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Abstract

Active Feature Acquisition is an instance-wise,
sequential decision making problem. The aim is
to dynamically select which feature to measure
based on current observations, independently for
each test instance. Common approaches either
use Reinforcement Learning, which experiences
training difficulties, or greedily maximize the con-
ditional mutual information of the label and unob-
served features, which makes myopic acquisitions.
To address these shortcomings, we introduce a la-
tent variable model, trained in a supervised man-
ner. Acquisitions are made by reasoning about
the features across many possible unobserved re-
alizations in a stochastic latent space. Extensive
evaluation on a large range of synthetic and real
datasets demonstrates that our approach reliably
outperforms a diverse set of baselines.

1. Introduction
The standard supervised learning paradigm is to learn a pre-
dictive model using a training dataset of features and labels,
such that the model can make accurate predictions on unseen
test inputs. A fundamental assumption is that, at test time,
all features are jointly available. However, this assumption
does not always hold. Consider the example of a doctor di-
agnosing a patient (Kachuee et al., 2019b;a). Initially, there
is little to no information available and, while there are many
tests that could be conducted, the doctor will choose which
ones to carry out based on their current understanding of
the specific patient’s condition. For instance, if a patient has
pain in their leg, and the doctor suspects a fracture, a leg X-
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ray might be prioritized. Active Feature Acquisition (AFA)1

is an inference time task, where the features are not assumed
to be all available at once. Instead, on an instance-wise basis,
a model sequentially acquires features based on the existing
observations to best aid long-term prediction. A common
approach is to use Reinforcement Learning (RL) (Rückstieß
et al., 2013; Shim et al., 2018), since this is a natural so-
lution to a sequential decision making problem. However,
RL suffers from training difficulties such as sparse reward,
exploration vs exploitation, and the deadly-triad (Henderson
et al., 2018; Erion et al., 2022; Van Hasselt et al., 2018).
An alternative approach is to select features that greedily
maximize the conditional mutual information (CMI) (Chen
et al., 2015a;b). This has a significant drawback: CMI does
not capture the effects of unobserved features that can be
acquired at a later stage. This results in myopic decision
making that favors immediate predictive power over sets
of jointly informative features, or features that are highly
informative of which feature to acquire next. Additionally,
we argue that CMI is not even guaranteed to be the best
short-term objective from the perspective of the 0-1 Loss
(making a single decisive prediction). Since maximizing
CMI is equivalent to minimizing entropy, and this can be
achieved by making unlikely classes even more unlikely,
rather than distinguishing between more probable outcomes.
We further explore the drawbacks of CMI in Section 4.

Motivated by the shortcomings of RL and CMI maximiza-
tion, we introduce a novel AFA approach, which we call
Stochastic Encodings for Feature Acquisition (SEFA), that
departs from existing methods in several key ways. First,
we shift the acquisition problem from reasoning in a com-
plex feature space to a latent space. We use an information
bottleneck inspired term (Tishby et al., 1999) to regularize
the latent space such that decisions are made using label-
relevant information only and not noise associated with the
features. Second, we use stochastic encoders, allowing us
to acquire features by considering their effect across a di-
verse range of possible latent realizations. This allows us to
capture the effects of features that are yet to be observed, re-
sulting in acquisitions that are non-greedy by design. Third,
our acquisition objective places more focus on labels with
higher predicted likelihood, leading to acquisitions that help

1This problem has also been referred to as Dynamic Feature
Selection (DFS).
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to disambiguate between the most likely classes. Finally, to
avoid the difficulties posed by RL, we do not train our model
to make acquisitions directly. Instead, we train with a pre-
dictive loss and make acquisitions by maximizing a custom
objective in a suitably regularized latent space. Our contribu-
tions are as follows: (1) We re-examine the CMI acquisition
objective and provide theoretical reasoning and concrete
examples of its sub-optimality. (2) We introduce SEFA, our
novel AFA approach motivated by the limitations of RL
and CMI maximization. (3) We evaluate SEFA on multiple
synthetic and real-world datasets, including cancer classi-
fication tasks. Comparing against various state-of-the-art
AFA baselines, we see that SEFA consistently outperforms
these methods. Extensive ablations further demonstrate each
novel design choice is required for the best performance.

2. Related Work
Reinforcement Learning. The most common AFA ap-
proach is to frame the problem as a Markov Decision Pro-
cess and train a policy network with RL to decide which
feature to acquire next (Dulac-Arnold et al., 2011; Rückstieß
et al., 2013; Shim et al., 2018; Janisch et al., 2019; Mnih
et al., 2014; Kachuee et al., 2019a). The RL approach read-
ily extends to a temporal setting where features and labels
can change over time (Kossen et al., 2023; Yin et al., 2020).
Whilst a natural solution to AFA, RL suffers from training
difficulties, and various advances in the RL field have been
applied to account for this. For example, using generative
models to augment datasets (Zannone et al., 2019), provid-
ing mutual information as additional input to the policy (Li
& Oliva, 2021), using gradient information in the training
process (Ghosh & Lan, 2023), and reward shaping (Peng
et al., 2018).

Conditional Mutual Information Maximization. Condi-
tional mutual information tells us how much we can learn
about one variable by measuring a second, whilst already
knowing a third. Greedy CMI maximization is a common
AFA approach, due to its grounding in information theory,
however (as we demonstrate in Section 4), it inherently
makes short-term acquisitions and is prone to making acqui-
sitions that do not distinguish between likely labels. Among
existing approaches, networks can be trained to directly
predict CMI (Gadgil et al., 2024), or policy networks can
be specially trained to maximize CMI without ever calcu-
lating it (Chattopadhyay et al., 2023; Covert et al., 2023).
Generative models are a second way to estimate CMI by
taking Monte Carlo estimates over conditional distributions,
(Ma et al., 2019; Chattopadhyay et al., 2022; Rangrej &
Clark, 2021; Early et al., 2016). This approach suffers from
associated generative modeling challenges, producing poor
estimates of CMI, thus adding to the limitations. Improved
performance can be achieved with advances in generative

modeling (Peis et al., 2022; He et al., 2022; Li et al., 2020;
Li & Oliva, 2020).

Alternative Solutions. Sensitivity-based solutions make
selections based on how sensitive the label is to a given fea-
ture (Kachuee et al., 2017; 2018). However, since missing
values are filled with zero and measuring a feature is dis-
continuous, the gradient does not reliably represent the true
sensitivity. Imitation learning has been applied (Valancius
et al., 2024; He et al., 2016), however, this requires access
to an oracle or to construct one. Prior to deep learning, deci-
sion trees were used, with features acquired at each branch
of a tree if the feature is unobserved (Xu et al., 2012; 2013;
Kusner et al., 2014; Trapeznikov & Saligrama, 2013; Xu
et al., 2014). This has also been generalized to ensembles
of decision trees (Nan et al., 2015; 2016).

3. Active Feature Acquisition
Problem Setup. In standard C-way classification, we have
a d-dimensional feature vector given by the random variable
X ∈ X with realization x = (x1, x2, . . . , xd), and a label
given by Y ∈ [C] with realization y. Ordinarily, we assume
all features are observed; however, more generally, we wish
to allow arbitrary feature subsets as valid inputs. Therefore,
let ∗ represent a missing feature value and X =

∏d
i=1(Xi ∪

{∗}). We denote an input with feature subset S ⊆ [d], as
xS , where xS,i = xi if i ∈ S, and xS,i = ∗ if i /∈ S.
Given a training set, DTrain = {(xS , y)n}Nn=1, the AFA task
is to train a model that takes a test instance with arbitrary
observations xO, and iteratively acquires new features. The
model’s long-term acquisition goal is to acquire a sequence
of features S∗ to maximize the confidence in its prediction
whilst minimizing the number of acquired features:

S∗ =argmax
S∈[d]\O

(
max
c∈[C]

pModel(Y = c|xO∪S)− λ|S|
)

subject to |S| ≤ B.

Here, λ balances how much we optimize for a confident
prediction compared to limiting the number of acquisitions,
and B is a given feature budget. These parameters are highly
domain dependent. For example, in medicine, where the
stakes are high, we have large B and low λ. There is a
high tolerance for acquiring features if we make confident
predictions. In this paper, we assume we are able to acquire
all features if necessary and, unless otherwise stated, mod-
els are evaluated by tracking their predictive performance
during an entire acquisition starting with no features.

Acquisition in Practice. The standard approach to AFA is
to construct an acquisition objective function R : X × [d] −→
R≥0, that scores each feature conditioned on existing ob-
servations, and to acquire the feature that maximizes this:
i∗ = argmaxi∈[d]\O R(xO, i). The objective is defined
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by the method. For instance, CMI methods use the CMI:
RCMI(xO, i) = I(Xi;Y |xO), telling us how much mea-
suring Xi will reduce the entropy of Y conditioned on
xO. RL methods use the output of a policy or Q network,
trained directly on the sequential feature acquisition prob-
lem: RRL(xO, i) = Qθ(xO)i. Following an acquisition, we
update the observed feature set to be O ∪ i∗ and repeat the
acquisition process.

4. Limitations of CMI Maximization
Here we more closely examine the shortcomings of greedy
CMI maximization for AFA, to gain an understanding into
why CMI maximization can be sub-optimal and how this can
be addressed. Whilst grounded in theory and extensively
applied, it suffers from two drawbacks.

First, greedy CMI maximization makes myopic acquisitions,
which in some scenarios is guaranteed to be sub-optimal.
We prove this with an example. Consider a feature vector
with d+ 1 features, the first d of which are binary, and the
last taking an integer value from 1 to d: X ∈ {0, 1}d × [d].
The final feature acts as an indicator, informing us which of
the other d features gives the label, y = xxd+1

. The optimal
strategy is to first choose the indicator then its designated
feature, requiring two acquisitions. However, the expected
number of acquisitions to arrive at the same prediction by
greedily maximizing CMI is 3 − 1

d (proof in Appendix
F). The theoretical insight into why CMI fails is because
possible future observations are not considered in the present
decision since they are marginalized out, p(xi, y|xO) =∫
p(xj , xi, y|xO)dxj . Each acquisition is made as if there

are no subsequent acquisitions and therefore the indicator is
not chosen first. This is not specific to CMI, but any scoring
that marginalizes out unobserved features.
Proposition 4.1. Any acquisition objective that uses the
marginal p(xi, y) to score feature i will not select the indi-
cator first.

The proof is straightforward: With no other features,
the indicator and label are independent, p(xd+1, y) =
p(xd+1)p(y). It is therefore impossible to measure its effect
on the label without considering possible values of other
features, regardless of how the effect is measured. RL meth-
ods do not suffer from this, since during training different
scenarios are seen and the effects distilled into the parame-
ters. Building on this, an adjusted objective that uses CMI
but also considers possible unobserved feature values can
solve the indicator problem under greedy maximization.
Proposition 4.2. Greedy maximization of
Ep(xU |xO) I(Xi;Y |xO,xU ) is an optimal strategy
for the indicator problem, where U = [d] \ (O ∪ i).

We prove this in Appendix F. Note we do not use this as
our acquisition objective, since this is intractable. The key

takeaway from these two propositions is that considering
possible values of other unobserved features is necessary
for optimality and, if the objective is chosen well, sufficient.
Whilst we used the indicator example to show this, more
generally it applies to settings with features that are jointly
informative but individually uninformative - CMI does not
acquire jointly informative features because it marginalizes
out their interdependencies with the label.

