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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable performance in
various tasks such as multi-document QA, summarization, and text classification.
This has been achieved in part by recent advancements in prompt engineering
and in-context learning (ICL), enabling LLMs to consume tens of thousands of
input tokens as the supported context for the given query. However, this creates
higher computational costs, longer latency, and potential performance degrada-
tion. To address these issues, we propose a task-agnostic and efficient approach
called “Fast RAG Inspired Prompt Evaporator”, or FRAPPE, to significantly re-
duce LLMs’ latency, memory requirement, and computation by compressing in-
put tokens. Unlike many other proposed approaches for prompt compression, our
method does not rely on any large model for computing conditional probabilities,
and data preparation is fast with negligible memory requirements. In particu-
lar, our approach first pre-processes the input data, categorizes and ranks phrases
based on their informativeness, and finally selects the highest-ranked phrases to
generate highly compressed and extractive input. We show the efficacy of our ap-
proach through a comprehensive set of experiments on public datasets and bench-
marks. For instance, on the summarization task of the MeetingBank dataset, at
a compression rate of 70%, our proposed approach achieves performance sim-
ilar to the full context while performing compression up to 4 times faster than
the contemporary state of the art compression algorithms. We extend FRAPPE
to create the Context-Aware FRAPPE algorithm, which incorporates task-specific
information when ranking phrases, which further improves performance of down-
stream tasks using compressed text. Additionally, we demonstrate that the use
of FRAPPE can reduce toxicity by close to 50% relative to the original text by
removing extraneous vitriolic phrases, in contrast to other compression methods,
which often increase toxicity.

1 INTRODUCTION

Large Language Models (LLMs) have progressed to exhibit strong performance across various tasks
such as multi-document QA, information retrieval, in-context learning and reasoning, code comple-
tion, and document summarization (Brown et al., 2020). These LLMs, which are based on the
Transformers (Vaswani et al., 2017) architecture, have achieved such strong performance thanks
to intelligent architectural and training choices. Moreover, recent prompting techniques, including
In-context Learning (ICL) (Dong et al., 2022), Chain-of-Thought (COT) (Wei et al., 2022), and Re-
trieval Augmented Generation (RAG) (Lewis et al., 2020) have enabled LLMs to handle complex
queries thanks to the supporting context provided by lengthy inputs with tens of thousands of tokens.
However, there are inherent constraints on LLM performance, such as limited context window size1

and the quadratic complexity of the attention mechanism. Long prompts increase the computational
challenge for LLMs, resulting in longer processing times and potentially inferior LLM performance
(Xiong et al., 2023). Similarly, as the window size of an LLM increases, it may be less sensitive
to the related information in the query (Shi et al., 2023). These restrictions have spurred many at-
tempts to reduce the memory and computation cost of the Transformer models using architectural

1Recent LLMs models, like Claude 3 Haiku, may allow for up to 200K tokens, but that can be limited for
multi-document QA tasks.
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optimization such as sparse attention (Child et al., 2019), local dense attention (Beltagy et al., 2020),
grouped attention (Burchi & Vielzeuf, 2021), and Flash Attention (Dao et al., 2022).

An alternative approach to increasing LLM efficiency is reducing the input token length through
prompt compression, which prunes irrelevant or non-informative tokens without sacrificing perfor-
mance. Here, we focus on this latter viewpoint. Prompt compression can be task-aware, where non-
informative tokens are pruned based on specific downstream tasks, often improving performance.
One canonical example of this kind of approach is in question answering. However, this can be inef-
ficient for RAG-based applications, as it requires designing multiple compression schemes per task.
A more efficient option is task-agnostic compression, which removes tokens without considering the
task or query. This approach leverages the redundancy in human languages(Shannon, 1951), which
might not be useful for LLMs to generate texts. Proposed task-agnostic compression methods typi-
cally consider some notion of information-theoretical measures such as surprisal (self-information)
or perplexity provided by a smaller language model (Li et al., 2023b; Jiang et al., 2023a). A poten-
tial problem with this measure is that it may be sub-optimal and model-dependent. Moreover, using
causal LMs to compute the measures is limited to one direction in the context, which is not aligned
with many tasks, requiring a full context.

This paper proposes a task-agnostic prompt compression method inspired by RAG, called “Fast
RAG Inspired Prompt Evaporator”, or FRAPPE. The method chunks input text into smaller phrases,
removing common repetitions and fillers. Using embedding vectors, it prunes phrases aligned with
low-information phrases. The remaining phrases are then ranked by saliency, with the top ones
forming the compressed text.

We summarize our contribution as follows:

• Inspired by the RAG pipeline, we propose FRAPPE, a fast, modular, and task-agnostic
compression algorithm up to four times faster than state-of-the-art methods.

• Unlike contemporary algorithms, FRAPPE does not use an information-theoretical mea-
sure or LLM to compute the conditional probabilities and data preparation, improving
computational efficiency.

• Comprehensive experiments on public datasets for tasks like summarization, multi-
document QA, conversation, in-context reasoning, and code completion show FRAPPE’s
superior or comparable performance against strong baselines and full context prompts.

• We demonstrate an extension of FRAPPE using task-specific context for phrase pruning.
• We present a study that shows that FRAPPE compression can reduce text toxicity.

2 RELATED WORK

The quadratic computation complexity of Transformers may result in an input length-dependent
increase in the time to generate responses by LLMs, increasing computational costs. ATo ad-
dress this, various methods have been developed to improve efficiency, including model compres-
sion techniques like pruning, knowledge distillation, quantization, and low-rank factorization (Zhu
et al., 2023) and using optimized implementations of the attention mechanism such as sparse at-
tention (Child et al., 2019), local dense attention (Beltagy et al., 2020), grouped attention (Burchi
& Vielzeuf, 2021), and Flash Attention (Dao et al., 2022). Additionally, LLMs’ limited context
windows restrict the use of prompt engineering methods like Chain-of-Thought (COT) (Wei et al.,
2022), and Retrieval Augmented Generation (RAG) (Lewis et al., 2020). Recently, data-centric
methods have emerged, focusing on selecting diverse, informative examples for efficient learning.

In this regard, prompt compression has recently emerged as a promising data-centric method that
selects the most informative documents, phrases, words, or tokens using a coarse to granular pruning
strategy in task-aware or task-agnostic ways. The former methods are tailored to a specific down-
stream task, usually resulting in improved performance. However, they usually require the design
of multiple compression schemes for every single task, which may increase the complexity of algo-
rithm deployment. On the other hand, task-agnostic compression methods remove tokens without
considering the query and/or downstream task, and they are more generalizable to multiple tasks.
However, they can yield sub-optimal performance and model-dependent results. Moreover, using
causal LMs to compute the probabilistic measures is limited to one direction in the context, which
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1. Input 
Chunking & 
Redundancy 
Removal

2. Aligned 
Redundancy 
Removal

3. Phrase 
Ranking & 
Selection

Original Text Preprocessed Text Compressed Text

Target LLM

The text highlighted in yellow show 
the pruned words and phrases.

The text highlighted in green show 
the pruned words and phrases.

