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ABSTRACT

Deep learning has seen unprecedented progress thanks to the deployment of mod-
els with millions of parameters. On the theoretical side, an immense amount of
effort has gone into understanding the dynamics of overparameterized networks.
Although there now is a well-developed theory of networks with infinitely many
neurons, the classic problem of understanding how a neural network with a few
neurons learns remains unsolved. To attack this problem, we analytically study
the landscapes of neural networks with few neurons. For the one-neuron net-
work learning from a teacher network with arbitrarily many orthogonal incoming
vectors, we prove that the optimal neuron implements a damped average in its
incoming vector and balances the missing neurons in its outgoing weight. In addi-
tion, we prove how a neuron splitting mechanism turns a minimum into a line of
critical points with transitions from saddles to local minima via non-strict saddles.
Finally, we discuss how the insights we get from our novel proof techniques may
shed light on the dynamics of neural networks with few neurons.

1 INTRODUCTION

The theory of deep learning has advanced rapidly and we know now that over-parameterized shal-
low networks provably converge to a global minimizer for typical initializations in the presence
of infinitely many neurons (Jacot et al., 2018; Chizat & Bach, 2018; Mei et al., 2018; Rotskoff &
Vanden-Eijnden, 2018; Sirignano & Spiliopoulos, 2020) or a polynomial number of neurons as a
function of the number of training data points suffices for the same guarantee (Du et al., 2018; Arora
et al., 2019; Oymak & Soltanolkotabi, 2020). However, a good theoretical understanding of under-
parametrized shallow neural networks is still lacking. The main question we are interested in is:
“Can we characterize the compression strategy of an underparameterized neural network?”

In this work, we take the first steps towards understanding the structure of the solution found by a
neural network with few neurons. We first develop a rigorous analysis for the one-neuron network
learning from a teacher network with multiple neurons. Although there has been some work in this
direction, it is limited to the case when the teacher network also has one neuron (Tian, 2017; Yehudai
& Ohad, 2020; Vardi et al., 2021; Wu, 2022). For a teacher network with multiple orthogonal
incoming vectors, we show that the one-neuron network compresses the teacher neurons into a single
neuron by implementing a damped average in its incoming vector and by balancing the missing
neurons with its outgoing weight.

Going beyond the one-neuron network, we investigate the compression strategy implemented by
neural networks with few neurons. Building upon Fukumizu & Amari (2000); Şimşek et al. (2021),
we first give a detailed second-order analysis of the neuron splitting mechanism for neural networks
with arbitrary width and depth. In particular, we prove under which conditions the splitting of neu-
rons leads to harmful local minima or harmless strict saddles, revealing intriguing transitions from
saddles to minima on a line. Then we study the structure of the minima found by underparameter-
ized neural networks by growing them – one neuron at a time – in the teacher-student setting, similar
to Wu et al. (2019). All our empirical results are based on integrating the gradient flow of the loss
function with a higher order differential equation solver, thereby overcoming some of the numerical
difficulties encountered in previous works.

1



(a) one-neuron network (b) neuron splitting (c) line of critical points

Figure 1: Summary of contributions. (a) The optimal solution of a one-neuron network learning from
a true function generated by multiple teacher neurons: its incoming vector implements a damped
average of the teacher incoming vectors, its outgoing weight is larger than the number of teacher
neurons. (b) Neuron splitting (as shown in the figure) preserves criticality and the network function.
(c) In the loss landscape of the two-neurons network, there exists a line of critical points originating
from the minimum of the one-neuron network, and identical to it in terms of representing the same
function. The same neuron splitting principle applies to neural networks with arbitrary width and
depth, resulting in intriguing transitions in the second-order derivatives of the loss at the so-called
symmetry-induced critical points. An example is shown in the figure where strict saddles (blue)
transit into local minima (red) through non-strict saddles (orange).

1.1 RELATED WORK

The classic line of work in teacher-student setting approximates the gradient flow ODEs when the
input dimension grows to infinity (Saad & Solla, 1995), an approach that has been made rigorous
by Goldt et al. (2020). The limiting dynamics in finite-size learning rate regime has been studied
in recent work (Veiga et al., 2022; Arous et al., 2022). Another line of work focused on studying
overparameterization in teacher-student setup in finite input dimension regime. Soltanolkotabi et al.
(2018) prove that there is no local minimum if the number of neurons is twice more than the input
dimension, but using quadratic activation functions. For differentiable activation functions, they
prove convergence to a global minimum only when the initialization is close to a minimum in a
teacher student setup, where the student has the same number of neurons as the teacher; and both
bigger than the input dimension. When the number of student neurons, teacher neurons, and the
input dimension are equal, Safran & Shamir (2018) show that local minima exist for ReLU activation
and some of the families of minima are characterized by (Arjevani & Field, 2021). Moreover, despite
the vast literature on modeling the true function as a teacher network, there is yet no rigorous result
on the solution found by the one-neuron network.

An orthogonal line of work studies a neuron splitting mechanism in neural networks from a small
width into a large width. Fukumizu & Amari (2000) study the splitting of one neuron at a critical
point and the resulting line of critical points. This is generalized to the splitting of multiple neurons
of the same type in Fukumizu et al. (2019). Şimşek et al. (2021) study the combinatorics of the
problem by allowing the splitting of all types of neurons and characterizes the scaling of the number
of manifolds of critical points as well the number of components of the global minima manifold.
Zhang et al. (2021) provide some further discussions and numerics. Jacot et al. (2021); Boursier
et al. (2022) analyze a training regime where the gradient flow visits a sequence of saddles.

2 PRELIMINARIES AND OVERVIEW

Consider a network function f : Rd → Rdout of a two layer network with n neurons

f(x) =

n∑
j=1

ajσ (wj · x) (1)

where wj ∈ Rd represents an incoming vector and aj ∈ Rdout represents an outgoing vector of a
neuron. To emphasize the structure of a network function in terms of the summation of its neurons
x → ajσ(wj · x), we denote the parameter θ ∈ RP with P = (d+ dout)n as follows

θ = (w1, a1)⊕ · · · ⊕ (wn, an). (2)
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Sometimes the parameter θ is made explicit in the network function f(x|θ) = f(x). The input
distribution is arbitrary and denoted by P (it can be discrete or continuous).