The second drawback of CMI is that, even as a short-term
objective, it is not guaranteed to be the best objective for
identifying the single most likely class. CMI maximiza-
tion is equivalent to minimizing entropy, and to show why
this is not guaranteed to be optimal, consider two distri-
butions over three classes: H([0.5, 0.5, 0.0]) = 0.693 and
H([0.7, 0.15, 0.15]) = 0.819. The first distribution has
lower entropy, but the second identifies the most likely class.
The insight is that it is possible to maximize CMI by re-
ducing some class probabilities to be as low as possible.
However, we often desire to identify the most likely class,
rather than ruling out options that may have already had a
low probability. Therefore, an effective acquisition objec-
tive will place focus on distinguishing between the most
likely labels. We provide another example in Appendix G.

As an aside, from the perspective of Rényi entropies (Rényi,
1961), CMI maximization minimizes the Shannon entropy,2

H1(p) = −
∑

i pi log(pi). Whereas if the aim is to identify
the single most likely class, minimizing the min-entropy
H∞(p) = − logmaxi pi, might be more appropriate. How-
ever, this would still suffer from making myopic acqui-
sitions. More importantly, the theoretical foundation no
longer holds: minimizing Shannon entropy is equivalent to
maximizing the KL divergence; however, minimizing H∞
is not equivalent to maximizing the D∞ divergence.

5. Method
To address the limitations of RL and CMI for AFA, we
propose a novel method, called Stochastic Encodings for
Feature Acquisition (SEFA). We provide a block diagram
of our method in Figure 1, showing both how the model
makes predictions and calculates the acquisition objective.
We describe the architecture and training in Section 5.1 and
the acquisition objective in Section 5.2.

5.1. Architecture and Training

SEFA uses an encoder-predictor architecture with interme-
diate stochastic latent variable Z ∈ Z . Predictions are given
by pθ,ϕ(y|xS) = Epθ(z|xS) pϕ(y|z).

Encoder. In order to use neural networks to implement

2Throughout the paper, unless specified, entropy refers to Shan-
non entropy.
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Figure 1. Block diagram of SEFA. Illustrated using three features and four latent components per feature. The presence or absence of a
feature value is indicated with a binary mask vector m. Prediction and acquisition scoring with one latent sample is given together with
example numerical values for acquisition.

SEFA, the input vector must not change size. Therefore,
to account for missing values, we impute missing feature
values and use a binary mask, M ∈ {0, 1}d, as additional
input to the encoder to signal if a value is real or imputed.
xS,i = xi, mS,i = 1 if i ∈ S and xS,i = ∗, mS,i = 0
if i /∈ S. Where ∗ is 0 for continuous features and a new
category for categorical features.

For reasons that become clear when we describe the acqui-
sition objective (see Section 5.2), we factorize the latent
space, so that each feature is separately encoded to l latent
components (see Figure 1)

pθ(z|xS) =

d∏
i=1

pθi(zGi |xS,i,mS,i).

Here Gi indexes the latent components that feature i is
responsible for encoding. For example, if l = 3 then
G1 = {1, 2, 3},G2 = {4, 5, 6} etc. Each encoder is an
MLP, fe

θi
: Xi × {0, 1} −→ Rl × Rl

>0, that outputs a mean
and diagonal standard deviation of a normal distribution.

Predictor. We make predictions on individual latent sam-
ples with a predictor network given by an MLP, fp

ϕ : Rld −→
∆C , that predicts a probability distribution over C classes.

Training. The SEFA architecture is trained in a supervised
manner, minimizing the predictive negative log-likelihood,

avoiding potential issues associated with training using RL.
We also impose an information bottleneck regularization
term on the latent space I(XS ;Z) (Tishby et al., 1999),
minimizing how much information about the features is
encoded in the latent variable. The regularization term is
implemented using a variational upper bound (Alemi et al.,
2017), as the expected KL divergence between pθ(z|xS)
and a prior p(z). We use N (0, 1) as the prior so that the KL
divergence has a closed-form expression. This is multiplied
by β to balance predictive performance with regularization.
Additionally, to train SEFA to make predictions on arbitrary
feature subsets, for a given batch, we first subsample the fea-
ture subset, such that each available feature has probability
0.5 of being removed. This gives the loss

L = E
pData(xS ,y)

E
pBernoulli(S′)

[
− log

(
pθ,ϕ(y|xS∩S′)

)
+ βDKL

(
pθ(Z|xS∩S′)||p(Z)

)]
.

(1)

5.2. Acquisition

Once the SEFA architecture is trained, we can make acqui-
sitions using our novel acquisition objective

R(xO, i) =
∑
c∈[C]

pθ,ϕ(Y = c|xO) E
pθ(z|xO)

r(c, z, i) (2)
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where r : [C]×Z × [d] −→ R≥0 is a scoring function

r(c, z, i) =
||gGi

||2∑
j ||gGj ||2

, g = ∇zpϕ(Y = c|z). (3)

Recall Gi indexes the components of the latent gradient
that feature i encodes. Below we go through this objective,
understanding the purpose of each technical component:

Scoring Function as an Importance Measure. For a
given latent representation z, and a given class c, we can use
the gradient ∇zpϕ(Y = c|z), to determine how important
each component of z is for making that prediction. Gra-
dients are an established feature attribution technique as
a local explainer (Baehrens et al., 2010; Simonyan et al.,
2014; Ribeiro et al., 2016), our novelty is to use them in the
latent space not the feature space.

In order to convert the gradients of z to feature scores, we
calculate the length of the gradient in a feature’s associated
latent components, ||gGi

||2. Note that this is only possible
because we used feature-wise encoders rather than one fully
connected encoder. Finally, we normalize scores to treat
each latent sample equally, removing the effect of the total
gradient length. See Figure 1 for an example calculation.

Stochastic Encodings. r(c, z, i) only tells us how impor-
tant feature i’s latent components are for predicting class
c, for a single z. However, as demonstrated in Section 4,
considering possible values of other unobserved features
is necessary for optimality, and lacking in CMI. By using
stochastic encoders and taking an expectation of r(c, z, i)
over pθ(z|xO), multiple possible latent realizations (includ-
ing those associated with different unobserved feature val-
ues) are taken into account in the current decision. We can
analogously think of this inner loop as conducting Monte
Carlo tree search (Coulom, 2006) through possible future
observations and measuring which feature on average is
most important for predicting the likelihood of class c. To
fully sample the possible realizations, multiple latent sam-
ples are taken; we empirically verify this and the use of
stochastic encoders in Section 6 and Appendix C.

Probability Weighting. The inner loop of the objec-
tive scores feature i, based on its expected importance for
predicting the probability of class c, over many possible
unobserved latent realizations. To aggregate across classes,
rather than treating each class equally, we take a weighted
sum of the scores, using the current predicted probabilities
pθ,ϕ(Y = c|xO). This places more focus on the more likely
classes, overcoming the issue with CMI maximization being
possible by making low probabilities lower (see Section 4).
Empirically we verify this in ablations in Appendix C.

Supervised Training. Since our acquisition objective is
hand-crafted, we can train with a supervised loss, avoiding
training difficulties associated with RL.

5.3. Understanding the Latent Space

Benefits. The remaining novelty of SEFA is the use of the
latent space to calculate the acquisition objective. However,
it is possible to calculate the objective entirely in the feature
space. Here we would train a predictive model pϕ̃(y|xS)
and a generative model pθ̃(x|xS), and the objective is

R̃(xO, i) =
∑
c∈[C]

pϕ̃(Y = c|xO) E
pθ̃(x|xO)

r̃(c,x, i).

In this case each component of the gradient maps directly
to one feature, so the scoring function simplifies to

r̃(c,x, i) =
|gi|∑
j |gj |

, g = ∇xpϕ̃(Y = c|x).

We use the latent space instead of the feature space because
it allows us to calculate the acquisition objective using rep-
resentations of the features, rather than the features them-
selves. The benefits are three-fold: (1) Gradients in the
latent space are more meaningful and comparable, since
all latent components are continuous, and at a similar scale
(with appropriate regularization). Whereas features can be
categorical, or at different inherent scales. (2) The informa-
tion bottleneck regularization removes feature level noise.
Therefore, in the latent space we calculate the acquisition
objective using only label-relevant information, instead of
taking gradients with noisy feature values. (3) We do not
need to train a generative model, and therefore avoid as-
sociated complexities such as continuous and categorical
variables, multi-modal densities, and highly correlated fea-
tures. Our ablations in Section 6 and Appendix C verify the
use of the latent space over the feature space for calculating
the acquisition objective.

Independent Latent Components. One of the model-
ing choices to make the acquisition objective tractable is to
encode each feature separately. However, this means mea-
suring one feature does not affect the latent distribution of
another feature, even if they are highly correlated. Naively,
this decoupling should harm the performance. However,
the complex interdependencies can be accounted for by
the predictor network pϕ(y|z). For example, even though
measuring feature 1 does not affect feature 2’s latent distri-
bution, the predictor network can learn to treat feature 2’s
latent samples differently based on the value of feature 1’s
latent samples (whose distribution does change after mea-
surement). Therefore, the gradients change, and measuring
feature 1 does affect the score for feature 2 (and all other
features), despite the latent distribution not changing.

Revisiting the Loss. The predictive part of the
loss in (1) is given by the negative log-likelihood
− logEpθ(z|xS) pϕ(y|z). It is standard to take one latent
sample to calculate this. However, we take multiple samples
for two reasons. (1) The predictor network must see enough
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latent samples during training to learn to adapt based on
different samples during acquisition. (2) If only one sample
is taken for a given xS , the predictive loss encourages each
sample to output the same prediction. Either the encoder
pθ(z|xS) reduces the standard deviation, or the predictor
pϕ(y|z) predicts the same label distribution for the different
latent samples. Either way, there is a lack of diversity in
the latent space predictions. If multiple samples are taken,
this allows individual samples’ predictions to vary more.
This will not improve the predictions, but improves the ac-
quisition since a more diverse set of possible realizations
are used in the inner loop of the objective. We verify this
empirically in Section 6 and Appendix C.

6. Experiments
Here we evaluate SEFA against various deep AFA baselines.
We consider a range of synthetic, tabular, image, and medi-
cal datasets. For reproducibility, we provide full experimen-
tal details in Appendix K, including hyperparameter choices
and training procedures, and full dataset details in Appendix
H. The code for our method and experiments is available at
https://github.com/a-norcliffe/SEFA.

Baselines. We consider six different state-of-the-art base-
lines: Opportunistic Learning (Kachuee et al., 2019a) and
GSMRL (Li & Oliva, 2021) as RL baselines, GDFS (Covert
et al., 2023) and DIME (Gadgil et al., 2024) as greedy CMI
maximization methods, and ACFlow (Li & Oliva, 2020) and
EDDI (Ma et al., 2019) as generative models for CMI max-
imization. We also use three vanilla baselines: a random
ordering of features with an MLP predictor, an MLP with
a fixed global ordering of features, and a VAE (Kingma,
Diederik P and Welling, Max, 2014), which has a sepa-
rate predictive and generative model to estimate the CMI.
Further details about the baselines are given in Appendix I.

