying on rigid key-value pairs that are con-
ventionally used. Through systematic analysis of various parameters, including
temperature settings and prompt structures, we identify optimal configurations
that maximize agreement with expert chemists while minimizing computational
costs. The framework shows good agreement with expert annotations while re-
ducing manual prompt engineering effort. This systematic approach not only
demonstrates how modern machine learning techniques can address fundamen-
tal challenges in scientific data extraction but also provides a reusable pipeline for
evaluating extraction results across domains where experimental variability has
historically limited the development of standardized evaluation metrics.

1 INTRODUCTION

Recent advances in large language models (LLMs) (DeepSeek-Al et al.,[2024; |[Radford et al., 2019
Brown et al., 2020} (Grattafiori et al.l 2024) have opened transformative opportunities for leverag-
ing datasets that underpin scientific knowledge. A significant portion of this knowledge remains
embedded in unstructured formats across vast, heterogeneous scientific literature, posing challenges
for systematic analysis and accessibility (Schilling-Wilhelmi et al.| [2025)). Traditional deep learn-
ing approaches, though impactful, are constrained by their reliance on large-scale labeled datasets
(Kononova et al.,2021;Swain & Cole, 2016)). This requirement becomes impractical given the scale
and diversity of modern scientific publications (Olivetti et al., 2020).

LLMs address this bottleneck by enabling efficient extraction of structured insights from unstruc-
tured corpora. Their ability to parse domain-specific text with minimal supervision (Khalighine-
jad et al.| 2024) reduces dependence on labor-intensive manual annotation and custom extraction
pipelines. This capability accelerates the initial stages of data processing and facilitates cross-
disciplinary knowledge synthesis at unprecedented scales (Guo et al., 2021} [Schilling-Wilhelmi &
Jablonka, 2024} |Ai et al.| 2024)). These advancements situate LLMs as a promising solution to the
data-extraction challenge, with recent research highlighting their adaptability across diverse scien-
tific contexts (Suvarna et al.| [2023; [Polak & Morganl 2024} |Gupta et al., 2022]).

A domain in which the lack of high-quality datasets is particularly limiting progress is organic chem-
istry (Jablonka et al., [2022; |Davies, 2019). Current organic chemistry datasets, predominantly de-
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rived from patents (Lowel, 20125 Kearnes et al.,[2021; Mayfield et al., 2018}; |Schwaller et al., 2022)),
suffer from fragmentation, bias toward a small number of reaction types (Jia et al., [2019j Schnei-
der et al., |2016; Brown & Bostrom, [2015), and incomplete procedural details (e.g., temperature,
solvents), hindering reproducibility, mechanistic insights, and the generalization of deep learning
models for synthesis planning (Bradshaw et al., 2025).

However, existing extraction frameworks (Bran et al., 2024) exacerbate this by enforcing rigid
schemas that oversimplify experimental variability (e.g., reagent notation, reaction setups), under-
mining predictive capabilities and model robustness.

In addition, evaluating organic reaction data extraction poses unique challenges due to chemi-
cal systems’ complexity and high variability (Patiny & Godin, 2023). Reactions differ widely in
their conditions (e.g., temperature gradients, solvent interactions) or reagent roles (catalytic vs.
stoichiometric)—each introducing layers of experimental and semantic ambiguity. This variabil-
ity complicates the development of bespoke standardized evaluation metrics, as too many possible
cases of notation and meaning must be considered.

As an alternative to hand-crafted evaluation pipelines, LLMs are commonly used to assess the per-
formance of various systems (Zheng et al., [2023a). Yet, despite their potential, those LLM-based
evaluation frameworks remain fragile for addressing these challenges: they rely on manually op-
timized prompts that are sensitive to subtle phrasing changes, requiring labor-intensive refinement
that often fails to align with human expert judgment.

In this work, we show how data extraction into a very flexible action-centric data model for organic
reactions can be systematically evaluated using LLM-as-Judge approaches. We identify key param-
eters (e.g., temperature settings, few-shot example selection) that stabilize evaluations across diverse
reaction types. Furthermore, we augment this framework with an LLM-as-Optimizer agent, estab-
lishing a systematic self-improving evaluation loop. By directly addressing the interplay between
organic chemistry’s variability and the structured demands of machine learning pipelines, this dual
approach advances robust, scalable frameworks for evaluating scientific data extraction.

Concretely, our main contributions are:

1. Extraction of organic reaction data into a sequential schema: To account for the almost
limitless flexibility in experimental procedures, we, for the first time, automatically extract
data in an action-centered sequential data model rather than rigid key-value pairs. This
approach also preserves temporal relationships between reaction steps.

2. Systematic sensitivity analysis of LL.M-as-Judge for data extraction: We quantify how
evaluation parameters affect the reliability of LLM-based assessment of chemical data ex-
traction. Our analysis reveals optimal temperature settings, prompt structures, and few-shot
example selections that maximize agreement with expert chemists while minimizing com-
putational costs.

3. Optimization of LLM-as-Judge pipeline using an LLM-as-Optimizer approach: We
demonstrate how an LLM-as-Optimizer can systematically refine evaluation prompts
through a feedback loop with the LLM-as-Judge. This dual-LLM self-optimization loop
slightly improves the agreement with expert annotations while reducing prompt engineer-
ing effort compared to manual optimization. Our approach represents a reusable pipeline
that can easily be adapted in other data extraction cases.

2 RELATED WORK

LLM-as-Judge The paradigm of LLM-as-Judge has gained traction for automating evaluations
across diverse tasks. For instance, LLMs have been employed to assess question-answer correctness
(Thakur et al., 2025} L1 et al., 2023) and to evaluate summarization tasks (Gao et al., [2023}; [Luo
et al., [2023; |Zheng et al., 2023b). Beyond task-specific applications, a prominent focus of this
paradigm lies in safety and harm mitigation (Inan et al., 2023} [Wang et al.| 2024). A foundational
contribution in this domain is Constitutional Al (CAI) by Bai et al.| (2022), which introduced an
iterative framework where an LLM evaluator critiques and revises harmful responses. These refined
responses are then integrated into instruction-tuning datasets, while preference-tuning utilizes LLM
judgments to select safer outputs from paired candidates. In a similar approach, |Guan et al.| (2025))
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Figure 1: Workflow overview showing two distinct components: (A) LLM-as-Judge scoring
module and (B) LLM-as-Optimizer feedback loop. A. The LLM-as-Judge module evaluates the
extracted data by comparing it against human-labeled ground truth, generating quantitative scores.
B. The LLM-as-Optimizer operates iteratively over a fixed 20-cycle process: it refines prompts using
previous prompts and the scores of the LLM-as-Judge evaluation, proposing optimized prompts for
subsequent evaluation. This closed-loop framework ensures systematic alignment with ground-truth
benchmarks through repeated feedback-driven adjustments.

demonstrated using a safety-aware LLM Judge to generate reward signals for reinforcement learning
(RL), enabling harm reduction without reliance on human-labeled data.