Goodman Item 26. Report from Health 
and Human Services. Recommendation 
to execute agreement with the State 
Department of Health Services in the 
amount of 1,000,205. $205,944 for the 
provision of HIV prevention health 
services citywide. Thank you. There's a 
motion and second staff report. Our 
health officer, Dr. Mitch Kershner. 
Grant. I'm sorry. Now you can hear me. 
This is a continuation of our HIV 
prevention grant from the state since 
1988. It's a two year term. It serves 
5000 residents living in the city of Long 
Beach with HIV. It continues our 
testing and treatment of all residents 
with HIV. Thank you. Is there any 
public comment on the item? CNN 
members cast your vote. Motion carries 
nine zero. Item 27.

Goodman Item 26. Report from Health 
Human Services. Recommendation to 
execute agreement State Department of 
Health Services in  amount of 
1,000,205. $205,944 for  provision of 
HIV prevention health services 
citywide. There motion second staff 
report. Our health officer, Dr. Mitch 
Kershner. Grant. This is continuation of 
our HIV prevention grant from state 
since 1988. It' two year term. It serves 
5000 residents living in the city of Long 
Beach HIV. It continues our testing  
treatment of all residents with HIV. Is 
there any public comment on item? 
CNN members cast your vote. Motion 
carries nine zero. Item 27.

Goodman Item 26 Report from Health Human 
services Recommendation to execute agreement 
State Department of health services in amount of 
1,000,205 $205,944 for provision of HIV prevention 
health services citywide There motion second staff 
report Our health officer Mitch Kershner This is 
continuation of our HIV prevention grant from state 
1988 It continues our testing treatment of all 
residents with HIV

The meeting revolved around Goodman Item 26, 
recommending a $1,205,149 agreement with the 
State Health Department to continue citywide HIV 
prevention services. This is a continuation of a grant 
initiated in 1988 for HIV testing and treatment for 
all residents.

Response

Figure 1: A high-level overview of our multi-step and modular approach with an example.

is not aligned with many tasks requiring a full context. A key prompt compression approach is
token pruning (Kim et al., 2022; Li et al., 2023a), where a language model is trained to compress
prompts into a smaller number of tokens. Other methods include soft prompt compression and con-
text pruning methods (Wingate et al., 2022; Mu et al., 2024; Chevalier et al., 2023; Ge et al., 2023;
Anagnostidis et al., 2024). These methods are based on training a small set of weights introduced by
soft-prompt or summary vectors. Other approaches are based on information-theoretical measures,
relying on LLMs to compute the conditional probabilities used by these metrics, and are model de-
pendent (Li et al., 2023b; Jiang et al., 2023a; Pan et al., 2024). In particular, (Pan et al., 2024) use a
data distillation approach generated by GPT-4 to train their token classifier. Since GPT-4 can strug-
gle to preserve key information (Jiang et al., 2023b) and sometimes modifies content, they proposed
a data-controlling mechanism to reduce these effects. Lastly, RL-based approaches (Huang et al.,
2023; Jung & Kim, 2023) use a reward model to find an optimal policy to remove or retain a token
in the input prompt. Compared to the above approaches for prompt compression, FRAPPE does not
rely on any LLM to generate content, and it also does not require any LLM to compute the condi-
tional probabilities or a reward model to select or prune a token. Thus, it is unbiased regarding the
hallucinated content, fast, highly efficient, and cost-efficient, as shown in the experimental section,
making it a desirable and simple choice for deployment in production scenarios.

3 PROPOSED APPROACH

This section details FRAPPE which treats a prompt as a tuple of instructions, context (aka demon-
stration), and queries. We use τ = 1 − τ to denote the target compression rate we want to achieve
(fraction of pruning tokens), and τ to denotes the fraction of remaining tokens. Our method is
inspired by the RAG pipeline, in which context is first chunked, indexed, and stored using an em-
bedding model, and non-informative phrases are pruned by comparing them against a database of re-
dundant words and phrases. As illustrated in Figure 1, our approach has two phases: Pre-processing
and Compression. In the Pre-processing phase, the input prompt is chunked into smaller pieces (i.e.,
phrases), and those ones found in the pre-defined database of phrases, which we call redundancies,
are removed from each piece. The Compression phase itself has two components. First, all phrases
closely aligned with the redundancies are identified and deleted using a similarity approach. Sec-
ond, the remaining phrases in the input are ranked by their saliency, and the top-ranked phrases are
selected according to the rate τ . Thus, the input prompt has been compressed in an extractive way.
The compressed input can now be sent to a target LLM for accomplishing the desired task2. We now
provide more details of each step in our approach.

2If the downstream task is summarization, we can use the compressed input as the extractive summary if
the token count is sufficiently small.
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Phatic Expressions

• Hello, how are you 

doing?

• Thank you

• You’re welcome

• Have a good one

• Enjoy the rest of your 

day

…

Connectives

• Moreover

• Additionally

• Meanwhile

• Similarly

• In fact

• As a result

• In other words

…

Fillers Utterances

• Uhm

• Uh-Oh

• Uhm-Mhm

• Ohh

• Mmm

• Errr

• Ahhh

…

Stopwords

• Had

• Couldn’t 

• No

• Theirs

• That

• Doesn’t

• Through

…

Figure 2: Four groups of redundancies used for cleaning the input prompt.

3.1 INPUT CHUNKING AND REDUNDANCY REMOVAL

The input prompt is segmented into smaller chunks using five punctuation marks: ”.”, ”,”, ”;”, ”!”,
”?”. These chunks, or phrases can be sentences or other expressions comprising of one or more
words, resulting in N number of tokens. We then remove articles (e.g., a, an, the) from all phrases3.
Next, repeated phrases and those included in one of our defined redundancy groups are cleaned out.
Figure 2 shows four defined redundancy groups with some examples. This step is crucial for com-
pressing transcribed speech, conversations, or meeting transcripts.The redundancy groups— Phatic
Expressions, Filler-Utterances, Connectives, and Stop Words were created by prompting GPT-4 and
curated through several iterations for a comprehensive collection. Now, we provide more details
about creating each redundancy group (please section A.7 for more details:

Phatic Expressions. These phrases facilitate social interaction rather than conveying information.
We started by asking GPT-4 for a list of Phatic Expressions and expanded it with variations and
examples for greetings and conversation closures. After careful curation, we compiled around 90
expressions, diversifying the list with examples from online resources.

Filler Utterances. The second category involved asking GPT-4 for a comprehensive list of Filler
Utterances in English, targeting redundancies in casual conversations. We compiled about 30
words/phrases like ”huh”, ”mmm”, ”uhm”, and ”ah”.

Connectives. We prompted GPT-4 to generate a list of connective words, conjunctions, and tran-
sitional phrases in English. This produced an extensive list, highlighting groups like Comparative
(e.g., ”similarly”), Additive (e.g., ”and”), Contrastive (e.g., ”but”), and others including Conditional,
Summarize, Illustrative, and Time categories.

Stopwords. We have utilized the NLTK Library (Bird et al., 2009). for this category.

After removing all phrases in the redundancy groups, we end up with Nc tokens pruned from N
initial tokens; hence, the compression rate by the end of this stage is given by τc =

Nc

N .

3.2 ALIGNED REDUNDANCY REMOVAL

Each redundancy group contains phrases that are variations conveying similar information. For
instance, in ”Phatic Expressions,” phrases like ”How are you doing?” and ”How you doing?” are
semantically alike. Since it’s impractical to list all variations, we consider a subset of common
examples in each category (some of which are shown in Figure 2). This forms the redundancy
database. We then use an embedding model to extract the embedding vectors of all phrases remain-
ing after the prior stage. We can compute the cosine similarity of the remaining phrases to those
phrases included in our redundancy database4. Phrases too similar to redundant ones are pruned at
this stage, resulting in a clean input prompt.

