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Abstract
While cross-linguistic model transfer is effec-001
tive in many settings, there is still limited un-002
derstanding of the conditions under which it003
works. In this paper, we focus on assessing the004
role of lexical semantics in cross-lingual trans-005
fer, as we compare its impact to that of other006
language properties. Examining each language007
property individually, we systematically ana-008
lyze how differences between English and a tar-009
get language influence the capacity to align the010
language with an English pretrained representa-011
tion space. We do so by artificially manipulat-012
ing the English sentences in ways that mimic013
specific characteristics of the target language,014
and reporting the effect of each modification on015
the quality of alignment with the representation016
space. We show that while properties such as017
the script or word order only have a limited018
impact on the alignment quality, the degree of019
lexical matching between the two languages,020
which we define using a measure of translation021
entropy, greatly affects it.022

1 Introduction023

Different languages distribute meanings across024

their vocabularies in unique ways. In English, the025

concept wall encompasses both a structural com-026

ponent in a house and a defensive barrier around a027

city, whereas Spanish distinguishes between them028

with the concepts pared and muro. This raises the029

question of how such differences in lexical seman-030

tics influence cross-lingual transfer – the ability031

of models trained on data from one language to032

effectively perform tasks in another language.033

While multilingual NLP is gaining increasing034

attention, a performance gap persists between035

English and other languages, particularly low-036

resource ones. To address this, various cross-037

lingual transfer techniques have been proposed038

(Kim et al., 2017; Artetxe and Schwenk, 2019a;039

Dobler and de Melo, 2023), including training040

shared multilingual representation spaces (Artetxe041

Figure 1: A. Sentences from the UM parallel corpus. In
each sentence, the word mind is colored along with its
translation in Simplified Chinese. B. A weighted graph
which results from the UM corpus. The edge weights
indicate how many times mind is translated into each
instance in Simplified Chinese. C. Calculation of the
translation entropy of the word mind in the UM corpus.

et al., 2018; Ruder et al., 2019; Heffernan et al., 042

2022; Tan et al., 2023). 043

In this work, we aim to understand the impact 044

of lexical semantics and other linguistic properties 045

on the effectiveness of cross-lingual transfer. We 046

examine how various properties affect the ability to 047

extend an existing representation space to include 048

an additional low-resource language, and conse- 049

quently, how they affect the zero-shot performance 050

of the low-resource language. 051

To isolate the distinct linguistic properties from 052

one another and evaluate their individual impact, 053

we perform manipulations to the English language 054

in order to mimic specific language traits found 055

in other languages, thereby creating artificial lan- 056

guages. For instance, to evaluate the impact of 057

lexical semantics, we create an artificial language 058

by imposing lexicalization patterns of other lan- 059
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guages on English.060