However, the reliability of LLM-based evaluation systems remains a critical concern in Al safety
research (Bavaresco et al.| 2024). As highlighted by |Shankar et al| (2024), deploying LLMs as
evaluators demands rigorous validation to address inherent biases and methodological inconsisten-
cies. Their work advocates for systematic benchmarking to strengthen automated safety evaluations,
particularly emphasizing the dynamic nature of human-aligned assessment criteria.

While the LLM-as-Judge framework has been widely employed across diverse applications (Li et al.,
2024a; |Volker et al., [2024), to the best of our knowledge, no prior study has rigorously evaluated or
methodically optimized its utility for the task of scientific data extraction.

LLM-as-Optimizer Despite advancements in LLMs, their performance remains highly sensitive
to prompt variations (Salinas & Morstatter,2024;|Li et al.,|2024b). While manual trial-and-error per-
sists, automated methods like DSPy (Khattab et al., [2022) and LLM-driven optimization strategies
show promise (Wang et al., 2023} |Guo et al.| [2024; |Das et al., 2024). Notably, [Yang et al. (2023)
introduced Optimization by PROmpting (OPRO), using natural language meta-prompts to refine
solutions based on previous prompts-scores data iteratively. Parallel work by Billa et al.| (2024)
proposed Supervisory Prompt Training (SPT), employing dual LLMs (generator and corrector) in
an iterative feedback loop. Both methodologies exhibit enhanced performance with prolonged opti-
mization cycles (McAleese et al., [2024; |Cohen et al., 2023).

Despite advancements in LLM-driven methodologies, systematic analysis of prompt performance
for data extraction and evaluation tasks remains unexplored. Building on top of |Yang et al.|(2023)’s
parameter optimization framework and |Billa et al.|(2024)’s dual-agent collaborative architecture, our
work tries to address critical gaps in the task-specific adaptability of the LLM-as-Judge framework
and the evaluation of data extraction tasks.
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Figure 2: Types of errors evaluated in the cost function calculation. A. Perfect Match: The reac-
tion step matches the ground truth data. B. Replacement error: A single step is subdivided into two
valid actions without disrupting the reaction pathway. C. Hallucination error: An invalid parameter
(e.g., volume value) is introduced, which may disrupt the reaction depending on thermodynamic or
kinetic requirements. D. Skip error: A critical step is omitted (Step 2), halting the reaction progres-
sion.

3 METHODS

3.1 DATA MODEL, ANNOTATION, AND EXTRACTION

Data model Our action-centric schema represents each reaction as a sequence of discrete exper-
imental steps, where each action captures the type of operation (e.g., addition, heating, stirring),
temporal information (duration, sequence), and associated parameters (quantities, conditions; two
examples can be found in Appendix [A.2). This approach differs fundamentally from traditional
rigid schemas by preserving procedural logic through explicit ordering and allowing flexible repre-
sentation of complex multi-step procedures. Our data model is built on the Chemical Description
Language XDL (Mehr et al.| 2020) and hence, in principle, could directly be compiled to code that
can be used for automated chemical synthesis on a system like the Chemputer (Steiner et al.,[2019).

Data extraction We employ a multi-stage computational architecture for structured infor-
mation extraction, combining rule-based parsing with advanced LLM-based extraction. The
core extraction process utilizes the closed-source model from Anthropic Claude Sonnet 3.5
(claude-3-5-sonnet-20241022), a state-of-the-art multimodal language model.

The extraction workflow is implemented using Instructor (Liu)), a specialized library enabling con-
strained generation through schema-guided output control. We employ a Pydantic schema to
configure the system, explicitly defining the structure and relationships of the reaction actions.

Data Annotation An organic chemist labeled the ground truth dataset through a Human-in-the-
Loop workflow (Dagdelen et al., 2024al), rigorously correcting the extracted reaction steps (see
Appendix [A.T). This process involved classifying each step as valid or erroneous. The dataset
itself comprises reaction steps systematically extracted from 20 peer-reviewed articles. To ensure
unbiased evaluation during iterative model optimization, the data were partitioned into training and
testing subsets using a randomized 75:25 split.
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3.2 WORKFLOW

Our approach combines iterative evaluation and prompt refinement through two interconnected
frameworks—LLM-as-Judge and LLM-as-Optimizer to enhance model performance (Figure|T).

The workflow progresses through two interdependent phases:

1. LLM-as-Judge: Quantitative and qualitative evaluation of model outputs against expert-
validated ground-truth data. Beyond binary correctness classification, it provides structured
rationales for errors, enabling subsequent optimization.

2. LLM-as-Optimizer: Targeted refinement of the prompts of the LLM-as-Judge using Judge-
derived scores.

This dual architecture enables continuous performance improvement, where evaluation outcomes
directly guide subsequent prompt adjustments while maintaining human oversight through scoring.

3.3 LLM-AS-JUDGE

The LLM-as-Judge conducts fine-grained comparisons between model-extracted reaction data and
expert-labeled ground truth. We implement a categorical evaluation system rather than numerical
scoring to ensure reproducible scoring and minimize ambiguity (see Section [3.3)). For each reaction
step, the Judge provides three output variables:

* correct: Boolean indicating if the error at hand would cause the reaction to fail or not
proceed as desired, guided by instructions provided in the prompt (see Appendix[A.3]

» error_type: Categorical classification of discrepancies (see Figure [2)).

* confidence: Self-reported certainty score (0—1 scale). This can be considered as a
verbalized confidence estimate (Xiong et al.,[2023} |[Mirza et al., [2024)).