This approach is similar to the RAG retrieval mechanism for finding related contexts to a query.
Using phrase embeddings is cheaper and faster than token-level embeddings because there are
fewer phrases than tokens, as noted by (Li et al., 2023b). Moreover, we observe that eliminating

3In section A.5, we show that removing articles and punctuation can simply compress the input text by 16%
4Any other type of similarity measure can be used. However, cosine similarity is by far the most popular

one in the context of embedding models as it is a scale-invariant measure.

4
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phrases does not impact the fluency of the text as much as pruning individual tokens does. After
this phase, Nr tokens will be removed from N − Nc remaining tokens from the previous stage,
so we have τr = Nr

N−Nc
. In our approach, we present the main results by the zero-shot Sentence-

Transformers (Reimers & Gurevych, 2019) or SBERT model (all-MiniLM-L6-v2), which is efficient
in speed and memory. In the ablation study, we show the effect of other embedding models such
as General Text Embeddings (GTE)-large model (Li et al., 2023c), one of the leading embedding
models in MTEB leaderboard5.

3.3 PHRASE RANKING AND SELECTION

At the final stage, we compress the remaining phrases by ranking and selecting the most informative
ones, resulting in Ne pruned tokens, where τe = Ne

N−Nc−Nr
. Putting all together, the total number

of pruned tokens at the end will be given by τN = Nc + Nr + Ne. Here, we have used a ranking
algorithm to sort the phrases in terms of their importance or informativeness in the input. Since our
main goal is to compress the input tokens with a low time complexity while producing high-quality
results, we focus on fast and efficient graph-based ranking algorithms. In particular, the phrases
are represented as a set of vertices V in a weighted graph G = (V,E), where E denotes the set of
edges, i.e., Edge eij from node Vi to node Vj is weighted by the similarity score (cosine similarity
between embedding vectors of phrases) from the previous stage. Thus, the entries of the adjacency
matrix or similarity matrix (SM) is given by SMij = wij = CosSim(Vi, Vj). Having constructed
the similarity matrix, we can now rank the nodes in the graph and select the top ones. To calculate
nodes’ (or phrases’) salience, we use the concept of Node Centrality.

Different methods have been proposed for calculating the centrality of nodes. This includes algo-
rithms such as TextRank or LexRanks algorithms (Mihalcea & Tarau, 2004; Erkan & Radev, 2004)
(which are adapted from PageRank (Brin & Page, 1998)), and more recently, PACSUM (Zheng &
Lapata, 2019), FAR (Liang et al., 2021), STAS (Xu et al., 2020), and HipoRank (Dong et al., 2021).
In the TexRank-type of algorithms, an undirected graph G is considered, and the importance score
of nodes is iteratively updated based on the combination of the current importance scores and the
values of edges until no significant changes are observed. This can be seen as finding the station-
ary distribution of the Markov chain where the transition matrix is defined based on the similarity
matrix and a damping factor to ensure the underlying graph is irreducible. Hence, the nodes’ Cen-
trality is computed by finding the leading left eigenvector (corresponding to the largest eigenvalue).
Experiments show that methods such as PACSUM, FAR, STAS, and HipoRank exhibit similar per-
formance (Xu et al., 2020)6. These methods establish a directed underlying graph G as they account
for the order of phrases in a text. As a result, asymmetric centrality of node Vi defined as

Centrality(Vi) = λ1

∑
j<i

SMij + λ2

∑
j>i

SMij , (1)

where λ1 and λ2 are two hyper-parameters to adjust the impact of previous and last content, and
they are set such that λ1 + λ2 = 1. if λ1 = λ2, the above asymmetric node centrality becomes
degree centrality (a symmetric centrality). Once the centrality of all nodes has been calculated, the
top Ne nodes with the largest centrality score (i.e., most salient phrases) are selected as the final
compressed input prompt. Here, we have utilized (Hagberg et al., 2008) for the implementation of
TextRank. However, instead of ranking individual pieces of text, we rank phrases. In the ablation
study, we study the impact of using an asymmetric degree centrality method (PACSUM) as a ranking
algorithm.

4 EXPERIMENTS

This section demonstrates our method’s performance through comprehensive experiments. The em-
bedding model is not fine-tuned to show its task-agnostic and generalizable nature to out-of-domain
distributions. We briefly describe tasks, datasets, and our experiment setup and defer the details to
the appendix.

5https://huggingface.co/spaces/mteb/leaderboard
6HipoRank has better performance (Dong et al., 2021) but operates in a hierarchical level, so it is not as fast

as PACSUM.
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Tasks and Datasets We have tested our algorithm on various tasks, including summarization, multi-
document question answering (QA), in-context reasoning (here, answering math and science ques-
tions), and code completion. We use appropriate evaluation metrics corresponding to each task,
including BLEU (Papineni et al., 2002), Rouge-1/2/L (Lin, 2004), METEOR (Banerjee & Lavie,
2005), and BertScore-F1 (Zhang et al., 2019) for summarization, multi-document QA, Exact Match
(EM) score for in-context reasoning, and Edit Similarity (similarity of two strings based on the
number of insertions, deletions, and substitutions) for code completion task.

Our experiments include the following datasets and benchmarks.

Arxiv Preprint (Cohan et al., 2018) is a repository consisting of Arxiv papers spanning topics
such as Physics, Astrophysics, Biology, and Chemistry (we created a test set using the first 500
example articles in this dataset). MeetingBank (Hu et al., 2023) includes 862 meeting transcripts
from six cities or municipalities in the test set. ZeroSCROLLS Benchmark (Shaham et al., 2023)
is a benchmark for multiple tasks that require long context understanding. GSM8K (Cobbe et al.,
2021) includes graduate math questions and corresponding answers. BBH (Suzgun et al., 2022)
is a suite of language and symbolic reasoning tasks. ShareGPT (sha, 2023) includes the first 600
conversation transcripts from a dataset of human interactions with LLMs. LongBench Benchmark
(Bai et al., 2023) is a benchmark for multitask assessment of LLMs’ long context understanding
capabilities.

Target LLMs and Baseline Models. We report the performance of our compression method with
various target LLMs, including GPT-3.5 Turbo, Mistral.mixtral-8x7b-instruct-v0:1, and Claude-
3 Haiku-20240307-v1:0, comparing against the state-of-the-art compression methods, including
Selective-Context (Li et al., 2023b) and both small and large LLmLingua-2 models (Pan et al.,
2024).

In all the following tables, the time column denotes the per-input compression time in seconds
(average time over all the input data). Also, “Uncomp” means the uncompressed input, “SC” stands
for Selective-Context, and “Lingua2-S/L” denote the LLMLingua-2-small/large models.

4.1 RESULTS

For experiments in this section, we use zero-shot SBERT7 for the embedding model to extract the
embedding of phrases, and we use the cosine similarity for the entries of the similarity matrix.

