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Abstract

While cross-linguistic model transfer is effec-
tive in many settings, there is still limited un-
derstanding of the conditions under which it
works. In this paper, we focus on assessing the
role of lexical semantics in cross-lingual trans-
fer, as we compare its impact to that of other
language properties. Examining each language
property individually, we systematically ana-
lyze how differences between English and a tar-
get language influence the capacity to align the
language with an English pretrained representa-
tion space. We do so by artificially manipulat-
ing the English sentences in ways that mimic
specific characteristics of the target language,
and reporting the effect of each modification on
the quality of alignment with the representation
space. We show that while properties such as
the script or word order only have a limited
impact on the alignment quality, the degree of
lexical matching between the two languages,
which we define using a measure of translation
entropy, greatly affects it.

1 Introduction

Different languages distribute meanings across
their vocabularies in unique ways. In English, the
concept wall encompasses both a structural com-
ponent in a house and a defensive barrier around a
city, whereas Spanish distinguishes between them
with the concepts pared and muro. This raises the
question of how such differences in lexical seman-
tics influence cross-lingual transfer — the ability
of models trained on data from one language to
effectively perform tasks in another language.
While multilingual NLP is gaining increasing
attention, a performance gap persists between
English and other languages, particularly low-
resource ones. To address this, various cross-
lingual transfer techniques have been proposed
(Kim et al., 2017; Artetxe and Schwenk, 2019a;
Dobler and de Melo, 2023), including training
shared multilingual representation spaces (Artetxe
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Figure 1: A. Sentences from the UM parallel corpus. In
each sentence, the word mind is colored along with its
translation in Simplified Chinese. B. A weighted graph
which results from the UM corpus. The edge weights
indicate how many times mind is translated into each
instance in Simplified Chinese. C. Calculation of the
translation entropy of the word mind in the UM corpus.

et al., 2018; Ruder et al., 2019; Heffernan et al.,
2022; Tan et al., 2023).

In this work, we aim to understand the impact
of lexical semantics and other linguistic properties
on the effectiveness of cross-lingual transfer. We
examine how various properties affect the ability to
extend an existing representation space to include
an additional low-resource language, and conse-
quently, how they affect the zero-shot performance
of the low-resource language.

To isolate the distinct linguistic properties from
one another and evaluate their individual impact,
we perform manipulations to the English language
in order to mimic specific language traits found
in other languages, thereby creating artificial lan-
guages. For instance, to evaluate the impact of
lexical semantics, we create an artificial language
by imposing lexicalization patterns of other lan-
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guages on English.

We define a weighted bipartite graph that links
the vocabularies of two languages, mapping each
word in one language to all its potential translations
in the other language. We also leverage this graph
to characterize the lexicalization patterns between
the languages in information theoretic terms.

Our results indicate that the lexicalization pat-
terns of the source and target languages have more
impact on transferability than other linguistic prop-
erties. They also demonstrate robust correlation
between the entropy of words in the bipartite graph
we define and zero-shot performance.

2 Related Work

2.1 Cross-lingual Transfer Methods

Multilingual Masked Language Models (MMLMs)
like mBERT (Devlin et al.,, 2019) and XLM-
R (Conneau et al., 2020a) exhibit remarkable
zero-shot cross-lingual performance, despite be-
ing trained without parallel data. However, they
also face limitations. Being contextualized token
embeddings, they may underperform in sentence-
level tasks (Hu et al., 2020b). Moreover, training
these models requires a massive amount of text
from each language, posing a major challenge to
the inclusion of low-resource languages.

To overcome these limitations, Reimers and
Gurevych (2019, 2020) introduced a novel ar-
chitecture. They initially trained a base model
(SentenceBERT) using a sentence-level objective
to obtain sentence representations (2019). Sub-
sequently, they employed knowledge distillation
(teacher-student supervised learning) to extend
the representation space to additional languages
(2020). This approach, while requiring parallel
data, proves effective with relatively few samples,
making it suitable for low-resource languages. Hef-
fernan et al. (2022) applied a similar technique
with LASER2 (Artetxe and Schwenk, 2019b),
a language-agnostic sentence encoder, as their
teacher model. They demonstrated the efficiency
of this approach with extremely low-resource lan-
guages. In our research, we follow a similar setup.

2.2 Investigations of Zero-shot Transfer

Several studies have been conducted to explore the
factors that impact the effectiveness of zero-shot
cross-lingual transfer. Cotterell and Heigold (2017)
showed that the zero-shot performs better when ap-
plied to languages within the same language fam-

ily. Arviv et al. (2021) demonstrated a correlation
between the preservation of syntactic relations in
translation and zero-shot performance.

Chai et al. (2022) conducted a similar experi-
ment but under controlled laboratory conditions. In
order to evaluate the impact of specific language
properties, they create an artificial language by
modifying English and pretrain a bilingual MLM
with English and its modified version. Their focus
was on syntactic properties, particularly word order.
They observed a negligible impact on zero-shot per-
formance when examining subtle modifications in
constituent order, but a significant impact when
shuffling the entire sentence randomly.

While previous experiments focus on syntactic
features, they do not address the semantic aspect.
In this paper, we focus on lexical semantics.

