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ABSTRACT

Unsupervised representation learning for multivariate time series has practical
significances, but it is also a challenging problem because of its complex dy-
namics and sparse annotations. Existing works mainly adopt the framework of
contrastive learning and involve the data augmentation techniques to sample pos-
itives and negatives for contrastive training. However, their designs of representa-
tion learning framework have two drawbacks. First, we revisit the augmentation
methods for time series of existing works and note that they mostly use segment-
level augmentation derived from time slicing, which may bring about sampling
bias and incorrect optimization with false negatives due to the loss of global con-
text. Second, they all pay no attention to incorporate the spectral information
and temporal-spectral relations in feature representation. To address these prob-
lems, we propose a novel framework, namely Bilinear Temporal-Spectral Fusion
(BTSF). In contrast to segment-level augmentation, we utilize the instance-level
augmentation by simply applying dropout on the entire time series for better pre-
serving global context and capturing long-term dependencies. Also, an iterative
bilinear temporal-spectral fusion module is devised to explicitly encode the affini-
ties of abundant time-frequency pairs and iteratively refine representations of time
series through cross-domain interactions with Spectrum-to-Time (S2T) and Time-
to-Spectrum (T2S) Aggregation modules. Finally, we make sufficient assessments
including alignment and uniformity to prove the effectiveness of our bilinear fea-
ture representations produced by BTSF. Extensive experiments are conducted on
three major practical tasks for time series such as classification, forecasting and
anomaly detection, which is the first to evaluate on all three tasks. Results shows
that our BTSF achieves the superiority over the state-of-the-art methods and sur-
passes them by a large margin across downstream tasks. Code will be released.

1 INTRODUCTION

Time series analysis (Oreshkin et al., 2020) plays a crucial role in various real-world scenarios, such
as traffic prediction, clinical trials and financial market. Classification Esling & Agon (2012), fore-
casting (Deb et al., 2017) and anomaly detection (Laptev et al., 2015) are main tasks for time series
analysis. However, there is often no adequate labeled data for training and results are not ideal
when time series are sparsely labeled or without supervision (Hyvarinen & Morioka, 2016a; Lan
et al., 2021). Therefore, it is valuable to study on the unsupervised representation learning for time
series with which the learned representations can be used for aforementioned downstream tasks.
Unsupervised representation learning has been well studied in computer vision and natural language
processing (Denton & Birodkar, 2017; Gutmann & Hyvärinen, 2012; Wang & Gupta, 2015; Pagliar-
dini et al., 2018; Chen et al., 2020b) but only a few researches are related with time series analysis
(Eldele et al., 2021b; Yue et al., 2021; Liu et al., 2021). Recent works mainly utilize the contrastive
learning framework (Chen et al., 2020a; Zerveas et al., 2021) for unsupervised representation learn-
ing in time series. Inspired by Word2Vec (Mikolov et al., 2013), Scalable Representation Learning
(SRL) (Franceschi et al., 2019) proposes a novel triplet loss and tries to learn scalable represen-
tations via randomly sampling time segments. Contrastive Predictive Coding (CPC) (Oord et al.,
2018) conducts representation learning by using powerful autoregressive models in latent space to
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make predictions in the future, relying on Noise-Contrastive Estimation (Gutmann & Hyvärinen,
2010) for the loss function in similar ways. Temporal and Contextual Contrasting (TS-TCC) (Eldele
et al., 2021b) is a improved work of CPC and learns robust representation by a harder prediction task
against perturbations introduced by different timestamps and augmentations. Temporal Neighbor-
hood Coding (TNC) (Tonekaboni et al., 2021) presents a novel neighborhood-based unsupervised
learning framework and applies sample weight adjustment for non-stationary multivariate time se-
ries. Their main difference is that they select contrastive pairs according to different sampling poli-
cies based on time slicing. However, such policy is prone to be affected by false negatives and fails to
capture long-term dependencies because of the loss of a global semantical information. Besides they
only extract temporal feature and neglect to leverage spectral feature and involve temporal-spectral
relations, which may affect the performance.

We implement existing works according to pub-
lic codes. Figure 1 shows statistics about false
predictions on time series classification. Specif-
ically, ”by spectral” means we use the sampling
methods proposed by previous works to gener-
ate contrastive pairs but transform the sampled
time series into spectral domain to extract fea-
ture for later contrastive training and testing.
It is notable that existing works all have a low
overlap percentage around 30% about false pre-
dictions with only temporal or spectral feature.
The phenomenon demonstrates their temporal

Method Overlap

SRL 32.98%

CPC 25.02%

TS-TCC 29.49%

TNC 31.08%

Overlap

Temporal

Spectral

False Predictions

Figure 1: Statistics about false predictions of 5000
randomly selected evaluation samples.

and spectral representations are learned independently.Therefore, if temporal and spectral features
could be simultaneously utilized and achieve alignment, performance of learned representations
would be better. Based on the aforementioned shortcomings of existing works, we propose an unsu-
pervised representation learning framework for multivariate time series, namely Bilinear Temporal-
Spectral Fusion (BTSF). BTSF promotes the representation learning process from two aspects, the
more reasonable construction of contrastive pairs and the full integration of temporal and spectral
information. In order to preserve the global temporal information and have the ability to capture
long-term dependencies of time series, BTSF uses the entire time series as input and simply applies
a standard dropout (Srivastava et al., 2014) as an instance-level augmentation to produce different
views of time series. Such construction of contrastive pairs ensures that the augmented time series
would not change their raw properties, which effectively reduces the possible false negatives and
positives. Considering the effective combination of temporal and spectral information in feature
representation, we performs an iterative bilinear fusion between temporal and spectral features to
produce a fine-grained second-order feature which explicitly preserves abundant pairwise temporal-
spectral affinities. To utilize the informative affinities, we further design a cross-domain interaction
with Spectrum-to-Time and Time-to-Spectrum Aggregation modules to iteratively refine temporal
and spectral features for cycle update. Compared to simple combination operations like summa-
tion and concatenation, our bilinear fusion make it possible that the temporal (spectral) feature gets
straightly enhanced by spectral (temporal) information of the same time series, which is proved to
be effective by our further experiments and anaysis.