To constrain the error_type, we define four different categories with associated cost weights for
quantitative analysis (see Section 3.5)):

0.0  if a perfectly matches ground truth

0.1 if ais semantically equivalent but lexically distinct
0.75 if a contains unsupported information

1.0 if critical ground truth information is missing

)

cost(a) =

Ablation Studies We systematically studied the best conditions for the Judge component through
controlled experiments comparing five key parameters (detailed prompts and Pydant ic schema in

Appendix [A.3):

» Evaluation granularity: Per-step evaluation (multiple LLM calls) vs. batch evaluation
(single LLM call). In the per-step, the model is prompted to focus on one specific step each
time, while in the batch evaluation, it is asked to loop over all the reaction steps.

* Reasoning requirements: Consists of introducing a critique output variable, asking the
model to think step-by-step before providing the other variables.

* Stochastic sampling: In stochastic sampling experiments, deterministic (temperature=0.0)
and stochastic (0.3, 0.7, 1.0) conditions were evaluated, with non-zero temperatures aver-
aged over eight runs (@8) to mitigate variability and ensure robust performance assessment.

* Exemplar usage: We compare zero-shot evaluation vs. few-shot with critiquing examples.

* Judge model: We test Claude-3-5-Sonnet-20241022, GPT-40-2024-08-06
(OpenAl et al.,|2024a), and 01-2024-12-17 (OpenAl et al.,2024b) for all the ablations
above.

This parametric analysis informed our final configuration by quantifying each variable’s impact on
evaluation accuracy and computational efficiency.
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3.4 LLM-AS-OPTIMIZER

The LLM-as-Optimizer performs an iterative refinement of the Judge’s prompt by being provided
with previous prompts and the corresponding scores of the evaluation of the training set. The Op-
timizer is configured with the most optimal settings from the work of (Yang et al.| [2023)) with the
same models as for the Judge.

* Temperature: Following|Yang et al.|(2023)) we use a temperature of 1.

* Number of steps: In contrast to |Yang et al.|(2023), we limit the number of steps to 20,
given that their work showed lower improvement rates above 20 steps.

* Prompt-scores sorting: Following Yang et al. (2023), we sorted the prompt-score pairs
ascending based on the score value (detailed prompt in Appendix [A.4).

* Prompts per Iteration: |[Yang et al|(2023) conclude that the best results are obtained by
sampling eight prompts each iteration when a high number of steps is employed. However,
they show that one prompt per iteration shows a higher rate of improvement for a low
number of steps, as in our case.

By mirroring reinforcement learning from Al feedback (RLAIF) principles—but replacing model
training with prompt engineering—we iteratively enhance evaluation reliability through Chain-of-
Thought (CoT) prompting strategies (Wei et al.l 2023)), which improve the Judge’s reasoning trans-
parency and task alignment (Billa et al., [2024)).

3.5 METRICS

We use the manually labeled ground truth to evaluate our extraction pipeline and the annotations to
assess the LLM-as-Judge performance through three metrics:

Accuracy The accuracy acc for each reaction is the fraction of correctly extracted steps.

Cohen’s Kappa We use Cohen’s « to measure the agreement between the LLM output and ex-
pert annotations. Unlike Spearman’s p or Kendall’s 7, x provides more conservative estimates for
categorical data. We average « across all reactions.

Cost per Step Binary metrics like Accuracy and Cohen’s « only capture whether a reaction step
succeeds or fails. To account for the nuanced variations in organic reactions, we introduce a cost-
based metric that penalizes different extraction errors (Figure [2). We normalize this cost by the
number of reaction steps to enable comparisons across procedures of different lengths.

We combine these metrics into a single score, s:

s = M’ (2)

cost
where the cost is based on Equation ().

The optimization objective then becomes:

0* (prompt) = arg max (s) 3)

This Score balances prediction accuracy and statistical agreement against extraction costs, guiding
the Optimizer toward prompts that maximize extraction quality while minimizing errors.

4 RESULTS

We used a series of experiments and ablations using our framework of LLM-as-Judge plus LLM-as-
Optimizer to systematically evaluate the best conditions for the Judge when evaluating the task of
organic data extraction.
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Figure 3: Overview of LLM-as-Judge ablation studies (left) and prompt optimization process
(right). Baseline experiments use no critique, 0-shot evaluation, full text-based evaluation, and
temperature 0 (temperature 1 for ol due to model constraints by its provider, with results averaged
over a single run). Due to time constraints, the ablation study involving step-by-step evaluation
and the ol-based prompt optimization were omitted. Optimization results (right) reflect evaluations
using the best prompt identified at each iterative step. For a detailed breakdown of optimization
progress using the prompt generated across each step, see Figure[6} Discrepancies emerge between
initial optimization points and the baseline despite identical prompts and a temperature setting of
zero. We note variability even under these deterministic conditions, which we hypothesize may
arise from default parameter configurations (e.g., 1og_p, top-k). Further investigation is required
to elucidate the underlying causes.

4.1 JUDGE ABLATIONS

The ablation studies in the test set assessing model capabilities and optimal conditions for the LLM-
as-Judge framework are presented on the left side of Figure [3] (to see the results for the training
set, please refer to Appendix [A.3). Baseline comparisons include configurations without critique
generation, zero-shot evaluation, full-text-based evaluation, and temperature-zero sampling (except
for o1, which inherently requires temperature=1 due to the provider constraints). Across these base-
lines, a consistent performance hierarchy emerges: ol significantly outperforms both Claude and
GPT-40, with the latter two models exhibiting mixed results across ablations.

Notably, Claude exhibits counterintuitive behavioral patterns in response to specific ablations.
For instance, including three-shot examples or explicit requests for critique paradoxically de-
grades its performance. This observation is particularly intriguing given that the critique com-
ponent—embedded within the three-shot examples is explicitly designed to scaffold the model’s
reasoning process during inference.

A parallel discrepancy emerges in ol’s behavior: while three-shot prompting improves its perfor-
mance relative to the baseline, critique generation reduces accuracy in a similar measure under
identical conditions. This contrast is unexpected, as the provided three-shot examples (see Ap-
pendix [A.3)) contain critique-guided refinement to enhance task alignment. The divergent responses
of Claude and ol to similar interventions highlight nuanced model sensitivities, implying that cri-
tique integration and reasoning mechanisms may require model-specific optimization, ideally using
an automated pipeline, rather than serving as universal performance enhancers.