We define a weighted bipartite graph that links061

the vocabularies of two languages, mapping each062

word in one language to all its potential translations063

in the other language. We also leverage this graph064

to characterize the lexicalization patterns between065

the languages in information theoretic terms.066

Our results indicate that the lexicalization pat-067

terns of the source and target languages have more068

impact on transferability than other linguistic prop-069

erties. They also demonstrate robust correlation070

between the entropy of words in the bipartite graph071

we define and zero-shot performance.072

2 Related Work073

2.1 Cross-lingual Transfer Methods074

Multilingual Masked Language Models (MMLMs)075

like mBERT (Devlin et al., 2019) and XLM-076

R (Conneau et al., 2020a) exhibit remarkable077

zero-shot cross-lingual performance, despite be-078

ing trained without parallel data. However, they079

also face limitations. Being contextualized token080

embeddings, they may underperform in sentence-081

level tasks (Hu et al., 2020b). Moreover, training082

these models requires a massive amount of text083

from each language, posing a major challenge to084

the inclusion of low-resource languages.085

To overcome these limitations, Reimers and086

Gurevych (2019, 2020) introduced a novel ar-087

chitecture. They initially trained a base model088

(SentenceBERT) using a sentence-level objective089

to obtain sentence representations (2019). Sub-090

sequently, they employed knowledge distillation091

(teacher-student supervised learning) to extend092

the representation space to additional languages093

(2020). This approach, while requiring parallel094

data, proves effective with relatively few samples,095

making it suitable for low-resource languages. Hef-096

fernan et al. (2022) applied a similar technique097

with LASER2 (Artetxe and Schwenk, 2019b),098

a language-agnostic sentence encoder, as their099

teacher model. They demonstrated the efficiency100

of this approach with extremely low-resource lan-101

guages. In our research, we follow a similar setup.102

2.2 Investigations of Zero-shot Transfer103

Several studies have been conducted to explore the104

factors that impact the effectiveness of zero-shot105

cross-lingual transfer. Cotterell and Heigold (2017)106

showed that the zero-shot performs better when ap-107

plied to languages within the same language fam-108

ily. Arviv et al. (2021) demonstrated a correlation 109

between the preservation of syntactic relations in 110

translation and zero-shot performance. 111

Chai et al. (2022) conducted a similar experi- 112

ment but under controlled laboratory conditions. In 113

order to evaluate the impact of specific language 114

properties, they create an artificial language by 115

modifying English and pretrain a bilingual MLM 116

with English and its modified version. Their focus 117

was on syntactic properties, particularly word order. 118

They observed a negligible impact on zero-shot per- 119

formance when examining subtle modifications in 120

constituent order, but a significant impact when 121

shuffling the entire sentence randomly. 122

While previous experiments focus on syntactic 123

features, they do not address the semantic aspect. 124

In this paper, we focus on lexical semantics. 125

2.3 Lexicalisation Patterns 126

Lexicalisation patterns were widely used in lin- 127

guistic typology to classify languages and explore 128

language universals, in cognitive science to study 129

conceptualisation, and even by anthropologists to 130

examine cultural influences on language and cogni- 131

tion (François, 2008; Jackson et al., 2019; Xu et al., 132

2020; Georgakopoulos et al., 2022). The major- 133

ity of research on lexicalization has been centered 134

around the concept of colexification (a linguistic 135

phenomenon that occurs when multiple concepts 136

are expressed in a language with the same word). 137

Traditionally, colexification data relied on hand- 138

curated resources, but this changed with the intro- 139

duction of CLICS (List et al., 2018), promoting ex- 140

ploration into large-scale colexification graphs also 141

in NLP (Harvill et al., 2022; Liu et al., 2023a,b). 142

Liu et al. (2023b) proposed a more system- 143

atic way to investigate the conceptual relation be- 144

tween languages and extract colexifications. Their 145

method includes aligning concepts in a parallel cor- 146

pus and extracting a bipartite directed graph for 147

each language pair, mapping source language con- 148

cepts to sets of target language strings. Leveraging 149

these bipartite graphs, they identify colexifications 150

across a diverse set of languages. Here, we employ 151

a similar method, albeit to a different purpose – our 152

primary focus lies in proposing a methology for 153

quantifying how differences in lexical semantics 154

impact cross-lingual transfer. 155

3 Method 156

Our main goal in this paper is to study how different 157

language properties, with a particular emphasis on 158
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lexical patterns, influence the ability to perform159

cross-lingual transfer, and we aim to do so in a160

carefully controlled way.161

To isolate distinct language properties and under-162

stand their respective contribution, we follow Chai163

et al. (2022) and define different manipulations of164

the source language Ls. For each of these manip-165

ulations, we modify Ls so that it imitates certain166

properties found in a target language Lt, creating a167

new artificial language LA (Section §4). Through-168

out this article, we maintain English as the source169

language.170

Then, for each artificial language LA, we fol-171

low the distillation method proposed by Reimers172

and Gurevych (2020), training a model to encode173

sentences of LA into an English pretrained repre-174

sentation space. We explore which of them allows175

for an effective knowledge transfer and, hence, per-176

forms well in a zero-shot setting (Section §6).177

Model Distillation. The pretrained teacher model178

we use is an English sentence transformer model179

(Reimers and Gurevych, 2019). It is trained using180

English sentence pairs and a self-supervised con-181

trastive learning objective to encode similar English182

sentences into vectors that are close to one another183

in the vector space. Given a sentence from a pair,184

the model is trained to predict which of a batch of185

randomly sampled other sentences is in fact paired186

with it. The outcome of this training yields a sen-187

tence representation space that captures the seman-188

tic information of a given sentence. Within this189

pretrained vector space, the cosine similarity be-190

tween two vectors indicates the degree of similarity191

between the two sentences they represent.192

The pretrained representations of the teacher193

model serve us throughout the experiment as194

ground truth. For each artificial language LA, we195

train relatively smaller transformer models using196

an English − LA parallel corpus. Denoting the197

teacher model with M and the student model that198

corresponds to the language LA with mA, for each199

sentence pair (s, t) ∈ English × LA, the train-200

ing objective is to minimize the following cosine201

embedding loss:202

Lcos(mA(t),M(s)) =


cos(mA(t),M(s))

if t is a manipulation of s
max(0, cos(mA(t),M(s))− λ)

otherwise
(1)203

where λ is a margin parameter we always set to204

0. This optimization process aims to increase the205

cosine similarity in the vector space whenever the206

sentence t is a manipulation of the sentence s, and 207

decrease it in any other case. As a result, it pro- 208

duces a sentence encoder that maps each sentence 209

t ∈ LA to a location in the pretrained vector space 210

as close as possible to the representation of the 211

original English sentence. 212

Evaluation. For each student model mA, we com- 213

pute the average similarity score between the em- 214

beddings of English sentences and the embeddings 215

of the corresponding manipulated sentences within 216

a held-out subset of the corpus. This serves as 217

the intrinsic evaluation. Additionally, we employ 218

the model in a zero-shot experiment for an extrin- 219

sic NLP task and present its performance. These 220

two outcomes help us understand the quality of the 221

alignment of the language LA with the pretrained 222

representation space of the teacher model. 223

4 Manipulations of the Data 224

We proceed to define the different manipulations 225

that we apply. For each manipulation, we modify 226

the English source to create an artificial language 227

LA, generate an English − LA parallel corpus, 228

and train student models mA as explained. 229

Our primary focus lies within the domain of 230

lexical semantics. To thoroughly examine their 231

influence, we take a comprehensive approach, in- 232

vestigating how lexical semantics fit into the larger 233

context of language properties. We broadly catego- 234

rize linguistic properties into three distinct aspects: 235

script, syntax, and lexical semantics. For each of 236

these aspects, we define a manipulation that solely 237

modifies it. In the first case, we substitute the letters 238

of the English alphabet with symbols of a different 239

script to assess the impact of the script (Section 240

§4.1). In the second case, we rearrange the word 241

order in sentences, thus examining the effect of the 242

syntactic structure, or at least a specific aspect of 243

it (Section §4.2). Finally, we replace the English 244

lexicon with that of a target language to explore 245

the significance of variations in lexicalization pat- 246

terns (Section §4.3). By isolating each linguistic 247

aspect, we intend to get a clear understanding of its 248

individual contribution. 249

4.1 Manipulating the Script 250

To manipulate the script we simply substitute each 251

English character with a symbol from another script 252

in an injective manner. For instance, if we consider 253

the Greek alphabet system, we can swap the char- 254

acters according to their sequential order: a→ α, 255
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b→ β, c→ γ, and so forth. This way, the sentence256