6.1. Synthetic Datasets

We begin by constructing three synthetic classification tasks
(denoted Syn 1-3) based on the synthetic experiments used
by Yoon et al. (2019), where we know the optimal instance-
wise feature ordering. These are binary classification tasks
with eleven features sampled from a standard normal. Three
logits are calculated from the first ten features, defined as:

ℓ1 = 4x1x2, ℓ2 =

6∑
i=3

1.2x2
i − 4.2,

ℓ3 = −10 sin(0.2x7) + |x8|+ x9 + e−x10 − 2.4

The binary label is sampled with p(Y = 1) = 1/(1 + eℓ).
Syn 1 uses ℓ1 if x11 < 0 and ℓ2 otherwise. Syn 2 uses ℓ1
if x11 < 0 and ℓ3 otherwise. Syn 3 uses ℓ2 if x11 < 0 and
ℓ3 otherwise. In all cases x11 determines which features
are important to the prediction, so the optimal strategy is to

acquire x11 first and then to acquire the remaining relevant
features. Table 1 shows how many features each model ac-
quires until all features relevant to a particular instance are
selected (including x11). SEFA achieves this in the fewest
acquisitions and is close to optimal on all three datasets.
Estimating CMI using generative models (ACFlow, EDDI,
and VAE) performs worse than the fixed ordering, show-
ing that inaccurate estimation of CMI worsens the issues
already associated with its greedy maximization. EDDI, in
particular, nearly performs as poorly as random selections
and consistently performs poorly across all experiments,
since it is only trained to indirectly predict y from xS and
thus produces inaccurate estimates of CMI and p(y|xS).

We investigate which features are acquired by the best four
models for Syn 3 (Figure 2). SEFA consistently chooses
x11 first and then continues to make optimal acquisitions,
almost achieving the optimal performance of 5 (Table 1). In
contrast, DIME acquires x7 first, since this has the highest
mutual information initially, despite not being the best for
long-term acquisitions. Therefore, when x11 < 0, DIME
does not start acquiring features 3-6 until acquisition 3.
GDFS performs similarly, since it is also trained to max-
imize CMI. Opportunistic RL tends to make noisy acqui-
sitions, as seen by the red trajectories, demonstrating how
it suffers from training difficulties. See Appendix A for
equivalent diagrams and analysis for Syn 1 and Syn 2.

Ablations. To provide further insight into why SEFA per-
forms well, we conduct ablations on the synthetic datasets
(Table 1). We investigate the impact of each of our design
choices: removing the latent space regularization (β = 0);
using one latent sample during acquisition; using one la-
tent sample during training; using a deterministic encoder
(and therefore no expectation over latent samples); calcu-
lating the acquisition objective in the feature space rather
than the latent space;3 and not normalizing the acquisi-
tion scores. Note removing probability weighting has no
impact on binary classification; we prove this and ablate
this component in Appendix C. Removing any of the novel
components impacts SEFA’s performance. Calculating the
acquisition objective in latent space is the most important de-
sign choice, followed by using multiple acquisition samples
and a stochastic encoder. To better understand the perfor-
mance differences, in Appendix B we examine acquisition
heat maps and carry out sensitivity analyses on β, number
of acquisition samples, number of train samples and number
of latent components per feature.

6.2. Datasets with Unknown Feature Orderings

Here, we consider multiple synthetic and real-world datasets
where the correct feature ordering is not known a priori.

3This was achieved by using a VAE for pθ̃(x|xS) and an MLP
for pϕ̃(y|xS).
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Table 1. Number of acquisitions to acquire the correct features on the synthetic datasets, the lower the better. We provide the mean and
one standard error.

Model Syn 1 Syn 2 Syn 3

ACFlow 7.730± 0.139 7.527± 0.254 9.194± 0.278
DIME 4.079± 0.064 4.581± 0.217 5.667± 0.038
EDDI 9.197± 0.203 9.214± 0.415 9.794± 0.186

Fixed MLP 6.009± 0.000 5.996± 0.000 7.999± 0.000
GDFS 4.568± 0.219 4.484± 0.159 5.587± 0.201

GSMRL 5.570± 0.127 6.227± 0.185 8.199± 0.067
Opportunistic RL 4.201± 0.041 4.846± 0.021 5.850± 0.072

Random 9.484± 0.006 9.499± 0.005 9.987± 0.008
VAE 6.589± 0.088 6.667± 0.140 7.888± 0.065

SEFA (ours) 4.017± 0.003 4.099± 0.009 5.084± 0.026

Ablation Syn 1 Syn 2 Syn 3

β = 0 4.520± 0.082 4.578± 0.109 5.716± 0.104
1 Acquisition Sample 4.683± 0.030 4.862± 0.035 5.700± 0.027

1 Train Sample 4.421± 0.174 4.713± 0.160 5.188± 0.107
Deterministic Encoder 4.593± 0.236 4.773± 0.228 5.744± 0.034

Feature Space Calculation 5.111± 0.070 5.461± 0.128 5.977± 0.052
WO Normalization 4.036± 0.009 4.104± 0.008 5.101± 0.015

SEFA (full) 4.017± 0.003 4.099± 0.009 5.084± 0.026
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Synthetic 3 Acquisition Proportions and Trajectories

Figure 2. Acquisition heat maps and trajectories for Syn 3. Individual trajectories are plotted in red, with the acquisition proportions at
each step as a heat map. Green boxes show the optimal strategy, while the vertical black line denotes the minimum number of features
required (5).

To evaluate, we start with zero features and calculate the
evaluation metric at every step during acquisition. We use
AUROC for binary classification tasks and accuracy for
multi-class. We report the average metric during acquisition
in Table 2 and plot the curves for SEFA, DIME, GDFS,
Opportunistic RL, and the fixed MLP ordering in Figure 3,
which tend to be the best performing models.

Cube. We start with the Cube Synthetic Dataset (Rückstieß
et al., 2013; Shim et al., 2018; Zannone et al., 2019). The
task is eight-way classification with twenty features. The
feature vector is normally distributed around the corners of
a cube, with the cube occupying three different dimensions
for each class. Irrelevant features are normally distributed
around the center. SEFA has the highest average accuracy,
and consistently maintains the highest acquisition curve. All

active methods outperform the fixed ordering, except EDDI
which suffers from the lack of an inbuilt predictive model.

Real Tabular. Next, we consider three real tabular datasets.
Bank Marketing (Moro et al., 2014), California Housing
(Pace & Barry, 1997) and MiniBooNE (Roe et al., 2005;
Roe, 2010). The Bank Marketing dataset is a binary classifi-
cation task, predicting if a customer subscribes to a product
based on marketing data. California Housing consists of
features about houses in California districts and the label is
the median house price. We converted this into four-way
classification by bucketing the labels into four equally sized
bins. The MiniBooNE dataset is a particle physics binary
classification task trying to distinguish between electron-
neutrinos and muon-neutrinos. In all cases, SEFA has both
the highest average evaluation metric and maintains the best
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Table 2. Average evaluation metrics during acquisition. Higher values are better, we report the mean and standard error.
Model Cube Bank Marketing California Housing MiniBooNE

ACFlow 0.899± 0.001 0.823± 0.013 0.558± 0.010 0.881± 0.018
DIME 0.901± 0.001 0.907± 0.002 0.661± 0.002 0.951± 0.001
EDDI 0.764± 0.005 0.705± 0.010 0.412± 0.013 0.842± 0.009

Fixed MLP 0.883± 0.001 0.909± 0.001 0.658± 0.002 0.954± 0.000
GDFS 0.900± 0.000 0.907± 0.001 0.653± 0.002 0.949± 0.000

GSMRL 0.891± 0.001 0.879± 0.006 0.638± 0.003 0.946± 0.001
Opportunistic RL 0.901± 0.000 0.910± 0.000 0.657± 0.001 0.953± 0.000

Random 0.699± 0.001 0.816± 0.003 0.569± 0.003 0.912± 0.001
VAE 0.901± 0.001 0.878± 0.002 0.633± 0.005 0.925± 0.002

SEFA (ours) 0.904± 0.001 0.919± 0.001 0.676± 0.005 0.957± 0.000

Model MNIST Fashion MNIST METABRIC TCGA

ACFlow 0.667± 0.003 0.652± 0.002 0.542± 0.006 0.711± 0.009
DIME 0.731± 0.002 0.703± 0.002 0.670± 0.007 0.805± 0.002
EDDI 0.572± 0.003 0.604± 0.001 0.563± 0.011 0.634± 0.005

Fixed MLP 0.708± 0.001 0.690± 0.001 0.685± 0.003 0.799± 0.004
GDFS 0.732± 0.001 0.692± 0.002 0.671± 0.005 0.797± 0.002

GSMRL 0.701± 0.002 0.683± 0.001 0.665± 0.002 0.781± 0.003
Opportunistic RL 0.740± 0.000 0.708± 0.000 0.706± 0.004 0.838± 0.002

Random 0.661± 0.001 0.648± 0.001 0.647± 0.005 0.753± 0.003
VAE 0.716± 0.001 0.685± 0.001 0.690± 0.004 0.800± 0.003

SEFA (ours) 0.761± 0.001 0.721± 0.000 0.709± 0.003 0.843± 0.002
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Figure 3. Evaluation metrics plots, starting from the first to the final acquisition across all datasets. Zoomed in curves are shown in the
bottom right corner of each plot.

evaluation metric through the acquisition curve, in particular
on Bank Marketing and California Housing. Opportunis-
tic RL, DIME, and GDFS perform approximately as well
as each other across the real data. Interestingly, on Mini-
BooNE, the fixed ordering is the second best, despite other
methods actively acquiring features. Again, the generative
models underperform due to inaccurate CMI estimation.

Image Classification. Next we consider MNIST (LeCun
et al., 1998) and Fashion MNIST (Xiao et al., 2017), and
acquire up to twenty pixels. Here, the fixed ordering is
inadequate, and the active methods perform better. Oppor-
tunistic RL outperforms DIME and GDFS, demonstrating
RL is still an effective method for AFA despite its training
difficulties, whereas the problems associated with CMI max-
imization are more fundamental. Again, SEFA outperforms

all methods by a significant margin, both in terms of aver-
age acquisition performance and the acquisition curve being
consistently the highest throughout the acquisition.

6.3. Cancer Classification

Finally, we look at SEFA in the context of medicine.
We consider two cancer classification tasks. The first is
METABRIC (Curtis et al., 2012; Pereira et al., 2016), where
the task is to predict the PAM50 status of breast cancer
subjects from gene expression data. The six classes are Lu-
minal A, Luminal B, HER2 Enriched, Basal Like, Claudin
Low, and Normal Like. The second dataset uses The Cancer
Genome Atlas (TCGA) (Weinstein et al., 2013). The goal is
to predict the location of a tumor based on DNA methylation
data. The average accuracies are given in Table 2 and the
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Figure 4. TCGA acquisition heat maps and trajectories for four tumor locations. We show the first six acquisitions. Notable acquisitions
are highlighted with green boxes and discussed in Section 6.3. Despite the associated noise of a medical dataset, the trajectories and heat
maps show instance-wise acquisitions.

acquisition curves in Figure 3. On METABRIC, SEFA and
Opportunistic RL perform similarly, outperforming all other
baselines. On TCGA, SEFA significantly outperforms all
baselines with Opportunistic RL a strong second, signifi-
cantly outperforming DIME and GDFS, further demonstrat-
ing CMI is a flawed AFA objective.