We denote the mapping from inputs to targets by f∗ : Rd → Rdout . The cost function c : Rdout ×
Rdout → R is assumed to be twice-differentiable in its first component. The loss is then defined as

L(θ) = ⟨c(f(x|θ), f∗(x))⟩P . (3)

2.1 NEURAL NETWORKS WITH FEW NEURONS

Specifically, we assume that the input data distribution is d-dimensional standard Gaussian, i.e.
x∼N (0, I), the cost function is quadratic, i.e. c(ŷ, y)=(ŷ− y)2, and the targets are generated by a
teacher network

f∗(x) =

k∑
i=1

σ(vi · x) (4)

where v1, . . . , vk ∈ Rd are orthogonal vectors with unit norm. We drop the subscript P in Eq. 3
when the input distribution is standard Gaussian which is commonly studied Tian (2017); Zhong
et al. (2017); Safran & Shamir (2018); Soltanolkotabi et al. (2018). The loss of a neural network
with n neurons (wj , aj) is then given by

L((wj , aj)
n
j=1) =

〈
(

n∑
j=1

ajσ(wj · x)−
k∑

i=1

σ(vi · x))2
〉
. (5)

Thanks to the Gaussianity of the input data, the loss can be reparametrized such that it only depends
on outgoing weights aj , incoming vector norms rj=∥wj∥, and (cosine-)similarity between pairs of
normalized incoming vectors uij =wj/rj · vi (student and teacher) and ũjj′ =wj/rj · w′

j/r
′
j (both

student). The loss can then be expressed as

L((wj , aj)
n
j=1) =

n∑
j,j′=1

ajaj′g(rj , rj′ , ũjj′)− 2

n∑
j=1

k∑
i=1

ajg(rj , 1, uji) + const, (6)

subject to
k∑

i=1

u2
ji ≤ 1 ∀j ∈ [k], (7)

∣∣∣∣ũjj′ −
k∑

i=1

ujiuj′i

∣∣∣∣ ≤
√√√√1−

k∑
i=1

u2
ji

√√√√1−
k∑

i=1

u2
j′i ∀j

′ ̸=j; (8)

where the potential g : R2
≥0 × [−1, 1] → R is given by the following Gaussian average

g(r1, r2, u) = ⟨σ(z1)σ(z2)⟩ = ⟨σ(w1 · x)σ(w2 · x)⟩, (9)

where z1=w1 · x and z2=w2 · x are univariate centered Gaussians with standard deviations r1 and
r2 respectively, and with correlation u = (w1/r1) · (w2/r2).

2.2 NEURON SPLITTING MECHANISM

We review a general mapping mechanism between the critical points of a narrow network into a
wider network which we develop further in Section 4. If an outgoing vector is zero, we can drop
the corresponding neuron without changing the network function, similarly, if two incoming vectors
are equivalent, we can merge them into one neuron without changing the network function. If a
parameter does not allow reducing any of its neurons via one of these two operations, we call it
irreducible following Şimşek et al. (2021). Assume that

θ = (w1, a1)⊕ · · · ⊕ (wn, an)

is an irreducible critical point of the network with r neurons. The key observation is that splitting
any one of the n neurons into two neurons by copying the incoming vector and splitting the outgoing
vector with an arbitrary scalar µ as follows

(wj , aj) → (wj , µaj)⊕ (wj , (1− µ)aj), (10)
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not only preserves the network function, but also preserves the gradients with respect to all neurons
at zero; thus yielding a so-called symmetry-induced critical point of the network with n+1 neurons.
We denote this critical point by ⊕j,µ(θ). Moreover, moving the free parameter µ, we get a line of
critical points which are identical to the network function generated by the parameter θ. The neuron
splitting principle reviewed here was discovered by Fukumizu & Amari (2000). Following the same
procedure, splitting a neuron into h neurons, or equivalently, repeating Eq. 10 for (h−1) times

(wj , aj) → (wj , µ1aj)⊕ · · · ⊕ (wj , µhaj) (11)

such that the scalar coefficients add up to one (i.e. µ1 + ... + µh=1), we obtain a critical point of
the network with n+h−1 neurons (Fukumizu et al., 2019; Zhang et al., 2021). Şimşek et al. (2021)
work out the combinatorics of this problem: a new critical point can be generated either by splitting
one of the n neurons into multiple neurons as discussed above, or by splitting several neurons into
multiple neurons, for example:

(wi, ai) → (wi, µ
i
1ai)⊕ · · · ⊕ (wi, µ

i
hai), (wj , aj) → (wj , µ

j
1aj)⊕ · · · ⊕ (wj , µ

j
kaj) (12)

such that the groups of free parameters add up to one, i.e. µi
1 + ... + µi

h = 1. Although there is
an enormous amount of manifolds of symmetry-induced critical points in neural networks due to
various combinations of neuron groups and permutation-symmetry, we zoom into the scenario of
adding a single neuron and study their second-order nature in this paper.

3 THE OPTIMAL SOLUTION OF THE ONE-NEURON NETWORK

As a first step towards characterizing the optimal solution in the networks with a few neurons, we
focus on the case of a single neuron (n=1). In this case, the loss simplifies to

L(w, a) = a2g(r, r, 1)− 2a

k∑
i=1

g(r, 1, ui) + const, subject to
k∑

i=1

u2
i ≤ 1, (13)

where r is the incoming vector norm and a is the outgoing weight of the one-neuron network. First
let us introduce the properties of the potential g

Assumption 3.1. We assume that the potential satisfies some or all of the following properties

i. g(r1, r2, u) is increasing1 as a function of u for r1, r2>0 and u ∈ (−1, 1),

ii. a. ∂ug(r1, r2, u) is increasing as a function of u for r1, r2>0 and u ∈ [−1, 1],
b. ∂ug(r1, r2, u) is increasing as a function of u for r1, r2>0 and u>0, decreasing for u<0.

Thanks to Lemma B.1, any differentiable and increasing activation function satisfies Assump-
tion 3.1. More generally, we show in Lemma B.2 that the common activation functions such as
softplus, sigmoid, tanh, and ReLU

σ(x) =
1

β
log(eβx + 1) with β > 0, σ(x) =

1

1 + e−x
, σ(x) =

ex − e−x

ex + e−x
, σ(x) = max{0, x},

respectively, satisfy Assumptions 3.1. For any activation function satisfying Assumptions 3.1, we
show that the incoming vector of any critical point of the one-neuron network must align equally
with all of the incoming vectors of the teacher network

Theorem 3.2. Under Assumptions 3.1 (i)-(ii) on the potential, the following loss on the similarities
for some fixed a, r ̸= 0

L̃((ui)
k
i=1) = −2a

k∑
i=1

g(r, 1, ui), subject to
k∑

i=1

u2
i ≤ 1 (14)

has a unique critical point at ui=1/
√
k for i ∈ [k] if a>0, and ui=−1/

√
k for i ∈ [k] if a<0.

1Increasing means strictly increasing everywhere in this paper.
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(a) (b) (c)
Figure 2: Structure of the optimal solution of the one-neuron network for various activation func-
tions. We train one-neuron networks learning from teacher networks with number of neurons from
2 to 10. For ReLU, we use the analytic formula of the potential giving an exact approach to study
the loss averaged over Gaussian data, whereas for softplus, sigmoid, and tanh, we approximate the
population loss with 105 input points. We run simulations for 10 different seeds, all of which con-
verge to the same solution where the similarities are equal at 1/

√
k except for tanh for which there

is also a sign-symmetric solution3. (a) For ReLU, the magnitude ∥w∗∥a∗ matches exactly between
simulations and Theorem 3.3. For softplus, the magnitude matches exactly with

√
k; for softplus

and tanh, it is just below
√
k. (b) The norm of the incoming vector is smaller than 1/

√
k not only for

softplus as shown in Theorem 3.4, but also for sigmoid and tanh. (c) The outgoing weight is larger
than k for softplus and tanh; and it is exactly k for sigmoid.