Our main contributions are summarized as the following:

• We revisit the construction of contrastive pairs in existing works for unsupervised representation
learning in time series and propose the standard dropout as a simple but effective instance-level
augmentation to augment the entire time series, maximumly preserving global contextual infor-
mation and outperforming existing time slicing based methods (segment-level augmentation).

• A novel representation learning framework BTSF is proposed to explicitly model pairwise
temporal-spectral dependencies with iterative bilinear fusion which not only simultaneously
leverages global contextual information in two domains but also iteratively refines cross-domain
feature representation for time series in a new fusion-and-squeeze manner.

• Sufficient assessments are conducted to identify the generalization ability of our learned repre-
sentations. Besides classification, we also evaluate the model on other downstream tasks like
forecasting and anomaly detection, which is the first to experiments on all three tasks. Results
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show that our BTSF not only largely outperforms existing works but also is competitive with
supervised techniques.

2 RELATED WORK

Unsupervised representation learning for time series A relevant direction of research about
representation learning on sequence data has been well-studied (Chung et al., 2015; Fraccaro et al.,
2016; Krishnan et al., 2017; Bayer et al., 2021). However, few efforts have made in unsupervised
representation learning for time series (Längkvist et al., 2014; Eldele et al., 2021b; Yue et al., 2021).
Applying auto-encoders (Choi et al., 2016) and seq-to-seq models (Malhotra et al., 2017; Lyu et al.,
2018) with an encoder-decoder architecture to reconstruct the input are preliminary approaches to
unsupervised representation learning for time series. Rocket (Dempster et al., 2020) is a fast method
that involves training a linear classifier on top of features extracted by a flat collection of numer-
ous and various random convolutional kernels. Several approaches leverage inherent correlations in
time series to learn unsupervised representations. SPIRAL (Lei et al., 2017) bridges the gap between
time series data and static clustering algorithm through preserving the pairwise similarities of the
raw time series data. Ma et al. (2019) integrates the temporal reconstruction and K-means (Krishna
& Murty, 1999) objective to generate cluster-specific temporal representations. Another group of
approaches design different sample policy and incorporate contrastive learning (Chen et al., 2020a;
Hyvarinen & Morioka, 2016b;a; Oord et al., 2018) to tackle representation learning for temporal data
without supervision. Time-Contrastive Learning (TCL) (Hyvarinen & Morioka, 2016a), Contrastive
Predictive Coding (CPC) (Oord et al., 2018), Scalable RepresentationLearning (SRL) (Franceschi
et al., 2019), Temporal and Contextual Contrasting (TS-TCC) (Eldele et al., 2021b) and Temporal
Neighborhood Coding(TNC) (Tonekaboni et al., 2021) are all segment-level methods which sample
contrastive pairs along temporal axis. TST (Zerveas et al., 2021) apply a transformer-based model
(Vaswani et al., 2017) to unsupervised representation learning of multivariate time series. Neverthe-
less, they all fail to utilize the temporal-spectral affinities in time series.

Second-order pooling Second-Order Pooling (Carreira et al., 2012) is first proposed to preserve
spatial information about pairwise correlations in semantic segmentation (Long et al., 2015). Similar
approach called Bilinear CNNs (Lin et al., 2015) first leverages a pooled outer product of features to
solve fine-rained visual recognition tasks (Akata et al., 2015). Due to the good property of bilinear
feature (Gao et al., 2020), many approaches (Wei et al., 2018; Yu et al., 2018) have been devised
for fine-grained image classification tasks to exploit rich spatial relations. CBP (Gao et al., 2016)
enhances the applicability to computationally complex tasks with reducing the feature dimension-
ality. MCBP (Fukui et al., 2016) applies compact bilinear pooling to Visual Question Answering
(Antol et al., 2015). FBM (Li et al., 2017) considers the pairwise feature relations with linear com-
plexity and Hadamard Product (Kim et al., 2016) further approximates full bilinear pooling to and
takes advantage of the expanded representations with low-rank bilinear pooling (Amin et al., 2020).
However, these second-order pooling methods fail to adaptively refine the final feature due to the
one-shot fusion process. And no research has been done to exploit the use of bilinear pooling for
time series analysis.

3 METHOD

3.1 RETHINKING THE CONSTRUCTION OF CONTRASTIVE PAIRS

Previous researches on the unsupervised representation learning for time series mainly tackle the
problem by designing different sampling policy on temporal data. They use the sampled data to
construct the contrastive objective for guiding the training procedure. Sampling bias is an inevitable
problem for existing representation works in time series because of their segment-level sampling
policy (time slicing). Time slicing is unable to capture the long-term dependencies due to the loss
of global semantical information. To explore an effective augmentation method for the construction
of contrastive pairs, we first investigate general augmentation methods for time series. A latest
empirical survey (Iwana & Uchida, 2021a) evaluates 12 time series data augmentation methods on
128 time series classification datasets with 6 different types of neural networks. According to results,
no augmentation method, not excepting time slicing, is able to improve performance on all datasets
consistently. It is because time series is sensitive to sequential order and temporal patterns.
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Figure 2: The diagram of our general unsupervised representation learning framework for multivari-
ate time series, ⊗ is the cross product. See Section 3.2 for more details.

To preserve the global temporal information and not change the original properties for time series,
we apply a standard dropout as a minimal data augmentation to generate different views in unsuper-
vised representation learning. Specifically, we simply employ two independently sampled dropout
masks on the time series to obtain a positive pair and treat time series of other variables as negative
samples for negative pairs construction. With the instance-level contrastive pairs, our method has the
ability to capture long-term dependencies and effectively reduce the sampling bias which is superior
to previous segment-level pairs.