2.3 Lexicalisation Patterns

Lexicalisation patterns were widely used in lin-
guistic typology to classify languages and explore
language universals, in cognitive science to study
conceptualisation, and even by anthropologists to
examine cultural influences on language and cogni-
tion (Frangois, 2008; Jackson et al., 2019; Xu et al.,
2020; Georgakopoulos et al., 2022). The major-
ity of research on lexicalization has been centered
around the concept of colexification (a linguistic
phenomenon that occurs when multiple concepts
are expressed in a language with the same word).
Traditionally, colexification data relied on hand-
curated resources, but this changed with the intro-
duction of CLICS (List et al., 2018), promoting ex-
ploration into large-scale colexification graphs also
in NLP (Harvill et al., 2022; Liu et al., 2023a,b).

Liu et al. (2023b) proposed a more system-
atic way to investigate the conceptual relation be-
tween languages and extract colexifications. Their
method includes aligning concepts in a parallel cor-
pus and extracting a bipartite directed graph for
each language pair, mapping source language con-
cepts to sets of target language strings. Leveraging
these bipartite graphs, they identify colexifications
across a diverse set of languages. Here, we employ
a similar method, albeit to a different purpose — our
primary focus lies in proposing a methology for
quantifying how differences in lexical semantics
impact cross-lingual transfer.

3 Method

Our main goal in this paper is to study how different
language properties, with a particular emphasis on



lexical patterns, influence the ability to perform
cross-lingual transfer, and we aim to do so in a
carefully controlled way.

To isolate distinct language properties and under-
stand their respective contribution, we follow Chai
et al. (2022) and define different manipulations of
the source language L. For each of these manip-
ulations, we modify L, so that it imitates certain
properties found in a target language L;, creating a
new artificial language L 4 (Section §4). Through-
out this article, we maintain English as the source
language.

Then, for each artificial language L 4, we fol-
low the distillation method proposed by Reimers
and Gurevych (2020), training a model to encode
sentences of L 4 into an English pretrained repre-
sentation space. We explore which of them allows
for an effective knowledge transfer and, hence, per-
forms well in a zero-shot setting (Section §6).

Model Distillation. The pretrained teacher model
we use is an English sentence transformer model
(Reimers and Gurevych, 2019). It is trained using
English sentence pairs and a self-supervised con-
trastive learning objective to encode similar English
sentences into vectors that are close to one another
in the vector space. Given a sentence from a pair,
the model is trained to predict which of a batch of
randomly sampled other sentences is in fact paired
with it. The outcome of this training yields a sen-
tence representation space that captures the seman-
tic information of a given sentence. Within this
pretrained vector space, the cosine similarity be-
tween two vectors indicates the degree of similarity
between the two sentences they represent.

The pretrained representations of the teacher
model serve us throughout the experiment as
ground truth. For each artificial language L 4, we
train relatively smaller transformer models using
an English — L 4 parallel corpus. Denoting the
teacher model with M and the student model that
corresponds to the language L 4 with m 4, for each
sentence pair (s,t) € English x L4, the train-
ing objective is to minimize the following cosine
embedding loss:
cos(m4(t), M(s))

if ¢ is a manipulation of s
max(0, cos(m4(t), M(s)) — \)
otherwise

Lcos (mA(t)y M(S)) =

M
where A is a margin parameter we always set to
0. This optimization process aims to increase the
cosine similarity in the vector space whenever the

sentence t is a manipulation of the sentence s, and
decrease it in any other case. As a result, it pro-
duces a sentence encoder that maps each sentence
t € L 4 to alocation in the pretrained vector space
as close as possible to the representation of the
original English sentence.

Evaluation. For each student model m 4, we com-
pute the average similarity score between the em-
beddings of English sentences and the embeddings
of the corresponding manipulated sentences within
a held-out subset of the corpus. This serves as
the intrinsic evaluation. Additionally, we employ
the model in a zero-shot experiment for an extrin-
sic NLP task and present its performance. These
two outcomes help us understand the quality of the
alignment of the language L 4 with the pretrained
representation space of the teacher model.

4 Manipulations of the Data

We proceed to define the different manipulations
that we apply. For each manipulation, we modify
the English source to create an artificial language
L4, generate an English — L 4 parallel corpus,
and train student models m 4 as explained.

Our primary focus lies within the domain of
lexical semantics. To thoroughly examine their
influence, we take a comprehensive approach, in-
vestigating how lexical semantics fit into the larger
context of language properties. We broadly catego-
rize linguistic properties into three distinct aspects:
script, syntax, and lexical semantics. For each of
these aspects, we define a manipulation that solely
modifies it. In the first case, we substitute the letters
of the English alphabet with symbols of a different
script to assess the impact of the script (Section
§4.1). In the second case, we rearrange the word
order in sentences, thus examining the effect of the
syntactic structure, or at least a specific aspect of
it (Section §4.2). Finally, we replace the English
lexicon with that of a target language to explore
the significance of variations in lexicalization pat-
terns (Section §4.3). By isolating each linguistic
aspect, we intend to get a clear understanding of its
individual contribution.

4.1 Manipulating the Script

To manipulate the script we simply substitute each
English character with a symbol from another script
in an injective manner. For instance, if we consider
the Greek alphabet system, we can swap the char-
acters according to their sequential order: a — «,



b — B, ¢ — =, and so forth. This way, the sentence
Brown cows eat grass will transform into: Sooy&
YOUT equ NOQTT.