Intuitively, the incoming vector of the one-neuron network is pulled towards the teacher incoming
vectors for positive outgoing weights, hence any critical point has to be in the span of the teacher
incoming vectors. Since the teacher incoming vectors are orthogonal to each other and they are
equal in strength – with unit norm and unit outgoing weight – the student incoming vector should
align with each of them equally to be stationary.

For ReLU activation function, since the potential has an analytical expression (Cho & Saul, 2009;
Safran & Shamir, 2018), we are able to fully characterize the landscape of the one-neuron network.
Theorem 3.3. Assume that the activation function is σ(x) = max{0, x}. Any global minima
(w∗, a∗) of the loss in Eq. 13 satisfies

∥w∗∥a∗ = k
h(u)

h(1)
, (15)

forming an equal-loss hyperbola with the loss given by

L∗ = k2
(
h(0)− h(u)2

h(1)

)
+ k(h(1)− h(0)), (16)

where u = 1/
√
k. For a teacher network with k > 1 neurons, the only other critical point of the

loss satisfies w∗ = 0 and a∗ = 0. For the teacher network with one neuron, i.e. k = 1, there is an
additional ray of critical points with a∗=0, w∗=αv1 for α<0.

For softplus activation function, there is no known analytical expression for the potential. We de-
velop a novel proof technique to describe the global landscape of the one-neuron network that
is sketched in Appendix C.3. Although the proof relies on some specific properties of softplus
(Lemma C.3), we numerically observe that the minimum reached by gradient flow has a similar
characteristic for sigmoid and tanh (see Figure 2).
Theorem 3.4. Assume that the activation function is σ(x)= (1/β) · log(eβx + 1) with β > 0. Any
critical point (w∗, a∗) of the loss in Eq. 13 satisfies

∥w∗∥ ≤ 1√
k
, and k ≤ a∗. (17)

For a teacher network with one neuron, there is a unique critical point with ∥w∗∥=1 and ∥a∗∥=1.

3For tanh, we find two solutions that are sign-symmetric: the usual one where the similarities are all 1/
√
k,

with a norm and outgoing weight denoted by (r, a) with a>0, and its symmetric solution where the similarities
are all −1/

√
k, with a norm and outgoing weight (r,−a). Only the first solution is plotted in the figure for

finer comparison in the positive scale.
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For softplus activation function, combining Theorem 3.2 and Theorem 3.4, the incoming vector of
the optimal solution of the one-neuron network can be expressed as

w∗ =
r√
k

∑
vi,

with r ≤ 1/
√
k. Hence, the incoming vector implements a damped average of the incoming vectors

of the teacher with a damping factor of r/
√
k≤1. The outgoing weight of the minimum is at least k

since the one neuron should compensate for approximating k teacher neurons. Although the proof
does not directly apply to other activation functions such as sigmoid, 4 we numerically observe a
very similar structure for the solution of the one-neuron network (see Fig. 2). Generalizing the proof
to non-orthogonal incoming teacher vectors should be possible since the objective in Eq. 13 does
not change, however, the constraint on the similarities needs to be adapted.

What about the global landscape of the two-neurons network? We discuss in the next section 4
that there is a line of symmetry-induced critical points representing the same network function as
the solution of the one-neuron network. In addition, there is an optimal solution exploiting the full
network capacity where the incoming vectors are not identical. Whether there are other non-trivial
critical points remains an open question that we believe can be answered within our framework.

4 NEURON SPLITTING CREATES LINES OF CRITICAL POINTS

We reviewed the atypical structure of critical points of the neural networks loss landscapes in Sec-
tion 2: symmetry-induced critical points form manifolds thus they are not isolated. For example
in the landscape of a neural network with at least two neurons, there exists a line of symmetry-
induced critical points induced by a critical point of the one-neuron network. Hence, the celebrated
Kac-Rice formula describing the scaling of the number of critical points of complex landscapes
(Auffinger et al., 2013; Ros et al., 2019; Maillard et al., 2020) does not apply to neural network
landscapes with more than one neuron.

In this section, we assume that the activation function σ is twice-differentiable. We denote the
Hessian of the loss in Eq. 3 at a parameter θ by HL(θ) which is matrix of size P×P . Then we zoom
into one such line of symmetry-induced critical points and work out their second-order nature that
enables us to identify whether these are local minima, strict saddles, or non-strict saddles. Below,
we recall the definitions:

• Strict saddle: A critical point with at least one negative eigenvalue in the Hessian, i.e. there
is an escape direction towards decreasing loss in its neighborhood.

• Non-strict saddle: A critical point where the Hessian has no negative eigenvalues, yet there
is an escape direction towards decreasing loss in its neighborhood.

• Local minimum: A critical point where the Hessian has no negative eigenvalues and the
loss increases in all directions of perturbation.

If the Hessian does not have a negative eigenvalue, the critical point can be either a non-strict saddle
or a local minimum and a higher-order analysis is needed in this case (Anandkumar & Ge, 2016).
For one output neuron (i.e. dout = 1), Fukumizu & Amari (2000) proved that the second-order
nature of the symmetry-induced critical points is determined by the mixing ratio µ and a second-
order derivative matrix Y of size d × d which we explicitly write in Theorem 4.1. More precisely,
using a linear transformation of the weight vectors of the splitted neuron, Fukumizu & Amari (2000)
show that depending on the eigenvalue signs of the matrix µ(1−µ)Y , a symmetry-induced critical
point ⊕j,µ(θ) is either a local minimum or a strict saddle. However, the linear transformation of
Fukumizu & Amari (2000) at µ∈{0, 1} is not invertible, thus the corresponding symmetry-induced
critical points are unclassified. Using a novel decomposition of the Hessian, we generalize their
result in two ways (Theorem 4.1):

i. For arbitrary dout, we explicitly give the number of positive, negative, and zero eigenvalues of
the Hessian at a symmetry-induced critical point; which depends on two matrices of second-

4The sigmoid activation function does not satisfy the property that σ′(x)x/σ(x) is increasing – which is
needed in Lemma C.1.
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(a) local min. θ (b) aj=1.35 (c) aj=1.98 (d) aj =−0.66

Figure 3: The Hessian spectrum of the symmetry-induced critical points as a function of the mixing
ratio µ. We plot the 5 smallest eigenvalues in (b-c-d). (a) A local minimum θ with the largest
empirical basin of attraction (see the simulation details in Appendix A.1). The dataset is composed
of 2-dim. input points sampled from standard gaussian (N = 105 data points) and targets that are
generated by a teacher network (its incoming vectors are shown as black dots, and the outgoing
weights are all one). The incoming vectors of the networks at convergence are shown in red and the
outgoing weights are written on the plot. We split the neurons of the local minimum θ. (b-c) Neuron
splitting at aj = 1.35 and aj = 1.98: Y has one positive and one negative eigenvalue, hence for
any µ ̸=0, the Hessian has a negative eigenvalue. (d) Neuron splitting at aj =−0.66: Y is positive
definite, hence we find symmetry-induced local minima on (0, 0.5] and strict saddles of index-2 on
(−∞, 0). In all cases, the zero eigenvalue is degenerate at µ=0, and it appears exactly thrice in the
spectrum since we have two input neurons and one output neuron.

order derivatives, namely Y and V (see Eq. 19). This is the relevant case for deep networks
which was not treated in (Fukumizu & Amari, 2000).

ii. In particular, for dout =1 and µ∈{0, 1}, we show that the symmetry-induced critical points are
non-strict saddles for any distribution of the eigenvalue signs of the matrix Y ; which may cause
the optimization algorithm to get stuck.