Brown cows eat grass will transform into: βσoψξ257

γoψτ ϵαυ ησαττ .258

4.2 Manipulating Word Order259

The second manipulation we use is a word reorder-260

ing one. We apply the word reordering algorithm261

developed Arviv et al. (2023), to permute the words262

of each source sentences so that it will conform to263

the syntactic structure of the target language (see264

Appendix B for full details). The algorithm recur-265

sively reorders all the subsequences in a source266

sentence, yielding a new sentence in an artificial267

language LA that imitates the word-order of a tar-268

get language Lt. For example, the sentence Brown269

cows eat grass (see its dependency tree in Figure 3)270

yields different results depending on the selected271

target language. Spanish, an SV O language, but272

in which nouns are ordered before adjectives, pro-273

duces: Cows brown eat grass; whereas Hindi, an274

SOV language, outputs: Brown cows grass eat.1275

4.3 Manipulating the Lexicon276

The core of our study is lexical semantics and their277

impact on cross-lingual transfer. We seek to assess278

the influence of the diverse distribution of mean-279

ings across different lexicons. To achieve this, we280

develop a manipulation in which we substitute the281

lexicon of the source language Ls with that of a282

target language Lt. This creates a new artificial lan-283

guage LA that is based on the lexicon of Lt while284

retaining the original sentence structure of Ls.285

The manipulation is based on an alignment be-286

tween a source sentence s ∈ Ls and its translation287

in the target language t ∈ Lt. We replace each288

word in the source language with its corresponding289

translation in the target language, thus adopting290

the lexical semantics of the target language while291

preserving the original syntax.2292

However, attaining word-aligned bitext poses a293

significant challenge. While manually aligned par-294

allel datasets are scarce and limited in size, model-295

based automatic aligners are prone to noise, often296

1Since the algorithm is based on fixed statistics, the arti-
ficial language it produces exhibits a more consistent word
order than that of a natural language. We prefer this experi-
ment over one in which the order of words in a sentence is
randomly rearranged due to the potential noise this might add.

2It is worth mentioning that this manipulation inherently
includes the first manipulation, at least to some extent, as
altering specific words in the sentence also influences the
script. However, we will demonstrate later that the script is
not a significant factor, making this fact of minor importance
to our conclusions.

For

By

Por

Para

English Spanish

85303
175771

93781

Figure 2: Illustration of the weighted sub-graph which
results from the Europarl parallel corpus. The edges
represent the possibility that two words are translations
of each other. The weights denote the number of occur-
rences that each word pair is aligned in the bitext.

aligning unrelated words. In the process of defining 297

a lexical manipulation that relies on mapping one 298

lexicon to another, it is crucial to ensure consistent 299

mappings while reducing noisy matches, thus giv- 300

ing priority to precision over recall. To achieve this, 301

we follow a careful process that involves extracting 302

a bipartite graph from a bitext. 303

Formalism. Consider a word-aligned bitext that 304

contains the languages Ls and Lt. We define 305

G = (Vs, Vt, E, w) to be a weighted bipartite 306

graph, where Vs is the set of words in the lexi- 307

con of Ls, and Vt is the set of words in the lexicon 308

of Lt. A pair of words (v, u) ∈ Vs × Vt is an edge 309

in G iff v is aligned to u in at least one instance 310

in the bitext. The weight function w : E → N+ 311

assigns the number of times that each word pair is 312

aligned in the bitext. 313

This construction aims to capture the relation- 314

ship between the lexical semantics of two lan- 315

guages. For example, the Spanish translation of 316

for is por in some cases and para in others; by 317

is also occasionally translated as por (e.g., multi- 318

ply by three translates to multiplicar por tres). We 319

therefore obtain the subgraph in Figure 2. 320

We hypothesize a negative correlation between 321

the degree of the vertices in the graph and the abil- 322

ity to perform cross-lingual transfer between the 323

languages. In other words, the closer the lexicons 324

align in a one-to-one manner, the better we expect 325

the cross-lingual transfer performance to be. 326

Swapping Algorithm. We proceed to outline the 327

systematic procedure we employ to perform the 328

lexical manipulation. For each pair of languages 329

Ls, Lt we follow these steps: 330

1. We apply an automatic word aligner (see de- 331
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tails in Appendix C) to a large Ls − Lt parallel332

corpus, extracting a weighted bipartite graph G as333

described above.334

2. We filter out of the graph any edge e ∈ E that335

represents an alignment which is not substantial336

(that is, an edge whose weight does not exceed337

a certain threshold or whose weight is relatively338

small compared to other edges originating from the339

same vertex).3340

3. Given a source sentence s ∈ Ls and its trans-341

lation in the target language t ∈ Lt, we run the342

automatic aligner to achieve a word-to-word align-343

ment between s and t.344

4. For each source word v ∈ s:345

(a) If there exists a word u ∈ t such that the word-346

to-word alignment includes the pair (v, u),347

and at the same time it holds that (v, u) ∈ E,348

then we replace the word v with u.349

(b) Otherwise, if there exists a word u ∈ t such350

that (v, u) ∈ E, we replace the words as well.351

If there is more than one valid choice, we352

select the word u ∈ t for which the weight353

w(v, u) is the highest.354

(c) Otherwise, we look for the edge (v, u) ∈ E355

that has the highest weight among all edges356

originating from v, meaning that u is the most357

common alignment of v in the language Lt. If358

we find such an edge, we replace v with u.4359

(d) In a case there are no edges originating from360

v, we preserve it.361

This systematic procedure provides a mapping362

between two lexicons, and therefore enables us363

to make consistent decisions for each word in the364

lexicon – whether to be replaced or preserved. This365

helps maintaining a coherent semantic structure in366

the resulting artificial language LA.5367

For a simple illustration, consider the incorrect368

output of the automatic aligner shown in Figure 3.369

When applying our swapping algorithm, we first370

3These parameters may depend on the target language. See
Appendix C.