In the procedure of contrastive pairs construction, we pass the each time series x to the dropout to
generate a positive pair xanc and xpos.

xanc = Dropout(x), xpos = Dropout(x), (1)

For negative samples, we randomly choose other variables as xneg for multivariate time series. Due
to the nature of our augmentation method, our framework is general and becomes independent of the
states of time series which means that we can process both non-stationary and periodic time series.
In contrast, time slicing fails to deal with the periodic time series because it is possible for them to
choose false negative samples. The dropout rate is set to 0.1 in our experiments. For experiment
comparisons with other augmentation methods and the choices of dropout rate, see Appendix A.3

3.2 ITERATIVE BILINEAR TEMPORAL-SPECTRAL FUSION

In this subsection, we provide a detailed introduction to a general and effective framework for
learns a discriminative feature representation for multivariate time series, namely Bilinear Temporal-
Spectral Fusion (BTSF). As illustrated in Figure 2, after constructing the contrastive pairs, we map
the time series to a high dimensional feature space to assimilate x and xpos, and to distinguish
xneg from x. Previous works neglect to leverage spectral feature and temporal-spectral relations,
our proposed BTSF not only simultaneously utilize spectral and temporal features but also enhances
the representation learning in a more fine-grained way. Instead of summation and concatenation,
BTSF adopts iterative bilinear temporal-spectral fusion to iteratively explore and refine the pairwise
affinities between temporal and spectral features for producing an interactive feature representation,
representing the most common parts of positive pairs and enlarging the differences of negative pairs.
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Specifically, each augmented time series xt is first transformed to spectral domain by a fast Fourier
transform (FFT), obtaining spectral signal xs. Then xt and xs are delivered to two encoding net-
works for feature extraction respectively. The process is as the following:

Ft = EncoderA(xt;θt), Fs = EncoderB(xs;θs) (2)

where Ft ∈ Rm×d and Fs ∈ Rn×d are temporal and spectral features, θt and θs are parameters
of their encoding networks EncoderA and EncoderB respectively. We just use simple stacks of
dilated causal convolutions (Bai et al., 2018) to encode temporal features and use 1D convolutional
blocks to extract spectral features. We apply a max-pooling layer in the end of encoding network to
guarantee the same size of features, which makes our model scalable to input length. BTSF makes
an iterative bilinear fusion between Ft and Fs. Specifically, we establish a channel-wise interaction
between features of two domains as the following:

F (i, j) = Ft(i)
T
Fs(j) (3)

where i and j stand for the i-th and j-th location in temporal and spectral axes respectively. This bi-
linear process adequately models the fine-grained time-frequency affinities between Ft(i) ∈ Rd

and Fs(i) ∈ Rd. To summarize such affinities globally, BTSF integrates the obtained feature
F (i, j) ∈ Rd×d to produce the initial bilinear feature vector Fbilinear ∈ Rd×d with sum pooling of
all time-frequency feature pairs:

Fbilinear = Ft
TFs =

m∑
i=1

n∑
j=1

F (i, j) =

m∑
i=1

n∑
j=1

Ft(i)
T
Fs(j) (4)

where Ft
TFs uses the outer product. This bilinear feature conveys the fine-grained time-frequency

affinities to acquire a more discriminative feature representation. Then we encode cross-domain
affinities to adaptively refine the temporal and spectral features through an iterative procedure.

S2T : Ft = BiCasual(Conv(Fbilinear))

T2S : Fs = Conv(BiCasual(Fbilinear))
(5)

where Ft ∈ Rm×d and Fs ∈ Rn×d are updated by Spectrum-to-Time Aggregation (S2T : Rd×d →
Rm×d) and Time-to-Spectrum Aggregation (T2S : Rd×d → Rn×d). Conv is normal convolu-
tional blocks and BiCasual is bi-directional casual convolutional blocks. Specifically, S2T first
aggregates spectrum-attentive information for each temporal feature through applying convolutional
blocks along spectral axis. Then it exchanges the spectrum-related information along temporal axis
to refine the temporal features by several bi-directional casual convolutions. Contrary to S2T, T2S
applies above aggregation-exchange procedure from temporal domain to spectral domain. S2T and
T2S modules adequately aggregate the cross-domain dependencies and refine the temporal and spec-
tral features respectively. In turn, refined temporal and spectral features are able to produce more
discriminative bilinear feature. S2T, T2S and bilinear fusion jointly form a loop block. After sev-
eral loops of Eq.(4) and Eq.(5), the final bilinear feature Fbilinear is obtained. The ablation study of
loops number is in Appendix A.3.

Nevertheless, its efficiency may suffer from the memory overhead of storing high-dimensional fea-
tures with the quadratic expansion. To solve the problem, we transform the final bilinear feature into
a low-rank one by inserting and factorizing an interaction matrix W ∈ Rm×n. It is first inserted to
make linear transformation between each temporal-spectral feature pair:

Fbilinear = Ft
TWFs =

m∑
i=1

n∑
j=1

Ft(i)
T
W (i, j)Fs(j) (6)

where ◦ denotes Hadamard product. Then, we use W = UV T to factorize the interaction matrix
into U ∈ Rm×l and V n×l with l << d. The low-rank bilinear feature can be reformulated:

Fbilinear = Ft
TUV TFs = U

TFt ◦ V TFs (7)

where BTSF employs the two linear mappings without biases to produce the bilinear representations
Fbilinear ∈ Rl×d for a given output dimension l. Through this process, the storing memory of naı̈ve
features of Eq.(4) is reduced largely from O(d2) to O(ld).
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Table 1: Comparisons of classification results on all UCR and UEA datasets.