4.2 Manipulating Word Order

The second manipulation we use is a word reorder-
ing one. We apply the word reordering algorithm
developed Arviv et al. (2023), to permute the words
of each source sentences so that it will conform to
the syntactic structure of the target language (see
Appendix B for full details). The algorithm recur-
sively reorders all the subsequences in a source
sentence, yielding a new sentence in an artificial
language L 4 that imitates the word-order of a tar-
get language L,. For example, the sentence Brown
cows eat grass (see its dependency tree in Figure 3)
yields different results depending on the selected
target language. Spanish, an SV O language, but
in which nouns are ordered before adjectives, pro-
duces: Cows brown eat grass; whereas Hindi, an
SOV language, outputs: Brown cows grass eat.

4.3 Manipulating the Lexicon

The core of our study is lexical semantics and their
impact on cross-lingual transfer. We seek to assess
the influence of the diverse distribution of mean-
ings across different lexicons. To achieve this, we
develop a manipulation in which we substitute the
lexicon of the source language L¢ with that of a
target language L;. This creates a new artificial lan-
guage L 4 that is based on the lexicon of L; while
retaining the original sentence structure of L.

The manipulation is based on an alignment be-
tween a source sentence s € L, and its translation
in the target language ¢ € L;. We replace each
word in the source language with its corresponding
translation in the target language, thus adopting
the lexical semantics of the target language while
preserving the original syntax.”

However, attaining word-aligned bitext poses a
significant challenge. While manually aligned par-
allel datasets are scarce and limited in size, model-
based automatic aligners are prone to noise, often

!Since the algorithm is based on fixed statistics, the arti-
ficial language it produces exhibits a more consistent word
order than that of a natural language. We prefer this experi-
ment over one in which the order of words in a sentence is
randomly rearranged due to the potential noise this might add.

It is worth mentioning that this manipulation inherently
includes the first manipulation, at least to some extent, as
altering specific words in the sentence also influences the
script. However, we will demonstrate later that the script is
not a significant factor, making this fact of minor importance
to our conclusions.

Spanish

English

Figure 2: Illustration of the weighted sub-graph which
results from the Europarl parallel corpus. The edges
represent the possibility that two words are translations
of each other. The weights denote the number of occur-
rences that each word pair is aligned in the bitext.

aligning unrelated words. In the process of defining
a lexical manipulation that relies on mapping one
lexicon to another, it is crucial to ensure consistent
mappings while reducing noisy matches, thus giv-
ing priority to precision over recall. To achieve this,
we follow a careful process that involves extracting
a bipartite graph from a bitext.

Formalism. Consider a word-aligned bitext that
contains the languages L and L;. We define
G = (Vs, Vi, E,w) to be a weighted bipartite
graph, where Vj is the set of words in the lexi-
con of L, and V4 is the set of words in the lexicon
of L;. A pair of words (v, u) € Vi x V; is an edge
in G iff v is aligned to w in at least one instance
in the bitext. The weight function w : £ — N
assigns the number of times that each word pair is
aligned in the bitext.

This construction aims to capture the relation-
ship between the lexical semantics of two lan-
guages. For example, the Spanish translation of
for is por in some cases and para in others; by
is also occasionally translated as por (e.g., multi-
ply by three translates to multiplicar por tres). We
therefore obtain the subgraph in Figure 2.

We hypothesize a negative correlation between
the degree of the vertices in the graph and the abil-
ity to perform cross-lingual transfer between the
languages. In other words, the closer the lexicons
align in a one-to-one manner, the better we expect
the cross-lingual transfer performance to be.

Swapping Algorithm. We proceed to outline the
systematic procedure we employ to perform the
lexical manipulation. For each pair of languages
L, Ly we follow these steps:

1. We apply an automatic word aligner (see de-
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tails in Appendix C) to a large Ls — L; parallel
corpus, extracting a weighted bipartite graph G as
described above.

2. We filter out of the graph any edge e € F that
represents an alignment which is not substantial
(that is, an edge whose weight does not exceed
a certain threshold or whose weight is relatively
small compared to other edges originating from the
same vertex).>

3. Given a source sentence s € L, and its trans-
lation in the target language ¢t € L, we run the
automatic aligner to achieve a word-to-word align-
ment between s and ¢.

4. For each source word v € s:

(a) If there exists a word v € t such that the word-
to-word alignment includes the pair (v, u),
and at the same time it holds that (v, u) € E,
then we replace the word v with w.

(b) Otherwise, if there exists a word v € ¢ such
that (v, u) € E, we replace the words as well.
If there is more than one valid choice, we
select the word v € t for which the weight
w(v, u) is the highest.

(c) Otherwise, we look for the edge (v,u) € F
that has the highest weight among all edges
originating from v, meaning that « is the most
common alignment of v in the language L;. If
we find such an edge, we replace v with u.*

(d) In a case there are no edges originating from
v, We preserve it.

This systematic procedure provides a mapping
between two lexicons, and therefore enables us
to make consistent decisions for each word in the
lexicon — whether to be replaced or preserved. This
helps maintaining a coherent semantic structure in
the resulting artificial language L 4.

For a simple illustration, consider the incorrect
output of the automatic aligner shown in Figure 3.
When applying our swapping algorithm, we first

3These parameters may depend on the target language. See
Appendix C.

“In languages where the words have different inflections,
we check the validity of the match based on the lemma, but
replace the words in their original form. The determination
of the most common alignment also considers the original
inflection.