Arxiv articles, MeetingBank transcripts, and ShareGPT conversations. Table 1 shows summa-
rization results for both original and compressed inputs using FRAPPE and other SOTA algorithms
with GPT-3.5 Turbo. The compression rate was set to 70%. For the Arxiv articles (500 examples
from the ccdv/arxiv-summarization test set), where abstracts serve as the ground-truth
summaries, FRAPPE outperforms other algorithms and even surpasses uncompressed articles, as
the LLM’s limited context window struggles with full-length articles. For the MeetingBank tran-
scripts, both LLMLingua-2 models were fine-tuned on this dataset, but this serves as an out-of-
domain (OOD) experiment for both our approach and the Selective-Context method. Despite not
fine-tuning our embedding model, FRAPPE demonstrates comparable performance to LLMLingua-
2. Due to the lack of ground truth for ShareGPT conversations, we used the target LLM (GPT-3.5
Turbo) to summarize the conversations, treating these summaries as the ground truth. In this context,
FRAPPE outperforms other compression algorithms and consistently achieves the shortest running
time, aligning with our goal of developing a fast and efficient compression method. For experiments
with Claude-3 HAIKU and Mistral models, see Section A.3.

ZeroSCROLLS benchmark. We also evaluated the ZeroSCROLLS validation set, which contains
approximately 20 examples per dataset. We maintained a compression rate of 70% and used the
provided instructions and queries. Table 2 shows the scores achieved using GPT-3.5 Turbo, Claude
3 Haiku, and Mistral-8x7B Instruct v0.1 as the target LLM. For both GPT-3.5 Turbo and Mistral,
FRAPPE outperforms all other algorithms, including uncompressed text. For Claude 3 Haiku, our
method scores within 5% of the highest (uncompressed) score. Notably, FRAPPE compresses the
full validation dataset over twice as fast as the next fastest algorithm.

7https://www.sbert.net/
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Methods
Rouge-1 Rouge-2 Rouge-L BERTScore METEOR BLEU

Time(s)
Arxiv Articles

Uncomp 0.3246 0.1083 0.1785 0.7096 0.2423 0.0295 –
SC 0.3142 0.0860 0.1756 0.7380 0.2141 0.0149 3.90

Lingua2-S 0.3386 0.0973 0.1879 0.7946 0.2514 0.0170 0.23
Lingua2-L 0.3274 0.0940 0.1803 0.7664 0.2441 0.0174 0.58
(FRAPPE) 0.3506 0.1120 0.1952 0.7739 0.2539 0.0287 0.14

MeetingBank Transcripts
Uncomp 0.2830 0.1268 0.2100 0.8510 0.2935 0.0466 -

SC 0.2502 0.0693 0.1673 0.8417 0.2352 0.0110 2.76
Lingua2-S 0.2676 0.0950 0.1841 0.8474 0.2754 0.0240 0.11
Lingua2-L 0.2673 0.0947 0.1838 0.8474 0.2749 0.0238 0.23
(FRAPPE) 0.2632 0.1014 0.1902 0.8456 0.2605 0.0301 0.06

ShareGPT Conversations
SC 0.3918 0.1975 0.2286 0.8276 0.2299 0.0198 0.71

Lingua2-S 0.4333 0.1582 0.2535 0.8277 0.2855 0.0357 0.06
Lingua2-L 0.4375 0.1855 0.2805 0.8223 0.2793 0.0388 0.14
(FRAPPE) 0.4545 0.2195 0.3212 0.8282 0.2798 0.0712 0.05

Table 1: Comparing FRAPPE with the SOTA methods on Arxiv articles, Meetingbank, ShareGPT
using GPT-3.5 Turbo model as the target LLM and the compression rate of 0.7.

Methods ZeroSCROLLS Score Time(s)
GPT-3.5 Turbo Claude 3 Haiku Mistral - 8x7B

Uncomp 25.90 22.33 24.35 –
SC 26.67 15.69 22.42 6.00

Lingua2-S 20.08 22.01 23.32 0.29
Lingua2-L 18.35 20.98 23.17 0.67
(FRAPPE) 30.95 21.30 24.26 0.14

Table 2: Comparing FRAPPE with the SOTA methods on ZeroSCROLLS dataset and the compres-
sion rate of 0.7.

GSM8K and BBH. To further evaluate our approach on challenging reasoning tasks, we applied
FRAPPE and other algorithms to the GSM8k dataset using a complex multi-step CoT prompt (Fu
et al., 2022). 8 Additionally, we tested the compression algorithms on the BBH benchmark, selecting
16 tasks (please see the section A.2 in the appendix for the selected tasks). We used the Claude-3

8We did not enforce punctuation preservation across compression algorithms to ensure a fair comparison.
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Figure 3: Left. Total time to compress on the ZeroSCROLLS validation set for different compres-
sion rates, algorithms, and computational hardware. Right. Compression time versus input length
in tokens for the ZeroSCROLLS validation set with compression rate set to 70%.
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Methods Exact Match (EM)
GSM8K Time(s) BBH Time(s)

Uncomp 0.8006 - 0.5132 -
SC 0.7680 2.33 0.5087 1.61

Lingua2-S 0.7468 1.18 0.5085 0.94
Lingua2-L 0.7453 2.49 0.5086 2.12
(FRAPPE) 0.7581 0.73 0.5103 0.72

Methods Size (GB)
SC 0.511

Lingua2-S 0.710
Lingua2-L 2.236
(FRAPPE) 0.099

Table 3: Left. Comparing FRAPPE with the SOTA methods on GSM8K and BBH dataset using
Claude-3 Haiku as the target LLM and the compression rate of 0.7. Right. Memory requirement for
compression methods.

Haiku model for both datasets, reporting the EM metric for GSM8k and the average EM across all
16 tasks for BBH. As illustrated in the left panel of Table 3, our method is not only faster than others
but also matches or exceeds their performance, remaining competitive with uncompressed results
for GSM8k.

The right panel of Table 3 displays the memory requirements for all compression models. FRAPPE
has a significantly lower GPU memory overhead, using only 99 MB—5.2x less than the second
smallest method, Selective-Context.

4.2 COMPRESSION LATENCY EVALUATION AND MEMORY REQUIREMENTS

The experiments demonstrate that FRAPPE outperforms other algorithms in speed. However,
compression time may depend on factors such as compression rate, text length, and hardware
(CPU/GPU). We investigate these elements using the ZeroSCROLLS validation set, which cov-
ers a wide range of text lengths. This dataset spans about two orders of magnitude of text lengths.
The left plot in Figure 3 shows the total time taken to compress our test set for 5 different compres-
sion rates on both a CPU-only machine and on a machine with an NVIDIA A100 GPU (Choquette
et al., 2021). While the compression rate has little impact on the four algorithms, FRAPPE’s speed
is notable. Interestingly, the only algorithms that are faster than FRAPPE on a CPU are FRAPPE
on a GPU and LLMLingua-2 Small on a GPU. The right plot in Figure 3 shows the dependence of
compression time on text length. Each line in this figure represents 269 distinct length-time mea-
surements (one for each example in the dataset) for the given algorithm and environment. First, one
can note the roughly linear dependence of compression time on text length, which is true for all
algorithms and both CPU-only and GPU-enabled configurations.

Another aspect shown in this plot is the stability of the algorithms. The LLMLingua-2 algorithms
show consistent lines with minimal deviations from their linear dependence on text length. Selective
Context exhibits more variability in timing for texts of similar lengths. FRAPPE is mostly stable,
with only a few instances of slow convergence due to the power iteration algorithm used for comput-
ing the leading eigenvector of the similarity matrix. Despite these occasional slowdowns, FRAPPE
remains the fastest algorithm on average.