4In languages where the words have different inflections,
we check the validity of the match based on the lemma, but
replace the words in their original form. The determination
of the most common alignment also considers the original
inflection.

5We compare the precision and recall of our alignments
with those of the automatic aligner against the gold standard.
We observe higher precision but lower recall, resulting in a
slightly better F1 score overall in our alignments. For further
details please refer to Appendix D.

check whether the edges (brown− el) and (eat− 371

comer)6 appear in the bipartite graph. As only the 372

second edge is present, we replace the word eat 373

with comer. Next, we search for words in the target 374

sentence that are linked to the source words in the 375

graph, resulting in the edges (brown−marrón), 376

(cow− vaca), and (grass− hierba). These three 377

words are swapped with their corresponding pairs 378

as well. This process ultimately yields the sentence: 379

Marrones vacas comen hierba. 380

Figure 3: Comparison between an incorrect output of
the automatic aligner (red) and the corrected alignment
we employ (green), presented with UD tree annotation
for each sentence.

Translation Entropy. To further appreciate the 381

impact of the divergence between the source and 382

the target lexicons, we introduce the concept of 383

translation entropy. LetG be the weighted bipartite 384

graph presented earlier, we compute the entropy 385

for each vertex v in the graph:7 386

e(v) = −
∑
u∈Uv

pv(u)log(pv(u)) (2) 387

where Uv is the subset of vertices linked to v, and 388

pv is the following probability function: 389

pv(u) =
w(v, u)∑

u′∈Uv
w(v, u′)

(3) 390

As w counts occurrences of each word pair aligned 391

in the bitext, the outcome of the function pv is the 392

probability that, in a particular instance, the word v 393

is linked to the word u among all possible u′ ∈ Uv 394

(see calculation example in Figure 1). 395

We examine the impact of translation entropy 396

in two distinct configurations: one for the source 397

words (Figure 4A) and another for the target words 398

(Figure 4B). In the first, we compute the translation 399

entropy for all source vertices v ∈ Vs and partition 400

6The lemmas of las and comer respectively.
7It does not matter whether v ∈ Ls or v ∈ Lt.
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the set Vs into three disjoint subsets based on the401

percentile of the translation entropy values. Then,402

in each experiment, we remove from the graph403

G all the source vertices that do not belong to a404

specific subset to achieve the sub-graph G′. We405

apply once again the lexical manipulation, but this406

time using the filtered graph G′. In the second407

configuration, we follow the exact same steps, but408

this time for the target vertices v ∈ Vt.8409

Returning to the example from Figure 3, af-410

ter we extract an English − Spanish bipartite411

graph from the Europarl parallel corpus and com-412

pute the entropy of the English words, we obtain:413

e(brown) = 0.545, e(cow) = 0.24, e(eat) =414

0.631, e(grass) = 0.799. If we filter the graph to415

retain only words that fall within the upper third of416

translation entropy values, we find that the word417

grass is the only one meeting this criterion. Con-418

sequently, applying our lexical manipulation to this419

filtered graph results in the sentence: Brown cows420

eat hierba.421

5 Experimental Setup422

5.1 Datasets423

In this subsection, we outline the datasets we use in424

our work. For further details regarding the datasets425

and the rationale behind their selection and usage,426

please refer to Appendix E. The primary bitext427

we use for training is the TED-2020 parallel cor-428

pus (Reimers and Gurevych, 2020). When we re-429

quire a larger corpus, but not necessarily a parallel430

one, we turn to the CC-100 corpus (Wenzek et al.,431

2020). For extrinsic evaluation we use the Cross-432

lingual Natural Language Inference (XNLI; Con-433

neau et al., 2018). To extract the bipartite graphs,434

we require a large parallel corpus, and therefore435

turn to the Europarl parallel corpus. As this corpus436

contains only European languages, we extract the437

English− Chinese bipartite graph from the UM438

parallel corpus (Tian et al., 2014).439

5.2 Models440

Teacher Model. We select the pretrained sentence441

transformer all-mpnet-base-v2. This model was442

trained on 1B English sentence pairs with a self-443

supervised contrastive learning objective (see Sec-444

tion §3). The training produced a 768-dimensional445

8It is worth mentioning that the two configurations are
not directly comparable: removing a source word from the
lexicon leads to a reduction in the number of swaps performed,
whereas removing a target word reduces the diversity of the
swaps but not necessarily the number of them.