SWe compare the precision and recall of our alignments
with those of the automatic aligner against the gold standard.
We observe higher precision but lower recall, resulting in a
slightly better F1 score overall in our alignments. For further
details please refer to Appendix D.

check whether the edges (brown — el) and (eat —
comer)® appear in the bipartite graph. As only the
second edge is present, we replace the word eat
with comer. Next, we search for words in the target
sentence that are linked to the source words in the
graph, resulting in the edges (brown — marrén),
(cow — vaca), and (grass — hierba). These three
words are swapped with their corresponding pairs
as well. This process ultimately yields the sentence:
Marrones vacas comen hierba.

[T T

Brown COWS grass
Las vacas marrones comer hierba

e\

nsub]

| e

Figure 3: Comparison between an incorrect output of
the automatic aligner (red) and the corrected alignment
we employ (green), presented with UD tree annotation
for each sentence.

Translation Entropy. To further appreciate the
impact of the divergence between the source and
the target lexicons, we introduce the concept of
translation entropy. Let G be the weighted bipartite
graph presented earlier, we compute the entropy
for each vertex v in the graph:’

Y polw)

UGUU

)log(pu(u)) (2)

where U, is the subset of vertices linked to v, and
Py 1s the following probability function:

w(v, u)
Zu’GUU w(v7ul>

As w counts occurrences of each word pair aligned
in the bitext, the outcome of the function p,, is the
probability that, in a particular instance, the word v
is linked to the word v among all possible v’ € U,
(see calculation example in Figure 1).

We examine the impact of translation entropy
in two distinct configurations: one for the source
words (Figure 4A) and another for the target words
(Figure 4B). In the first, we compute the translation
entropy for all source vertices v € Vs and partition

po(u) = 3)

The lemmas of las and comer respectively.
"It does not matter whether v € Ls or v € Ly.



the set V; into three disjoint subsets based on the
percentile of the franslation entropy values. Then,
in each experiment, we remove from the graph
G all the source vertices that do not belong to a
specific subset to achieve the sub-graph G'. We
apply once again the lexical manipulation, but this
time using the filtered graph G’. In the second
configuration, we follow the exact same steps, but
this time for the target vertices v € V;.2

Returning to the example from Figure 3, af-
ter we extract an English — Spanish bipartite
graph from the Europarl parallel corpus and com-
pute the entropy of the English words, we obtain:
e(brown) = 0.545, e(cow) = 0.24, e(eat) =
0.631, e(grass) = 0.799. If we filter the graph to
retain only words that fall within the upper third of
translation entropy values, we find that the word
grass is the only one meeting this criterion. Con-
sequently, applying our lexical manipulation to this
filtered graph results in the sentence: Brown cows
eat hierba.

5 Experimental Setup

5.1 Datasets

In this subsection, we outline the datasets we use in
our work. For further details regarding the datasets
and the rationale behind their selection and usage,
please refer to Appendix E. The primary bitext
we use for training is the TED-2020 parallel cor-
pus (Reimers and Gurevych, 2020). When we re-
quire a larger corpus, but not necessarily a parallel
one, we turn to the CC-100 corpus (Wenzek et al.,
2020). For extrinsic evaluation we use the Cross-
lingual Natural Language Inference (XNLI; Con-
neau et al., 2018). To extract the bipartite graphs,
we require a large parallel corpus, and therefore
turn to the Europarl parallel corpus. As this corpus
contains only European languages, we extract the
English — Chinese bipartite graph from the UM
parallel corpus (Tian et al., 2014).

5.2 Models

Teacher Model. We select the pretrained sentence
transformer all-mpnet-base-v2. This model was
trained on 1B English sentence pairs with a self-
supervised contrastive learning objective (see Sec-
tion §3). The training produced a 768-dimensional

81t is worth mentioning that the two configurations are
not directly comparable: removing a source word from the
lexicon leads to a reduction in the number of swaps performed,
whereas removing a target word reduces the diversity of the
swaps but not necessarily the number of them.

vector space that has proven to achieve state-of-the-
art results in sentence-level tasks.

Student Models. We train multiple ROBERTa
models (Liu et al., 2019), with each model de-
signed to encode a sentence into the teachers’ 768-
dimensional vector space. To achieve this, we add
a mean-pooling layer on top of the last hidden layer.
We set the vocabulary size to 30527, matching that
of the teacher model, the number of max position
embeddings to 28, and the hidden size to 768. As
to the number of hidden layers and the number of
attention heads, we explore various architectures:
3/6/9/12 hidden layers paired with 4/6/8/12 atten-
tion heads, respectively. In all cases, we reserve a
small portion of the dataset for testing (20K sen-
tence pairs in the TED corpus and 100K sentences
in CC-100), and then randomly split the training set
into 90% for actual training and 10% for validation.
We use the Adam optimizer with a learning rate of
3e~, continuing until the validation loss does not
decrease for five consecutive epochs. The model
with the lowest validation loss is selected, and its
performance on the test set is reported.’

NLI Model. For the zero-shot English NLI experi-
ment, we train a Multi-Layer Perceptron (MLP) on
top of the teacher model. We use the usual combi-
nation of the two sentence embeddings: (p; h; p- h;
|p — h|), where p and h are the premise and the
hypothesis respectively (see for example Artetxe
and Schwenk, 2019b). We build the MLP with
two hidden layers of size 128, and train it for 150
epochs using the Adam optimizer. We select the
model that achieves the lowest loss on the test set.