Methods UCR datasets UEA datasets
Average Accuracy Average Rank Average Accuracy Average Rank

Supervised 89.67 1.67 82.04 1.54

KNN 73.81 4.68 67.81 2.77
SRL 81.24 3.27 68.30 2.37
CPC 80.57 3.54 65.84 2.59

TS-TCC 82.75 2.68 69.43 2.11
TNC 79.95 2.27 70.58 2.25

BTSF 92.11 1.33 86.72 1.26

For not forgetting the original temporal and spectral information, the initial temporal feature Ft ∈
Rl×d and spectral feature Fs ∈ Rl×d are both combined with Fbilinear to enhance the representative
capacity. Therefore, the final joint feature representation f ∈ Rl×d of each augmented time series
can expressed as the following:

f = σ(Ft + Fs + Fbilinear)

= σ(Wt
TFt +Ws

TFs + Ft
TWFs)

= σ(Wt
TFt +Ws

TFs +U
TFt ◦ V TFs)

(8)

where Wt ∈ Rm×l and Vt ∈ Rm×l are all linear transformation layers. σ is the sigmoid func-
tion. After vectorizing the feature representations fanc, fpos and fneg of a contrastive tuple
(xanc,xpos,xneg), we build a loss function to minimize and maximize the distance of positive
and negative pairs respectively. We represent a multivariate time series as X ∈ RD×T = {xj}Dj=1,
where D is the number of variables and T is the length of time series. Thus, the contrastive loss for
a training batch of multivariate time series can be expressed as the following:

L = EX∼Pdata
[−log(sim(fanc,fpos)/τ) + Exneg∼X [log(sim(fanc,fneg)/τ)]] (9)

where sim(·, ·) denotes the inner product to measure the distance between two `2 normalized feature
vectors and τ is a temperature parameter. Eq.(9) demonstrates that for each multivariate time series,
when a time series is chosen for constructing the positive pair, time series of all other variables are
the negative samples. For ablation studies of hyperparameters, see Appendix A.3.

4 EXPERIMENTS

We apply our BTSF on multiple time series datasets in three major practical tasks including classi-
fication, anomaly detection and forecasting. It is noted that we are the first to evaluate on all three
tasks. We compare our performances with state-of-the-art approaches for unsupervised represen-
tation learning for time series: Contrastive Predictive Coding (CPC) (Oord et al., 2018), Scalable
Representation Learning (SRL) (Franceschi et al., 2019), Temporal and Contextual Contrasting (TS-
TCC) (Eldele et al., 2021b) and Temporal Neighborhood Coding (TNC) (Tonekaboni et al., 2021).
For fair comparisons, we implement these methods by public code with the same encoder archi-
tecture and the similar computational complexity and parameters, also use the same representation
dimensions with BTSF. More specific descriptions of tasks definitions, datasets and experiments can
be found in Appendix A.4.

Classification We evaluate our learned representation on downstream classification tasks for time
series with widely-used time series classification datasets (Anguita et al., 2013; Goldberger et al.,
2000; Andrzejak et al., 2001; Moody, 1983; Dau et al., 2019; Bagnall et al., 2018). For fair com-
parisons, we further train a linear classifier on top of the learned representations to evaluate how
well the representations can be used to classify hidden states, following Tonekaboni et al. (2021).
Beyond aforementioned methods, we also implement a K-nearest neighbor classifier equipped with
DTW (Chen et al., 2013) metric and a supervised model which is trained with the same encoder and
classifier with those of our unsupervised model. In the training stage, we keep the original train/test
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Table 2: Comparisons of classification results.

Methods HAR Sleep-EDF ECG Waveform
Accuracy AUPRC Accuracy AUPRC Accuracy AUPRC

Supervised 92.03±2.48 0.98±0.00 83.41±1.44 0.78±0.52 94.81±0.28 0.67±0.01

KNN 84.85±0.84 0.75±0.01 64.87±1.73 0.75±2.88 54.76±5.46 0.38±0.06
SRL 63.60±3.37 0.71±0.01 78.32±1.45 0.71±2.83 75.51±1.26 0.47±0.00
CPC 86.43±1.41 0.93±0.01 82.82±1.68 0.73±2.15 68.64±0.49 0.42±0.01

TS-TCC 88.04±2.46 0.92±0.02 83.00±0.71 0.74±2.63 74.81±1.10 0.53±0.02
TNC 88.32±0.12 0.94±0.01 82.97±0.94 0.76±1.73 77.79±0.84 0.55±0.01

BTSF 94.63±0.14 0.99±0.01 87.45±0.54 0.82±0.48 98.12±0.14 0.72±0.01

Table 3: Comparisons of multivariate forecasting results.

Datasets Length Supervised SRL CPC TS-TCC TNC BTSF
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 48 0.685 0.625 0.758 0.711 0.779 0.768 0.720 0.693 0.705 0.688 0.613 0.524
168 0.931 0.752 1.341 1.178 1.282 1.083 1.129 1.044 1.097 0.993 0.640 0.532
720 1.215 0.896 1.892 1.566 1.803 1.761 1.603 1.206 1.604 1.118 0.993 0.712

ETTh2 48 1.451 1.001 1.854 1.542 1.732 1.440 1.701 1.378 1.689 1.311 0.544 0.527
168 3.389 1.515 5.062 2.167 4.591 3.126 3.956 2.301 3.792 2.029 1.669 0.875
720 3.467 1.473 5.301 3.207 5.191 2.781 4.732 2.345 4.501 2.410 2.566 1.276

ETTm1 48 0.494 0.503 0.701 0.697 0.727 0.706 0.671 0.665 0.623 0.602 0.395 0.387
96 0.678 0.614 0.901 0.836 0.851 0.793 0.803 0.724 0.749 0.731 0.438 0.399
672 1.192 0.926 2.042 1.803 1.962 1.797 1.838 1.601 1.822 1.692 0.721 0.643

Weather 48 0.395 0.459 0.751 0.883 0.720 0.761 0.647 0.691 0.608 0.626 0.366 0.427
168 0.608 0.567 1.204 1.032 1.351 1.067 1.117 0.962 1.081 0.970 0.543 0.477
720 0.831 0.731 2.281 1.994 2.109 1.861 1.850 1.566 1.401 1.193 0.601 0.522

splits of datasets and use the training set to train all the models. We apply two metrics for evaluation,
the prediction accuracy and the area under the precision-recall curve (AUPRC). Table 9 and Table 2
demonstrates our superior performance over existing methods in all datasets and our BTSF surpasses
the supervised method, which shows that BTSF adequately leverages the temporal and spectral in-
formation in time series for representation learning. In addition, the pair-wise temporal-spectral
fusion provides more fine-grained information (see Appendix A.1 for visualization results).