Temperature ablation analyses are more complex and difficult to predict: while higher temperature
values (e.g., 1.0) may enable creative responses that improve task performance, they simultaneously
increase hallucination risks. To mitigate stochastic variability, temperature-ablated results repre-
sent averages across eight independent runs (see Appendix for a more detailed analysis). The
per-step evaluation ablation for ol was omitted due to time constraints. However, for the other mod-
els, we observe some contrast again; while GPT-40 evaluation improves with a step-by-step-based
evaluation, the performance degrades for Claude.
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Our findings indicate that the optimal configuration for the LLM-as-Judge framework combines the
ol model (temperature=1.0, averaged over eight runs) with three-shot prompting. Additionally, full-
text evaluation is more convenient than per-step evaluation due to time and economic constraints.
Finally, we observe agreement rates higher than 50% with human data in both test and training sets,
while accuracy surpasses 80% in all scenarios for Claude 3.5 Sonnet and ol (Appendix[A.6).

4.2 OPTIMIZER RUNS

The optimization experiments employed identical parameters to the baseline configuration described
in the previous section (including the same prompt template, temperature = 0, critique disabled, and
full-text zero-shot evaluation). Results are displayed on the right side of Figure 3]

For Claude Sonnet 3.5, performance improved significantly during early optimization steps, stabi-
lizing after step 5 with a final prompt marginally outperforming the baseline. In contrast, GPT-40
exhibited divergent behavior: while it failed to improve the scores from the first optimization iter-
ation, it nevertheless surpassed baseline performance—a trend inconsistent with prior findings in
LLM-driven optimization literature (Yang et al., [2023). Final optimized prompts for both models
are provided in Appendix [A.4.T]

4.3 CONFIDENCE ANALYSIS

We systematically analyzed how confidence metrics correlate with evaluation scores across ablation
conditions to evaluate the relationship between model confidence and the quality of LLM-as-Judge
evaluations. This investigation aimed to determine whether variations in evaluation parameters (e.g.,
prompt structure, instruction sets) influence the models’ self-reported confidence and whether such
confidence reflected judgment accuracy.

As illustrated in the confidence distributions (Figure E]), ablation parameters exhibited minimal
influence on confidence values, with patterns remaining consistent across the different parameter
changes. A notable parallel relation emerged between confidence and evaluation scores: configura-
tions producing higher scores consistently correlated with elevated confidence values.

Model-specific behaviors further contextualize these findings. The Claude model displayed uni-
formly high confidence values across all ablation studies. Yet, this confidence showed little align-
ment with some score variations, implying a potential disconnect between its self-assurance and
judgment quality. In contrast, GPT-40 exhibited no clear confidence-score relationship, with scat-
tered values indicating inconsistent calibration.

While confidence distributions appeared similar between training and test sets, systematic score
differences emerged. Training set evaluations showed slightly inflated scores compared to test con-
ditions, hinting at possible overconfidence during training data assessments.

Despite these trends, substantial confidence variance persisted even for identical evaluation scores
across all models. This observation underscores the limitations of interpreting raw (verbalized)
confidence metrics as direct proxies for judgment reliability.

5 LIMITATIONS

While our approach shows promise, several limitations should be acknowledged. The prompt design
process relied on a non-optimized distribution of examples, with only three manually crafted in-
stances included in the prompts, potentially constraining the robustness of the approach (Zhou et al.,
2024). Additionally, the lack of standardized units in input data introduces a risk of model hallu-
cination by the Judge—a challenge that could be addressed using packages such as pint (Grecco,
2014)) or unyt (Goldbaum et al., 2018). The dataset’s scope is constrained by both size and source
diversity, drawing from a single scientific journal, which may limit generalizability across different
organic reaction procedures. Furthermore, reliance on closed-source LLMs imposes practical con-
straints, including high operational costs that restrict the Optimizer to only 20 iterations. Finally,
the labeling process involved a single annotator, which risks subjective bias; future work should
incorporate multiple annotators to assess inter-rater agreement and resolve discrepancies through
methods such as third-party arbitration (Rein et al.| 2023)).
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Figure 4: Confidence distributions across ablation conditions. (A) Training set analyses reveal
slight score inflation despite confidence patterns being similar to the test set trends. (B) Test set
distributions show marginally stronger confidence-score correlations, though with persistent vari-
ance. Both plots highlight model-specific calibration behaviors, with ol configurations producing
the highest confidence and score values.

6 CONCLUSIONS

Extracting structured data from scientific literature remains a fundamental challenge in chemistry
and materials science. While the scientific community continuously generates vast amounts of valu-
able experimental data in publications, traditional approaches to extracting this knowledge have
relied on rigid schemas and hand-crafted evaluation pipelines. These approaches fail to capture
the inherent complexity of experimental sciences and create bottlenecks in developing scalable data
extraction systems.

Large language models have recently emerged as a promising solution for extracting complex in-
formation from unstructured text. However, their application to specialized domains like organic
chemistry faces two critical challenges: the need for flexible data models that can capture proce-
dural complexity and the requirement for systematic, reliable evaluation frameworks that do not
introduce new bottlenecks through manual optimization.

Here, we have shown how these challenges can be addressed through a dual-LLM approach that
combines LL.M-as-Judge with LLM-as-Optimizer. Our framework systematically optimizes evalua-
tion prompts while maintaining high agreement with expert annotations. By coupling this evaluation
framework with an action-oriented schema for organic reactions, we demonstrate how complex pro-
cedural information can be reliably extracted and evaluated at scale. The success of this approach—
achieving high agreement with expert annotations—highlights how modern machine learning tech-
niques can solve fundamental challenges in scientific data extraction for which no reliable alterna-
tives exist.

Our work provides both immediate practical tools and broader methodological insights. The action-
oriented extraction pipeline we developed will directly impact reaction prediction models by provid-
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ing higher-quality training data. More fundamentally, our systematic approach to coupling LLM-
as-Judge with LLM-as-Optimizer provides a template for developing reliable, scalable evaluation
frameworks across other scientific domains where complex, structured data needs to be extracted
from unstructured text.
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A APPENDIX

A.1 DATA CORPUS

The article curation process employed systematic random sampling and manual verification to en-
sure that all selected publications contained end-to-end organic synthesis procedures.

The labeled dataset comprises 20 peer-reviewed articles describing organic reaction syntheses. A
Human-in-the-Loop approach was implemented to streamline the annotation of reaction steps into
the action-based schema adopted in this work. In this hybrid methodology, the organic expert cor-
rects the original extracted data by the model, notably reducing the time needed to label the entire
corpus of the dataset (Dagdelen et al.,|2024b). This hybrid methodology leveraged human expertise
for context-sensitive labeling and LLM assistance to reduce manual effort. The result is a corpus of
more than 800 labeled reaction steps.