vector space that has proven to achieve state-of-the- 446

art results in sentence-level tasks. 447

Student Models. We train multiple RoBERTa 448

models (Liu et al., 2019), with each model de- 449

signed to encode a sentence into the teachers’ 768- 450

dimensional vector space. To achieve this, we add 451

a mean-pooling layer on top of the last hidden layer. 452

We set the vocabulary size to 30527, matching that 453

of the teacher model, the number of max position 454

embeddings to 28, and the hidden size to 768. As 455

to the number of hidden layers and the number of 456

attention heads, we explore various architectures: 457

3/6/9/12 hidden layers paired with 4/6/8/12 atten- 458

tion heads, respectively. In all cases, we reserve a 459

small portion of the dataset for testing (20K sen- 460

tence pairs in the TED corpus and 100K sentences 461

in CC-100), and then randomly split the training set 462

into 90% for actual training and 10% for validation. 463

We use the Adam optimizer with a learning rate of 464

3e−5, continuing until the validation loss does not 465

decrease for five consecutive epochs. The model 466

with the lowest validation loss is selected, and its 467

performance on the test set is reported.9 468

NLI Model. For the zero-shot English NLI experi- 469

ment, we train a Multi-Layer Perceptron (MLP) on 470

top of the teacher model. We use the usual combi- 471

nation of the two sentence embeddings: (p; h; p ·h; 472

|p − h|), where p and h are the premise and the 473

hypothesis respectively (see for example Artetxe 474

and Schwenk, 2019b). We build the MLP with 475

two hidden layers of size 128, and train it for 150 476

epochs using the Adam optimizer. We select the 477

model that achieves the lowest loss on the test set. 478

6 Experiments & Results 479

To assess the individual impact of each linguistic 480

property on cross-lingual transfer, we apply our 481

manipulations to English and carry out the distil- 482

lation process for each artificial language LA. For 483

intrinsic evaluation we rely on the similarity score 484

defined in Section §3, and for extrinsic evaluation, 485

we use XNLI zero-shot accuracy. 486

Before manipulating English, we conduct exper- 487

iments to obtain reference points for evaluating the 488

models. First, we perform the distillation process 489

on regular English sentences. We explore the influ- 490

ence of varying training set sizes and of the student 491

model architecture. We observe a considerable 492

margin, with differences of up to 0.227 in average 493

9For details regarding the tokenizers we employ, see Ap-
pendix F.
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similarity score, between models trained on 50K494

sentences and those trained on 1M. Conversely, we495

observe a smaller margin, with differences of up to496

0.035 in average similarity score, between smaller497

and larger model architectures. Our findings sug-498

gest that for low-resource scenarios, exceeding 6499

hidden layers and 6 attention heads is unnecessary.500

For full results refer to Appendix A.1.501

Second, we conduct cross-lingual experiments502

using the TED-2020 parallel corpus to compare503

English with other natural languages without ma-504

nipulation. The results of the cross-lingual experi-505

ments serve as a lower bound for the performance506

on the manipulated data (as the manipulations are507

meant to change English to be closer to the target508

language). We also train student models on English509

with a newly trained tokenizer to arrive at an upper510

bound. We observe a substantial range between the511

lower and upper bounds, with differences of up to512

0.186 in average similarity score, which gives us513

sufficient room to experiment with our manipula-514

tions. See full results in Appendix A.2.515

We proceed to apply our manipulations to tease516

apart the properties of the data that contribute to517

this difference between in-language training and518

cross-lingual training.519

6.1 Script Substitution520

We perform two script substitutions, replacing the521

English characters with Greek and Simplified Chi-522

nese characters, sorted by their frequency.The re-523

sults, reported in Table 1, show no degradation524

in performance when compared to the encoders525

trained with a new tokenizer (see Appendix F). This526

suggests that substituting the script has a similar527

effect as replacing the tokenizer.528

Similarity score XNLI accuracy
50K 100K 50K 100K

English (new tok.) 0.725 0.786 55.7 59.4
Greek alphabet 0.725 0.786 54.6 58.7
Chinese symbols 0.728 0.788 55.3 58.4

Table 1: Results from the distillation process for the
script substitution experiment.

6.2 Word Reordering529

We apply the reordering algorithm developed by530

Arviv et al. (2023) each time relying on the pair-531

wise ordering distributions of a different language.532

We examine SV O languages (Spanish, Greek, Chi-533

nese and Hebrew) as well as an SOV language534

(Hindi). Results are presented in Table 2. Although 535

we observe a degradation in performance, it is a 536

very slight one. The average similarity score in the 537

worst case (100K Greek sentences) decreases by 538

0.013 points, and the XNLI accuracy in the worst 539

case (100K Hindi sentences) decreases by 1.5%. 540

Similarity score XNLI accuracy
50K 100K 50K 100K

English (new tok.) 0.725 0.786 55.7 59.4
Spanish order 0.722 0.779 55.9 58.9
Greek order 0.718 0.773 54.8 58.1
Chinese order 0.723 0.774 55.1 58.1
Hebrew order 0.725 0.781 55.2 59
Hindi order 0.72 0.776 56.5 57.9

Table 2: Results from the distillation process for the
word reordering experiment.

6.3 Lexical Swapping 541

We follow the steps described in Section §4.3 for 542

Spanish, Greek and Simplified Chinese. When 543

constructing the weighted bipartite graph, for Span- 544

ish and Greek we use the datasets Europarl+TED, 545

whereas for Simplified Chinese we use UM+TED. 546

Results are presented in Table 3. In this experiment, 547

we observe a significant decrease in both the aver- 548

age similarity score and the XNLI accuracy. The 549

language that performs the worst is Simplified Chi- 550

nese, with up to 0.091 degradation in the average 551

similarity score and up to 5.9% in XNLI accuracy. 552

Similarity score XNLI accuracy
50K 100K 50K 100K

English (new tok.) 0.725 0.786 55.7 59.4
Spanish lexicon 0.67 0.726 53.4 57.5
Greek lexicon 0.652 0.713 51.6 56.1
Chinese lexicon 0.646 0.694 50.9 53.5

Table 3: Results from the distillation process for the
lexical swapping experiment.