Forecasting We evaluate our algorithm with other methods on time series forecasting task in both
short-term and long-term settings, following Zhou et al. (2021). A decoder is added on top of learned
representations to make predictive outputs. Specifically, we train a linear regression model with L2
norm penalty and use informer (Zhou et al., 2021) as our supervised comparison method. We use
two metrics to evaluate the forecasting performance, Mean Square Error (MSE) and Mean Abso-
lute Error (MAE). Table 3 demonstrates that our BTSF has the least forecasting error of different
prediction lengths (short/long) across the datasets. In addition, BTSF outperforms existing methods
including supervised one in a large margin especially for long time series prediction. It is noted that
BTSF gets a better performance when the length of datasets increases due to the better use of global
context, which makes BTSF fully capture the long-term dependencies in long time series. More
comparisons and visualization results of time series forecasting are illustrated in Appendix A.4.

Anomaly detection To the best of our knowledge, we are the first to evaluate on anomaly detection
(Su et al., 2019; Hundman et al., 2018; Goh et al., 2016; Mathur & Tippenhauer, 2016; Braei &
Wagner, 2020). The results of this task assessment reflect how well the model capture the temporal
trends and how sensitive to the outlier the model is for time series. We add a decoder on top of
representations learned by models and reconstruct the input time series and follow the evaluation
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Table 4: Comparisons of multivariate anomaly detection.

Datasets Metric Supervised SRL CPC TS-TCC TNC BTSF
SAaT F1 0.901 0.710 0.738 0.775 0.799 0.944
WADI F1 0.649 0.340 0.382 0.427 0.440 0.685
SMD F1 0.958 0.768 0.732 0.794 0.817 0.972

SMAP F1 0.842 0.598 0.620 0.679 0.693 0.906
MSL F1 0.945 0.788 0.813 0.795 0.833 0.984

settings of Audibert et al. (2020). For each input data point xt and reconstructed one x̂t, if |x̂t −
xt| > τ (τ is a predefined threshold), xt is an outlier. Precision (P), Recall (R), and F1 score (F1)
were used to evaluate anomaly detection performance and we just list the results of F1 metric here
(see Appendix A.4 for more results of P and R metrics). Table 4 illustrates that BTSF achieves new
SOTA across all datasets and especially surpasses the supervised results by a large margin. It conveys
that BTSF is more sensitive to the outliers in time series since it captures long-term dynamics and
expresses the fine-grained information through iterative bilinear fusion.

5 ANALYSIS

Augmentation comparisons To further prove
the effectiveness of our instance-level aug-
mentation (dropout), we compare our method
with 12 other augmentation policies as men-
tioned in Iwana & Uchida (2021a): Jitter-
ing, Rotation, Scaling, Magnitude Warping,
Permutation, Slicing, Time Warping, Win-
dow Warping, SPAWNER (Kamycki et al.,
2020), Weighted DTW Barycentric Averag-
ing (wDBA) (Forestier et al., 2017), Random
Guided Warping (RGW) (Iwana & Uchida,
2021b) and Discriminative Guided Warping
(DGW) (Iwana & Uchida, 2021b). The classi-
fication accuracy comparisons of different aug-
mentations on HAR datasets are illustrated in
Figure 3. It is noted that proposed instance-level

Accuracy comparisons of different augmentations (in %)

Figure 3: Classification accuracies and variances
of different augmentations on HAR dataset.

augmentation (dropout) has a best performance in both average accuracy and variance, which
demonstrates dropout is a more accurate and more stable augmentation policy for unsupervised
representation learning in time series.

Impact of iterative bilinear fusion To investigate the impact of iterative bilinear fusion in BTSF,
we follow the experiment as illustrated in Section 1. We apply the learned representations of models
to the classification task and make statistics about false predictions by only using temporal or spec-
tral feature respectively. Specifically, we use the feature out of S2T and T2S module as temporal
and spectral feature respectively. From Table 5, we find that after adding iterative bilinear fusion,
BTSF not only gets a large promotion in accuracy but also achieves a good alignment between tem-
poral and spectral domain with a overlap percentage of 96.60%, much higher than existing works
(around 30%). Therefore, our designed iterative bilinear fusion make an effective interaction be-
tween two domains and it is vital for final prediction accuracy. More ablation studies about BTSF
are in Appendix A.3.

Alignment and uniformity To make a comprehensive assessment of the representations, we eval-
uate the two properties of learned representations, alignment and uniformity (Wang & Isola, 2020).
Alignment is used to measure the similarities of features between similar samples, which means
features of a positive pair should be invariant to the noise. Uniformity assumes that a well-learned
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Table 5: Statistics about false predictions of all test samples on HAR dataset

Only Temporal Only Spectral Overlap (% by Temporal, % by Spectral)

SRL 1073 1174 349 (32.53%, 29.73%)
CPC 401 448 106 (26.43%, 23.66%)

TS-TCC 354 383 107 (30.23%, 27.94%)
TNC 346 376 115 (33.24%, 30.59%)

BTSF 159 163 152 (96.60%, 93.25%)

feature distribution should preserve maximal information as much as possible. It makes sense that
well-generalized feature representations not only minimize the intra-similarities of positive pairs and
enlarge the inter-distances of negative pairs but also keep the feature distributed uniformly to retain
enough information. Therefore we follow Wang & Isola (2020) to make the assessments. Figure
4 and Figure 5 show the results of alignment and uniformity respectively. Compared with previous
SOTA TNC and supervised results, our BTSF gets the highest mean value about feature distance
of positive pairs, which means that BTSF achieves the best alignment. Additionally, the feature
extracted BTSF is evenly distributed in the encoding space which preserves maximal information of
the data, much better than TNC and supervised models.

TNC Supervised BTSF

Figure 4: Distance distribution of positive pairs for assessing alignment. Our BTSF is well aligned.

TNC Supervised BTSF

Figure 5: Feature distribution of samples in different classes on the normalized surface area for
assessing uniformity. Features extracted by BTSF are evenly distributed.