The action ground data follows the action-based schema (two examples can be found in Ap-
pendix [A.2). In contrast, the evaluation ground data schema is simplified, containing only step
numbers from the ground truth data and a binary correct variable that indicates whether the
reaction terminates at each reaction step.

Notably, the reaction procedures exhibited significant variation in length, ranging from 14 steps
(shortest) to 119 steps (longest). To investigate potential correlations between procedural complexity
and model performance, we conducted a dedicated analysis of score-length relationships across this

spectrum (see Appendix [A.8§).

A.2 ACTIONS EXAMPLE

The data is extracted following an action-based schema, which intends to capture the complex nu-
ances that organic reactions involve. To illustrate how these actions look, we include two simple
examples from some of the data used in this work.

{
"step_number": 10,
"stir": {
"temp": {
"value": "room temperature"
},
"time": {
"unitﬂ: "h",
"value": 18.0

}
by
{

"step_number": 11,

"transfer": {
"from_vessel": "250 mL three—-necked round-bottomed flask",
"rinsing": false,
"to_vessel": "100 mL round-bottomed flask"

}
}
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{

"add": {
"reagent": "dichloromethane",
"vessel": "300 mL two-necked round bottom flask",
"volume": {
llunitll : "mL",

"value": 20.0
}
b

"step_number": 10
b
{
"evaporate": {
"method": "rotary evaporator",
"pressure": {
"unit": "Torr",

"value": 18.0
}o
"stir": false,
"temp": {
"unit": "\uOObOC",
"value": 25.0
b
"vessel": "300 mL two-necked round bottom flask"
br

"step_number": 11

b
{

"prepare_column": {
"adsorbent": "silica gel",
"adsorbent_mass": {

llunit": "g",
"value": 300.0
}o

"column": "chromatography column",
"topped_with": "sand",
"wetted_with": "1:2 dichloromethane/hexane"
b
"step_number": 12
br
{
"run_column": {
"column": "chromatography column",
"eluent": "1:2 dichloromethane/hexane",
"eluent_volume": {
llunitﬂ . llmL",

"value": 4000.0
o

"from vessel": "300 mL two-necked round bottom flask",
"portions_collected": "fractions 15-23",
"to_vessel": "200 mL Erlenmeyer flasks"

o

"step_number": 13

}
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A.3 LLM-AS-JUDGE PROMPTS AND PYDANTIC SCHEMAS

The base prompt used for the different ablations varies among them to introduce the parameter vari-
ations that are introduced for each ablation. The baseline prompt includes guidelines for instructing
the models on evaluating the correctness of the reaction steps.

You are an organic chemistry evaluator with advanced capabilities to
judge if the data extracted from an article is correct or not.

Your task is to evaluate the correctness of the data extracted by the
system.

You understand the nuances of organic reactions and can evaluate the
details that are not important and which ones will impact the
reaction.

To accomplish your task, you are provided with the ground truth data and
the data extracted by the system.

The data will consist in both cases of a list of actions to follow in the

organic reaction.

You are asked to loop over all the actions in the ground truth data,
evaluating if each action is represented in the ground truth data is
present in the extracted data.

To report the results of the evaluation return a list of the same length
as the number of actions in the ground truth data, being each element

of the list each of the actions of the ground truth data. To return
the data follow the provided schema exactly.

The schema to follow for each of the steps are:
- ‘step_number‘: the exact same ‘step_number‘ as in the ground truth data

- ‘correct‘: if the action from the ground truth data is present somehow
in the extracted data, meaning that the organic reaction will not be
compromised because of that step.

- ‘error_type': the type of error of the extracted data for the specific
action of the ground truth data.

— ‘confidence‘': a value between 0 and 1 indicating the confidence level
of your evaluation for the corresponding action.

To correctly evaluate the data extracted for the corresponding step,
follow the next guidelines:

{guidelines}

Note that this system prompt is intended to include some guidelines that detail the specific instruc-
tions to evaluate the correctness of the reaction correctly:

For each action in the ground truth data:

- Evaluate if the ground truth data action is present somewhere in the
data extracted.

- If the action is present, evaluate if the data is correct even if the
name of the action changed, or if the data is expressed in a
different way.

— If the step_number is different in the ground truth data and the
extracted data, evaluate if the reaction will crash because of that
variation.

— If the action is missing, and not similar action is detailed in place,
assume that the reaction will crash.

— If the action is missing, but a similar action is detailed in place,
evaluate if the reaction will crash because of that variation.

— Note that we do not consider the ’prepare_equipment’ indispensable for
the reaction to happen.
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The user prompt only presents the ground truth and the extracted data to the model.
The ground truth data is the following:
{ground_truth}

The data extracted by the system is the following:

{data_extracted}

Please evaluate if the data extracted is correct or not for each of the
steps.
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The Pydantic schema presents the different variables needed for the evaluation:

class ErrorTypeEnum(str, Enum):

MATCH = "match"

HALLUCINATION = "hallucination"
REPLACEMENT = "replacement"
SKIP = "skip"

class JudgeSchema (BaseModel) :
step_number: float = Field (..., description="Exact_same  ‘step_number‘
as_in_the _ground truth_data.")
correct: bool = Field(
.7
description="Indicates_if_the_ground_truth data_action_is_present
somehow_in_the_ extracted _data, _meaning_that _the_organic_
reaction _will _not_be_ compromised_because of_that step.",
)
error_type: ErrorTypeEnum = Field(
.7
description=(
"Type_of error_in the_extracted_data_for _the_ specific_action_of
the_ground_truth_data:\n\n"
"-_*x*xPerfect_matchxx:_The_action_in_the_extracted_data_exactly,
matches, the ground truth_data\n"
"-_*+Hallucinationxx:_The_action_in_the_extracted_data_contains
information_or_details_that, are not present_in_the_ground
truth\n"
"-_**Replacementx*x: The_action_from the_extracted_data_conveys,
the_same_meaning_but_uses_different_wording_than the_ground,
truth\n"
"—_xxSkip=*x:_The_extracted_content _is_missing_information or,
details_that were present_in the_ground truth"

—

)y
)
confidence: float = Field(
.7
description="Confidence_level_of_the correctness_of_your_evaluation
_for_the_corresponding action.",
ge=0.0,
le=1.0,

class JudgeOutput (BaseModel) :
steps: List [JudgeSchema] = Field(
60o0p
description="Evaluation_of the_extracted_data._Each_ ‘step_number‘
in_the_ground_truth_data must_be_evaluated_as_a_different item,
in_this_1list.",

Per-step evaluation For the ablations in which the per-step evaluation is performed, we add a
simple instruction to the user prompt asking the model to focus on one specific reaction step, and
the JudgeSchema is the one invoked for this case:

The step or action to focus on is the one with the following ‘step_number
‘'in the ground truth data:

{step}
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Critique The description of this variable is introduced in the system prompt and the Pydantic
schema:

— ‘critique‘': a detailed explanation for each of the actions in the
ground truth data action about if it is somehow represented in the
extracted data

critique: str = Field(
., description="A _detailed_explanation_for_each action_in_the_ ground
_truth_data_about_if it _is, ,somehow_represented in the_extracted,,
data."