6 Experiments & Results

To assess the individual impact of each linguistic
property on cross-lingual transfer, we apply our
manipulations to English and carry out the distil-
lation process for each artificial language L 4. For
intrinsic evaluation we rely on the similarity score
defined in Section §3, and for extrinsic evaluation,
we use XNLI zero-shot accuracy.

Before manipulating English, we conduct exper-
iments to obtain reference points for evaluating the
models. First, we perform the distillation process
on regular English sentences. We explore the influ-
ence of varying training set sizes and of the student
model architecture. We observe a considerable
margin, with differences of up to 0.227 in average

°For details regarding the tokenizers we employ, see Ap-
pendix F.
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similarity score, between models trained on 50K
sentences and those trained on 1M. Conversely, we
observe a smaller margin, with differences of up to
0.035 in average similarity score, between smaller
and larger model architectures. Our findings sug-
gest that for low-resource scenarios, exceeding 6
hidden layers and 6 attention heads is unnecessary.
For full results refer to Appendix A.1.

Second, we conduct cross-lingual experiments
using the TED-2020 parallel corpus to compare
English with other natural languages without ma-
nipulation. The results of the cross-lingual experi-
ments serve as a lower bound for the performance
on the manipulated data (as the manipulations are
meant to change English to be closer to the target
language). We also train student models on English
with a newly trained tokenizer to arrive at an upper
bound. We observe a substantial range between the
lower and upper bounds, with differences of up to
0.186 in average similarity score, which gives us
sufficient room to experiment with our manipula-
tions. See full results in Appendix A.2.

We proceed to apply our manipulations to tease
apart the properties of the data that contribute to
this difference between in-language training and
cross-lingual training.

6.1 Script Substitution

We perform two script substitutions, replacing the
English characters with Greek and Simplified Chi-
nese characters, sorted by their frequency.The re-
sults, reported in Table 1, show no degradation
in performance when compared to the encoders
trained with a new tokenizer (see Appendix F). This
suggests that substituting the script has a similar
effect as replacing the tokenizer.

Similarity score || XNLI accuracy

50K [ 100K 50K [ 100K
English (new tok.) 0.725 | 0.786 55.7 59.4
Greek alphabet 0.725 | 0.786 54.6 58.7
Chinese symbols 0.728 | 0.788 55.3 58.4

Table 1: Results from the distillation process for the
script substitution experiment.

6.2 Word Reordering

We apply the reordering algorithm developed by
Arviv et al. (2023) each time relying on the pair-
wise ordering distributions of a different language.
We examine SV O languages (Spanish, Greek, Chi-
nese and Hebrew) as well as an SOV language

(Hindi). Results are presented in Table 2. Although
we observe a degradation in performance, it is a
very slight one. The average similarity score in the
worst case (100K Greek sentences) decreases by
0.013 points, and the XNLI accuracy in the worst
case (100K Hindi sentences) decreases by 1.5%.

Similarity score || XNLI accuracy

50K [ 100K 50K [ 100K
English (new tok.) 0.725 | 0.786 55.7 59.4
Spanish order 0.722 | 0.779 559 58.9
Greek order 0.718 | 0.773 54.8 58.1

Chinese order 0.723 | 0.774 55.1 58.1
Hebrew order 0.725 | 0.781 55.2 59
Hindi order 0.72 0.776 56.5 57.9

Table 2: Results from the distillation process for the
word reordering experiment.

6.3 Lexical Swapping

We follow the steps described in Section §4.3 for
Spanish, Greek and Simplified Chinese. When
constructing the weighted bipartite graph, for Span-
ish and Greek we use the datasets Europarl+TED,
whereas for Simplified Chinese we use UM+TED.
Results are presented in Table 3. In this experiment,
we observe a significant decrease in both the aver-
age similarity score and the XNLI accuracy. The
language that performs the worst is Simplified Chi-
nese, with up to 0.091 degradation in the average
similarity score and up to 5.9% in XNLI accuracy.

Similarity score || XNLI accuracy

50K [ 100K 50K [ 100K
English (new tok.) 0.725 | 0.786 55.7 59.4
Spanish lexicon 0.67 0.726 53.4 57.5
Greek lexicon 0.652 | 0.713 51.6 56.1
Chinese lexicon 0.646 | 0.694 50.9 53.5

Table 3: Results from the distillation process for the
lexical swapping experiment.

These results suggest that variations in lexicons
significantly impact the capacity to align a language
with a pretrained representation space, and as a re-
sult they affect performance in cross-lingual trans-
fer tasks. To gain a deeper understanding of this
phenomenon, we proceed to apply the same ma-
nipulation, this time selectively swapping only a
subset of the words in language.

Entropy-based Lexical swapping. In this exper-
iment we filter the vertices of the bipartite graph
based on their translation entropy (see §4.3) and
then apply the lexical swapping manipulation. Fig-
ure 4A presents the outcome of filtering the source
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vertices, and Figure 4B shows the result of filtering
the target vertices. In both cases, we split the set
of vertices based on percentiles: into the ranges of
0-33, 33-67, and 67-100. In addition, we include
an experiment where we exclusively swap words
with zero entropy, and we add the results from the
full lexical manipulation.