To further validate the acquisitions of SEFA, we visualize
the trajectories and heat maps for four cancer types in Figure
4, and provide scientific literature supporting the acquisi-
tions made. Firstly, we can see that the acquisitions made are
instance-wise, since the underlying acquisition heat maps
change between classes. For example, HOXA9 (feature 9)
is selected at acquisition 4, 5, and 6 for lung and prostate
cancer, but not breast or liver. The first feature selected
is almost always ST6GAL1 (feature 18), which is known
to be upregulated in a number of cancers including breast,
prostate, pancreatic, and ovarian (Garnham et al., 2019). For
breast cancer, DEF6 (feature 2) is often acquired second,
which has been identified to be correlated with metastatic
behavior of breast cancer (Zhang et al., 2020). For lung and
liver cancers, DNASE1L3 (feature 3) is often acquired sec-
ond; this gene has been identified as a potential biomarker
in liver and lung cancer (as well as breast, kidney, and stom-
ach) (Deng et al., 2021). For prostate cancer, the second
feature acquired tends to be SERPINB1 (feature 17), which
is linked to prostate cancer (Lerman et al., 2019). For breast
cancer, the third acquisition tends to be C7orf51 (feature
1), which is altered in triple negative invasive breast cancer
(Brown, 2016). For lung and liver cancers, SEFA typically
acquires PON3 (feature 15) as the third acquisition. It has
been shown that PON3 is largely restricted to solid tumors
such as those in liver, lung, and colon cancer (Schweikert
et al., 2012). For prostate cancer, the most common third
feature acquired is GRIA2 (feature 7), which has been found
to correlate with the recurrence and prognosis of prostate
cancer (Alwadi et al., 2022).

Note this is not an exhaustive list, and often it is helpful to
acquire a feature that may not be associated with one type
of cancer, if it is with another, since that feature helps to
differentiate between them. Therefore, some acquisitions
with a high proportion may not have an associated citation.

7. Conclusion
This paper considered Active Feature Acquisition, the test
time task of actively choosing which features to observe
to improve a prediction. We introduced SEFA, a novel
approach for AFA by calculating the acquisition objective
using samples from a suitably regularized stochastic latent
space, moving away from previous solutions based on RL
and CMI maximization. SEFA regularly outperformed pre-
vious methods across a range of tasks, and we validated
acquired features in the scientific literature. Our ablation
study demonstrated that each component of SEFA leads to
performance gains.

Limitations. Currently SEFA applies to classification tasks
but not to regression tasks. This is because SEFA requires
separation of class probabilities during acquisition and this
notion is not well defined for continuous labels. We view
this as an interesting avenue for future work. One possible
solution is to have two prediction heads, one that predicts the
continuous label as a regression task, and one that predicts
a discretized version of the label as a classification task.
The classification head can be used for acquisition, and the
regression head for prediction.

Additionally, due to requiring multiple latent samples, SEFA
has larger memory requirements at inference time than RL
baselines, depending on how many samples are used. How-
ever, CMI maximization methods with generative models
also require multiple samples at inference time, so this is
not a new limitation for AFA models.
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A. Additional Synthetic Heat Maps and Trajectories
To complement the synthetic experiments presented in Section 6 we provide the heat maps and trajectories for Syn 1 in
Figure 5 and Syn 2 in Figure 6. In agreement with Table 1, SEFA can be seen to clearly perform best on both Syn 1 and
Syn 2. In both cases x11 is acquired first, informing the model where it needs to look next. All features are acquired by
the theoretical minimum with the exception of a minority of trajectories. Opportunistic RL and DIME have a small but
noticeable portion of sub-optimal trajectories on Syn 1 when x11 < 0. GDFS performs particularly poorly on Syn 1, when
x11 < 0 a high proportion of required feature acquisitions are made after the theoretical minimum of 3 since initially x4 and
x5 are selected. Additionally, GDFS regularly selects x11 late into the acquisition process. On Syn 2, the three baselines do
not place all attention on x11 initially. In fact, Opportunistic RL and GDFS mostly acquire x7 first since it provides the best
immediate predictive signal. When x11 ≥ 0, the baselines tend to acquire all relevant features in the theoretical minimum,
albeit in sub-optimal orders. However, we see that when x11 < 0, this is not the case with many required acquisitions being
made after the minimum of 3, since x7 has been selected first.
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Figure 5. Acquisition heat maps and trajectories on Syn 1. Individual trajectories are plotted in red, with the acquisition proportions at
each step as a heat map behind. We use green boxes to highlight the optimal strategy and a vertical black line to show the minimum
number of features required (3 or 5).
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Figure 6. Acquisition heat maps and trajectories on Syn 2. Individual trajectories are plotted in red, with the acquisition proportions at
each step as a heat map behind. We use green boxes to highlight the optimal strategy and a vertical black line to show the minimum
number of features required (3 or 5).

14



Stochastic Encodings for Active Feature Acquisition

B. Synthetic Ablations and Sensitivity Analysis
Heat maps and Trajectories. We supplement the synthetic ablations in Table 1 by studying the acquisition heat maps
and trajectories calculating the acquisition objective in the feature space, using a deterministic encoder and one acquisition
sample of the latent space. We plot these for Syn 1-3 in Figures 7, 8 and 9. All three figures show that removing each of our
proposed components degrades acquisition performance, confirming Table 1. All three reduced versions of SEFA, in all
cases, select relevant features after the theoretical minimum since they regularly select x11 late into the acquisition. Using
the feature space almost never selects x11 first. Acquiring with one latent sample leads to trajectories that approximately
sample uniformly among all features relevant to a given synthetic task. Confirming that we need to take many acquisition
samples to see a feature’s effect on a diverse range of possible latent realizations.
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Figure 7. Acquisition heat maps and trajectories on Syn 1 ablations. Individual trajectories are plotted in red, with the acquisition
proportions at each step as a heat map behind. We use green boxes to highlight the optimal strategy and a vertical black line to show the
minimum number of features required (3 or 5).
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Figure 8. Acquisition heat maps and trajectories on Syn 2 ablations. Individual trajectories are plotted in red, with the acquisition
proportions at each step as a heat map behind. We use green boxes to highlight the optimal strategy and a vertical black line to show the
minimum number of features required (3 or 5).
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Figure 9. Acquisition heat maps and trajectories on Syn 3 ablations. Individual trajectories are plotted in red, with the acquisition
proportions at each step as a heat map behind. We use green boxes to highlight the optimal strategy and a vertical black line to show the
minimum number of features required (5).

Sensitivity Analysis of β. To further explore the importance of a well-regularized latent space, we conduct a sensitivity
analysis on the hyperparameter β, keeping all other hyperparameters the same. Higher β leads to the encoders removing
more information about the features. We plot the number of acquisitions required to select all relevant features on the
synthetic datasets in Figure 10. For all datasets, as expected, if β is too high, the latent space is too heavily regularized.
There is not enough label information in the latent space, so decisions made there lead to sub-optimal acquisitions. Equally,
by not regularizing the latent space enough, there is nothing explicitly enforcing the latent space to remove irrelevant
information about the features, also leading to sub-optimal acquisitions.
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Figure 10. The number of acquisitions to select the relevant features for different values of β on the synthetic tasks. The x axis is
logarithmic and includes zero.

Sensitivity Analysis of Number of Acquisition Samples. To further investigate the importance of using multiple
acquisition samples to sample the full latent diversity, we run a sensitivity analysis on the synthetic tasks. We plot the
number of acquisitions required to select all relevant features in Figure 11. As expected, if not enough samples are used, the
number of acquisitions required is larger. We use 200 acquisition samples in our experiments, which is low enough for fast
acquisition and high enough that performance has plateaued.
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Figure 11. The number of acquisitions to select the relevant features for different numbers of acquisition samples on the synthetic tasks.
The x axis is logarithmic.

Sensitivity Analysis of Number of Train Samples. To further investigate the importance of using multiple training
samples to encourage a diverse latent space, we run a sensitivity analysis on the synthetic tasks. We plot the number of
acquisitions required to select all relevant features in Figure 12. For Syn 1 and Syn 2, we see that performance tends to
improve with the number of samples as expected. For Syn 3, we see the best performance is achieved with 100 samples,
which is the number we used in experiments.

100 101 102 103 104

No. Training Samples

4.0

4.1

4.2

4.3

4.4

4.5

4.6

R
eq

ui
re

d 
N

o.
 A

cq
ui

si
tio

ns

Synthetic 1

100 101 102 103 104

No. Training Samples

4.0

4.2

4.4

4.6

4.8

R
eq

ui
re

d 
N

o.
 A

cq
ui

si
tio

ns

Synthetic 2

100 101 102 103 104

No. Training Samples

5.1

5.2

5.3

5.4

5.5

5.6

R
eq

ui
re

d 
N

o.
 A

cq
ui

si
tio

ns

Synthetic 3

Figure 12. The number of acquisitions to select the relevant features for different numbers of training samples on the synthetic tasks. The
x axis is logarithmic.

Sensitivity Analysis of Number of Latent Components. To investigate the sensitivity of SEFA’s performance to the
number of latent components per feature, we run a sensitivity analysis on the synthetic tasks. We plot the number of
acquisitions required to select all relevant features in Figure 13. We see the performance remains relatively constant, showing
SEFA is fairly robust to this hyperparameter. We found between 5-10 is a good value such that there is enough capacity for
rich representations of each feature, but not enough to overfit.
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Figure 13. The number of acquisitions to select the relevant features for different numbers of latent components per feature on the synthetic
tasks.

C. Real Data Ablations
To further demonstrate each novel model component leads to performance gains, we also carry out ablations on the real
datasets. Additionally, here we investigate the final novelty we introduced, probability weighting, where we weight the
scores during acquisition by the predicted probabilities pθ,ϕ(Y = c|xO). We investigate the use of this technique by
removing the weight and taking a mean, treating each class equally. This was not meaningful on the synthetic ablations
because this does not affect binary classification tasks. To see this, recall how features are scored in (2):

R(xO, i) =
∑
c∈[C]

pθ,ϕ(Y = c|xO) E
pθ(z|xO)

r(c, z, i).

Writing this in the binary case (class labels are either 0 or 1) gives

R(xO, i) = pθ,ϕ(Y = 0|xO) E
pθ(z|xO)

r(0, z, i) + pθ,ϕ(Y = 1|xO) E
pθ(z|xO)

r(1, z, i).

pϕ(Y = 1|z) = 1 − pϕ(Y = 0|z), ∇zpϕ(Y = 1|z) = −∇zpϕ(Y = 0|z), therefore r(0, z, i) = r(1, z, i), since the
gradients point in opposite directions, and taking Euclidean norms and normalizing is agnostic to the negative sign.
Therefore

R(xO, i) = pθ,ϕ(Y = 0|xO) E
pθ(z|xO)

r(0, z, i) + pθ,ϕ(Y = 1|xO) E
pθ(z|xO)

r(0, z, i),

R(xO, i) =
(
pθ,ϕ(Y = 0|xO) + pθ,ϕ(Y = 1|xO)

)
E

pθ(z|xO)
r(0, z, i),

R(xO, i) = E
p(z|xO)

r(0, z, i) = E
pθ(z|xO)

r(1, z, i).

The weighting is removed in the binary case, proving probability weighting only affects the multi-class setting. We run
the ablations on the real datasets as well as Cube, where the precise ordering is not known a priori. We provide average
evaluation metrics during acquisition in Table 3. Calculating the acquisition objective in feature space consistently leads to
the worst result (except for Cube where it is second worst), demonstrating that calculating the objective in latent space is a
crucial component to the performance of SEFA, even if we give up the explicit ability to model conditional distributions
between the features. Following this, using a deterministic encoder or one acquisition sample is the next worst result,
showing the second novelty of using stochastic encoders to consider a diverse set of possible unobserved latent realizations
is a key factor contributing to the performance of SEFA. Removing probability weighting, as expected, has no effect on
binary classification tasks (Bank Marketing and MiniBooNE), it does however have a significant effect on MNIST, Fashion
MNIST, METABRIC and TCGA where there are multiple classes. The performance is also marginally worse without
probability weighting on California Housing, and does not change on Cube. In two cases removing regularization improves
performance, but in six out of eight cases and for the synthetic datasets, non-zero β improves the acquisition performance
of SEFA. Using one train sample consistently leads to slightly worse performance, matching the results on the synthetic
datasets. Removing the normalization in the r calculation has a minimal effect, it improves performance on Cube, MNIST
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and TCGA (the change is marginal in these cases) and worsens performance on Fashion MNIST, showing the exact form for
r is not as important in the acquisition objective as using stochastic latent encodings, or probability weighting.