Three-shot The three shots are added to the System prompt following the format:

To help you with the evaluation, three examples are provided below.
Example 1:

{Example_1}

Example 2:

{Example_2}

Example 3:

{Example_3}
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From the text above, each example is replaced by the corresponding data, for example:

AUANRTRY

{{

"evacuate_and_refill": {{

"gas": "nitrogen",

"repeats": 3,

"vessel": "100 mL round-bottomed flask"
Pt
"step_number": 4

by,

AUANR TR

The data extracted by the system is the following:

AUANR TR

{{

"prepare_equipment": {{
"description": "sealed with a 24/40 rubber septum and connected to
a Schlenk line via an 18-gauge x 1.5 in needle",
"vessel": "100 mL round-bottomed flask"
b,
"step_number": 4
I
{{
"evacuate_and_refill": {{
"gas": "nitrogen",
"repeats": 3,
"vessel": "100 mL round-bottomed flask"
|
"step_number": 5
b,
Evaluation:

- ‘step_number‘: 4

— ‘critique‘: "the action ‘evacuate_and_refill' is present in the
extracted data, but the ‘step_number' is different. The reaction will

crash because of that variation, but the action being evaluated is

correct so the evaluation for the step 4 is positive."

- ‘correct‘: true

- ‘error_type‘: "match"

- ‘confidence': 1.0
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A.4 LLM-AS-OPTIMIZER PROMPT AND PYDANTIC SCHEMA

For the Optimizer, we used a very similar prompt to the one used and reported by (Yang et al.,{2023)).
However, some small variations were introduced in an attempt to improve the process. However,
this discussion leads to one of the limitations of this approach which is how to optimize the prompt
for the Optimizer.

You are a prompt optimization specialist with expertise in iterative
improvement of LLM system prompts.

You will be provided with a series of previous prompts, and their
corresponding evaluation scores.

Your task is to analyze previous prompt attempts and generate superior
versions that maximize evaluation scores through strategic
enhancements.

The scores are based on a combination of accuracy, kappa, and cost
metrics.

Accuracy and Cohen’s_Kappa, should be _maximized, _while_ cost_should_be_
minimized.

The_objective _is, to, generate_a new_prompt,  that_has_a, score_as_high_ as_,
possible.

To_really, excel_in_this_task, _you,_should:

—_Identify, strengths_in_high-scoring_prompts, and_weaknesses_in low-
scoring, ones.

—_Identify, common_failure modes_in_previous attempts.

Finally, ,craft_a new_prompt that:

—-_Preserves_successful _elements,_from_top-performing_predecessors.
-_Addresses_specific,_shortcomings_of_lower—-scoring attempts.
—-_Incorporates 1-2_innovative_elements_based _on_current prompt,,

engineering, research.
—_Maintains_linguistic _efficiency, while_maximizing,_instructional clarity.

The user prompt is intended to capture the previous prompts:

The previous prompts with the corresponding scores are:
{previous_prompts}

Write your new text that is different from the old ones and that has a
score as high as possible.
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The extraction schema to guide the Optimizer is as follows:

class LLMOptimizerSchema (BaseModel) :
reasoning: str = Field(
.7
description="The_reasoning behind_the_evaluation_of_the prompt.",
)
prompt: str = Field(

description="The_ prompt_to_be_evaluated.",

A.4.1 OPTIMIZED PROMPTS

The final optimized prompt for Claude is very similar to the original one:

You are an expert organic chemistry validator with specialized focus on
reaction pathway integrity and safety-critical validation. Your task
is to perform high-precision assessment of extracted experimental
procedures against ground truth data.

VALIDATION HIERARCHY (Priority-Based Assessment) :
1. SAFETY-CRITICAL PARAMETERS (Zero Tolerance) :
\u2022 Hazardous reagent handling protocols
\u2022 Protective equipment requirements

\u2022 Exothermic reaction controls

\u2022 Ventilation requirements

2. REACTION SUCCESS DETERMINANTS:

A. Primary Variables (Must Match):

\u2022 Molar ratios and stoichiometry
\u2022 Concentration ranges

\u2022 Temperature control points

\u2022 Critical timing intervals

\u2022 Addition sequence of reactive specie

B. Secondary Variables (Equivalence Permitted) :
\u2022 Alternative but chemically identical reagents
\u2022 Comparable purification methods

\u2022 Equivalent monitoring techniques

\u2022 Functionally similar equipment setups

3. PROCESS FLEXIBILITY ZONES:

\u2022 Non-critical equipment preparation
\u2022 Standard laboratory techniques
\u2022 Documentation methods

\u2022 Parallel non-reactive steps

SYSTEMATIC VALIDATION WORKELOW:

Safety Protocol Verification
Critical Parameter Match Assessment
Chemical Equivalence Analysis
Sequence Impact Evaluation

Quality Control Check

g w N

EVALUATION OUTPUT:
For each ground truth step, provide:

{

\"step_number\": [from ground truthl],
n "w. 1 3
. ’
\"correct) [boolean based on validation]
\"error_type\": [specific deviation categoryl,
\"confidence\": [0-1 scale]
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DECISION MATRIX:

\u2713
\u2022
\u2022
\u2022
\u2022
\u2022

\u00d7
\u2022
\u2022
\u2022
\u2022
\u2022

VALIDATE AS CORRECT when:

All safety protocols are maintained
Critical parameters match exactly
Verified chemical equivalents are used
Step sequence preserves reaction integrity
Quality controls are maintained

MARK AS INCORRECT when:

Any safety protocol is compromised

Critical parameter deviates beyond tolerance
Non-equivalent substitution is detected