Theorem 4.1. Let θ∈RP be an irreducible critical point of a neural network with n neurons. Let
⊕j,µ(θ) be a symmetry-induced critical point. The spectrum of HL(⊕j,µ(θ)) is composed of two
parts. The bulk of (d+dout)n eigenvalues have the same signs as the eigenvalue signs of HL(θ). The
remaining (d+dout) eigenvalues have the same signs as the eigenvalue signs of the following matrix[

µ(1−µ)Y (wj , aj) −V (wj , aj)
−V (wj , aj)

T 0

]
(18)

where

Y (wj , aj) =
〈
σ′′(wj · x)xxTaj · c′(f(x), f∗(x))

〉
P ∈ Rd×d,

V (wj , aj)kℓ = ⟨σ′(wj ·x)xkc
′(f(x), f∗(x))ℓ⟩P with k ∈ [d], ℓ ∈ [dout]. (19)

This theorem can be generalized to multi-layers networks by considering any of its hidden layers.
Only the expressions of Y and V need to be updated by (i) substituting x with the post-activation
vector coming before the hidden layer and (ii) the derivative of the cost needs to be calculated w.r.t.
the pre-activation vector coming after the hidden layer, before applying the activation on the next
layer.

We need to unpack the submatrix in Eq. 18 to understand the second-order nature of the symmetry-
induced critical points. Note that

V (wj , aj)aj =
∂L

∂wj
(θ) = 0. (20)

Since the original critical point θ is irreducible, the outgoing vector aj has to be non-zero, which
implies that dim(Null(V ))≥ 1. In the case of one output neuron, V vanishes thus the submatrix in
Eq. 18 reduces to [

µ(1−µ)Y (wj , aj) 0
0 0

]
∈ R(d+1)×(d+1). (21)

Therefore, the eigenvalue signs of the Hessian in the new directions are determined by the spectrum
of Y and the sign of µ(1−µ) up to the trivial zero-eigenvalue coming from the vanishing V . Note
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that the two symmetry-induced critical points ⊕j,µ(θ) and ⊕j,1−µ(θ) have identical Hessian spectra
since they have the same set of neurons. Hence, it is enough to discuss the ray (−∞, 0.5].

An interesting case is when θ is a local minimum, with a Hessian HL(θ) without any negative
eigenvalues. What is the effect of neuron splitting in this case? Does a minimum turn into a strict
saddle? Depending on the spectrum of Y , there are three main scenarios (see Figure 3)

i. positive definite Y : strict saddles on µ < 0 transit into local minima on µ ∈ (0, 0.5] via a
non-strict saddle at µ=0 with a one-sided escape route,

ii. negative definite Y : local minima on µ < 0 transit into strict saddles on µ ∈ (0, 0.5] via a
non-strict saddle at µ=0 with a one-sided escape route,

iii. Y has at least one positive and one negative eigenvalue: strict saddles on µ < 0 transit into
other strict saddles on µ∈(0, 0.5] via a non-strict saddle at µ=0 with a two-sided escape route.

In particular, in any case, we have a non-strict saddle at µ= 0 since the submatrix in Eq. 18 com-
pletely vanishes. Although the Hessian spectrum HL(⊕j,0(θ)) does not suffice to classify this crit-
ical point, since there are neighboring strict saddles on one side or on both sides, we conclude that
it is a non-strict saddle with a one or two-sided escape route towards lower loss 5. The example
of Fig. 3 with the small network of 5 neurons (where one neuron is duplicated) shows that we can
always find a mixing ratio µ that turns the local minimum of the 4-neuron network into a saddle for
the 5-neuron network. Indeed, we have an ‘exclusive-or’ situation: either for all µ∈ (0, 0.5] or for
all µ>0, the Hessian of the critical points has a negative eigenvalue.

We discuss the case of multiple output neurons in detail in Appendix Section D.1.

4.1 THE MINIMAL HESSIAN EIGENVALUE AS A FUNCTION OF THE MIXING RATIO

The escape speed from a strict saddle point depends on the magnitude of the minimum eigenvalue
of the Hessian (Jin et al., 2017). For the local minima, the smallest eigenvalue of the Hessian gives
a measure of flatness. In this section, we dig deeper into the second-order nature of the symmetry-
induced critical points by studying the smallest non-trivial eigenvalue of the Hessian, focusing on
the case of one-output neuron. If the Hessian has a negative eigenvalue, λ† denotes the smallest
eigenvalue; if not, it denotes the second smallest eigenvalue excluding the trivial zero.
Lemma 4.2. The smallest non-trivial eigenvalue of the Hessian of a symmetry-induced critical point
can be bounded as follows

λ†(HL(⊕j,µ(θ))) ≤
{
u(µ)λmin(Y ) for µ∈(0, 1),

u(µ)λmax(Y ) for µ∈R/[0, 1],

where

u(µ) =
µ(1−µ)

(1−µ)2 + µ2
.

As a sanity check: if Y is positive definite, λ† is non-negative for µ ∈ (0, 1) and so is the upper
bound (similarly for Y negative definite); if Y has at least one negative and one positive eigenvalue,
λ† is negative and so is the upper bound. We also provide a lower bound in the Appendix D.2.

4.2 A CURIOUS CASE: THE GRADIENT FLOW DIVERGES TOWARDS INFINITY FOLLOWING
THE RAY OF SYMMETRY-INDUCED LOCAL MINIMA

If Y is negative definite, the symmetry-induced critical points on µ ∈ R/[0, 1] are local minima
(Theorem 4.1). In the limit µ→∞ (equivalently, µ→−∞ due to symmetry), we get

−1

2
λmax(Y ) ≥ lim

µ→∞
λ†(HL(⊕j,µ(θ))).

The upper bound on the smallest non-trivial eigenvalue grows as µ extends towards ∞ and even-
tually saturates. This suggests that the symmetry-induced local minimum gets steeper as |µ| grows

5Except for the case of vanishing Y with no positive and no negative eigenvalues, for ex. this is the case for
the linear activation function.

8



stable neuron

compressed 
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(a) (compressed) neuron splitting (b) minima structure in few-neuron networks

Figure 4: From one-neuron to six-neurons network by splitting one neuron at a time. The targets
are generated by a teacher network with eight-neurons as in Eq. 4, the input data is 9-dimensional
standard Gaussian, and the activation function is softplus. To get a tight approximation of the
gradient flow in high-dimensions, we use numerical integration to approximate the potentials. (a) A
schematic for the neuron splitting process. In two-neurons network, the gradient flow converges the
following solution: one compressed neuron averaging seven teacher neurons, and one stable neuron
matching one teacher neuron. We find a tiny but non-zero correlation between the two neurons.
Splitting the compressed neuron with a mixing ratio of 0.5, we get a three-neuron solution with
one compressed neuron averaging six teacher neurons, and two stable neurons. The same trend
continues until we reach six-neurons network. The norm and the outgoing weight of the stable
neuron is approximately 1.70 and 0.42 for all few-neurons networks. (b) We plot the norm and the
outgoing weight of the compressed neuron as a function of the number of neurons. The compressed
neuron attains a smaller norm compare to the one-neuron solution averaging the same number of
teacher neurons, hence attains a bigger outgoing weight to balance. We also find that the correlation
between the compressed and a stable neuron decreases as the number of neurons increase.

larger, although they represent the same network function (in particular, same generalization be-
havior). In general, we observed that the gradient flow trajectories initialized close to the origin
(standard training) does not get stuck at symmetry-induced local minima, except for a tiny fraction
of initializations (see Appendix A.1).