An additional ablation that does not apply to the synthetic datasets is the use of a copula transform (WO Copula). It
transforms the continuous features using the empirical cumulative distribution function, rather than raw feature values. It
does not affect the synthetic datasets because those features are sampled from a standard normal. Note the transform is
specific to SEFA due to its information bottleneck regularization (see Appendix I.2). Similar to removing normalization, on
some datasets the performance improves slightly by removing the Copula (Cube, MNIST, METABRIC), and for others the
performance is worse (Bank Marketing, MiniBooNE, Fashion MNIST). The difference is marginal compared to using the
feature space, deterministic encoders or removing probability weighting, the main novelties of our work.

We plot acquisition curves for a key subset of ablations in Figure 14. We do not show the feature space calculation trajectory
since it is consistently the worst (see Table 3). Deterministic encoders (green) regularly perform noticeably worse than using
stochastic encoders. Removing probability weighting (orange) also leads to significantly worse performance on four of the
six multi-class datasets. Using multiple latent acquisition and training samples is also required for the best performance.

Table 3. Average acquisition metrics on ablations. We give the mean and standard error. Ablations that outperform SEFA are underlined.
Ablation Cube Bank Marketing California Housing MiniBooNE

β = 0 0.906± 0.000 0.917± 0.001 0.680± 0.005 0.957± 0.000
1 Acquisition Sample 0.889± 0.001 0.912± 0.001 0.667± 0.004 0.952± 0.000

1 Train Sample 0.901± 0.002 0.912± 0.003 0.676± 0.006 0.953± 0.000
Deterministic Encoder 0.900± 0.000 0.893± 0.006 0.667± 0.005 0.944± 0.002

Feature Space Calculation 0.897± 0.002 0.880± 0.003 0.600± 0.004 0.914± 0.004
WO Copula 0.905± 0.000 0.917± 0.002 0.675± 0.002 0.952± 0.001

WO Normalization 0.905± 0.000 0.919± 0.001 0.676± 0.005 0.957± 0.000
WO Prob Weighting 0.904± 0.001 0.919± 0.001 0.674± 0.005 0.957± 0.000

SEFA (full) 0.904± 0.001 0.919± 0.001 0.676± 0.005 0.957± 0.000

Ablation MNIST Fashion MNIST METABRIC TCGA

β = 0 0.759± 0.000 0.719± 0.000 0.706± 0.003 0.842± 0.002
1 Acquisition Sample 0.728± 0.001 0.699± 0.000 0.694± 0.003 0.827± 0.002

1 Train Sample 0.741± 0.002 0.707± 0.001 0.705± 0.003 0.834± 0.002
Deterministic Encoder 0.741± 0.002 0.704± 0.001 0.702± 0.004 0.838± 0.002

Feature Space Calculation 0.697± 0.001 0.634± 0.001 0.695± 0.001 0.795± 0.001
WO Copula 0.762± 0.001 0.717± 0.001 0.710± 0.002 0.843± 0.002

WO Normalization 0.762± 0.001 0.718± 0.001 0.709± 0.002 0.844± 0.002
WO Prob Weighting 0.751± 0.001 0.694± 0.001 0.698± 0.003 0.832± 0.001

SEFA (full) 0.761± 0.001 0.721± 0.000 0.709± 0.003 0.843± 0.002
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Figure 14. Evaluation metrics starting from the first to the final acquisition for the ablations. To distinguish curves, we provide zoomed in
versions of the plots in the bottom right corner of each one.
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D. Additional Experiment: Robustness to Noise
To investigate how robust SEFA is to noisy features, we repeat the Syn 1-3 experiments; however, after calculating the label,
we add normally distributed noise to the features, with increasing standard deviations. The results are given in Table 4. All
models get worse with more noise. SEFA remains the best model at all levels of noise. This is likely due to the latent space
regularization removing noise between the feature space and latent space.

Table 4. Number of acquisitions to acquire the correct features under increasing levels of noise, the lower the better. We provide the mean
and one standard error.

Syn 1 σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.4

ACFlow 7.730± 0.139 7.754± 0.199 7.755± 0.275 8.255± 0.131
DIME 4.079± 0.064 4.688± 0.211 4.703± 0.276 5.368± 0.267
EDDI 9.197± 0.203 8.988± 0.285 9.216± 0.136 9.382± 0.245

Fixed MLP 6.009± 0.000 6.312± 0.202 7.321± 0.378 6.009± 0.000
GDFS 4.568± 0.219 4.566± 0.187 4.543± 0.164 5.583± 0.283

GSMRL 5.570± 0.127 5.495± 0.126 5.778± 0.120 6.858± 0.269
Opportunistic RL 4.201± 0.041 4.347± 0.091 4.720± 0.142 5.488± 0.084

Random 9.484± 0.006 9.495± 0.010 9.495± 0.010 9.495± 0.010
VAE 6.589± 0.088 6.866± 0.041 7.005± 0.086 7.095± 0.078

SEFA (ours) 4.017± 0.003 4.100± 0.004 4.207± 0.008 4.406± 0.004

Syn 2 σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.4

ACFlow 7.527± 0.254 7.366± 0.325 7.927± 0.363 7.974± 0.072
DIME 4.581± 0.217 4.830± 0.057 5.093± 0.218 5.015± 0.124
EDDI 9.214± 0.415 9.550± 0.342 9.079± 0.244 9.571± 0.225

Fixed MLP 5.996± 0.000 6.693± 0.373 6.095± 0.100 6.494± 0.315
GDFS 4.484± 0.159 4.981± 0.211 5.655± 0.386 6.804± 0.384

GSMRL 6.227± 0.185 6.283± 0.146 6.525± 0.158 7.286± 0.088
Opportunistic RL 4.846± 0.021 5.042± 0.007 5.108± 0.064 5.246± 0.041

Random 9.499± 0.005 9.504± 0.007 9.504± 0.007 9.504± 0.007
VAE 6.667± 0.140 6.874± 0.161 7.057± 0.134 7.204± 0.094

SEFA (ours) 4.099± 0.009 4.247± 0.042 4.388± 0.045 4.778± 0.170

Syn 3 σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.4

ACFlow 9.194± 0.278 9.105± 0.218 9.184± 0.248 9.284± 0.231
DIME 5.667± 0.038 5.771± 0.222 6.180± 0.161 6.213± 0.180
EDDI 9.794± 0.186 9.969± 0.156 9.906± 0.212 9.710± 0.136

Fixed MLP 7.999± 0.000 7.999± 0.000 7.999± 0.000 7.999± 0.000
GDFS 5.587± 0.201 6.839± 0.338 7.179± 0.134 7.814± 0.349

GSMRL 8.199± 0.067 8.326± 0.233 8.347± 0.122 8.627± 0.186
Opportunistic RL 5.850± 0.072 5.859± 0.063 6.135± 0.114 6.672± 0.105

Random 9.987± 0.008 9.991± 0.006 9.991± 0.006 9.991± 0.006
VAE 7.888± 0.065 7.968± 0.068 8.042± 0.102 8.469± 0.064

SEFA (ours) 5.084± 0.026 5.448± 0.042 5.689± 0.061 6.207± 0.058

E. Additional TCGA Trajectories
To further augment the TCGA analysis in Section 6, we provide the heat maps and trajectories across all 17 tumor locations in
Figure 15. We see the selections are instance-wise orderings since different classes have different heat maps and trajectories
(as well as different trajectories emerging for the same tumor location). Due to the nature of the task and data, there is
still associated noise. Further to the justification in the main paper, we see that in many cases after ST6GAL1 (feature
18), DNASE1L3 (feature 3) is selected next. This is because it has been linked to: bladder cancer, breast cancer, gastric
carcinoma, liver cancer, lung adenocarcinoma, lung squamous cell carcinoma, ovarian cancer, cervical squamous cell
carcinoma, head-neck squamous cell carcinoma, pancreatic adenocarcinoma, and kidney renal clear cell carcinoma (Deng
et al., 2021). Additionally, it has been linked to colon cancer progression (Li et al., 2023), and was found to be downregulated
in prostate adenocarcinoma and uterine corpus endometrial carcinoma (Deng et al., 2021). DNASE1L3 is regularly selected
for all of these tumor locations, even first occasionally, since it is a strong predictor on its own. We likely see the selection
appearing for brain and bone marrow as a way to rule out these other likely locations after selecting ST6GAL1. Additional
notable acquisitions with supporting literature are: kidney cancer acquiring POU3F3 (feature 16) (Zhang et al., 2021),
KAAG1 (feature 10) (the name is Kidney Associated Antigen 1), and HOXA9 (feature 9) (Shenoy et al., 2024); colon cancer
acquiring HOXA9 (Cui et al., 2024) and thyroid cancer acquiring FOXE1 (feature 5) (Penna-Martinez et al., 2014). Note
this is not an exhaustive list.
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Figure 15. Acquisition trajectories for TCGA across all classes. Individual trajectories are given in red, with the heat map of acquisition
proportions at each step shown behind. Notable acquisitions with high proportions are highlighted with green boxes.
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F. Indicator Example
Here we elaborate on our indicator example, a simple case where CMI fails. First, we demonstrate that CMI fails, and then
we show that by considering possible unobserved feature values in the calculation we can recover the optimal policy.

Recall the example, we have features X ∈ {0, 1}d × [d], i.e the first d dimensions are binary and the final feature is an
indicator. The label is given by the value of the feature indexed by the indicator y = xxd+1

. In the absence of any of the first
d features, the indicator and label are independent p(y, xd+1) = p(y)p(xd+1). Substituting this into the definition of mutual
information gives

I(Y ;Xd+1) = DKL(p(Y,Xd+1)||p(Y )p(Xd+1)) = DKL(p(Y )p(Xd+1)||p(Y )p(Xd+1)) = 0.

Now consider the mutual information for the other features. Due to the symmetry of the problem, the mutual information
for one of these features is the same for all others. The mutual information can be more usefully written as

I(Y ;Xi) = H(Y )−
∫

H(Y |xi)p(xi)dxi.

The entropy of the label is log 2 since there is equal chance of being 0 or 1. Again, using the symmetry of the system, the
entropy of Y if Xi = 0 is the same as if Xi = 1, so we only calculate for one case. When Xi = 0, the probability of Y = 0
is 1

d × 1 + d−1
d × 1

2 . Since in 1
d cases it takes the exact value of Xi based on the value of the indicator, and in d−1

d cases Y
is given by a different unknown feature value. This gives p(Y = 0|Xi = 0) = d+1

2d . The expression for binary entropy,
−p log(p)− (1− p) log(1− p) is maximized by p = 0.5, giving log 2. Since p(Y = 0|Xi = 0) > 0.5, the entropy is lower
than log 2 in this case. Exploiting the symmetry of the system we conclude that

∫
H(Y |xi)p(xi)dxi < log 2, and therefore

I(Y ;Xi) > 0.