4.3 CONTEXT-AWARE FRAPPE

Frappe is effective for summarization but can miss query-specific details due to its centrality-based
compression. This oversight is due to the diverse nature of queries, which may not always align with
the central theme of a document.

Context-Aware (shown as Cont-Aware in the following tables) FRAPPE addresses this issue by
including the query prompt with the input text, ensuring phrases similar to the query are retained
during redundancy removal. The algorithm calculates a query similarity vector between the query
and phrases, using it as initial weights in a Personalized PageRank algorithm. Unlike Frappe, which
solely focuses on centrality, Context-Aware FRAPPE generates a new centrality score that considers
the relevance to the specific query. We evaluate the performance of the Context-Aware FRAPPE
algorithm with Uncompressed text, Frappe, and the LLMLingua2-small model, using the GPT 3.5-
Turbo Language Model, with a 70% compression rate for all algorithms.
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Two evaluation methods were used: the Full Document approach, where the entire document is
processed by the LLM, and the Retrieval-Augmented Generation (RAG) approach. In RAG, the
document is divided into passages and only the most relevant ones to the query, under the context
length of GPT 3.5 Turbo (4096 tokens), are processed. The evaluation was conducted on three
different datasets: 2wikimqa, hotpotqa, and musique with The F1 score, a balanced measure of
precision and recall, used as the evaluation metric.

Methods Full Document RAG implementation
2wikimqa hotpotqa musique 2wikimqa hotpotqa musique

Uncomp 0.365 0.445 0.209 0.427 0.492 0.229
Lingua2-S 0.364 0.505 0.23 0.365 0.51 0.304
FRAPPE 0.354 0.484 0.235 0.342 0.472 0.239

Cont-Aware FRAPPE 0.382 0.507 0.284 0.406 0.512 0.272

Table 4: This table compares the Uncompressed documents with three compression algorithms:
FRAPPE, Context-Aware Frappe, and Lingua2-S. All methods have a compression rate of 0.7. The
comparison includes two approaches: Full documents and a RAG approach, using three datasets
(2wikimqa, hotpotqa, musique). The evaluations use GPT 3.5-Turbo as the downstream LLM.

Additionally, we employed the Claude3 Haiku model with a 200,000-token context, allowing full
document processing without segmentation. Context-Aware Frappe demonstrated a performance
similar to processing the full text, but with a significant cost reduction of approximately 3x with a
70% compression rate, offering economical efficiency without quality loss. Though slightly slower
than FRAPPE due to query-specific computations, Context-Aware Frappe is still about twice as fast
as the LLMLingua2-small model.

2wikimqa hotpotqa musique
Methods F1 Time(s) F1 Time(s) F1 Time(s)
Uncomp 0.5 - 0.514 - 0.313 -

Lingua2-S 0.498 0.184 0.5 0.338 0.234 0.413
FRAPPE 0.443 0.095 0.489 0.145 0.268 0.168

Cont-Aware FRAPPE 0.505 0.104 0.529 0.149 0.285 0.177

Table 5: This table compares the Uncompressed documents with three compression algorithms:
FRAPPE, Context-Aware Frappe, and Lingua2-S. All methods have a compression rate of 0.7 using
three datasets (2wikimqa, hotpotqa, musique). The evaluations use Claude3 Haiku as the down-
stream LLM.

5 ABLATION STUDY

In this section, we present the result of our ablation study for the proposed algorithm. We first
show the impact of using another embedding model and ranking algorithm other than PageRank
to construct a similarity matrix and the saliency of the phrases. Table 6 presents 4 scenarios in
FRAPPE. The first row indicates the setup we have used throughout this paper, where the SBERT
(all-MiniLM-L6-v2) model is used for the embedding model, and the PageRank algorithm is applied
for ranking phrases. We have also experimented with another embedding model, GTE-large, a lead-
ing embedding model in the MTEB leaderboard, by fixing the ranking algorithm to the PageRank
(the second row in the table). Different evaluation metrics on the MeetingBank dataset show that the
algorithm is pretty stable w.r.t. to even a much smaller embedding model such as SBERT. Moreover,
if we change the ranking algorithm to PacSUM (rows 3 and 4 in the table), which essentially uses an
asymmetric centrality score (Equation 1) for ranking the phrases with both SBERT and GTE-large
embedding models, we see almost the same results as the first row. All these suggest that using
SBERT with the PageRank algorithm is a reasonable choice for FRAPPE to run our experiments in
this paper.
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Methods Scores for GPT3.5-Turbo
ROUGE-1 ROUGE-2 ROUGE-L BERTScore METEOR

SBERT - PageRank 0.2710 0.1112 0.1980 0.8479 0.2708
GTE-large - PageRank 0.2686 0.1061 0.1946 0.8474 0.2668

SBERT - PACSUM 0.2644 0.1109 0.1916 0.8462 0.2672
GTE-large - PACSUM 0.2827 0.1181 0.2050 0.8508 0.2851

Table 6: Ablation study on two different embedding models and two different ranking algorithms
for the MeetingBank summarization task with a 2.5x compression ratio.

6 TOXICITY

To assess the impact of compression on toxicity we tested our model on the Toxigen dataset from Mi-
crosoft (Hartvigsen et al., 2022), which includes 250,000 samples with implicitly toxic and benign
sentences about 13 minority groups. We used the popular detoxify (Hanu & Unitary team, 2020)
to evaluate toxicity, employing both its ”original” and ”unbiased” versions. The detoxify models
returns a probability of toxicity and classifications such as “severely toxic (sev toxic)”, “obscene”,
“threat”, “insult” and “identity attack (Id attack)”. After establishing a baseline toxicity for each
sample, we ran the samples through Frappe to compress the prompts and then re-evaluated their tox-
icity. In all categories, toxicity was significantly reduced, confirming that toxic language does not
usually contribute anything meaningful to the conversations and can be effectively removed through
compression. Frappe does not eliminate all toxic content, as the dataset contains highly concentrated
toxic information and Frappe is not specifically trained for detoxification. However, across the board
toxicity scores decreased, suggesting that the more inflammatory remarks were found to not be cen-
tral to the underlying position. We aim to further study toxicity aware compression as if we explicitly
do not want certain content in the outputs it may promise to be a prime compression candidate. Fur-
thermore, we study the effects of of compression on toxicity and find that Frappe reduces toxicity
by 50%. We also find that this is not the case with other compression algorithms, as some methods
”distil” toxicity equating to a net overall increase in toxicity scores in their compressed outputs.

Detoxify Compression Toxicity Sev toxic Obscene Threat Insult Id Attack
Original Uncompressed 0.2840 0.0064 0.0431 0.0049 0.0746 0.1580

FRAPPE 0.1679 0.0037 0.0238 0.0025 0.0381 0.0811
Lingua2-s 0.4112 0.0165 0.0902 0.0076 0.1293 0.2150

Unbiased Uncompressed 0.3184 0.0017 0.0108 0.0082 0.1645 0.2649
FRAPPE 0.1712 0.0005 0.0050 0.0018 0.0776 0.1571
Lingua2-s 0.3875 0.0034 0.0212 0.0058 0.1818 0.3496

Table 7: Detoxify toxicity scores using the “original” and “unbiased” models on the ToxiGen
dataset with and without FRAPPE Compression.