6 CONCLUSION

In this paper, we propose Bilinear Temporal-Spectral Fusion (BTSF) for unsupervised represen-
tation learning in time series. We revisit existing representation learning methods based on con-
trastive framework and point out that they all fail to leverage global contextual information due to
the segment-level augmentation (time slicing) and are unable to use temporal-spectral relations for
enhancing representation learning. First, we utilize instance-level augmentation which use the entire
time series as input and apply dropout to generate different views for training. Second, we devise it-
erative bilinear fusion to iteratively fuse temporal-spectral information and refine the unified feature
representation for time series. The extensive experiments on classification, forecasting and anomaly
detection downstream tasks have been conducted and the results demonstrates the superior perfor-
mance of our BTSF. BTSF not only surpasses existing unsupervised learning models for time series
in a large margin but also outperforms the supervised model across all the datasets.
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A APPENDIX

A.1 VISUALIZATION

To make assessments about the clusterability of learned representations in the encoding space, we
visualize the feature distribution by using t-SNE (Van der Maaten & Hinton, 2008). It is noted that if
the information of the latent state is properly learned and encoded by the model, the representations
from the same underlying state should cluster together. Figure 6 shows the comparisons about
representations distribution of different models. It demonstrates that the representations learned by
proposed BTSF from the same hidden state are better than the other approaches. The visualization
results further prove the superior representation ability of our model. In Addition, we have evaluated
on the all univariate time series datasets: the UCR archive. The corresponding critical difference
diagram is shown in Figure 7. The BTSF significantly outperforms the other approaches with an
average rank of almost 1.3.

TS-TCC CPC SRL

TNC Supervised BTSF

Figure 6: T-SNE visualization of signal representations for HAR dataset.
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Figure 7: Critical difference diagram showing pairwise statistical difference comparison of BTSF
and previous methods on the UCR archive.

A.2 EFFECTIVENESS

To prove the efficiency of our devised bilinear fusion, we provide the deduction of gradient flow
from the loss function. Since the overall architecture is a directed acyclic graph, the parameters can
be trained by back-propagating the gradients of the contrastive loss. The bilinear form simplifies the
gradient computations. Let ∂L

∂f be the gradient of L with respect to f , then for Eq.(8) by chain rule
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Table 6: Ablation experiments of BTSF.

Accuracy Temporal Spectral Sum/Concat Bilinear Iterative Bilinear

Slicing 88.3 86.7 88.7 90.7 91.5
Dropout 89.4 88.4 89.8 92.4 94.6

Layer-Wise Dropout 89.8 89.1 90.4 93.1 95.4

of gradients we can get:
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From the Eq.(10) and Eq.(12), , we conclude that the gradient update of parameters θt in temporal
feature Ft is closely related to the spectral feature since Fs is treated as a weighted coefficient
straightly multiplying the gradient, and vice versa. Additionally, we can know that interaction matrix
W has a strong connection with cross-domain affinities FtFs

T from the Eq.(11) which leads to a
better combination of temporal and spectral features. In hence, it is proved that our BTSF adequately
explores and utilizes the underlying spectral and temporal information of time series.

A.3 MORE ABLATION STUDIES

To quantify the promotion of each module in BTSF, we make a specific ablation study where all ex-
periments are conducted on HAR dataset and results are in Table 6. We use TNC as a baseline which
applies time slicing as augmentation with accuracy of 88.3%. We could find that our instance-level
augmentation (dropout) is better than segment-level augmentation (slicing) and layer-wise dropout
(adding dropout in internal layers) has a promotion by 1.5% compared with slicing. However, we
do not apply layer-wise dropout in aforementioned experiments for fair comparisons otherwise our
BTSF will have better performance. Besides, incorporating spectral feature with temporal feature
by using summation or concatenation will also improve the results, which illustrates the necessity of
cross-domain interaction. The accuracy is obviously promoted by 2%∼3% when involving temporal
and spectral information with bilinear fusion, and iterative operation will further improve the per-
formance by enhancing and refining the temporal-spectral interaction. In conclusion, instance-level
augmentation (dropout) and iterative bilinear fusion are two main modules of BTSF which largely
improve the generalization ability of unsupervised learned representations with accuracy of 94.6%,
an improvement of 6.3% to baseline.

Studies of hyperparameters In the proposed BTSF, there are some hyperparameters needed to
be carefully set, the dropout rate, temperature number τ and the loops number of iterative bilinear
fusion. Table 7 illustrates that when the rate is set to 0.1, BTSF acquires the best performance since
setting too high value would lose the original properties of time series and setting too low value
would bring about representation collapse. Table 8 demonstrates that when τ is set to 0.05 , BTSF
has the best performance. It is reasonable that proper value of τ would promote the optimization
of training process and make representations more discriminative with the adjustment. We also run
the experiments of loops number of iterative bilinear fusion and the results are depicted in Figure
8. From the results, we conclude that our iterative bilinear fusion is effective and its performance
converges after just three loops.

A.4 DATASETS DESCRIPTIONS AND MORE EXPERIMENTS

In all experiments, we use Pytorch 1.8.1 (Paszke et al., 2017) and train all the models on a GeForce
RTX 2080 Ti GPU with CUDA 10.2. We apply an Adam optimizer (Kingma & Ba, 2017) with
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Table 7: Ablation experiments of dropout rate

dropout rate p=0.01 p=0.05 p=0.1 p=0.15 p=0.2 p=0.3
HAR 90.29 92.78 94.63 93.36 91.21 88.07

Sleep-EDF 82.76 85.34 87.45 86.01 83.44 80.92
ECG Waveform 93.13 96.56 98.12 97.28 95.63 92.05

Table 8: Ablation experiments on temperature number τ .

τ 0.001 0.01 0.05 0.1 1
HAR 90.04 92.91 94.63 93.04 91.85

Sleep-EDF 82.69 84.82 87.45 85.11 83.28
ECG Waveform 93.06 95.74 98.12 96.47 94.88

a learning rate of 3e-4, weight decay of 1e-4 and batch size is set to 256. In this part, we would
introduce all the datasets used in our experiments which involve three kinds of downstream tasks,
time series classification, forecasting and anomaly detection. The definitions of downstream tasks
are detailed in the following:

• Time Series Classification: Given the univariate time series {x1, x2, . . . , xT } or multivariate
time series {x1,x2, . . . ,xD} as input, time series classification is to classify the input consisting
of real-valued observations to a certain class.