Therefore, the indicator is never chosen first, which is a sub-optimal strategy. It can be shown, but is not necessary, that the
indicator will be chosen second. A sketch of the reasoning is that now that the value of one feature is known, the indicator
and the label are now correlated. Therefore, there is non-zero CMI which turns out to be larger than for the other features.
And once the indicator is chosen, the correct feature is the only feature afterward with non-zero CMI. So this strategy will
acquire the correct features in 3 selections d−1

d of the time (random feature, indicator, correct feature) and in 2 selections 1
d

of the time (correct feature, indicator). Thus the expected number of acquisitions for this strategy is

2
1

d
+ 3

d− 1

d
= 3− 1

d

So as d gets large, the expected number of required acquisitions approaches 3.

Now consider the adjusted solution of using an information-theoretic objective that considers the values of other features.
Recall Proposition 4.2, we propose Ep(xU |xO) I(Xi;Y |xO,xU ) recovers the optimal strategy, where xU is the vector of all
other unobserved features. We prove that this will lead to an optimal strategy below.

Initially there are no features, so the acquisition objective is
∫
I(Y ;Xi|xU )p(xU )dxU . Writing this in terms of entropies

gives ∫
I(Y ;Xi|xU )p(xU )dxU =

∫ (
H(Y |xU )−

∫
H(Y |xi,xU )p(xi|xU )dxi

)
p(xU )dxU .

The entropy when all features are known is zero, so for any i the objective simplifies to∫
H(Y |xU )p(xU )dxU .

If we consider the first d features, we can again apply symmetry to calculate this quantity for one feature - feature 1 - and
apply it to all of them. In d−1

d cases the entropy is zero, since we will have all of the information required. However if
xd+1 = 1, then H(Y |xU ) = log 2, since we don’t know the value of feature 1 and therefore Y has equal likelihood of being
0 or 1, this happens in 1

d cases so this quantity is log 2
d for the first d features.

For the indicator, p(Y = 0|xU ) is the proportion of the first d features that are 0 for a given sample xU . All features are
independent with probability 0.5 of being 0, so the expression is given by a binomial distribution with d trials

d∑
k=0

(
d

k

)
1

2d

(
−
(k
d

)
log
(k
d

)
−
(
1− k

d

)
log
(
1− k

d

))
.

22



Stochastic Encodings for Active Feature Acquisition

It is not immediately clear that this is larger than the quantity log 2
d for the other features. The first thing we can do is

calculate this quantity when d = 3, which gives 0.477, and this is larger than log 2
3 = 0.231. And the next thing is to notice

that this quantity is increasing with d, since as d gets larger there will be more probability mass at k = d
2 . As d −→ ∞ the

binomial distribution becomes Gaussian with mean d
2 and variance d

4 , so k
d will approximately be distributed normally with

mean 1
2 and standard deviation 1

2
√
d

. Therefore this quantity asymptotes towards log 2.

Therefore for d ≥ 3, this objective will choose the indicator first, and not the other features (for d = 2 all features are scored
the same, and for d = 1 the indicator is not the optimal choice). After choosing the indicator, the second selection is trivial.
The relevant feature has non-zero CMI, all other features are independent of the label conditioned on the indicator so they
have zero CMI. Therefore the correct feature is chosen. This strategy’s expected number of acquisitions is 2, which is less
than 3− 1

d .

This example illustrates that by considering the possible realizations in the calculation, and not marginalizing them out,
we can make long-term acquisitions. Note we do not use this specific quantity in our paper since it involves an additional
expectation over unobserved values as well as the expectation inside the CMI which is intractable. This does not even
account for the difficulty in estimating the conditional distributions in feature space.

G. Entropy Example
In Section 4 we claimed that CMI maximization can lead to acquisitions that focus on making low probabilities lower, rather
than distinguishing between possible answers. Here we provide a concrete example of this occurring.

Consider a feature vector with two features, X ∈ {1, 2, 3}2, and a label with three possible classes, Y ∈ {1, 2, 3}. To
generate the label from the features, we start with a vector with three zeros v = [0.0, 0.0, 0.0]. The value of x1 tells us
which value in v to reduce by 8. And the value of x2 tells us which value in v to increase by 6.5. For example if x = [1, 2],
then v = [−8.0, 6.5, 0.0]. p(y|x) is then given by the softmax of v. With these rules, we can calculate all possible feature
values and probabilities in Table 5.

Table 5. All feature values and corresponding y probabilities given by the problem in Appendix G.
x1 x2 v1 v2 v3 p(Y = 1|x) p(Y = 2|x) p(Y = 3|x)
1 1 −1.5 0.0 0.0 0.10037 0.44982 0.44982
1 2 −8.0 6.5 0.0 0.00000 0.99850 0.00150
1 3 −8.0 0.0 6.5 0.00000 0.00150 0.99850

2 1 6.5 −8.0 0.0 0.99850 0.00000 0.00150
2 2 0.0 −1.5 0.0 0.44982 0.10037 0.44982
2 3 0.0 −8.0 6.5 0.00150 0.00000 0.99850

3 1 6.5 0.0 −8.0 0.99850 0.00150 0.00000
3 2 0.0 6.5 −8.0 0.00150 0.99850 0.00000
3 3 0.0 0.0 −1.5 0.44982 0.44982 0.10037

By taking the average, or by seeing that all components of v are treated equally across all feature values, the marginal of
the label is p(y) = [0.33, 0.33, 0.33], and the entropy is H(Y ) = log 3. Based on this, we can then calculate the marginal
distributions and the entropies of the marginals given in Table 6.

Table 6. Marginal distributions and entropies calculated using Table 5.
x1 x2 p(Y = 1|x) p(Y = 2|x) p(Y = 3|x) H(Y |x) H(Y )−H(Y |x)
1 Missing 0.03346 0.48327 0.48327 0.81652 0.28210
2 Missing 0.48327 0.03346 0.48327 0.81652 0.28210
3 Missing 0.48327 0.48327 0.03346 0.81652 0.28210

Missing 1 0.69912 0.15044 0.15044 0.82016 0.27845
Missing 2 0.15044 0.69912 0.15044 0.82016 0.27845
Missing 3 0.15044 0.15044 0.69912 0.82016 0.27845

Feature 2 is consistently more useful for identifying the most likely class, since it can always identify a class with likelihood
0.699, and feature 1 is better at identifying what class is least likely. However, feature 1 consistently has a lower entropy, so
would be selected before feature 2 by CMI.
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H. Dataset Details
Here we provide all the details about each dataset, including sizes, number of features, and how to access the real datasets.

Synthetic. The synthetic experiments are based on (Yoon et al., 2019), where we know the features that are predictive,
and we know that there is a heterogeneous order. The datasets are binary datasets where the feature vector has eleven
independent features drawn from a standard normal. There are three possible logits:

ℓ1 = 4x1x2, ℓ2 =

6∑
i=3

1.2x2
i − 4.2, ℓ3 = −10 sin(0.2x7) + |x8|+ x9 + e−x10 − 2.4

Then, for a given logit value, the label is sampled from a Bernoulli distribution with probability p(Y = 1) = 1/(1 + eℓ).
We construct three datasets:

• Synthetic 1: If x11 < 0 we use ℓ1, otherwise ℓ2

• Synthetic 2: If x11 < 0 we use ℓ1, otherwise ℓ3

• Synthetic 3: If x11 < 0 we use ℓ2, otherwise ℓ3

The logits have been adapted from the originals in (Yoon et al., 2019) to produce probabilities closer to 0 or 1. This is so all
the models have stronger purely predictive performance. The train set is size 60000, the validation and test set are both size
10000. AUROC is used as the evaluation metric.

Cube. The Cube dataset is a synthetic dataset that is regularly used to evaluate Active Feature Acquisition methods
(Rückstieß et al., 2013; Shim et al., 2018; Zannone et al., 2019). We specifically use the version where all features are
normally distributed (Zannone et al., 2019). There are twenty continuous features, where different features are relevant for
different classes. All features are drawn from a normal distribution with mean 0.5 and standard deviation 0.3, except for the
following cases:

• Class 1: Features 1, 2, 3 have mean [0, 0, 0] and diagonal standard deviation [0.1, 0.1, 0.1].

• Class 2: Features 2, 3, 4 have mean [1, 0, 0]and diagonal standard deviation [0.1, 0.1, 0.1].

• Class 3: Features 3, 4, 5 have mean [0, 1, 0]and diagonal standard deviation [0.1, 0.1, 0.1].

• Class 4: Features 4, 5, 6 have mean [1, 1, 0]and diagonal standard deviation [0.1, 0.1, 0.1].

• Class 5: Features 5, 6, 7 have mean [0, 0, 1]and diagonal standard deviation [0.1, 0.1, 0.1].

• Class 6: Features 6, 7, 8 have mean [1, 0, 1] and diagonal standard deviation [0.1, 0.1, 0.1].

• Class 7: Features 7, 8, 9 have mean [0, 1, 1] and diagonal standard deviation [0.1, 0.1, 0.1].

• Class 8: Features 8, 9, 10 have mean [1, 1, 1] and diagonal standard deviation [0.1, 0.1, 0.1].

We use a train set with size 60000 and the validation and test sets are both size 10000. Accuracy is the evaluation metric.

Bank Marketing. The Bank Marketing dataset (Moro et al., 2014) can be found at: https://archive.ics.uci.
edu/dataset/222/bank+marketing. The data is taken from a marketing campaign conducted by a Portuguese
bank. The task is binary classification, where the label indicates whether a client subscribed to a term deposit at the bank.
The features are both the client’s information and information about the calls. There are 15 features in total (after combining
the month and day of the call into one feature), 7 are continuous and 8 are categorical. A full list of features can be found at
the dataset origin. We use an 80:10:10 split giving train, validation and test sizes of 36168, 4521 and 4522. The evaluation
metric is AUROC.

California Housing. The California Housing dataset is obtained through Scikit-Learn (Pedregosa
et al., 2011) https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_
california_housing.html. The labels are median house prices in California districts expressed in 100,000 dollars.
There are 8 continuous features that can be found at the above URL. To convert this to a classification task we discretize the
labels into 4 equally sized bins. We use an 80:10:10 split giving train, validation and test sizes of 16512, 2064 and 2064.
The evaluation metric is accuracy.
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MiniBooNE. MiniBooNE is an experiment at Fermilab designed to detect neutrino oscillations, namely muon-neutrinos
into electron-neutrinos (Roe et al., 2005; Roe, 2010). The data was obtained from https://archive.ics.uci.
edu/dataset/199/miniboone+particle+identification. The task is binary classification, distinguishing
electron-neutrino events from background events. The dataset does not have balanced classes. In early experiments, we
saw that this meant all models were highly predictive with very few features, and results were indistinguishable. To make
the task harder for the models, we enforced balance by reducing the number of background events at random to match the
number of signal events. We also used a subset of the features selected using STG (Yamada et al., 2020), as a preprocessing
step. The selected features were [2, 3, 6, 14, 15, 17, 20, 21, 22, 23, 25, 26, 29, 34, 39, 40, 41, 42, 43, 44]. The train set is
size 56499 and the validation and test sets are both size 10000. The evaluation metric is AUROC.