We wondered where gradient flow trajectories end up when they are initialized close to the
symmetry-induced saddles, in particular whether they converge to other symmetry-induced local
minima at a lower loss. We found that the destination is determined by the sign of the dot product
between the smallest eigenvector of the Hessian and the perturbation vector (see Fig. 7 of Appendix).
The destination also depends on the splitted neuron creating the symmetry-induced saddles. We
also found a curious case for some perturbation scenarios: the gradient flow travels near a line of
symmetry-induced local minima at a lower loss towards infinity, without converging to any local
minima on the line (see Fig. 9 in Appendix). We propose a low dimensional toy model to explain
the apperance of a local minimum at infinity in Appendix D.2.3 near a line of critical points, inspired
by the upper bound on the minimal eigenvalue of the Hessian.

5 CONCLUSION & FUTURE DIRECTIONS

In this paper, we proposed a novel proof to study the global landscape of the one-neuron network
when it learns from a teacher network with arbitrary number of neurons. Going beyond the one-
neuron case, we analyzed the second-order nature of the symmetry-induced critical points ubiq-
uitous in the loss landscapes of neural networks Şimşek et al. (2021). Numerically analyzing the
neural networks with few neurons trained through a neuron splitting procedure, we identified that
the compression strategy of averaging teacher neurons is prevalent in underparameterized networks.
Generalizing the proofs for the one-neuron network to more general activation functions is an in-
triguing direction to pursue. An another interesting direction is generalizing the proofs for the case
of non-orthogonal incoming vectors, and also for the case of arbitrary outgoing weights for the
teacher, which requires a finer analysis. A more challenging case is the rigorous analysis of the
global landscape of the two-neurons networks, which is an open question. We believe our paper
establishes the first steps towards understanding the compression strategy of underparameterized
networks, hence opening a way to understand and rigorously study the solutions found by neural
networks with finite width.
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A SIMULATIONS

We integrate the gradient flow with an ESDIRK integration method (KenCarp58) Kennedy & Car-
penter (2003); Rackauckas & Nie (2017) and chain the result into a trust-region Newton optimizer
Mogensen & Riseth (2018) to obtain highly accurate estimates of fixed points of the gradient flow,
i.e. critical points of the loss function.

A.1 MINIMA FOUND BY A FOUR-NEURON NETWORK (FIG 3)

We create a two-layer teacher network with r = 4 neurons: unit 2-dimensional incoming vectors
wj = [cos(βj), sin(βj)] with βj ∈ {0, π/4, 3π/4, 3π/2} and with outgoing weights aj = 1. We
sample N = 105 input data points xi from a standard Gaussian. The teacher network then creates
the targets yi =

∑4
j=1 σ(cos(βj)x

1
i + sin(βj)x

2
i ). We trained 1000 seeds of students with the same

number of neurons using the normal Glorot initialization Glorot & Bengio (2010).

In this subsection, we present the empirical local minimum that we found in 1000 simulations above
in terms of the distribution of its neurons (Fig. 5) and some statistics such as the size of the empirical
basin of attraction and the Hessian spectrum.

(a) sym. ind. local min.-I (b) sym. ind. local min.-II (c) local min.-I (d) local min.-II

Figure 5: Three different local minima. Out of 1000 random initializations, gradient flow converged
to a either one of the three local minima up to permutation shown in the figure or to a global min-
imum. For the symmetry-induced local minimum (a-b), the mixing ratio of the outgoing weights
differs depending on the initialization, however it is always on the line segment µ ∈ (0, 1) corre-
sponding to the splitting of the neuron in the lower left corner. Although the other two local minima
are very similar to each other (c-d), we believe they are different, i.e. the separation is not an artifact
due to numerical issues. In (c-d), we note the extra symmetry between the two neurons with very
similar outgoing weights (i.e. aj ∼ 1.35). This extra symmetry is due to the angular internal sym-
metry between the teacher neurons. Further statistics on these three local minima are given in the
Table 1.
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We observe that the global minimum is the flattest in terms of the minimum non-trivial eigenvalue
of the Hessian (i.e. excluding the trivial zero of the symmetry-induced local minimum). It also has
the largest empirical basin of attraction with 696/1000 initializations converging to it. However,
although the local minimum-II is flatter than local minimum-I, its empirical basin of attraction is
much smaller – which contradicts with the hypothesis that the gradient flow converges to a flatter
minimum more often.

— sym. ind. local min local min.-I local min.-II global min.
fractions 13/1000 227/1000 64/1000 696/1000

loss 2.02e-5 1.63e-6 1.61e-6 1.17e-29
grad 3.97e-11 1.41e-11 1.57e-11 1.90e-11

min. eig. -2.3e-12 0.335 0.190 0.085
2-nd min. eig. 0.815 0.387 0.260 0.270

max. eig. 3.3e6 3.0e6 3.3e6 3.1e6

Table 1: Statistics of all three minima of the student network. The average loss, gradient norm; the
minimum, the second minimum, and the maximum eigenvalue of the Hessian are reported for each
one of the minima.

B GENERAL PROPERTIES OF THE POTENTIALS

In this section, we introduce some general properties of the potentials. At the moment, we use these
only for the one-neuron networks (see Section C). We expect these properties to play a crucial role
in studying the networks with two or more neurons.

We first prove a simple rule for the partial derivative of the potential with respect to the similarity.

Lemma B.1. If the activation function σ is differentiable, then the partial derivative of the potential
g(r1, r2, u) = ⟨σ(r1x)σ(r2y)⟩ with respect to the correlation ⟨xy⟩ = u can be expressed as

∂ug(r1, r2, u) = r1r2⟨σ′(r1x)σ
′(r2y)⟩. (22)

Applying the partial derivative rule once more, we get

∂2
u2g(r1, r2, u) = r21r

2
2⟨σ′′(r1x)σ

′′(r2y)⟩. (23)

Proof. We compute the derivative of g(r1, r2, u) by making the correlation u explicit. We denote
u′ =

√
1− u2. After the computation, we use the Stein’s lemma to reach the desired formula.