7 CONCLUSION

Inspired by RAG, we proposed a simple yet efficient prompt compression method. Our approach,
called FRAPPE, is task-agnostic and doesn’t rely on any LLMs to generate data and compute condi-
tional probabilities. In particular, FRAPPE first chunks the input prompt into phrases and removes
some common uninformative phrases called “redundancies”. Next, phrases closely aligned with
these redundancies are also pruned from the prompt. This is done by measuring the similarity of
their embedding vectors and removing those with a similarity above a threshold. Finally, using
a graph-based ranking algorithm, the importance of the remaining phrases is computed, and the
top ones are selected as the compressed input prompt. Comprehensive experiments show that the
FRAPPE is up to 4 times faster than SOTA compression methods and often yields higher perfor-
mance in a variety of downstream tasks.
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efficient exact attention with io-awareness. In Advances in Neural Information Processing Sys-
tems, volume 35, pp. 16344–16359, 2022.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Yue Dong, Andrei Mircea, and Jackie Chi Kit Cheung. Discourse-aware unsupervised summa-
rization for long scientific documents. In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, pp. 1089–1102, 2021.

11

https://aclanthology.org/N18-2097


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025
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A APPENDIX

This section includes the details of the experiments and some of the additional results, the effect of
pruning articles and punctuation, more analysis of compression algorithms’ latency, the trade-off be-
tween performance and compression rate in Frappe, and some representative samples of compressed
input data.

A.1 ARCHITECTURE DIAGRAM

Figure 4: A high-level overview of our multi-step and modular approach.

A.2 DETAILS OF EXPERIMENTS

In all the experiments, if the input’s length exceeded the LLM’s context length for uncompressed
and compressed scenarios, we simply cut it off to fit it in the context window. We afforded the LLM
a maximum of 400 tokens for its abstract.

Summarization. Given a text, the task is to generate a summary that captures the text’s main
points. The input prompt includes a short instruction for summarization, and the context and query
are typically the input text. We use different evaluation metrics, including BLEU (Papineni et al.,
2002), Rouge-1/2/L (Lin, 2004), METEOR (Banerjee & Lavie, 2005), and BertScore-F1 (Zhang
et al., 2019).

Single/Multi-Document QA. The goal of this task is to evaluate the understanding of a model given
a set of questions and the provided information in the document to generate the desired answers.
The input prompt includes an instruction, a single or multi-document as the context, and a set of
questions as the query. We use the F1 and Rouge-L scores provided in the LongBench benchmark
(Bai et al., 2023) benchmark.
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Conversation. Here, we want to generate an answer to a query given a previous conversation history.
The above summarization scores are used to evaluate this task.

In-context Reasoning. This task measures the reasoning power of a model on complex tasks,
including math and science. For this task, we use the Exact Match (EM) score, defined as the
string’s exact match between the prediction and the reference texts, to evaluate the compression
method.

Few-Shot, Synthetic Tasks, and Code Completion. These tasks are from the LongBench bench-
mark. The few-shot is to accomplish a task (e.g., answering a question) given a few examples. F1
and Rouge- scores L are used as the evaluation metrics. The Synthetic tasks are similar to QA, e.g.,
What is the total number of different paragraphs in a given essay? Accuracy is the standard metric
for this task. The code completion task predicts the next line of code given one or several pieces
of code. The evaluation metric is Edit Similarity (similarity of two strings based on the number of
insertions, deletions, and substitutions).

Datasets and Benchmarks For summarization, Other public datasets we have used for summariza-
tion include MeetingBank (Hu et al., 2023) (including 1,366 meetings transcripts from six cities or
municipalities) and Arxiv preprint repository spanning topics such as Physics, Astrophysics, Biol-
ogy, and Chemistry (Cohan et al., 2018). We have used 500 example articles from the test set of the
ccdv/arxiv-summarization9. The LongBench (Bai et al., 2023) is a benchmark for multi-
task assessment of long context understanding capabilities of LLMs. It comprises tasks including
summarization, single/multi-document QA, few-shot learning, synthetic tasks, and code completion.
Moreover, we have used the ZeroScrolls dataset (Shaham et al., 2023), consisting of ten different
datasets and associated tasks. The datasets vary significantly in length, and the tasks span text sum-
marization, query-based summarization, question answering, multiple-choice question answering,
and aggregation. Each dataset and task pair has an associated metric, and to create a single “Zero-
SCROLLS Score” for a particular algorithm, one takes the average of the results of the ten metrics
across the ten datasets. We use GSM8K (Cobbe et al., 2021) and BBH (Suzgun et al., 2022) datasets
for the reasoning task. GSM8k (Grade School Math 8K) is a dataset of 8.5K high-quality linguis-
tically diverse grade school math word problems. BBH (Big Bench Hard) consists of a suite of 27
language and symbolic reasoning tasks spanning more than 6,500 problems, designed to evaluate
chain-of-thought prompting. For our experiments, we have focused on 16 tasks as follows: tempo-
ral sequences, disambiguation qa, date understanding, tracking three shuffled objects, penguins in a
table, geometric shapes, ruin names, tracking seven shuffled objects, tracking five shuffled objects,
logical deduction for three objects, hyperbaton, logical deduction for five objects, logical deduc-
tion for seven objects, movie recommendation, salient translation error detection, reasoning about
colored objects. Finally, We use the ShareGPT (sha, 2023) dataset for the conversation task.

A.3 EXPERIMENTS WITH CLAUDE-3 HAIKU AND MISTRAL

Tables 8 and 9 demonstrate the performance of all compression algorithms on the Arxiv articles
, MeetingBank transcripts, and ShareGPT conversations using Claude-3 Haiku and Mistral-8x7B
model as the target LLMs, respectively. As we can see, FRAPPE achieves about the same or even
better performance compared with other compression methods, and very close to the uncompressed
one, while it is Faster than all other algorithms.

A.4 EXPERIMENTS ON LONGBENCH

We ran on the LongBench test set, restricting use to only the English language tasks and the code
tasks. As before, we prune 70% of tokens from each of the inputs. Since the LongBench task uses
longer context windows, we elected to run this task through only the Claude-3 Haiku model due to
the limit of the context window of the GPT-3.5 Turbo model. Table 10 illustrates LongBench scores
for 4 different tasks of multi-doc-QA, summarization, FewShot, and code completion. As we can
see our method remains competitive in all categories and is best for summarization-related tasks.
This dataset shows that FRAPPE generalizes well to new domains as well as remains competitive
with longer context windows. In addition, Table 11 shows the compression time on this dataset. As
other experiments, FRAPPE has much faster running time compared to other algorithms.

9https://huggingface.co/datasets/ccdv/arxiv-summarization
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Methods
Rouge-1 Rouge-2 Rouge-L BERTScore METEOR BLEU

Time(s)
Arxiv Articles

Uncomp 0.4178 0.1554 0.2254 0.8439 0.3302 0.0433 –
SC 0.3738 0.1159 0.2025 0.8355 0.2861 0.0213 3.9

Lingua2-S 0.3704 0.1185 0.2011 0.8353 0.2884 0.0219 0.23
Lingua2-L 0.3769 0.1227 0.2042 0.8372 0.297 0.0246 0.58
(FRAPPE) 0.3902 0.1355 0.2144 0.8392 0.3037 0.0362 0.14

MeetingBank Transcripts
Uncomp 0.2462 0.1195 0.18 0.8428 0.3153 0.0426 -

SC 0.2077 0.0588 0.1367 0.8295 0.2435 0.0098 2.76
Lingua2-S 0.2382 0.0908 0.162 0.8397 0.2918 0.0237 0.11
Lingua2-L 0.2358 0.0882 0.1584 0.8392 0.2893 0.0219 0.23
(FRAPPE) 0.2204 0.0865 0.1569 0.8347 0.2662 0.0259 0.06

ShareGPT Conversations
SC 0.4558 0.2306 0.3458 0.8806 0.3683 0.1531 0.71

Lingua2-S 0.4434 0.2005 0.3179 0.8777 0.3543 0.1185 0.06
Lingua2-L 0.4428 0.2015 0.3164 0.8780 0.3553 0.1132 0.14
(FRAPPE) 0.4374 0.2148 0.3179 0.8765 0.3500 0.1386 0.05

Table 8: Comparing FRAPPE with the SOTA methods on Arxiv articles, Meetingbank, ShareGPT
using Claude 3 Haiku model as the target LLM and the compression rate of 0.7.