MNIST and Fashion MNIST. MNIST and Fashion MNIST are image classification datasets with 10 classes, consisting of
images of handwritten digits and items of clothing, respectively. We preprocess by selecting a subset of 20 pixels each for
computational reasons - an acquisition trajectory with 784 features, where the majority are redundant, will be very slow,
especially for methods such as EDDI and VAE, where the whole acquisition is O(d2). To do this we use STG (Yamada et al.,
2020) a deep learning method for feature selection. After flattening the images to vectors, the features found by STG were:

• MNIST: [153, 154, 210, 211, 243, 269, 271, 295, 327, 348, 350, 375, 405, 409, 427, 430, 461, 514, 543, 655]

• Fashion MNIST: [10, 38, 121, 146, 202, 246, 248, 341, 343, 362, 406, 434, 454, 490, 546, 574, 580, 602, 742, 770]

For both datasets, we split the provided train set into a train set with size 50000 and validation set with size 10000, we use
the provided test sets each with size 10000. The evaluation metric is accuracy.

METABRIC. The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
database consists of clinical and genetic data for 1,980 breast cancer subjects (Curtis et al., 2012; Pereira
et al., 2016). The data was accessed at https://www.kaggle.com/datasets/raghadalharbi/
breast-cancer-gene-expression-profiles-metabric. We construct a classification task, predict-
ing the PAM50 status using gene expressions as features. There are six classes:

Luminal A1. Luminal B2. HER2 Enriched3.
Claudin Low4. Basal Low5. Normal6.

As with the other high-dimensional datasets, we used STG to select a subset of twelve continuous gene expressions given by:

CCNB11. CDK12. E2F23. E2F74.
STAT5B5. Notch 16. RBPJ7. Bcl-28.
eGFR9. ERBB210. ERBB311. ABCB112.

We use an 80:10:10 split resulting in train, validation and test sizes of 1518, 189 and 191. The evaluation metric is accuracy.

TCGA. The Cancer Genome Atlas (TCGA) consists of genetic data for over 11,000 cancer patients (Weinstein et al.,
2013). The data was accessed at https://www.cancer.gov/ccg/research/genome-sequencing/tcga.
We construct the classification task of predicting location of the tumor based on DNA methylation data. We use 17 locations
as the classes:

Breast1. Lung2. Kidney3.
Brain4. Ovary5. Endometrium6.
Head and Neck7. Central Nervous System8. Thyroid9.
Prostate10. Colon11. Stomach12.
Bladder13. Liver14. Cervix15.
Bone Marrow16. Pancreas17.

As the first step of dimensionality reduction, we removed features with more than 15% missingness. Following this, we
used STG to select 21 features:

C7orf511. DEF62. DNASE1L33. EFS4.
FOXE15. GPR816. GRIA27. GSDMC8.
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HOXA99. KAAG110. KLF511. LOC28339212.

LTBR13. LYPLAL114. PON315. POU3F316.

SERPINB117. ST6GAL118. TMEM106A19. ZNF58320.

ZNF79021.

We then removed subjects with more than 10% missing features and used an 80:10:10 split. This gave train, validation and
test sizes of 6327, 790 and 792. The evaluation metric is accuracy.

I. Model Details and Implementations
All models were implemented using PyTorch (Paszke et al., 2017), our code is available at https://github.com/
a-norcliffe/SEFA.

I.1. General Model Details

Here we provide details that tend to be shared across models. We explicitly state if a model does not follow the descriptions
below and provide model specific details in the next subsection.

Input Representation. Continuous features are represented as [x⊙m,m]. Categorical features use a one-hot encoding,
where we include an additional class to indicate a missing feature. Continuous and categorical representations are then
concatenated as input to the main model.

Deep Networks. All deep networks are given by MLPs with ReLU activation followed by Batch Normalization (Ioffe
& Szegedy, 2015). All hidden layers in a given network are the same width, which is a hyperparameter that can be tuned
as well as the number of hidden layers. The exception to this is the Opportunistic RL model, where we replace Batch
Normalization with dropout with 0.5 probability in accordance with the method’s implementation (Kachuee et al., 2019a).

Acquiring Features. After a method calculates its acquisition objective RMethod(xO, i), this is multiplied by (1−mi) so
we do not acquire features we have already observed. We also multiply by mTest Data,i so we do not acquire features that are
not available in the test data. This would not apply at deployment where we have the ability to measure all features.

I.2. Model Specific Details

Here we include any key details that are specific to given models, such as hyperparameter names and roles. We highly
recommend seeing each method’s paper for full details of each model. Unless otherwise stated, each method follows the
general rules stated previously.

Fixed MLP. The Fixed MLP uses a simple MLP structure as described above. It is trained for 120 epochs. We prevent
overfitting during training by choosing the iteration with the best validation accuracy/AUROC. The greedy fixed order
is found after training by masking out all features, and calculating the evaluation metric on the train set for each feature
individually. The best feature is chosen and is unmasked for the model. The procedure is repeated with the best feature
being kept to find the second best feature. This is repeated until all features have been placed in a fixed greedy order.

GDFS. GDFS (Covert et al., 2023) has two separate networks, one for prediction, one for scoring features. Both have
a softmax final activation to give a probability distribution over the label and a positive score for each feature. Our
implementation follows the original. We use the same hidden width and number of hidden layers for both networks. The
Boolean “Share Parameters” hyperparameter says whether to share half the hidden layers between the two networks, this is
presented in the paper as a possible way to increase performance, we treat it as a hyperparameter. We carry out pretraining
on the predictor network for 80 epochs, we then carry out main training on both networks. This is done using a geometric
temperature progression of T×[1.00, 0.56, 0.32, 0.18, 0.1], where the initial temperature T is a hyperparameter. Main
training is carried out for 15 epochs for each temperature in the progression, please see the original paper for full details.
Main training consists of sampling feature acquisitions and training the scoring network to choose features with the best
greedy prediction from the predictor network.

DIME. DIME (Gadgil et al., 2024) uses two separate networks, one for prediction and one for predicting the CMI of
features with the label. The information network is used to score each feature. The information network limits the output
to a minimum of zero and maximum of the entropy of the current predictions H(Y |xS). The majority of the DIME

26

https://github.com/a-norcliffe/SEFA
https://github.com/a-norcliffe/SEFA


Stochastic Encodings for Active Feature Acquisition

implementation follows the GDFS implementation above. Instead of a temperature progression, we use an ϵ progression
during main training as is done in the paper. This is given by ϵ-Initial×[1.0, 0.25, 0.05, 0.005]. This gives the probability of
choosing a feature uniformly at random compared to the best feature predicted by the information network. Main training
is also done for 15 epochs for each ϵ value, the information network is trained to predict the change in loss when a given
feature is acquired.

Opportunistic RL. Opportunistic RL (Kachuee et al., 2019a) is a Deep Q learning method, where the reward is given by
the l1 norm of the change in prediction distribution after an acquisition. The target network is updated compared to the main
network with a rate of 0.001 as suggested. Predictions are made by using dropout to provide different network parameters at
test time with 50 samples taken and averaged as suggested. The P and Q networks share representations as described in the
paper. The model is trained for 20000 episodes with evaluation every 100 episodes. For the first 2000 episodes only the
predictor network is trained, using uniformly random actions. Following this the probability of a random action decays
by 0.1

1
20000 every episode to a minimum of 0.1. After 10000 episodes and for every 2000 episodes after that, the learning

rate decays by a factor of 0.2. This is all in line with the original implementation. The only change is that each episode we
do not consider individual samples from the dataset (it is not an online stream of data), instead we train using a batch of
samples each episode, this improves the training, improving Opportunistic RL compared to its original online setting.

VAE. The VAE method is a vanilla generative modeling approach to the AFA problem to analyze the viability of
generative models. We use a Variational Auto-Encoder (Kingma, Diederik P and Welling, Max, 2014) to model the
distribution of the features. We train with the standard ELBO. The encoder and decoder are separate networks with
separate widths and numbers of hidden layers. We then train a separate predictor that uses a standard MLP. Features
are scored by taking samples of the unknown features conditioned on the observed ones (we use 50 samples). These
samples go through the predictor to give an estimated label distribution. The mutual information is then estimated with
I(Xi;Y |xS) = Ep(xi|xS)[DKL(p(Y |xi,xS)||p(Y |xS))]. We train for 120 epochs. We prevent overfitting during training
by choosing the iteration with the best validation ELBO.

EDDI. EDDI (Ma et al., 2019) is an advanced generative modeling method for AFA. The encoder is a Partial VAE. We
encode the label in the same way as a categorical feature. We do not include a separate predictor, instead we follow the
original paper to make predictions: features are encoded to a latent distribution and samples are decoded to y. The absence
of a dedicated predictor negatively impacts the results for EDDI. The decoder follows the same structure as for the VAE. We
train for 400 epochs, to prevent overfitting we choose the iteration with the best validation ELBO. Features are scored based
on a sampled KL divergence calculated in the latent space as described in the original paper, we use 50 samples.

ACFlow. ACFlow is another advanced generative modeling method that is designed to handle arbitrary conditional
likelihoods. It works by using a flow based model to maximize the conditional likelihood of p((x, y)U |(x, y)O), such that
arbitrary subsets of the features and label can be used as the condition for other arbitrary sets. We follow the publicly
available implementation, training for 120 epochs.

GSMRL. GSMRL is an RL method that uses information from a generative surrogate model as additional information to a
policy network. As suggested in the original paper, the policy is trained with PPO (Schulman et al., 2017), and a trained
ACFlow model is used as the surrogate model. We train for 300 episodes, each episode consisting of 8 epochs.

SEFA. Our method, as described in the main paper, encodes each feature separately to a normal distribution. The structure
of the individual encoders depends on whether the feature is continuous or categorical:

• Continuous Features. Continuous features first undergo a copula transformation x̃i = Φ−1(Fi(xi)), where Fi is the
empirical CDF of the feature and Φ is the standard normal CDF. This transformation is specific to stochastic encoders
that regularize I(XS ;Z), since it enforces a symmetry associated with the mutual information and also encourages
sparse disentangled representations (Wieczorek et al., 2018). We give [mix̃i,mi] to that feature’s encoder, which is
given by the MLP described previously. The MLP ends with Batch Normalization which we found sped up training.

• Categorical Features. Categorical features replace the MLP and copula transform by simply having a learnable
embedding matrix (where we include an additional category representing a missing feature).

To train, we subsample the features first and use the predictive loss as described in Section 5.1. We use 100 latent samples
for training and train for 120 epochs. We also provide pseudo-code for the loss calculation for batch size 1 in Algorithm 1.
To calculate the acquisition objective we use 200 latent samples and the objective given by (2). We provide pseudo-code for
scoring a single feature in Algorithm 2 (the actual implementation is able to score features in parallel on a batch of data).
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Algorithm 1 Loss calculation on batch size 1.
Input: features x, data mask m, label y
µ = []
σ = []
for f = 1 to d do
b ∼ Bernoulli(0.5)
µf , σf = fe

θf
(xf ,mf × b)

µ = [µ, µf ]
σ = [σ, σf ]

end for
LR = DKL(N (µ, σ2)||N (0, 1))
p(Y |xO) = 0
for sample = 1 to N do

z ∼ N (µ, σ2)
p(Y |xO) = p(Y |xO) +

1
N fp

ϕ(z)
end for
LNLL = − log(p(Y = y|xO))
Return: LNLL + βLR

Algorithm 2 Calculating the acquisition score for feature i.
Input: features x, observation mask m
µ = []
σ = []
for f = 1 to d do

µf , σf = fe
θf
(xf ,mf )

µ = [µ, µf ]
σ = [σ, σf ]

end for
p(Y |xO) = 0
for sample = 1 to N1 do
z ∼ N (µ, σ2)
p(Y |xO) = p(Y |xO) +

1
N1

fp
ϕ(z)

end for
Score = 0
for y = 1 to C do

for sample = 1 to N2 do
z ∼ N (µ, σ2)
g = ∇z(f

p
ϕ(z)y)

Score = Score + p(Y = y|xO)
1
N2

||gGi
||2∑

j ||gGj
||2

end for
end for
Return: Score

J. Model Runtimes
There are two places to consider runtime: training and acquisition. In Table 7 we provide the computational complexities of
each method with respect to number of features d.