050K Spanish 050K Greek 50K Chinese
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Figure 4: Results of filtering the source vertices in the
graph in Figure (A), and results of filtering the target
vertices in the graph in Figure (B). The horizontal axis
scale represents the entropy values ranging from O to
all vertices, with values between 0 and all indicating
percentiles dividing the set of vertices.

We observe a robust negative correlation be-
tween the entropy of the words we swap and the
similarity scores. In all cases except for one (filter-
ing Greek words of percentile 33-67), the higher
the entropy of the words swapped, the worse the
distillation process performs. Moreover, when we
swap only 33% of English words with low entropy,
it has minimal impact on performance, but when
we swap 33% of words with the highest entropy,
it results in a degradation of performance that is
close to the degradation observed in the full lexical
manipulation. We conclude that swapping in itself
does not degrade performance; instead, most degra-
dation results from the lexicons not being aligned
in a one-to-one manner.

The absence of one-to-one alignment in the lexi-
cons conceals two separate phenomena: synonymy
and polysemy. In case of a synonymy, a specific
word is altered by different words in different con-
texts, whereas in the case of polysemy, several dis-
tinct words are altered by the same word. The first
experiment (filtering the source words) mostly sim-

ulates the impact of the synonymy phenomenon,
while the second experiment (filtering the target
words) mostly simulates the impact of the poly-
semy. Results imply that both phenomena have a
substantial impact on cross-lingual transfer.

7 Conclusion

We leverage a knowledge distillation setup to ex-
plore the conditions that allow successful cross-
lingual transfer. We apply various manipulations
to English to alter specific language properties and
assess their impact.

We first apply a script substitution and observe
no degradation in performance. We then exam-
ine the impact of word order. Unlike Chai et al.
(2022), who made only subtle modifications to the
constituent order in some experiments and shuffled
all the words in the sentence with others, we apply
manipulations that permute many words in the sen-
tence while still maintaining a coherent syntactic
structure. We believe that while Chai et al.’s conclu-
sion is overly broad in its scope, this manipulation
provides us with a more nuanced understanding of
the role of word order in cross-lingual transfer. Our
initial observations imply that word order differ-
ences, if systematic, may not play a crucial role.

Finally we swap words from the English lexicon
with words from the target lexicon and observe a
substantial degradation in performance. We use the
notion of translation entropy to explore the impact
of swapping only a subset of words in the lexicon.
This reveals that swapping the words with the high-
est entropy leads to a more substantial degradation
in performance relative to words with lower en-
tropy. These findings validate our hypothesis: the
more the lexicons align in a one-to-one manner, the
better cross-lingual transfer will perform.

To conclude, among the three manipulations we
apply, the only one that was found to have a sub-
stantial impact is the lexical swapping manipula-
tion. This suggests that when it comes to cross-
lingual transfer, at least in the case of model distil-
lation, the difference between the lexical semantics
of the languages may be more crucial than other
linguistic factors such as word order. This insight
highlights the importance of lexical compatibility
and offers valuable guidance for optimizing cross-
lingual transfer systems.



Limitations

Our work has several limitations (we intend to ad-
dress them in future work). First, all our experi-
ments are conducted using a monolingual teacher
model. We consider it important to examine the
influence of multilingual pretraining. The potential
impact of a representation space that is not tailored
to a particular language could be substantial. Sec-
ondly, the sum of degradations resulting from the
various manipulations we apply does not reach the
degradation caused by cross-lingual transfer. This
could stem from the fact that translations are not
always accurate, but it can also indicate that we
are missing a piece of the puzzle. Lastly, we think
it will be valuable to further analyze the lexical
manipulation, maybe by applying it to a different
subset of the language (enabling only synonymy
but not polysemy, filtering by part-of-speech, etc.).
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A Baseline Experiments & Degradation
Analysis

A.1 Training the student model on English

To understand how both the size of the data and the
selected model architecture influence the quality of
alignment we begin by training the student models
on English. We train models of various architec-
tures on subsets of various sizes from CC-100. The
tokenizer we use is the original tokenizer of the
teacher model. Table 4a reports the average simi-
larity score of all the sentences in the separated test
set when they are encoded once using the teacher
model and once using the student model. Table
4b reports the accuracy on the XNLI test set in a
zero-shot setting (the MLP built upon the teacher

1. Lastly, results indicate that the architecture of the
student model has a relatively minor impact on per-
formance. However, it is worth noting that beyond
a certain model size, training results are overfitting.
As our main concern is low-resource languages,
we decide to stick with the architecture that shows
optimal performance in limited data scenarios: 6
hidden layers and 6 attention heads.