Methods
Rouge-1 Rouge-2 Rouge-L BERTScore METEOR BLEU

Time(s)
Arxiv Articles

Uncomp 0.4157 0.1548 0.2306 0.8408 0.3084 0.0483 –
SC 0.3638 0.1066 0.1958 0.8322 0.2666 0.0194 3.9

Lingua2-S 0.3604 0.1065 0.1962 0.8322 0.2725 0.0196 0.23
Lingua2-L 0.3595 0.1068 0.1966 0.8326 0.2734 0.0215 0.58
(FRAPPE) 0.3917 0.1299 0.2133 0.837 0.2896 0.0347 0.14

MeetingBank Transcripts
Uncomp 0.2823 0.1386 0.2068 0.8510 0.3257 0.0514 -

SC 0.2292 0.0636 0.1468 0.8348 0.2482 0.0101 2.76
Lingua2-S 0.2374 0.0859 0.1586 0.8394 0.2804 0.0203 0.11
Lingua2-L 0.2362 0.0836 0.1557 0.8393 0.2782 0.0201 0.23
(FRAPPE) 0.2413 0.0914 0.1707 0.8413 0.2662 0.0278 0.06

ShareGPT Conversations
SC 0.5364 0.1965 0.2924 0.8382 0.3774 0.0805 0.71

Lingua2-S 0.4906 0.1848 0.2763 0.8474 0.3412 0.0698 0.06
Lingua2-L 0.5834 0.2510 0.3928 0.8603 0.4253 0.0871 0.14
(FRAPPE) 0.4921 0.2345 0.3318 0.8791 0.3413 0.1419 0.05

Table 9: Comparing FRAPPE with the SOTA methods on Arxiv articles, Meetingbank, ShareGPT
using Mistral-8x7B model as the target LLM and the compression rate of 0.7.

A.5 PRUNING ARTICLES AND PUNCTUATION

In this section, we study the effect of forcing to prune articles (a/an/the) and punctuation in our
compression algorithm. We have observed that removing articles and punctuation has little to no
effect on the performance of our method, making it a good task-agnostic candidate. While this study
has been done on summarization tasks, and probably for that task involve punctuation, such as math
or logical operations, it might be hurtful to remove them; however, our experiments on GSM8K
datasets in Section 4.1 have verified a little effect on the performance by removing punctuation on
this dataset. Table 12 presents two sets of experiments for all 3 target LLMs: Rows starting with
“Preserve” indicate preserving the articles and punctuation, while those starting with “Prune” indi-
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Methods MultiDoc-QA Summarization FewShot Code Avg
LongBench with Claude-3 Haiku

Uncomp 40.8267 27.3600 26.0650 9.0600 25.8279
SC 34.2767 24.1833 33.0967 18.4800 27.5092

Lingua2-S 39.0567 24.7400 34.2433 16.9200 28.7400
Lingua2-L 38.7367 25.0933 33.2800 16.6250 28.4337
(FRAPPE) 37.5833 25.7567 31.4200 16.9100 27.9175

LongBench with GPT 3.5 Turbo
Uncomp 32.0862 24.3825 29.0859 47.3140 33.2171

Lingua2-S 38.5577 22.7671 26.4245 36.1130 30.9656
Lingua2-L 38.2821 23.0461 26.0164 36.1700 30.8786
(FRAPPE) 35.4876 24.1804 26.5750 36.6290 30.7180

Table 10: Comparing our proposed approach with the SOTA methods for LongBench evaluation
tasks using Claude-3 Haiku and GPT-3.5 Turbo Haiku models as the target LLMs and the compres-
sion rate of 0.7.

Methods LongBench Compression Time(s)
Avg

MultiDoc-QA Summ FewShot Code
SC 7.03 4.21 5.54 3.86 5.16

Lingua2-L 0.75 0.60 0.66 0.51 0.63
Lingua2-S 0.37 0.32 0.36 0.25 0.32
(FRAPPE) 0.18 0.13 0.18 0.10 0.15

Table 11: Running time comparison of our proposed approach with the SOTA methods for Long-
Bench evaluation tasks and the compression rate of 0.7.

cate results by forcing to remove them. As we can see, the summarization performance has stayed
almost the same for both cases across all models, suggesting that we can easily let the algorithm
remove articles and punctuation and simply gain a 1.2x compression ratio.

Model Rouge-1 Rouge-2 Rouge-L BERTScore METEOR 1/τ
Preserve-GPT-3.5 Turbo 0.2830 0.1268 0.2100 0.8510 0.2935 1x

Prune-GPT-3.5 Turbo 0.2821 0.1273 0.2090 0.8511 0.2980 1.2x
Preserve-Mistral-8x7B 0.2823 0.1386 0.2070 0.8510 0.3257 1x

Prune-Mistral-8x7B 0.2719 0.1296 0.1979 0.8487 0.3191 1.2x
Preserve-Claude3-Haiku 0.2462 0.1195 0.1800 0.8428 0.3153 1

Prune-Claude3-Haiku 0.2450 0.1184 0.1787 0.8433 0.3147 1.2x

Table 12: The effect of preserving and pruning articles and punctuation using different metrics for
different models and configurations.

A.6 TRADE-OFF BETWEEN PERFORMANCE AND COMPRESSION RATE

To start with the experiments, we run a representative experiment to monitor the performance of our
approach versus different compression rates (1− τ ). This helps us understand

Here, we study the trade-off between Frappe’s performance and compression rates using different
combinations of embedding models and ranking algorithms. In particular, Figure 5 illustrates we
monitor the BertScore between the summary of the compressed transcripts passed to the Claude-3
Haiku Model and the ground-truth of the MeetingBank dataset. As we can see, there is a slight
change in the BertScore even with the compression rate as high as 90%, suggesting that FRAPPE
can preserve the essential information in the input even with a very high compression rate.
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Figure 5: BertScore versus Compression Rate (1− τ ) on MeetingBank transcripts after passing the
compressed transcripts to GPT-3.5-Turbo.

A.7 REDUNDANCY GROUPS

Redundancy is a common occurrence in natural languages that tends to diminish the semantic signif-
icance of the data. Consequently, eliminating such redundancies can increase information density,
thereby enhancing the overall quality and relevance of the input prompt. To address this issue, we
have identified and established four categories of redundancy, as illustrated in Fig.2: Phatic Expres-
sions, Filler Utterances, Connectives, and Stopwords.