As RL, DIME, and GDFS train by simulating acquisition, training time scales linearly with the number of features.
Generative models (and SEFA) are constant to train since they only train to predict well. However, during inference, RL,
DIME, and GDFS only require one forward pass of their policy/CMI network, whereas EDDI and VAE must individually
score every feature. SEFA takes gradients of the predicted class outputs, so the runtime is linear in the number of classes,
which is typically far fewer than the number of features. The main takeaway is that SEFA scales better than half the methods
at training time, better than the other half during acquisition (assuming fewer labels than features), and never the worst.

Table 7. Computational complexities for the models that actively acquire features, treating a forward pass of a neural network as
approximately constant.

Model Computational Complexities Single Acquisition Times (s) Training Time (s)
1 Acquisition Step Training Time Syn 1 MiniBooNE MNIST Syn 1

ACFlow O(d) O(1) 1.483± 0.003 2.208± 0.002 21.318± 0.191 376.885± 1.871
DIME O(1) O(d) 0.017± 0.000 0.021± 0.000 0.024± 0.000 575.283± 1.332
EDDI O(d) O(1) 2.871± 0.059 9.039± 0.245 12.360± 0.029 273.358± 1.060
GDFS O(1) O(d) 0.018± 0.000 0.020± 0.000 0.024± 0.000 277.651± 0.716

GSMRL O(1) O(d) 0.047± 0.000 0.045± 0.000 0.097± 0.001 1010.650± 3.186
Opportunistic RL O(1) O(d) 0.029± 0.001 0.034± 0.001 0.030± 0.000 716.517± 2.962

VAE O(d) O(1) 0.153± 0.000 0.291± 0.001 0.452± 0.007 126.774± 1.403

SEFA O(|y|) O(1) 0.246± 0.001 0.314± 0.002 1.498± 0.002 297.061± 1.701

In Table 7, we also include the time per acquisition step on a subset of the datasets. As expected, the acquisition time for
SEFA does not increase significantly with the number of features (Syn 1 to MiniBooNE), but does as the number of classes
increases (MiniBooNE to MNIST). The generative models scale the worst, and models with policy networks are the fastest
to make acquisitions. For completeness, we also include the total training times for Syn 1. These results should be treated
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carefully, since this depends on the number of epochs, different methods converge at different rates. However, the pattern is
as expected, the models that train a policy network by simulating acquisition are slower to train than the generative models
and SEFA. The main takeaway from the recorded wall-clock times is the same as for the computational complexities, SEFA
scales better than half the methods at training time, better than the other half at acquisition time, and never the worst.

K. Experimental Details
All experiments were run on an Nvidia Quadro RTX 8000 GPU. The specifications can be found
at https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/
quadro-product-literature/quadro-rtx-8000-us-nvidia-946977-r1-web.pdf. All experi-
ments were repeated five times over parameter initializations to obtain means and standard error estimates.

Training. We train all models using the Adam optimizer (Kingma & Ba, 2015), the learning rate and batch size are
hyperparameters that are tuned using a validation set. All methods (except for Opportunistic RL which uses its original
implementation) use a learning rate scheduler that multiplies the learning rate by 0.2 when there have been a set number of
epochs without validation metric improvement - the patience, which is also tuned.

We prevent overfitting during training by tracking a validation metric every epoch and using the model parameters that
produce the best value. The validation metric we choose (unless explicitly stated for a given model) is the area under the
acquisition curve, starting from zero features we acquire features individually, calculating the accuracy/AUROC at each
acquisition, and then the validation metric is the area under the acquisition curve divided by the total number of features.

Hyperparameter Tuning. For every model, initial hyperparameter tuning was conducted by finding ranges for each
hyperparameter that produced strong acquisition performance on the synthetic datasets. Following this, for each model,
we generated 9 hyperparameter configurations using the ranges. For each method, we test each configuration three times
producing a mean value for the area under the acquisition curve. The configuration with the highest mean value is separately
trained five times in the main experiments. The nine configurations for each method are provided in Tables 8, 9, 10, 11, 12,
13, 14, 15 and 16. We give the selected hyperparameter configurations for each dataset in Table 17.

Table 8. Hyperparameter configurations for ACFlow.
Hyperparameter 1 2 3 4 5 6 7 8 9

Prior Hidden Width 100 200 200 150 100 100 120 60 60
No. Hidden Prior Layers 1 2 2 1 1 2 1 2 2
No. Flow Modules 3 3 5 5 3 5 4 5 5
Flow Module Hidden Width 100 100 100 150 100 100 120 60 60
No. Hidden Flow Module Layers 1 1 1 1 1 2 1 2 2
λNLL 0.1 0.1 0.05 0.05 0.01 0.3 0.1 0.1 0.1
Learning Rate 0.001 0.001 0.001 0.001 0.0005 0.001 0.0005 0.0005 0.001
Batchsize 128 128 256 256 128 256 128 128 256
Patience 5 5 5 5 5 5 3 3 3

Table 9. Hyperparameter configurations for DIME.
Hyperparameter 1 2 3 4 5 6 7 8 9

Hidden Width 200 200 200 200 100 200 100 100 100
No. Hidden Layers 2 2 2 2 2 2 1 3 1
Share Parameters False False False True True True False False True
Pretraining Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Main Training Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0001
Batch Size 128 128 128 128 128 128 512 256 512
Patience 5 5 5 5 2 5 5 3 5
ϵ Initial 0.4 0.2 0.1 0.4 0.2 0.1 0.4 0.2 0.1
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Table 10. Hyperparameter configurations for EDDI.
Hyperparameter 1 2 3 4 5 6 7 8 9

C Dim 200 200 50 100 20 80 250 100 60
Latent Width 200 200 100 50 20 80 250 40 60
No. Hidden Decoder Layers 2 2 2 2 2 1 2 2 1
Decoder Hidden Width 200 200 200 200 200 100 100 75 200
No. Hidden Encoder Layers 2 2 2 2 2 2 3 2 3
Encoder Hidden Width 200 200 200 200 200 100 100 75 200
Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Batch Size 128 512 128 256 512 128 128 256 512
σ Decoder 0.2 1.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Patience 5 5 5 5 5 5 5 5 5

Table 11. Hyperparameter configurations for Fixed MLP.
Hyperparameter 1 2 3 4 5 6 7 8 9

Hidden Width 200 100 200 100 300 100 250 50 120
No. Hidden Layers 2 2 1 1 2 2 3 2 2
Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0005
Batch Size 128 128 128 128 256 128 256 64 128
Patience 5 5 5 5 5 2 10 5 5

Table 12. Hyperparameter configurations for GDFS.
Hyperparameter 1 2 3 4 5 6 7 8 9

Hidden Width 200 200 200 200 200 200 100 200 200
No. Hidden Layers 2 2 2 2 2 2 1 2 2
Share Parameters False False False True True True True False True
Pretraining Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Main Training Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Batch Size 128 128 128 128 128 128 512 512 512
Patience 2 2 2 2 2 2 2 2 2
Temp Initial 2.0 1.0 0.1 2.0 1.0 0.1 2.0 1.0 0.1

Table 13. Hyperparameter configurations for GSMRL.
Hyperparameter 1 2 3 4 5 6 7 8 9

Hidden Width 100 100 200 100 100 150 75 200 100
No. Hidden Actor Layers 2 2 1 2 2 3 2 1 2
No. Hidden Critic Layers 2 2 1 2 2 3 2 1 2
Discount Factor γ 0.95 0.95 0.9 0.99 0.99 0.95 0.9 0.99 0.95
λGAE 0.95 0.95 0.9 0.95 0.9 0.95 0.8 0.8 0.95
λEntropy 0.01 0.01 0.0 0.005 0.0 0.0 0.01 0.01 0.1
Gradient Clip Max Norm 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0
No. Epochs per Episode 5 5 8 5 5 5 10 10 8
Rollout Batch Size 256 256 256 512 512 512 300 256 256
Optimization Batch Size 128 128 128 128 256 256 100 50 50
Use Surrogate Reward True False False True True False True False True
No. Auxiliary Samples 5 5 3 5 5 10 5 5 3
Learning Rate 0.001 0.001 0.001 0.001 0.0005 0.0001 0.0001 0.0005 0.001
Patience 5 5 5 2 2 3 5 3 2

Table 14. Hyperparameter configurations for Opportunistic RL.
Hyperparameter 1 2 3 4 5 6 7 8 9

Hidden Width 200 200 200 100 200 200 100 200 100
No. Hidden Layers 2 2 2 2 2 2 1 1 1
Discount Factor γ 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25
Learning Rate 0.001 0.001 0.001 0.001 0.001 0.0001 0.001 0.0001 0.001
Batch Size 128 128 128 256 256 128 256 256 128
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Table 15. Hyperparameter configurations for VAE.
Hyperparameter 1 2 3 4 5 6 7 8 9

Latent Width 30 10 50 30 50 10 30 40 20
No. Hidden Decoder Layers 2 2 2 1 2 2 2 2 3
Decoder Hidden Width 100 200 150 200 200 100 100 200 250
No. Hidden Encoder Layers 2 2 2 1 1 2 2 2 3
Encoder Hidden Width 100 200 150 200 150 100 100 200 250
No. Hidden Predictor Layers 2 2 2 1 2 2 2 2 2
Predictor Hidden Width 100 100 200 200 200 100 100 200 100
Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.0005 0.001 0.001
Batch Size 128 128 128 128 256 512 64 128 512
σ Decoder 0.2 0.2 0.2 0.2 0.2 1.0 0.2 0.2 0.2
Patience 5 5 5 5 5 5 5 3 5

Table 16. Hyperparameter configurations for SEFA.
Hyperparameter 1 2 3 4 5 6 7 8 9

Latent Components per Feature 4 4 4 6 4 8 4 6 8
No. Hidden Predictor Layers 2 2 2 2 2 1 2 3 2
Predictor Hidden Width 100 250 100 150 250 250 180 250 250
No. Hidden Encoder Layers 2 2 2 2 2 1 2 3 2
Encoder Hidden Width 20 150 20 50 150 100 40 100 100
β 0.0005 0.001 0.001 0.0005 0.005 0.0001 0.0008 0.001 0.005
Learning Rate 0.001 0.0005 0.001 0.001 0.0003 0.001 0.0005 0.0005 0.0005
Batch Size 128 128 128 128 128 256 128 256 128
Patience 5 5 5 5 5 5 8 5 5

Table 17. Selected hyperparameter configurations for each dataset.
Dataset ACFlow DIME EDDI Fixed MLP GDFS GSMRL Opportunistic RL VAE SEFA

Syn 1 7 5 3 7 9 9 1 1 4
Syn 2 1 6 5 7 6 9 1 2 1
Syn 3 7 4 3 7 6 7 5 8 6
Cube 5 4 4 3 6 7 3 2 5
Bank Marketing 1 4 8 7 3 3 4 9 4
California Housing 1 6 7 7 5 8 3 3 7
MiniBooNE 5 4 9 7 2 9 6 9 7
MNIST 5 6 7 7 6 7 3 3 8
Fashion MNIST 5 4 4 7 9 7 3 5 4
METABRIC 2 5 4 5 2 6 9 4 5
TCGA 1 4 4 1 2 6 6 5 4
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