A.2 Cross-lingual Transfer

We conduct a cross-lingual experiment using the
TED-2020 parallel corpus. Results are presented in
Table 5. We also present the outcomes of training
the English encoders with a newly trained tokenizer
(see Appendix F).

model achieved an accuracy of 71.2%). Similarity score | XNLI accuracy
50K [ 100K 50K [ 100K
[ [ 50K [100K [ 200K [ IM || English - teachers’ || 0.74 | 0.804 56.6 | 60.5
3 hidden layers and || 0.658 | 0.727 | 0.793 | 0.866 tokenizer
4 attention heads English - new CC- || 0.725 | 0.786 55.7 59.4
6 hidden layers and || 0.684 | 0.754 | 0.827 | 0.9 100 tokenizer
6 attention heads Spanish 0.601 | 0.657 494 54
9 hiddep layers and || 0.682 | 0.737 | 0.818 | 0.909 Groek 0574 1 0.632 799 531
8 attention heads
12 hidden layersand || 0.677 | 0.74 | 0.81 0.901 Chinese 0.555 | 0.6 409 | 465
12 attention heads
Hebrew 0.545 | 0.606 X X

(a) Average similarity score of all the sentences paired
with themselves in a separate subset of CC-100.

| [ 50K | 100K [ 200K | IM |

3 hidden layers and || 53.7 57.6 61.3 63.3
4 attention heads

6 hidden layers and || 55.7 59.6 62.9 65.7
6 attention heads

9 hidden layers and || 56.2 58.1 62.9 65.8
8 attention heads

12 hidden layers and || 54.3 58.1 61.8 64.9
12 attention heads

(b) XNLI test accuracy in a zero-shot setting.

Table 4: Results from the distillation process with En-
glish as the target language for various architectures and
various dataset sizes.

Several conclusions can be drawn. First, we ob-
serve a robust correlation (Pearson correlation of
0.988) between the average similarity scores and
zero-shot performance (the intrinsic and extrinsic
performance respectively). This proves that the
quality of the alignment with the pretrained rep-
resentation space can be a useful tool for predict-
ing zero-shot performance. Secondly, the results
demonstrate that the size of the corpus has a great
effect on the quality of the alignment. With 1M sen-
tences, one can already train a student model that
achieves an average similarity score of 0.909 out of
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Table 5: Results from the distillation process (Average
similarity scores and XNLI accuracies) for various lan-
guages using the TED-2020 parallel corpus.

We can see that the tokenizer’s substitution re-
sults in only a minor performance degradation
(0.015 points in similarity score when trained with
50K sentences), while the transition to a differ-
ent language leads to a substantial decrease (0.124
when trained with 50K Spanish sentences). Un-
surprisingly, languages closer to English in terms
of phylogenetic distance, produce higher similarity
scores and better zero-shot performance.

B Word Reordering Algorithm

We hereby describe the word reordering algorithm
developed Arviv et al. (2023), that we apply to per-
mute the words of the source sentences so that it
will conform to the syntactic structure of the target
language. The algorithm relies on the statistics of
the Universal Dependencies (UD) treebank to per-
mute the words of a sentence in one language so
that they mimic the syntactic structure of another.
The algorithm is built on the assumption that a con-
tiguous subsequence, which constitutes a grammat-
ical unit in the original sentence, should remain a


https://universaldependencies.org/

contiguous subsequence after reordering, although
the order of words within that subsequence may
change. It operates, therefore, on a UD dependency
tree, recursively permuting each sub-tree so that it
will conform to the order of an equivalent sub-tree
in the target language.

Within each sub-tree, the reordering is applied
based on the notion of pairwise ordering distribu-
tions. Given a sentence ¢ in a language L; and
its UD parse tree T'(t), which contains the set of
dependency labels 7 = (71, ..., m,), Arviv et al.
denote the pairwise ordering distribution in lan-
guage L, of two UD nodes with dependency labels
i, Tj, in a sub-tree with the root label 7, by:

‘Pﬂ'kvﬂ'iﬂrj =p;pE [07 1] 4

where p stands for the probability of a node with a
dependency label 7; to be linearly ordered before
anode with a label 7}, in a sub-tree with a root of
label 7, in a language L;.'°

Given a sub-tree T; € T'(t), for each of its node
pairs, these probabilities are formulated as a con-
straint:

1
0

> 0.5

if Pﬂ'kzﬂ'i:ﬂ'j (5)

T < (T < 7j) = { otherwise

where 7y, : (m; < ;) = 1 indicates that a node
with label 7; should be linearly ordered before a
node with label 7; if they are direct children of
a node with label 7. A constraint is said to be
satisfied if and only if the node with label ; is
indeed positioned in the sentence before the node
with label 7;. For each individual sub-tree 73, all
its pairwise constrains are extracted, and an SMT
solver is used to compute a legal ordering which
satisfies all the constraints.'!

C Lexical manipulation: Implementation
Details

Tokenization and Lemmatization. Before we per-
form word-to-word alignment, we have to separate
the sentences’ tokens and lemmatize them. For
this purpose we use Trankit (Nguyen et al., 2021),
a multilingual NLP toolkit based on XLM-R. For
Simplified Chinese, however, we prefer the Jieba
tokenizer.

1%Note that a single node can act both as a representative of
its sub-tree and the head of that sub-tree.

"Tf it is not possible to fulfill all the constraints, the algo-
rithm maintains the original order of the sub-tree.
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Automatic Aligner. To obtain high-quality word-
to-word alignments we use the Simalign automatic
aligner (Jalili Sabet et al., 2020). This tool uses
contextualized embeddings to map words from one
sentence to those of another. We run it with XLM-R
as the base model, and set the matching method to
be ArgMax.

Graph Filtering. When considering the filtering
of the graph, we face two choices: we can either
apply identical parameters for all languages or cus-
tomize parameters for each language in a way that
ensures a similar percentage of alignment instances
is filtered from the graph. The first option main-
tains a similar level of noise across languages but
has a drawback: when we apply the lexical manip-
ulation, removing a high percentage of alignment
instances from the graph results in selecting the
most common word too frequently (see step 4c in
the lexical manipulation procedure), and therefore
loses the ability to make meaningful comparisons
across different languages.