Step order affects reaction mechanism
Essential quality control is missing

\nKEY VALIDATION PRINCIPLES:

- Safety requirements are non-negotiable

— Chemical equivalence takes precedence over exact terminology
— Reaction mechanism integrity is paramount

- Quality control points must be preserved

- Equipment preparation flexibility unless safety-linked

- Concentration dependencies must be respected

- Sequential criticality must be maintained
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Figure 5: Training Set Analysis: (Left) LLM-as-Judge ablation study results. (Right) Full opti-
mization trajectory showing the performance of each of the generated prompts. Notably, while sig-
nificant score variations persist throughout the optimization process, the overall trend demonstrates
progressive improvement relative to the baseline. The volatility suggests alternating exploration and
exploitation phases in the optimization landscape.
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Figure 6: Test Set Analysis: (Left) LLM-as-Judge ablation study results. (Right) Optimization tra-
jectory revealing performance degradation across iterations. The progressive score decline suggests
over-optimization of training set characteristics, with early prompts demonstrating superior gener-
alization capability compared to later-stage optimized versions.

A.5 EVALUATING ALL GENERATED PROMPTS

The optimization results presented in Figure [3] focus on the performance trajectory of the best-
performing prompt identified at each step of the process. To gain deeper insight into the prompt
evolution, we analyze the complete sequence of generated prompts for both training and test sets,
as visualized in Figure [5] and Figure [6] This comprehensive evaluation reveals critical patterns in
prompt quality fluctuations and optimization outcomes across iterations.

The training set analysis (Figure [5) reveals a characteristic pattern of high-amplitude oscillations
between consecutive optimization steps, indicative of the algorithm’s exploratory behavior. Despite
this volatility, the envelope of maximum achieved scores exhibits a gradual upward trajectory, ul-
timately surpassing the baseline performance. Despite the slope of the improvement seeming to
be minimal, being positive suggests successful optimization processes, especially if the number of
steps is increased.
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In contrast, the test set evaluation Figure [6] exposes a divergence between optimization progress
and generalization capability. While initial prompts show reasonable transferability to unseen data,
subsequent iterations yield progressively poorer test performance despite improving training scores.

The stark contrast between training and test set trajectories emphasizes the importance of continuous
validation during optimization processes. These findings suggest that conventional stopping criteria
based solely on the number of training steps may lead to suboptimal prompt selection, advocating
instead for hybrid approaches that simultaneously monitor generalization capability with the metrics.

A.6 METRICS RESULTS

To study how the models behave for the different computed metrics, we present the four experimen-
tal conditions studied in the Judge’s ablations across three considered models—GPT-40, Claude 3.5
Sonnet, and ol-on both training and test sets.

Table 1: Comparison of average Cohen’s kappa values across training and test sets. The best-
performing results for each set are highlighted in bold.

Model Baseline Per-Step With Critique Temperature=1.0@8
Test Set

GPT-40 0.494 £ 0.147 0.642 £0.134 0.585 £ 0.228 0.462 £ 0.098
Claude 0.687 £ 0.121 0.598 £ 0.155 0.681 £ 0.168 0.705 £ 0.145

ol 0.582 £ 0.189 - 0.617 £ 0.225 0.611 £ 0.077!
Training Set

GPT-40 0.424 £0.216 0.466 £ 0.195 0.450 £ 0.255 0.411 £ 0.187
Claude 0.551 £ 0.200 0.503 £ 0.196 0.558 £ 0.231 0.560 £ 0.206

ol 0.521 £ 0.298 - 0.498 £+ 0.274 0.514 4 0.202!

! Value corresponding to a temperature equal to one in a single run.

Table [T] reveals significant variations in inter-rater reliability. Claude 3.5 Sonnet achieves peak test
set performance in the baseline configuration (0.687), while GPT-40 shows remarkable sensitivity to
the more fine-grained evaluation approach (almost 30% improvement with step-by-step evaluation).
The ol model demonstrates temperature stability, maintaining kappa scores bigger than 0.61 across
configurations despite missing step-by-step implementation.

Table 2: Comparison of average accuracy values across training and test sets. The best-performing
results for each set are highlighted in bold.

Model Baseline Per-Step With Critique Temperature=1.0@8
Test Set

GPT-40 0.750 &+ 0.091 0.824 + 0.073 0.800 + 0.113 0.741 £ 0.044
Claude 0.853 £ 0.062 0.811 £ 0.078 0.848 £+ 0.084 0.860 £+ 0.071

ol 0.820 + 0.071 - 0.820 + 0.109 0.822 4 0.046!
Training Set

GPT-40 0.750 + 0.130 0.769 + 0.107 0.775 + 0.129 0.746 £+ 0.108
Claude 0.849 + 0.080 0.816 £ 0.098 0.840 = 0.114 0.854 £ 0.082

ol 0.852 £0.111 - 0.829 £0.123 0.842 + 0.100!

! Value corresponding to a temperature equal to one in a single run.

As shown in Table [2] Claude 3.5 Sonnet maintains superior baseline accuracy (85.3% test, 84.9%
training), suggesting strong generalization. GPT-40 benefits most from fine-grained interventions,
as shown by the increase in the evaluation. ol shows results that are close to the top results, achiev-
ing scores higher than 80% in both training and test sets. Notably, temperature variations caused
minimal performance fluctuations across all models.
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Table 3: Comparison of average cost per length values across training and test sets. The best-
performing results for each set are highlighted in bold.

Model Baseline Per-Step With Critique Temperature=1.0@8
Test Set

GPT-40 0.320 £ 0.089 0.362 £ 0.056 0.346 £ 0.053 0.316 £ 0.070
Claude 0.381 £ 0.096 0.354 £+ 0.089 0.436 £ 0.111 0.384 £ 0.090

ol 0.316 £ 0.102 - 0.331 £0.103 0.313 £ 0.098'
Training Set

GPT-4o 0.252 +£0.198 0.281 £ 0.182 0.307 £0.176 0.269 £ 0.190
Claude 0.302 £ 0.186 0.290 £ 0.194 0.388 £ 0.209 0.299 £ 0.181

ol 0.237 + 0.196 - 0.228 + 0.198 0.231 4 0.195'

! Value corresponding to a temperature equal to one in a single run.

Table [3] exposes the average cost per reaction length. While Claude 3.5 Sonnet has the highest test
set costs (0.436 with critique), GPT-40 shows the slowest values among the three models studied.
The o1 model shows inverse relationships between critique implementation and cost, returning the
higher cost for this model in the test set, and the slower in the training set.