• Time Series Forecasting: Given the past univariate observations {xt−T1+1, . . . , xt} or multi-
variate ones {xt−T1+1, . . . ,xt} as input, time series forecasting aims to predict the future data
points {xt+1, xt+2, . . . , xt+T2} or {xt+1,xt+2, . . . ,xt+T2} based on the input.

• Time Series Anomaly Detection: Given the univariate time series {x1, x2, . . . , xT } or multi-
variate time series {x1,x2, . . . ,xD} as input, time series anomaly detection is to find out which
point (x̂i or x̂i) or subsequence ({x̂1, x̂2, . . . , x̂T } or {x̂1, x̂2, . . . , x̂T }) of the input behaves
unusually when compared either to the other values in the time series (global outlier) or to its
neighboring points (local outlier).

Data Preprocessing Following Franceschi et al. (2019); Zhou et al. (2021), for univariate time
series classification task, we normalize datasets using z-score so that the set of observations for
each dataset has zero mean and unit variance. For multivariate time series classification task, each
variable is normalized independently using z-score. For forecasting tasks, all reported metrics are
calculated based on the normalized time series.

A.4.1 CLASSIFICATION

In the time series classification task, we choose six popular datasets which are widely used in previ-
ous works. These six datasets are Human Activity Recognition (HAR) (Anguita et al., 2013), Sleep
Stage Classification (Sleep-EDF) (Goldberger et al., 2000), Epilepsy Seizure Prediction (Andrze-
jak et al., 2001), ECG Waveform (Moody, 1983),UCR (Dau et al., 2019) and UEA (Bagnall et al.,
2018). The detailed introduction to these datasets are as follows:

Human Activity Recognition HAR dataset contains 30 individual subjects which provide six
activities for each subject. These six activities are walking, walking upstairs, downstairs, standing,
sitting, and lying down. The data of HAR is collected by sensors with a sampling rate of 50 HZ and
the collected signals record the continuous activity of every subject.

Sleep Stage Classification The dataset is designed for EEG signal classification task where each
signal belongs to one of five categories: Wake (W), Non-rapid eye movement (N1, N2, N3) and
Rapid Eye Movement (REM). And the Sleep-EDF dataset collects the PSG for the whole night, and
we just used a single EEG channel, following previous works (Eldele et al., 2021a).

Epilepsy Seizure Prediction The Epileptic Seizure Prediction dataset contains EEG signals which
are collected from 500 subjects. The brain activity for each subject was recorded for 23.6 seconds.
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Figure 8: Accuracy trend of changing loops number on HAR, Sleep-EDF and ECG Waveform
datasets.

Table 9: More comparisons of classification results about BTSF and previous work, results of TST
(Zerveas et al., 2021), Rocket (Dempster et al., 2020) and Supervised (Zerveas et al., 2021) are
quoted from TST for fair comparisons.

Methods TST Rocket Supervised BTSF
EthanolConcentration 32.6 45.2 33.7 49.4

FaceDetection 68.9 64.7 68.1 73.0
Handwriting 35.9 58.8 30.5 62.3

Heartbeat 77.6 75.6 77.6 84.7
JapaneseVowels 99.7 96.2 99.4 99.8
InsectWingBeat 68.7 - 68.4 78.3

PEMS-SF 89.6 75.1 91.9 95.7
SelfRegulationSCP1 92.2 90.8 92.5 96.5
SelfRegulationSCP2 60.4 53.3 58.9 64.9
SpokenArabicDigits 99.8 71.2 99.3 99.8

UWaveGestureLibrary 91.3 94.4 90.3 97.1
Avg Accuracy 74.8 72.5 74.2 82.0

Avg Rank 1.7 2.3 1.7 1.2

Additionally, the original classes of the dataset are five, and we preprocess the dataset for classifica-
tion task like Eldele et al. (2021b).

ECG Waveform The ECG Waveform is a real-world clinical dataset, it includes 25 long-term
Electrocardiogram (ECG) recordings (10 hours in duration) of human subjects with atrial fibrillation.
Besides, it contains two ECG signals with a sampling rate of 250HZ.

UCR and UEA The UCR and UEA are widely used public datasets for time series analysis. The
UCR archive consists of univariate datasets while UEA archive contains multivariate datasets, which
cover multiple scenes in real world.

Table 9 shows the comparison results between BTSF with recent works following their evaluation
protocols. The results show that BTSF significantly outperforms them in a large margin. Table 10
shows the classification results of Epileptic Seizure Prediction datasets. From the illustrated results,
we conclude that our BTSF gets the best performance and exceeds other methods by a large margin
in univariate and multivariate time series classification tasks.
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Table 10: More comparisons of classification results of ESP dataset.

Methods Epilepsy Seizure Prediction
Accuracy AUPRC

Supervised 96.32±0.38 0.97±0.65

KNN 87.96±1.32 0.89±1.04
SRL 94.65±0.97 0.95±0.86
CPC 96.61±0.43 0.97±0.69

TS-TCC 97.23±0.10 0.98±0.21
TNC 96.15±0.33 0.96±0.45

BTSF 99.01±0.12 0.99±0.06

A.4.2 FORECASTING

In Section 4, we conduct experiments on four datasets about time series forecasting, including two
collected real-world datasets for long sequence time-series forecasting (LSTF) problem and one
public benchmark dataset as in Zhou et al. (2021). The detailed introduction to these datasets are as
follows:

Electricity Transformer Temperature (ETT) The ETT is a crucial indicator in the electric power
long-term deployment. The 2-year data was collected from two separated counties in China, which
was first used to investigate the granularity on the LSTF problem with each data point containing the
target value ”oil temperature” and six power load features. ETTh1 , ETTh2 and ETTm1 represent
for 1-hour-level and 15-minute-level respectively.

Weather This dataset contains local climatological data for about 1,600 U.S. places, 4 years from
2010 to 2013, where data points are collected every 1 hour with each data point consisting of the
target value “wet bulb” and 11 climate features.

