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ABSTRACT

Modeling surface roughness in materials science is a challenging multiscale prob-
lem, as surface textures often exhibit hierarchical (fractal-like) structure across
multiple scales. In this work, we present a synthetic data-driven approach to study-
ing scale transitions in surface roughness using fractal data generation and sym-
bolic regression. We construct coarse-grained representations of synthetic fractal
surfaces and apply symbolic regression to derive interpretable mathematical ex-
pressions that map fine-scale features to coarse-scale behavior. On controlled syn-
thetic data, our approach achieves high predictive accuracy (R² near 1, low MSE),
serving as a baseline validation. While the data is idealized, these results suggest
that symbolic regression can capture scale-transition relationships in hierarchical
surface structures and may also be able to support future efforts in data-driven
multiscale modeling. This work highlights the potential of symbolic learning in
accelerating modeling workflows for complex physical systems.

1 INTRODUCTION

Surface roughness plays a crucial role in determining mechanical, tribological, and adhesive
properties, affecting applications ranging from machining to contact mechanics (Greenwood &
Williamson, 1966). The statistical nature of surface asperities influences real contact area, friction,
and wear. The fractal characteristics of fracture surfaces in metals were demonstrated by Mandel-
brot et al. (1984), revealing self-affine properties that contribute to the understanding of roughness
at multiple scales. This fractal perspective was later applied to contact mechanics by Majumdar &
Bhushan (1991), who developed a fractal-based elastic-plastic contact model, establishing a power-
law relationship between contact area and load.

Machine learning (ML) facilitates data-driven roughness modeling, complementing physics-based
approaches that require extensive domain knowledge and can be computationally expensive (Motta
et al., 2022; Benardos & Vosniakos, 2002). Symbolic regression (SR) has emerged as a powerful
method for discovering analytical equations governing physical systems (Schmidt & Lipson, 2009),
though its direct application to hierarchical roughness transitions remains largely unexplored.

We propose a synthetic fractal roughness generator and use SR to derive interpretable mathematical
expressions for scale transitions. Our coarse-graining approach extracts multiscale features, and SR
identifies relationships characterizing roughness behavior across scales. The results demonstrate
high predictive accuracy while preserving interpretability, highlighting SR’s potential for multiscale
modeling in materials science.

2 RELATED WORKS

ML-based surface roughness modeling has primarily emphasized predictive accuracy, with Motta
et al. (2022) and Benardos & Vosniakos (2002) employing machine learning models to predict
roughness from machining parameters. These approaches, however, rely on black-box models
that lack interpretability. In contrast, SR offers explicit mathematical expressions. Zhao & Zhao
(2025) utilized SR to formulate an empirical equation for the joint roughness coefficient (JRC),
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while Torres-Treviño et al. (2013) and Asadollahi-Yazdi et al. (2021) applied SR to model rough-
ness in machining and 3D-printed surfaces, respectively. Nevertheless, these studies do not explore
hierarchical scale transitions in surface roughness modeling.

Multiscale modeling techniques, such as coarse-graining, have been extensively employed to link
fine-scale and macro-scale properties in materials science (Steinhauser, 2017). These methods pro-
vide computational efficiency but typically depend on predefined physics-based assumptions rather
than data-driven discovery.

Our approach integrates fractal roughness generation, coarse-graining, and SR into a unified frame-
work for learning scale transition equations. Unlike prior ML-based models, our method explicitly
derives interpretable mathematical relationships, offering new insights into hierarchical roughness
modeling.

3 METHODOLOGY

3.1 SYNTHETIC FRACTAL SURFACE ROUGHNESS GENERATION

To model hierarchical surface roughness, we generate synthetic fractal-like data using a multiscale
perturbation approach. We generate synthetic fractal roughness by refining a base function f(x),
typically chosen as sin(x), with progressively smaller perturbations:

y(x) = f(x) +

D∑
d=1

Ad sin(2πS
dx+ ϕd) (1)

where:

• D is the number of refinement levels (depth),
• S is the scale factor controlling frequency increase per level,
• Ad = A0 · λd is the amplitude decay per level, with 0 < λ ≤ 1,
• ϕd ∼ U(−π, π) is a random phase shift per level.

The generated roughness is normalized for numerical stability:

ynorm =
y − µy

σy
(2)

where µy and σy are the mean and standard deviation of y, respectively.

3.2 SCALE TRANSITION VIA COARSE-GRAINING

To learn scale transition rules, we apply a coarse-graining operation where fine-scale roughness
data y(x) is aggregated into larger-scale descriptors. Coarse-graining reduces the dimensionality of
roughness data by aggregating local values within a window W :

Yi = g(yiW , . . . , y(i+1)W ) (3)

where g(·) is an aggregation function:

• Mean smoothing: g = 1
W

∑
y (reduces noise while preserving structure),

• Median filtering: g = median(y) (robust to outliers),
• Trimmed mean: g = trim(y, p) (ignores extreme values).

If the dataset length is not evenly divisible by W , the remaining points are aggregated as a smaller
window. To retain the most informative features, we apply variance-based feature selection to the
fine-scale data windows after aggregation, retaining the top k features with the highest variance.
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3.3 SYMBOLIC REGRESSION FOR SCALE TRANSITIONS

We employ symbolic regression via PySR to discover an interpretable mathematical equation that
governs the relationship between fine-scale and coarse-grained roughness representations. Sym-
bolic regression searches for an equation mapping fine-scale to coarse-scale roughness. We use a
constrained operator set with complexity penalization to favor interpretable expressions.