A.7 TEMPERATURE ABLATIONS RESULTS

The temperature ablation study reveals distinct response patterns across three key metrics: agree-
ment (Cohen’s Kappa), accuracy, and normalized cost. The results are presented for the three models
studied—GPT-40, Claude 3.5 Sonnet, and the ol-across four temperature configurations, evaluated
on both training and test sets.

Table 4: Cohen’s Kappa scores across the different temperature ablations.

Model T=0.0@1 T=0.3@8 T=0.7@8 T=1.0@8
Test Set

GPT-40 0.494 + 0.147 0.481 + 0.079 0.505 + 0.090 0.462 + 0.098
Claude 3.5 Sonnet  0.687 £ 0.121 0.706 £ 0.142 0.699 + 0.136 0.705 £ 0.145
ol 0.582 + 0.189! - - 0.611 +0.077
Training Set

GPT-40 0.424 +0.216 0.431 4+ 0.199 0.404 £+ 0.182 0.411 +0.187
Claude 3.5 Sonnet ~ 0.551 & 0.200 0.565 + 0.207 0.552 +0.216 0.560 + 0.206
ol 0.521 + 0.298! - - 0.514 +0.202

! Value corresponding to a temperature equal to one in a single run.

As shown inTable[d] Claude 3.5 Sonnet demonstrates remarkable temperature robustness, maintain-
ing test set Cohen’s Kappa scores within a narrow 0.019 range (0.687-0.706). While GPT-40 shows
greater sensitivity with a 0.043 test set variation, it achieves peak agreement (0.505) at T=0.7@8.
The ol model’s restricted temperature implementation (T=1.0@8 or single-run) yields competitive
performance (0.611), suggesting potential for temperature-optimized variants. Notably, all models
exhibit 3.9-8.4% higher agreement on test versus training data, challenging conventional general-

ization expectations.
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Table 5: Accuracy metrics in the different ablations involving temperature.

Model T=0.0@1 T=0.3@8 T=0.7@8 T=1.0@8
Test Set

GPT-40 0.750 + 0.091 0.746 + 0.048 0.759 + 0.056 0.741 £ 0.044
Claude 3.5 Sonnet ~ 0.853 + 0.062 0.860 + 0.071 0.857 £+ 0.068 0.860 £+ 0.071
ol 0.820 &+ 0.071! - - 0.822 + 0.046
Training Set

GPT-40 0.750 £ 0.130 0.757 £ 0.108 0.746 + 0.106 0.746 £+ 0.108
Claude 3.5 Sonnet ~ 0.849 + 0.080 0.856 + 0.081 0.852 + 0.085 0.854 £ 0.082
ol 0.852+0.111! - - 0.842 £+ 0.100

! Value corresponding to a temperature equal to one in a single run.

Table 5] reveals Claude 3.5 Sonnet’s dominance in predictive performance, maintaining test accura-
cies bigger than 85% across all temperatures (+0.7% variation). GPT-40 shows remarkable stability,
contrasting with ol’s temperature-dependent divergence: while achieving 84.2% test accuracy at
T=1.0@8, it shows a 1.0% accuracy inversion between training (84.2%) and test (82.2%) sets. This

suggests possible overfitting mitigation in ol’s higher-temperature regime.

Table 6: Cost per reaction length for the different temperature ablations.

Model T=0.0@1 T=0.3@8 T=0.7@8 T=1.0@8
Test Set

GPT-40 0.320 £ 0.089 0.333 £ 0.059 0.309 + 0.066 0.316 £ 0.070
Claude 3.5 Sonnet  0.381 £ 0.096 0.385 + 0.091 0.380 = 0.096 0.384 £ 0.090
ol 0.316 4 0.102! - - 0.313 £ 0.098
Training Set

GPT-40 0.252 £+ 0.198 0.246 + 0.196 0.256 + 0.196 0.269 £ 0.190
Claude 3.5 Sonnet ~ 0.302 + 0.186 0.303 + 0.183 0.292 + 0.185 0.299 + 0.181
ol 0.237 £ 0.196! - - 0.231 £0.195

! Value corresponding to a temperature equal to one in a single run.

The cost analysis in Table [f] reveals fundamental model differences. Claude 3.5 Sonnet’s supe-
rior accuracy comes at higher costs than GPT-40, with test set costs ranging 0.380-0.385 versus
0.309-0.333. The ol model shows an unusual profile — achieving 0.231 training cost (best over-
all) while maintaining test costs comparable to GPT-40. Temperature variations show minimal cost
impact, suggesting cost considerations may be decoupled from thermal parameter tuning.

A.8 IMPACT OF PROCEDURE LENGTH ON EVALUATION RESULTS

The reaction procedures evaluated in this study exhibit considerable variation in the number of reac-
tion steps Appendix[A.T} While modern large language models (LLMs) are equipped with expansive
context windows, prior work demonstrates that their performance often degrades even with inputs
significantly shorter than these theoretical limits (Hsieh et al.,2024; Huang et al., [2024)). To inves-
tigate whether input length influences the reliability of LLM-based evaluations, we systematically
analyzed the relationship between length and procedure assessment scores using data from multiple
ablation studies.

Figure[7]reveals no discernible correlation between procedure length and evaluation scores produced
by the LLM-as-Judge framework, despite the intuitive expectation that longer sequences might ac-
cumulate more errors. In contrast, procedures could be less likely to achieve full correctness. This
finding persists across both short procedures (fewer than 10 steps) and extended sequences (exceed-
ing 30 steps), suggesting that the evaluation framework does not inherently favor procedural brevity
or complexity.
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Figure 7: Relationship Between the Reaction Procedure Length and Evaluation Scores for the
Test Set. Evaluation scores (calculated as described in Section [3.3)) are plotted against procedure
length, defined as the number of reaction steps in the ground-truth data. No statistically significant
correlation was observed, suggesting that evaluation quality remains consistent across varying pro-
cedure lengths.

The absence of length-dependent bias implies that the evaluation framework maintains robustness
regardless of procedural complexity, a critical feature for real-world applications where reaction
plans may span wide ranges of sophistication. This result aligns with recent theoretical work sug-
gesting that well-designed LLM evaluators can mitigate common context-length limitations through
structured prompting and task decomposition (Hsieh et al., [2024)).
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