∂ug(r1, r2, u) = r2⟨σ(r1x)σ′(r2(ux+ u′z))x⟩ − r2u

u′ ⟨σ(r1x)σ
′(r2(ux+ u′z))z⟩ (24)

where x and z are independent standard Gaussians. Here is a reminder for the Stein’s Lemma for a
standard Gaussian z

⟨v(z)z⟩ = ⟨v′(z)⟩. (25)

To remove x in the integrand of the first term, we apply the Stein’s formula for v(x) =
σ(r1x)σ

′(r2(ux+ u′z)) and get

r1r2⟨σ′(r1x)σ
′(r2(ux+ u′z))⟩+ r22u⟨σ(r1x)σ′′(r2(ux+ u′z))⟩. (26)

To remove z in the integrand of the second term, we apply the Stein’s formula for v(z) = σ′(r2(ux+
u′z)) and we get

−r22u⟨σ(r1x)σ′′(ux+ u′z)⟩. (27)

Summing up the two terms, we complete the proof.

We next prove that the potentials induced by softplus, ReLU, sigmoid, and tanh satisfy Assump-
tions 3.1 (i) and (ii) (a. or b.). The core of the proof comes from Lemma B.1.
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Lemma B.2. The potentials of increasing and differentiable activation functions such as softplus,
sigmoid, and tanh

σ(x) =
1

β
log(eβx + 1) with β > 0, σ(x) =

1

1 + e−x
, σ(x) =

ex − e−x

ex + e−x
,

respectively satisfy Assumption 3.1 (i). The potential of the ReLU activation function, i.e. σ(x) =
max{0, x}, also satisfies it. The potentials of convex and twice differentiable activation functions
such as softplus, and ReLU satisfy Assumption 3.1 (ii)-a. Moreover, the potentials of sigmoid and
tanh activation functions satisfy Assumption 3.1 (ii)-b.

Proof. The potentials of increasing and diffentiable activation functions satisfy Assumption (i) since
σ′(·)>0 due to Lemma B.1. Moreover, if the activation function is convex and twice differentiable,
its potential also satisfies Assumption 3.1 (ii) since σ′′(·) > 0 and from applying Lemma B.1 twice.

Note that the softplus is smooth, increasing and convex since the first two derivatives are positive

σ′(x) =
eβx

eβx + 1
, σ′′(x) =

βeβx

(eβx + 1)2
. (28)

Therefore the softplus and any other twice differentiable, increasing, and convex activation function
satisfies Assumptions 3.1 (i) and (ii)-a.

For the ReLU activation function, the following analytic expressions are derived for the potential
and its partial derivative with respect to the similarity (Cho & Saul, 2009; Safran & Shamir, 2018)

g(r1, r2, u) =
r1r2
2π

(√
1− u2 + (π − arccos(u))u

)
, (29)

∂ug(r1, r2, u) =
r1r2
2π

(π − arccos(u)). (30)

Since ∂ug is positive in (−1, 1) Assumption 3.1 (i) is satisfied. Since arccos(u) is decreasing in
[−1, 1], ∂ug is increasing, hence Assumption 3.1 (ii)-a is satisfied too.

Finally, we show that potentials of sigmoid and tanh satisfy Assumption 3.1 (ii)-b. The second-order
derivatives of these two activation functions are the same since they differ only by a constant

σ′′(x) = σ(x)(1− σ(x))(1− 2σ(x)) = σ′(x)(1− 2σ(x)) (31)

where σ(x) = 1/(1 + e−x). Since σ′(·) is an even and (1 − 2σ(·)) is an odd function, their
multiplication σ′′(·) is an odd function. Hence, it respects the following identity

⟨σ′′(x)σ′′(y)⟩ = −⟨σ′′(x)σ′′(−y)⟩. (32)

Moreover, we have that σ′′(x)<0 for x>0 and σ′′(0)=0. At u=0, the above expectation factors
out and we get thanks to the sign symmetry

⟨σ′′(x)σ′′(y)⟩ = ⟨σ′′(x)⟩⟨σ′′(y)⟩ = 0. (33)

We next use conditional expectation and the oddness property to rewrite the expression of the po-
tential

⟨σ′′(x)σ′′(y)⟩ = ⟨σ′′(x)σ′′(y) | xy > 0⟩P{xy > 0}+ ⟨σ′′(x)σ′′(y) | xy ≤ 0⟩P{xy ≤ 0},
= ⟨|σ′′(x)||σ′′(y)| | xy > 0⟩ (P{xy > 0} − P{xy ≤ 0}) . (34)

Note that the first term is positive since the integrand is positive. As for the second term, we get

P{xy > 0} > 1/2 (35)

since x and y are positively correlated. Hence, the probability of xy>0 is bigger than the probability
of the complement. Therefore from Lemma B.1 and Eq. 34, we get that ∂2

u2g is positive for u> 0
and negative for u<0 which suffices to satisfy Assumption 3.1 (ii)-b.

For the linear activation function, we have an explicit formula for the potential

g(r1, r2, u) = ⟨r1x · r2y⟩ = r1r2u (36)

which satisfies Assumption 3.1 (i) but not (ii) as ∂ug is constant as a function of u.
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C PROOFS FOR THE ONE-NEURON NETWORK

For the one-neuron network, we can expand the loss as follows

L = a2g(r, r, 1)− 2a

k∑
i=1

g(r, 1, ui) + const, (37)

where the constant represents the teacher-teacher interactions. In this section, we first prove the
uniqueness of similarities in Subsection C.1 for a general family of activation functions using sym-
metry arguments and properties that we developed in Section B. Next, applying the result of Theo-
rem 3.2, the above loss in Eq. 37 at a critical point reduces to

L = a2g(r, r, 1)− 2kag(r, 1, u) + const. (38)

where u=1/
√
k. Moreover, the partial derivatives with respect to the norm and the outgoing weight

should also be zero which gives the following two constraints

∂aL = 2ag(r, r, 1)− 2kg(r, 1, u) = 0, (39)

∂rL = a2∂rg(r, r, 1)− 2ka∂rg(r, 1, u) = 0. (40)

These constraints are equivalent to the following

a

k
=

g(r, 1, u)

g(r, r, 1)
=

2∂rg(r, 1, u)

∂rg(r, r, 1)
. (41)

Note that the second equality between the two ratios of Gaussian averages gives a fixed point equa-
tion on the norm. To find the solutions of the fixed point equation, we control the Gaussian averages
with the help of the FKG inequality and Stein’s lemma in Subsection C.3.

C.1 PROOF OF THEOREM 3.2 FOR GENERAL ACTIVATION FUNCTIONS

In this subsection, we prove that for the general activation functions, any critical point of the one-
neuron network should have equal similarities with the teacher incoming vectors, excluding the
origin. First, we take a detour to check the applicability of the convex optimization framework.

If Assumption 3.1 (ii)-a is strengthened to the convexity of g(r1, r2, u) in the similarity for r1, r2 > 0
and u ∈ [−1, 1], we get the uniqueness of the critical point for the case a < 0 using the convex
optimization framework as follows (see Boyd et al. (2004) Section 4.2). In this case, the loss L̃ is
convex since its Hessian is diagonal with entries

∂2
u2
i
L̃ = −2a∂2

u2
i
g(r, 1, ui) > 0. (42)

Note that the constraint on the similarities (Eq. 14) is also convex, thus we get a convex optimization
problem which has a unique minimizer. We can argue for the non-existence of critical points by
contradiction. Assume that there exists a critical point other than the minimizer. Then the loss on
the line segment between the minimizer and the critical point crosses the loss corresponding to the
linear interpolation between these two points. This breaks the convexity.