We apply early stopping and an 80/20 train-test split to ensure generalization.

3.4 VALIDATION, RESIDUAL ANALYSIS, AND UNCERTAINTY ESTIMATION

Model performance is evaluated on an 80/20 train-test split using MSE, MAE, RMSE, and R2. We
also analyze the residuals (Ytest − Ypred) to assess model fit. Uncertainty is quantified by training
multiple bootstrapped models (each with reduced iterations, max iters = 50) on resampled training
data and computing the standard deviation of their predictions:

σuncertainty,i = std(Ŷ1,i, Ŷ2,i, . . . , ŶB,i) (4)

where B is the number of bootstrap iterations and Ŷb,i is the prediction from the b-th model for test
sample i.

4 RESULTS AND DISCUSSION

4.1 SYNTHETIC SURFACE ROUGHNESS GENERATION

The synthetic roughness generator produced fractal-like structures by iteratively perturbing a base
function. Figure 1 shows the generated profile, capturing both large-scale curvature and fine-scale
variations. Normalization ensured numerical stability.

4.2 SCALE TRANSITION MAPPING

Coarse-graining was applied to analyze scale transitions. Figure 2 shows fine-to-coarse representa-
tions, with red markers indicating aggregated values. The process preserves key roughness features
while capturing large-scale trends.

4.3 SYMBOLIC REGRESSION MODELING

Symbolic regression was employed to derive an explicit mathematical relationship governing the
transition between fine and coarse scales. Figure 3 compares the true coarse-scale values with pre-
dictions made by the symbolic regression model. The alignment between predicted and actual values
indicates that the discovered equation generalizes well to unseen data. Error bars derived from boot-
strap resampling provide an estimate of uncertainty, suggesting that the model remains robust across
different test samples.

4.4 RESIDUAL ANALYSIS AND MODEL EVALUATION

To assess model accuracy, standard error metrics were computed. The symbolic regression model
achieved a mean squared error (MSE) of 3×10−6, root mean squared error (RMSE) of 0.00185, and
coefficient of determination (R2) of 0.999997, indicating a high degree of accuracy. The residual
distribution (Figure 4) exhibits a visually symmetric error pattern, suggesting little systematic bias
in the predictions.

Additionally, bootstrap uncertainty quantification revealed a mean uncertainty of 0.0024 with a stan-
dard deviation of 0.00056, confirming that the model produces consistent results across resampled
datasets.
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4.5 IMPLICATIONS FOR SURFACE ROUGHNESS MODELING

These results suggest that symbolic regression can capture interpretable scale-transition equations
in synthetic hierarchical roughness data. Unlike traditional black-box models, it yields explicit
functional forms that could inform physics-based roughness modeling or improve coarse-graining
in multiscale simulations. On clean synthetic data with known structure, the model achieves high
accuracy, serving as a baseline validation. Future work will address more complex and real-world
scenarios to assess generalizability.

Figure 1: Synthetic surface roughness data.
Figure 2: Scale transition mapping.

Figure 3: Symbolic regression predictions.

Figure 4: Residual distribution of the symbolic
regression model.

ACKNOWLEDGMENTS

This manuscript was prepared with the assistance of generative AI tools, specifically OpenAI’s
ChatGPT-4o, throughout its development. AI was used to refine language clarity, grammar, sentence
structure, and overall readability. The AI’s role was strictly limited to non-substantive tasks, such as
improving linguistic coherence, without altering or contributing to the technical content, analyses,
methodologies, or results.

Specifically, AI tools were used to:

Enhance the readability and flow of the Abstract, Introduction, Related Works, Methodology, Re-
sults, and Discussion sections. Verify grammar and structure in all technical descriptions and expla-
nations, ensuring accessibility without modifying the underlying scientific meaning. All conceptual,
analytical, and experimental work, derivation of equations, design of experiments, implementation
of algorithms, and interpretation of results, was conducted solely by the authors.

The authors carefully reviewed and validated all AI-edited content to ensure its alignment with the
intended meaning and scientific integrity of the work. No AI was involved in generating technical
content, equations, analyses, results, or figures.

4



Published as a workshop paper at ICLR 2025 MLMP

REFERENCES

E. Asadollahi-Yazdi, J. Gardan, and P. Lafon. Generic roughness meta-model in 3d printing
by fused deposition modeling. Progress in Additive Manufacturing, 2021. doi: 10.1007/
s40964-021-00237-8.

P. G. Benardos and G.-C. Vosniakos. Predicting surface roughness in machining: A review. Interna-
tional Journal of Machine Tools and Manufacture, 2002. doi: 10.1016/S0890-6955(03)00059-2.

J. A. Greenwood and J. B. P. Williamson. Contact of nominally flat surfaces. Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sciences, 1966. doi: 10.1098/
rspa.1966.0242.

A. Majumdar and B. Bhushan. Fractal model of elastic-plastic contact between rough surfaces.
Journal of Tribology, 1991. doi: 10.1115/1.2920588.

B. B. Mandelbrot, D. E. Passoja, and A. J. Paullay. Fractal character of fracture surfaces of metals.
Nature, 1984. doi: 10.1038/308721a0.
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