We run the forecasting tasks about prediction length of 48 and 1440 on ETT dataset and visualize the
forecasting results of BTSF, TNC and supervised models. From Figure 9 and 10, we could find that
our BTSF achieves the best forecasting results under both short-term and long-term settings since
it adequately leverages the global context and utilize temporal-spectral relations which are helpful
in producing more accurate predictive representations. The complete comparisons of forecasting
results in Table 11 further prove the superiority of BTSF.

A.4.3 ANOMALY DETECTION

In Section 4, we conduct extensive experiments about time series anomaly detection on five widely
used datasets, which are all public available. The detailed introduction to these datasets are illus-
trated as follows:

Secure Water Treatment (SWaT) The SWaT dataset is a scaled down version of a real-world
industrial water treatment plant producing filtered water (Goh et al., 2016). The collected dataset
(Mathur & Tippenhauer, 2016) consists of 11 days of continuous operation: 7 days collected under
normal operations and 4 days collected with attack scenarios.

Water Distribution (WADI) This dataset is collected from an extension of the SWaT tesbed. It
consists of 16 days of continuous operation: 14 days were collected under normal operation and 2
days with attack scenarios.

Server Machine Dataset (SMD) This dataset is a 5-week-long dataset from a large internet com-
pany which was collected and made publicly available (Su et al., 2019). It contains data from 28
server machines with each one monitored by m=33 metrics. SMD is divided into two subsets of
equal size: the first half is the training set and the second half is the testing set.
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Figure 9: Visualizing forecasting results of length 48 on ETT dataset.

Soil Moisture Active Passive (SMAP) and Mars Science Laboratory (MSL) SMAP and MSL
are two real-world public datasets, expert-labeled datasets from NASA (Hundman et al., 2018).
They contain respectively the data of 55/27 entities each monitored by m = 25/55 metrics.

The complete comparisons of all metrics (P, R and F1) in anomaly detection are illustrated in Ta-
ble 12. Our BTSF outperforms other methods imcluding supervised method in a large margin. It
demonstrates BTSF is more sensitive to the outliers in time series.
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Table 11: Comparisons of multivariate forecasting Results.

Datasets Length Supervised SRL CPC TS-TCC TNC BTSF
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.577 0.549 0.698 0.661 0.687 0.634 0.653 0.610 0.632 0.596 0.541 0.519
48 0.685 0.625 0.758 0.711 0.779 0.768 0.720 0.693 0.705 0.688 0.613 0.524
168 0.931 0.752 1.341 1.178 1.282 1.083 1.129 1.044 1.097 0.993 0.640 0.532
336 1.128 0.873 1.578 1.276 1.641 1.201 1.492 1.076 1.454 0.919 0.864 0.689
720 1.215 0.896 1.892 1.566 1.803 1.761 1.603 1.206 1.604 1.118 0.993 0.712

ETTh2

24 0.720 0.665 1.034 0.901 0.981 0.869 0.883 0.747 0.830 0.756 0.359 0.432
48 1.451 1.001 1.854 1.542 1.732 1.440 1.701 1.378 1.689 1.311 0.544 0.527
168 3.389 1.515 5.062 2.167 4.591 3.126 3.956 2.301 3.792 2.029 1.669 0.875
336 2.723 1.340 4.921 3.012 4.772 3.581 3.992 2.852 3.516 2.812 1.954 1.093
720 3.467 1.473 5.301 3.207 5.191 2.781 4.732 2.345 4.501 2.410 2.566 1.276

ETTm1

24 0.323 0.369 0.561 0.603 0.540 0.513 0.473 0.490 0.429 0.455 0.302 0.342
48 0.494 0.503 0.701 0.697 0.727 0.706 0.671 0.665 0.623 0.602 0.395 0.387
96 0.678 0.614 0.901 0.836 0.851 0.793 0.803 0.724 0.749 0.731 0.438 0.399
288 1.056 0.786 2.471 1.927 2.066 1.634 1.958 1.429 1.791 1.356 0.675 0.429
672 1.192 0.926 2.042 1.803 1.962 1.797 1.838 1.601 1.822 1.692 0.721 0.643

Weather

24 0.335 0.381 0.688 0.701 0.647 0.652 0.572 0.603 0.484 0.513 0.324 0.369
48 0.395 0.459 0.751 0.883 0.720 0.761 0.647 0.691 0.608 0.626 0.366 0.427
168 0.608 0.567 1.204 1.032 1.351 1.067 1.117 0.962 1.081 0.970 0.543 0.477
336 0.702 0.620 2.164 1.982 2.019 1.832 1.783 1.370 1.654 1.290 0.568 0.487
720 0.831 0.731 2.281 1.994 2.109 1.861 1.850 1.566 1.401 1.193 0.601 0.522

Table 12: Comparisons of multivariate anomaly detection.

Datasets Metric Supervised SRL CPC TS-TCC TNC BTSF

SAaT
P 0.996 0.784 0.791 0.823 0.816 0.997
R 0.842 0.603 0.644 0.712 0.726 0.873
F1 0.901 0.710 0.738 0.775 0.799 0.944

WADI
P 0.720 0.459 0.473 0.522 0.561 0.763
R 0.761 0.478 0.492 0.525 0.574 0.801
F1 0.649 0.340 0.382 0.427 0.440 0.685

SMD
P 0.984 0.751 0.783 0.802 0.834 0.993
R 0.963 0.790 0.774 0.811 0.806 0.985
F1 0.958 0.768 0.732 0.794 0.817 0.972

SMAP
P 0.791 0.562 0.597 0.639 0.641 0.881
R 0.985 0.755 0.781 0.812 0.826 0.994
F1 0.842 0.598 0.620 0.679 0.693 0.906

MSL
P 0.937 0.728 0.778 0.825 0.819 0.968
R 0.980 0.702 0.749 0.793 0.815 0.993
F1 0.945 0.788 0.813 0.795 0.833 0.984
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Figure 10: Visualizing long-term forecasting results of length 1440 on ETT dataset.
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