These results suggest that variations in lexicons 553

significantly impact the capacity to align a language 554

with a pretrained representation space, and as a re- 555

sult they affect performance in cross-lingual trans- 556

fer tasks. To gain a deeper understanding of this 557

phenomenon, we proceed to apply the same ma- 558

nipulation, this time selectively swapping only a 559

subset of the words in language. 560

Entropy-based Lexical swapping. In this exper- 561

iment we filter the vertices of the bipartite graph 562

based on their translation entropy (see §4.3) and 563

then apply the lexical swapping manipulation. Fig- 564

ure 4A presents the outcome of filtering the source 565
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vertices, and Figure 4B shows the result of filtering566

the target vertices. In both cases, we split the set567

of vertices based on percentiles: into the ranges of568

0-33, 33-67, and 67-100. In addition, we include569

an experiment where we exclusively swap words570

with zero entropy, and we add the results from the571

full lexical manipulation.572

Figure 4: Results of filtering the source vertices in the
graph in Figure (A), and results of filtering the target
vertices in the graph in Figure (B). The horizontal axis
scale represents the entropy values ranging from 0 to
all vertices, with values between 0 and all indicating
percentiles dividing the set of vertices.

We observe a robust negative correlation be-573

tween the entropy of the words we swap and the574

similarity scores. In all cases except for one (filter-575

ing Greek words of percentile 33-67), the higher576

the entropy of the words swapped, the worse the577

distillation process performs. Moreover, when we578

swap only 33% of English words with low entropy,579

it has minimal impact on performance, but when580

we swap 33% of words with the highest entropy,581

it results in a degradation of performance that is582

close to the degradation observed in the full lexical583

manipulation. We conclude that swapping in itself584

does not degrade performance; instead, most degra-585

dation results from the lexicons not being aligned586

in a one-to-one manner.587

The absence of one-to-one alignment in the lexi-588

cons conceals two separate phenomena: synonymy589

and polysemy. In case of a synonymy, a specific590

word is altered by different words in different con-591

texts, whereas in the case of polysemy, several dis-592

tinct words are altered by the same word. The first593

experiment (filtering the source words) mostly sim-594

ulates the impact of the synonymy phenomenon, 595

while the second experiment (filtering the target 596

words) mostly simulates the impact of the poly- 597

semy. Results imply that both phenomena have a 598

substantial impact on cross-lingual transfer. 599

7 Conclusion 600

We leverage a knowledge distillation setup to ex- 601

plore the conditions that allow successful cross- 602

lingual transfer. We apply various manipulations 603

to English to alter specific language properties and 604

assess their impact. 605

We first apply a script substitution and observe 606

no degradation in performance. We then exam- 607

ine the impact of word order. Unlike Chai et al. 608

(2022), who made only subtle modifications to the 609

constituent order in some experiments and shuffled 610

all the words in the sentence with others, we apply 611

manipulations that permute many words in the sen- 612

tence while still maintaining a coherent syntactic 613

structure. We believe that while Chai et al.’s conclu- 614

sion is overly broad in its scope, this manipulation 615

provides us with a more nuanced understanding of 616

the role of word order in cross-lingual transfer. Our 617

initial observations imply that word order differ- 618

ences, if systematic, may not play a crucial role. 619

Finally we swap words from the English lexicon 620

with words from the target lexicon and observe a 621

substantial degradation in performance. We use the 622

notion of translation entropy to explore the impact 623

of swapping only a subset of words in the lexicon. 624

This reveals that swapping the words with the high- 625

est entropy leads to a more substantial degradation 626

in performance relative to words with lower en- 627

tropy. These findings validate our hypothesis: the 628

more the lexicons align in a one-to-one manner, the 629

better cross-lingual transfer will perform. 630

To conclude, among the three manipulations we 631

apply, the only one that was found to have a sub- 632

stantial impact is the lexical swapping manipula- 633

tion. This suggests that when it comes to cross- 634

lingual transfer, at least in the case of model distil- 635

lation, the difference between the lexical semantics 636

of the languages may be more crucial than other 637

linguistic factors such as word order. This insight 638

highlights the importance of lexical compatibility 639

and offers valuable guidance for optimizing cross- 640

lingual transfer systems. 641
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Limitations642

Our work has several limitations (we intend to ad-643

dress them in future work). First, all our experi-644

ments are conducted using a monolingual teacher645

model. We consider it important to examine the646

influence of multilingual pretraining. The potential647

impact of a representation space that is not tailored648

to a particular language could be substantial. Sec-649

ondly, the sum of degradations resulting from the650

various manipulations we apply does not reach the651

degradation caused by cross-lingual transfer. This652

could stem from the fact that translations are not653

always accurate, but it can also indicate that we654

are missing a piece of the puzzle. Lastly, we think655

it will be valuable to further analyze the lexical656

manipulation, maybe by applying it to a different657

subset of the language (enabling only synonymy658

but not polysemy, filtering by part-of-speech, etc.).659
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A Baseline Experiments & Degradation860

Analysis861

A.1 Training the student model on English862

To understand how both the size of the data and the863

selected model architecture influence the quality of864

alignment we begin by training the student models865

on English. We train models of various architec-866

tures on subsets of various sizes from CC-100. The867

tokenizer we use is the original tokenizer of the868

teacher model. Table 4a reports the average simi-869

larity score of all the sentences in the separated test870

set when they are encoded once using the teacher871

model and once using the student model. Table872

4b reports the accuracy on the XNLI test set in a873

zero-shot setting (the MLP built upon the teacher874

model achieved an accuracy of 71.2%).875

50K 100K 200K 1M
3 hidden layers and
4 attention heads

0.658 0.727 0.793 0.866

6 hidden layers and
6 attention heads

0.684 0.754 0.827 0.9

9 hidden layers and
8 attention heads

0.682 0.737 0.818 0.909

12 hidden layers and
12 attention heads

0.677 0.74 0.81 0.901

(a) Average similarity score of all the sentences paired
with themselves in a separate subset of CC-100.