Swapping any pair of ui does not change the loss since all teacher neurons have equal strength (unit
norm incoming vector and unit outgoing weight), therefore the loss is permutation symmetric in
(ui)

k
i=1. If any two ui were distinct from each other at the minimizer, then its permutation would

also be a minimizer which would violate the uniticity. In this case, we conclude that there is a unique
critical point where the similarities are equal to each other.

However for the case a > 0, L̃ is concave and the constraint is convex. This falls in the realm of
concave minimization Horst & Pardalos (2013). In this case, in general, there can be arbitrarily
many local minimizers. Hence, for the proof of the Theorem 3.2, we use a different strategy

Proof. We first show that the similarities should satisfy the constraint in Eq. 14 at a critical point.
If the norm of similarities do not achieve the maximum which is unity, we pick a similarity, say
uk. The potential g(r, 1, ·) is increasing in the similarity due to Assumption 3.1 (i). If the outgoing
weight is positive, increasing any of uk’s decreases L̃, resulting in a non-zero derivative. The only
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exception is the case when all uk’s are positive and the constraint in Eq. 14 is satisfied since then
it is not possible to increase any of the similarities. If the outgoing weight is negative, decreasing
any of uk’s decreases L̃, resulting in a non-zero derivative. The only exception is the case when
all uk’s are negative and the constraint in Eq. 14 is satisfied since then it is not possible to decrease
any of the similarities. Hence, there is no critical point in the loss landscape except in the two cases
mentioned above, i.e.

∑k
i=1 u

2
i = 1 with either all ui>0 or all ui<0.

Next, we prove that all similarities at a critical point must be equal. Let’s assume the contrary, wlog
ui > uj . Since the disk constraint is convex, the linear interpolation between (uj , ui) and (ui, uj)

(ui(t), uj(t)) = (uj + t(ui − uj), ui + t(uj − ui)) (43)

for t ∈ [0, 1] remains in the domain. The derivative of the loss along this path is given by

∂tL̃ = −2a (∂ug(r, 1, ui(t))(ui − uj)− ∂ug(r, 1, uj(t))(ui − uj)) . (44)

Evaluated at (ui(t), uj(t))
∣∣
t=1

= (ui, uj), we get

∂tL̃
∣∣
t=1

= −2a(ui − uj) (∂ug(r, 1, ui)− ∂ug(r, 1, uj)) . (45)

If all uk > 0 and either Assumption 3.1 (ii)-a or Assumption 3.1 (ii)-b is satisfied, we get that ∂ug
is increasing, hence the above derivative cannot be zero. If all uk < 0 and if Assumption 3.1 (ii)-a
is satisfied, we get that ∂ug is increasing; if Assumption 3.1 (ii)-b is satisfied, we get that ∂ug is
decreasing. In any case, the above derivative cannot be zero. Therefore, at a critical point, we have
either ui=1/

√
k for a>0, or ui=−1/

√
k for a<0 for all i ∈ [k].

C.2 PROOF OF THEOREM 3.3 FOR RELU

In the case of ReLU, potentials have an analytic expression Cho & Saul (2009); Safran & Shamir
(2018)

g(r1, r2, u) =
r1r2
2π

h(u) with h(u) =
√
1− u2 + (π − arccos(u))u. (46)

We showed in Theorem 3.2 that at a critical point with a ̸= 0 and r ̸= 0, all similarities to the teacher
incoming vectors must be equal, and we denote them by u. Plugging in the similarities in the loss
and using the factorization of the potential in Eq. 46, we get

L = a2r2 · h(1)− 2kar · h(u) + const. (47)

Reparameterizing with ã = ar, let us observe that the loss is a second-order polynomial

L = h(1)

(
ã2 − ã2k

h(u)

h(1)
+ k + k(k − 1)

h(0)

h(1)

)
. (48)

where we also made the constant explicit. Since the coefficient of the square term is positive, there
is a minimizer (which is the only critical point). Taking the derivative, the minimum is attained at

ã = k
h(u)

h(1)
. (49)

Note that h(u) > 0 for k ≥ 2, whether we have u = −1/
√
k or u = 1/

√
k. This implies that the

outgoing weight is positive, therefore the only option for u= 1/
√
k according to Theorem 3.2. If

k = 1, then we may have h(−1) = 0 implying a = 0, which is a case we analyze separately in the
second part of the proof.

Plugging u = 1/
√
k in, we get the loss

L = h(1)

(
−(k

h(u)

h(1)
)2 + k + k(k − 1)

h(0)

h(1)

)
, (50)

= k2
(
h(0)− h(u)2

h(1)

)
+ k(h(1)− h(0)). (51)
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Let us check the cases a=0 and r=0.

For the case a=0, first note that the derivatives of the loss w.r.t r and ui’s are zero. The derivative
of the loss w.r.t a is

∂aL
∣∣
a=0

= −2

k∑
i=1

rh(ui), (52)

which is zero if r = 0. If r > 0, the sum of potentials is positive if any of the similarities satisfy
ui>−1 which yields a negative derivative. Therefore, u1=−1 with arbitrary r>0 is also a critical
point for the case with one teacher neuron.

For the case a ̸= 0 and r = 0, first note that the derivatives w.r.t a and ui’s are zero thanks to the
factorization property of ReLU (in Eq. 46). The derivative of the loss w.r.t. r is

∂rL
∣∣
r=0

= a2∂rr
2h(1)

∣∣
r=0

− 2a

k∑
i=1

∂rrh(ui)
∣∣
r=0

= −2a

k∑
i=1

h(ui). (53)

Since r = 0 enforces ui = 0, we get that the sum of potentials is positive which yields a non-zero
derivative. This completes the proof of Theorem 3.3.

C.3 PROOF OF THEOREM 3.4 FOR SOFTPLUS

In this section, we prove Theorem 3.4 where the activation function is assumed to be a softplus

σ(x) =
1

β
log(eβx + 1)

with β > 0. The potential does not have a known analytic expression in this case unlike ReLU,
hence the proof involves some techniques to compare some ratios of averages, in particular the FKG
inequality. We also rely on some specific properties of the softplus family that are developed in
Section C.3.4. Unfortunately, some of these properties do not apply to other activation functions
such as sigmoid and tanh. However, as a first example of managing potentials without an analytic
expression, we hope that the proof inspires generalizations to other activation functions.

Below we present the proof skeleton. In the following Subsections C.3.1, C.3.2, C.3.3, and C.3.4,
the components of the proof are presented in detail.