In our chosen method, we aim for the middle
ground. We start by removing from the graph ev-
ery edge with a weight below the threshold of 5
to exclude matches that are not substantial. Then,
for each language, we set a specific threshold to
remove edges whose weight is relatively small com-
pared to other edges originating from the same ver-
tex. We set this second threshold in such a way that
for each language, a total of approximately 12% of
the alignment instances are filtered out. In the case
of Spanish and Greek, the appropriate threshold is
2%, while for Simplified Chinese, it is 0.15%.

D Comparing Alignments to Gold
Standard

We evaluate the alignment results of our algorithm
against the original Simalign alignments, using the
gold standard provided by (Graga et al., 2008). We
focus our comparison on the English-Spanish align-
ments, as this language pair is the sole one utilized
in our research. The obtained results are as pre-
sented in Table 6. We can see that our alignments
achieve higher precision but lower recall, resulting
in a slightly better F1 score overall.

To further understand this point, let us examine
a specific example (as others are similar): the sen-
tence We take note of your statement is translated
into Tomamos nota de esa declaracion. While the
Simalign auto-aligner aligns your with esa, our
algorithm filters out this alignment, as these two


https://trankit.readthedocs.io/en/latest/
https://github.com/fxsjy/jieba
https://github.com/cisnlp/simalign

words are rarely translations of one another in the
larger corpus. Although we miss a correct align-
ment in the gold standard, this approach conforms
to our goal of mapping lexicons consistently.

[ [ Precision] Recall [ F1 |
Original simalign 73.39 90.8 81.17
Our algorithm 76.55 86.58 81.26

Table 6: Comparison of Alignments to Gold Standard

E Datasets

TED. The primary bitext we use for training is the
TED-2020 parallel corpus (Reimers and Gurevych,
2020). This corpus contains a crawl of nearly 4000
TED transcripts from July 2020, which have been
translated into over 100 languages by a global com-
munity of volunteers. We have selected this corpus
because it contains languages from different lan-
guage families, and because its translations are of
relatively high quality. To further simplify it, we
convert the entire dataset to lowercase and filter
it to include only sentences with familiar charac-
ters, up to one punctuation mark, and word counts
ranging from 4 to 16.12

CC-100. When we require a larger corpus, but not
necessarily a parallel one, we turn to the CC-100
corpus (Wenzek et al., 2020). This corpus serves
us for our English — English experiments (see
Section §A.1). We apply the same simplifying
process as for TED, bringing the formats of the
two datasets closer to each other.

XNLI. For extrinsic evaluation we use Natural Lan-
guage Inference (NLI), as it is a well-known sen-
tence level semantic task. The task is to deter-
mine the inference relation between two sentences:
entailment, contradiction, or neutral. The cor-
pus we use is the Cross-lingual Natural Language
Inference (XNLI) (Conneau et al., 2018), which
contains 15 different languages. There is no need
to apply a simplifying process to this dataset, as the
sentences are already relatively short and do not
contain unconventional characters.

Europarl. In order to extract a bipartite graph
which is statistically meaningful for our lexical
manipulation, we require a large parallel corpus.
We use Europarl, which consists of the proceedings
of the European Parliament from 1996 to 2012.

12Except for Simplified Chinese, where, due to the different

nature of logographic writing systems, we filter by counting
5-25 symbols.
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This corpus contains only European languages, so
we must turn to other sources when experimenting
with languages from different language groups.

UM. We extract our English — Chinese bipartite
graph from the UM parallel corpus (Tian et al.,
2014). It contains more than 2M English —
Chinese sentence pairs from a great variety of
domains.

F Tokenizers

When training English models, we examine two dif-
ferent tokenizers: the original teachers’ tokenizer,
and a new tokenizer we train on the simplified CC-
100 corpus. In the case of other language, we train a
new tokenizer on the simplified CC-100 corpus, ex-
cept for Hebrew, where we use the tokenizer from
the HeBERT pretrained model (Chriqui and Yahav,
2022), and Chinese, where we use the tokenizer
from the Bert-Base-Chinese pretrained model.
The cases of the script and lexical manipulations
each require its special treatment. In the case of
the script manipulations, we create an artificial lan-
guage which is composed of English words with
foreign symbols, so we require a tokenizer which is
familiar with this specific language. We simply ap-
ply the manipulation to the English CC-100 corpus
and train a tokenizer on the transformed sentences.
In the case of the lexical manipulation, we swap
some English words while retaining others, result-
ing in an artificial language which is a fusion of
two languages. Therefore, a bilingual tokenizer is
required. We train a bilingual transformer for each
language pair using the CC-100 corpus, except for
English — Chinese, for which we use the UM

corpus.'?

3Note that the word-reorder manipulation, as it maintains
the same set of words as in the original sentence, does not
require any special treatment.


https://opus.nlpl.eu/TED2020.php
https://huggingface.co/datasets/cc100
https://github.com/facebookresearch/XNLI
https://github.com/facebookresearch/XNLI
https://github.com/facebookresearch/XNLI
https://www.statmt.org/europarl/
http://nlp2ct.cis.umac.mo/um-corpus/
https://huggingface.co/avichr/heBERT
https://huggingface.co/bert-base-chinese
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