50K 100K 200K 1M
3 hidden layers and
4 attention heads

53.7 57.6 61.3 63.3

6 hidden layers and
6 attention heads

55.7 59.6 62.9 65.7

9 hidden layers and
8 attention heads

56.2 58.1 62.9 65.8

12 hidden layers and
12 attention heads

54.3 58.1 61.8 64.9

(b) XNLI test accuracy in a zero-shot setting.

Table 4: Results from the distillation process with En-
glish as the target language for various architectures and
various dataset sizes.

Several conclusions can be drawn. First, we ob-876

serve a robust correlation (Pearson correlation of877

0.988) between the average similarity scores and878

zero-shot performance (the intrinsic and extrinsic879

performance respectively). This proves that the880

quality of the alignment with the pretrained rep-881

resentation space can be a useful tool for predict-882

ing zero-shot performance. Secondly, the results883

demonstrate that the size of the corpus has a great884

effect on the quality of the alignment. With 1M sen-885

tences, one can already train a student model that886

achieves an average similarity score of 0.909 out of887

1. Lastly, results indicate that the architecture of the 888

student model has a relatively minor impact on per- 889

formance. However, it is worth noting that beyond 890

a certain model size, training results are overfitting. 891

As our main concern is low-resource languages, 892

we decide to stick with the architecture that shows 893

optimal performance in limited data scenarios: 6 894

hidden layers and 6 attention heads. 895

A.2 Cross-lingual Transfer 896

We conduct a cross-lingual experiment using the 897

TED-2020 parallel corpus. Results are presented in 898

Table 5. We also present the outcomes of training 899

the English encoders with a newly trained tokenizer 900

(see Appendix F). 901

Similarity score XNLI accuracy

50K 100K 50K 100K
English - teachers’
tokenizer

0.74 0.804 56.6 60.5

English - new CC-
100 tokenizer

0.725 0.786 55.7 59.4

Spanish 0.601 0.657 49.4 54

Greek 0.574 0.632 49.9 53.1

Chinese 0.555 0.6 40.9 46.5

Hebrew 0.545 0.606 X X

Table 5: Results from the distillation process (Average
similarity scores and XNLI accuracies) for various lan-
guages using the TED-2020 parallel corpus.

We can see that the tokenizer’s substitution re- 902

sults in only a minor performance degradation 903

(0.015 points in similarity score when trained with 904

50K sentences), while the transition to a differ- 905

ent language leads to a substantial decrease (0.124 906

when trained with 50K Spanish sentences). Un- 907

surprisingly, languages closer to English in terms 908

of phylogenetic distance, produce higher similarity 909

scores and better zero-shot performance. 910

B Word Reordering Algorithm 911

We hereby describe the word reordering algorithm 912

developed Arviv et al. (2023), that we apply to per- 913

mute the words of the source sentences so that it 914

will conform to the syntactic structure of the target 915

language. The algorithm relies on the statistics of 916

the Universal Dependencies (UD) treebank to per- 917

mute the words of a sentence in one language so 918

that they mimic the syntactic structure of another. 919

The algorithm is built on the assumption that a con- 920

tiguous subsequence, which constitutes a grammat- 921

ical unit in the original sentence, should remain a 922
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contiguous subsequence after reordering, although923

the order of words within that subsequence may924

change. It operates, therefore, on a UD dependency925

tree, recursively permuting each sub-tree so that it926

will conform to the order of an equivalent sub-tree927

in the target language.928

Within each sub-tree, the reordering is applied929

based on the notion of pairwise ordering distribu-930

tions. Given a sentence t in a language Lt and931

its UD parse tree T (t), which contains the set of932

dependency labels π = (π1, ..., πn), Arviv et al.933

denote the pairwise ordering distribution in lan-934

guage Lt of two UD nodes with dependency labels935

πi, πj , in a sub-tree with the root label πk by:936

Pπk,πi,πj = p; p ∈ [0, 1] (4)937

where p stands for the probability of a node with a938

dependency label πi to be linearly ordered before939

a node with a label πj , in a sub-tree with a root of940

label πk, in a language Lt.10941

Given a sub-tree Ti ∈ T (t), for each of its node942

pairs, these probabilities are formulated as a con-943

straint:944

πk : (πi < πj) =

{
1 if Pπk,πi,πj ≥ 0.5

0 otherwise
(5)945

where πk : (πi < πj) = 1 indicates that a node946

with label πi should be linearly ordered before a947

node with label πj if they are direct children of948

a node with label πk. A constraint is said to be949

satisfied if and only if the node with label πi is950

indeed positioned in the sentence before the node951

with label πj . For each individual sub-tree Ti, all952

its pairwise constrains are extracted, and an SMT953

solver is used to compute a legal ordering which954

satisfies all the constraints.11955

C Lexical manipulation: Implementation956

Details957

Tokenization and Lemmatization. Before we per-958

form word-to-word alignment, we have to separate959

the sentences’ tokens and lemmatize them. For960

this purpose we use Trankit (Nguyen et al., 2021),961

a multilingual NLP toolkit based on XLM-R. For962

Simplified Chinese, however, we prefer the Jieba963

tokenizer.964

10Note that a single node can act both as a representative of
its sub-tree and the head of that sub-tree.

11If it is not possible to fulfill all the constraints, the algo-
rithm maintains the original order of the sub-tree.