Phatic Expressions. These comprise conversational phrases that primarily aim to foster or sustain
social relationships rather than to relay specific information. We have initiated the process by asking
GPT-4 for a comprehensive list of unique Phatic Expressions with the following specific prompts:

• Can you provide a comprehensive list of non-repetitive Phatic Expressions?
• Can you provide some more variations?
• Please provide a comprehensive list of Phatic expressions used for greeting in conversa-

tions.
• Please provide a comprehensive list of Phatic expressions used at the end of conversations.

To expand on this, we further prompted the model to provide additional variations and specific ex-
amples of Phatic expressions used in greetings and conversation closures. Some examples include
“Hello”, “Hi”, “Hey”, “how are you doing?”, “Have a good one”. After careful curation and veri-
fication, we compiled a list of approximately 90 Phatic expressions. To diversify this list, we have
also sourced examples from online resources.

Filler Utterances. The second category involved prompting GPT-4 with the query, “Can you pro-
vide a comprehensive list of Filler Utterances in English?” This category aims to capture and ad-
dress linguistic redundancies often found in casual conversations and discourse. We have compiled
a list of approximately 30 words/phrases (both lower and upper case) like: “huh”, “mmm”, “whu”,
“uhm”, “ah”, “em”, “umh”, “eh”, “um”, “ha”, “heh”, “uh”, “uhs”, “wha”, “mhm”, “hum”, “hmm”,
“humm”, “oh”, “uh-oh”, “er” , ”errr”, “well”, , “like”, “actually”, “basically”, “seriously”, “liter-
ally”, “totally”, “clearly”, “you see”, “you know”, “I mean”, “you know what I mean?”, “at the end
of the day”, “believe me”, “I guess”, “I suppose”, “or something”, “so”, “right”.

Connectives. For this category, we have prompted GPT-4 with several queries aimed at generating
a list of connective words, conjunctions, and transitional phrases in English. This exercise produced
an extensive list of words, highlighting diverse groups such as Comparative (e.g., “similarly”, “in
the same way”, “likewise”), Additive (e.g., “and”, “also”, “as well as”, “moreover”, “additionally”),
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Contrastive (e.g., “but”, “however”, “on the other hand”, “alternatively”, “otherwise”, “instead”),
and others including Conditional, Summarize, Illustrative, and Time categories. Specific prompts
used:

• Can you provide a comprehensive list of connective words in English?
• Can you provide a comprehensive list of conjunctions in English?
• Can you provide a comprehensive list of transitional phrases in English?

Stopwords. These refer to commonly used words that are frequently filtered out in natural language
processing due to their minimal semantic content. In this study, we employed the NLTK stopword
library(Bird et al., 2009).

A.8 EXAMPLES OF COMPRESSED TEXT

In Fig. 6, we show a snippet of an uncompressed article from the Arxiv dataset and the text that
results after compression with FRAPPE, aiming for a compression rate of 0.7. Similarly, In Fig. 7,
we show a snippet of an uncompressed transcript from the Meetingbank dataset and the text that
results after compression with FRAPPE, aiming for a compression rate of 0.6. Throughout the
experiments presented in this paper, FRAPPE is not adjusted in any way when applied to different
datasets.

Snippet from original article (503 tokens):
single - transverse spin asymmetries ( ssas ) play a fundamental role for our understanding of qcd in high - energy hadronic scattering . they may be 
obtained for reactions in , for example , lepton - proton or proton - proton scattering with one transversely polarized initial proton , by dividing the 
difference of the cross sections for the two settings of the transverse polarization by their sum . there have been extensive experimental investigations 
of such asymmetries @xcite . these have initiated much theoretical progress , in particular within the last few years . a particular focus has been on a
class of single - spin observables that are characterized by a large momentum scale @xmath1 ( for example , the virtuality of the photon in deeply -
inelastic scattering ( dis ) ) and by a much smaller , but also measured , transverse momentum @xmath2 . in such a `` two - scale '' situation , single -
spin asymmetries may arise at leading power , that is , not suppressed by an inverse power of @xmath1 . for some of these cases , factorization 
theorems have been established @xcite that allow to write the spin - dependent cross sections in terms of parton distribution functions and/or 
fragmentation functions , perturbative hard - scattering functions , and so - called soft factors . a crucial feature is that the distribution functions and 
the soft factor in this factorization are not integrated over the transverse momenta of partons , because these in fact generate the observed transverse 
momentum @xmath2 . among other things , the observables may therefore provide valuable insights into the dependence of parton distributions in 
nucleons on transverse momentum . this becomes particularly interesting when the nucleon is transversely polarized , because there may be 
correlations between the nucleon spin vector , its momentum , and the parton s transverse momentum . one particular correlation , known as the `` 
sivers effect '' and described by so - called `` sivers functions '' @xcite , is now widely believed to be involved in a variety of observed hadronic single -
spin phenomena . closer theoretical studies have revealed that the sivers effect plays an important role in qcd , beyond giving rise to 
phenomenological functions to be used in the description of single - spin asymmetries . a particularly interesting feature is that the sivers effect is not 
universal in the usual sense , that is , it is not represented by universal probability functions convoluted with partonic hard - scattering cross sections .

Snippet after compression (146 tokens):
single transverse spin asymmetries ssas play fundamental role for our understanding of qcd in high energy hadronic scattering particular focus has 
been on class of single spin observables are characterized by large momentum scale @xmath1 transverse momentum @xmath2 factorization 
theorems have been established @xcite allow to write spin dependent cross sections in terms of parton distribution functions and/or fragmentation 
functions because these generate observed transverse momentum @xmath2 observables may provide valuable insights into dependence of parton
distributions in nucleons on transverse momentum this becomes interesting when nucleon is transversely polarized parton s transverse momentum it 
is not represented by universal probability functions convoluted partonic hard scattering cross sections

Figure 6: Comparison of text snippets from an uncompressed article from the Arxiv dataset with the
compressed version of the snippet resulting from FRAPPE compression with a compression rate of
0.7. Tokens of the original text that have been pruned by the compression algorithm are highlighted
in blue.
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Snippet from Original transcript (212 tokens):
agenda item six council vote 119 348 related historic preservation imposing controls upon the halt hall, a landmark designated by the land risk preservation boards 
committee, recommends a bill passed. this rare picture. thank you very much. and hall hall is in the you district is 711 northeast 43rd. it was actually moved the 
building was built in 1928 and they moved it from where i-5 is now over to where it is located on 43rd street. this would be designated for the control features for the 
building exterior. the owner of the building was with us at our committee meeting and we would like to move forward with this landmark designation and move 
adoption of council bill 119348. any comments on this bill? please call the roll on the passage of the bill. gonzalez i. herbold hi. johnson i was i. o'brien i. want i. to 
make sure president herrell i adan favor an unopposed. bill passed and chair senate. please read the next agenda item. the short title.

Snippet after Compression (74 tokens):
agenda item six council vote 119 348 related historic preservation imposing controls upon halt hall recommends bill passed owner of building was us at our 
committee meeting we would to move forward this landmark designation move adoption of council bill 119348 any comments on this bill please call roll on passage 
of bill to make sure president herrell i adan favor unopposed bill passed chair senate

Figure 7: Comparison of text snippets from an uncompressed transcript from the Meetingbank
dataset with the compressed version of the snippet resulting from FRAPPE compression with a
compression rate of 0.6. Tokens of the original text that have been pruned by the compression algo-
rithm are highlighted in blue.
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