Automatic Aligner. To obtain high-quality word- 965

to-word alignments we use the Simalign automatic 966

aligner (Jalili Sabet et al., 2020). This tool uses 967

contextualized embeddings to map words from one 968

sentence to those of another. We run it with XLM-R 969

as the base model, and set the matching method to 970

be ArgMax. 971

Graph Filtering. When considering the filtering 972

of the graph, we face two choices: we can either 973

apply identical parameters for all languages or cus- 974

tomize parameters for each language in a way that 975

ensures a similar percentage of alignment instances 976

is filtered from the graph. The first option main- 977

tains a similar level of noise across languages but 978

has a drawback: when we apply the lexical manip- 979

ulation, removing a high percentage of alignment 980

instances from the graph results in selecting the 981

most common word too frequently (see step 4c in 982

the lexical manipulation procedure), and therefore 983

loses the ability to make meaningful comparisons 984

across different languages. 985

In our chosen method, we aim for the middle 986

ground. We start by removing from the graph ev- 987

ery edge with a weight below the threshold of 5 988

to exclude matches that are not substantial. Then, 989

for each language, we set a specific threshold to 990

remove edges whose weight is relatively small com- 991

pared to other edges originating from the same ver- 992

tex. We set this second threshold in such a way that 993

for each language, a total of approximately 12% of 994

the alignment instances are filtered out. In the case 995

of Spanish and Greek, the appropriate threshold is 996

2%, while for Simplified Chinese, it is 0.15%. 997

D Comparing Alignments to Gold 998

Standard 999

We evaluate the alignment results of our algorithm 1000

against the original Simalign alignments, using the 1001

gold standard provided by (Graça et al., 2008). We 1002

focus our comparison on the English-Spanish align- 1003

ments, as this language pair is the sole one utilized 1004

in our research. The obtained results are as pre- 1005

sented in Table 6. We can see that our alignments 1006

achieve higher precision but lower recall, resulting 1007

in a slightly better F1 score overall. 1008

To further understand this point, let us examine 1009

a specific example (as others are similar): the sen- 1010

tence We take note of your statement is translated 1011

into Tomamos nota de esa declaración. While the 1012

Simalign auto-aligner aligns your with esa, our 1013

algorithm filters out this alignment, as these two 1014
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words are rarely translations of one another in the1015

larger corpus. Although we miss a correct align-1016

ment in the gold standard, this approach conforms1017

to our goal of mapping lexicons consistently.1018

Precision Recall F1
Original simalign 73.39 90.8 81.17
Our algorithm 76.55 86.58 81.26

Table 6: Comparison of Alignments to Gold Standard

E Datasets1019

TED. The primary bitext we use for training is the1020

TED-2020 parallel corpus (Reimers and Gurevych,1021

2020). This corpus contains a crawl of nearly 40001022

TED transcripts from July 2020, which have been1023

translated into over 100 languages by a global com-1024

munity of volunteers. We have selected this corpus1025

because it contains languages from different lan-1026

guage families, and because its translations are of1027

relatively high quality. To further simplify it, we1028

convert the entire dataset to lowercase and filter1029

it to include only sentences with familiar charac-1030

ters, up to one punctuation mark, and word counts1031

ranging from 4 to 16.121032

CC-100. When we require a larger corpus, but not1033

necessarily a parallel one, we turn to the CC-1001034

corpus (Wenzek et al., 2020). This corpus serves1035

us for our English − English experiments (see1036

Section §A.1). We apply the same simplifying1037

process as for TED, bringing the formats of the1038

two datasets closer to each other.1039

XNLI. For extrinsic evaluation we use Natural Lan-1040

guage Inference (NLI), as it is a well-known sen-1041

tence level semantic task. The task is to deter-1042

mine the inference relation between two sentences:1043

entailment, contradiction, or neutral. The cor-1044

pus we use is the Cross-lingual Natural Language1045

Inference (XNLI) (Conneau et al., 2018), which1046

contains 15 different languages. There is no need1047

to apply a simplifying process to this dataset, as the1048

sentences are already relatively short and do not1049

contain unconventional characters.1050

Europarl. In order to extract a bipartite graph1051

which is statistically meaningful for our lexical1052

manipulation, we require a large parallel corpus.1053

We use Europarl, which consists of the proceedings1054

of the European Parliament from 1996 to 2012.1055

12Except for Simplified Chinese, where, due to the different
nature of logographic writing systems, we filter by counting
5-25 symbols.

This corpus contains only European languages, so 1056

we must turn to other sources when experimenting 1057

with languages from different language groups. 1058

UM. We extract our English−Chinese bipartite 1059

graph from the UM parallel corpus (Tian et al., 1060

2014). It contains more than 2M English − 1061

Chinese sentence pairs from a great variety of 1062

domains. 1063

F Tokenizers 1064

When training English models, we examine two dif- 1065

ferent tokenizers: the original teachers’ tokenizer, 1066

and a new tokenizer we train on the simplified CC- 1067

100 corpus. In the case of other language, we train a 1068

new tokenizer on the simplified CC-100 corpus, ex- 1069

cept for Hebrew, where we use the tokenizer from 1070

the HeBERT pretrained model (Chriqui and Yahav, 1071

2022), and Chinese, where we use the tokenizer 1072

from the Bert-Base-Chinese pretrained model. 1073

The cases of the script and lexical manipulations 1074

each require its special treatment. In the case of 1075

the script manipulations, we create an artificial lan- 1076

guage which is composed of English words with 1077

foreign symbols, so we require a tokenizer which is 1078

familiar with this specific language. We simply ap- 1079

ply the manipulation to the English CC-100 corpus 1080

and train a tokenizer on the transformed sentences. 1081

In the case of the lexical manipulation, we swap 1082

some English words while retaining others, result- 1083

ing in an artificial language which is a fusion of 1084

two languages. Therefore, a bilingual tokenizer is 1085

required. We train a bilingual transformer for each 1086

language pair using the CC-100 corpus, except for 1087

English − Chinese, for which we use the UM 1088

corpus.13 1089

13Note that the word-reorder manipulation, as it maintains
the same set of words as in the original sentence, does not
require any special treatment.

13
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