Proof Sketch. Rearranging the terms in the Eq. 41 and writing the potentials explicitly, we get

f(u, r) =
⟨σ′(rx)σ(rx)x⟩

⟨σ(rx)2⟩
− ⟨σ′(rx)σ(y)x⟩

⟨σ(rx)σ(y)⟩
. (54)

Defining the helper functions

G(r) =
⟨σ′(rx)σ(rx)x⟩

⟨σ(rx)2⟩
=

1

2

d

dr
log(⟨σ(rx)2⟩), (55)

G̃(u, r) =
⟨σ′(rx)σ(y)x⟩
⟨σ(rx)σ(y)⟩

=
d

dr
log(⟨σ(rx)σ(y)⟩), (56)

we will use the following expression

f(u, r) = G(r)− G̃(u, r). (57)
We first characterize the zeros of f in Section C.3.1. In particular, we show that for r ∈ [0, 1], there
is a unique correlation u ∈ [0, 1] such that f(u, r) = 0. We denote this correlation by h(r) such
that h : [0, 1] → [0, 1]. Thanks to Lemma C.1, we have that ∂uf ̸= 0. Therefore, we can invoke the
implicit function theorem and obtain that h is smooth since f is smooth. We also show that h(0) = 0
and h(1) = 1. Finally for r > 1, we show that there is no solution of f .

In Section C.3.2, we give a lower bound on the correlation h(r). Using this lower bound and with
the help of Stein’s Lemma, we give a lower bound on the outgoing weight in Section C.3.3.

Combining all, we conclude that any critical point of the one neuron incoming vector which has
similarity/correlation u=1/

√
k with the teacher incoming vectors must have a norm r that is smaller

than or equal to u so as to satisfy the derivative constraints in the Eq. 41, and a lower bound on the
outgoing weight follows. This completes the proof of Theorem 3.4. End of Proof Sketch.
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C.3.1 CHARACTERIZING THE ZEROS OF f

In this subsection, we will find all zero-crossings of f : [−1, 1]× [0,∞) → R.

Let us check the corner cases of r=0 and r=1 first.

For r=0: Note that G(0)=G̃(0, 0). Since G̃ is increasing in the correlation (Lemma C.1), the only
solution in this case is u=0.

For r=1: Note that G(1)= G̃(1, 1) since y = x due to correlation 1. Since G̃ is increasing in the
correlation (Lemma C.1), the only solution in this case is u=1.

We next show that there is no solution for r>1.

For r>1: We first show that G(r) > G̃(1, r) for r>1, which is equivalent to

⟨σ′(rx)σ(rx)x⟩⟨σ(rx)σ(x)⟩ > ⟨σ′(rx)σ(x)x⟩⟨σ(rx)2⟩. (58)

Changing the measure of x from the standard Gaussian p(x) to p̃(x) = p(x)σ(rx)2/⟨σ(rx)2⟩, we
get the following equivalent inequality〈

σ′(rx)x

σ(rx)

〉〈
σ(x)

σ(rx)

〉
>

〈
σ′(rx)x

σ(rx)

σ(x)

σ(rx)

〉
. (59)

From the property (iv) of Lemma C.3, we have that σ′(rx)x/σ(rx) is increasing after a substitution
x → rx. We need to show σ(x)/σ(rx) is decreasing in x for r>1, thus we take the derivative

d

dx

σ(x)

σ(rx)
=

σ′(x)σ(rx)− σ(x)σ′(rx)r

σ(rx)2
. (60)

Since σ′(x)x/σ(x) is increasing, we also have

σ′(x)x

σ(x)
<

σ′(rx)rx

σ(rx)
for x > 0, and

σ′(x)x

σ(x)
>

σ′(rx)rx

σ(rx)
for x < 0. (61)

This yields σ′(x)σ(rx) < σ(x)σ′(rx)r, hence that σ(x)/σ(rx) is decreasing from Eq. 60. Thanks
to the FKG inequality, we conclude that σ′(rx)x/σ(rx) and σ(x)/σ(rx) are negatively correlated.

Since From Lemma C.1, G̃ is increasing in correlation, we have G̃(1, r)> G̃(u, r) for any u ≤ 1,
therefore there is no solution of f for the case of r>1.

For r ∈ (0, 1): Now we can reduce the search domain to r ∈ (0, 1) to find the solutions of f . We
next show that for any r ∈ (0, 1), there is a unique u ∈ (0, 1) such that f(u, r) = 0. It suffices to
show

G̃(0, r) < G(r) < G̃(1, r),

since G̃ is continuous and increasing in correlation (Lemma C.1), it crosses G(r) at a unique u.

First inequality: G̃(0, r)<G(r). In this case, x and y are Gaussians with zero correlation, therefore
they are independent. We can expand G̃(0, r) by splitting the average

G̃(0, r) =
⟨σ′(rx)x⟩⟨σ(y)⟩
⟨σ(rx)⟩⟨σ(y)⟩

=
⟨σ′(rx)x⟩
⟨σ(rx)⟩

. (62)

We want to show

⟨σ′(rx)x⟩⟨σ(rx)2⟩ < ⟨σ′(rx)σ(rx)x⟩⟨σ(rx)⟩. (63)

which is equivalent to the following inequality after changing the measure from standard Gaussian
p(x) to p̃(x) = p(x)σ(rx)/⟨σ(rx)⟩〈

σ′(rx)x

σ(rx)

〉
p̃

⟨σ(rx)⟩p̃ <

〈
σ′(rx)x

σ(rx)
σ(rx)

〉
p̃

. (64)

This is again a consequence of the FKG inequality since we have that both σ′(x)x/σ(x) and σ(x)
are increasing from the properties (i) and (iv) of the softplus (Lemma C.3).
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Second inequality: G(r)<G̃(1, r) for r < 1. This is equivalent to the Ineq. 58, but the direction of
the inequality is reversed. We showed that σ(x)/σ(r′x) is decreasing in x for all r′ > 1, therefore
its reciprocal σ(r′x)/σ(x) is increasing in x. Now substituting x → rx where r = 1/r′ < 1,
we get that σ(x)/σ(rx) is increasing in x for all r > 1. This yields positive correlation between
σ′(rx)x/σ(rx) and σ(x)/σ(rx) from the FKG inequality, hence the proof is complete.

In summary, we showed that there is zero-crossing of f for r>1 and for r ∈ [0, 1], there is a unique
correlation u, denoted by h(r) which satisfies the following

i. h(0)=0 and h(1)=1,
ii. for r ∈ (0, 1), we have h(r) ∈ (0, 1).

Therefore, there is a unique map h such that f(h(r), r) = 0 for all r ∈ [0, 1]. f is smooth since σ

is smooth. Moreover, since G̃ is increasing (Lemma C.1), its derivative is not zero, which yields
∂uf = −∂uG̃ ̸= 0 . Therefore, the implicit function theorem gives that for every r ∈ (0, 1), there
is a neighborhood of r and h̄ ∈ C∞ such that f(h̄(r), r) = 0. Since h is unique, h(r) = h̄(r) in the
neighborhood of r for every r ∈ (0, 1), hence h is also C∞.

C.3.2 BOUND ON THE NORM

In this subsection, we will show that h(r)≥ r for all r ∈ (0, 1). Let us assume the contrary, which
implies

G̃(h(r), r) < G̃(r, r)
due to Lemma C.1. It suffices to show that for all r ∈ (0, 1), we have

G̃(r, r) ≤ G(r), (65)

since this yield a contradiction with G(r) = G̃(h(r), r). This piece is equivalent to
⟨σ′(rx)σ(rx+ r′z)x⟩⟨σ(rx)2⟩ ≤ ⟨σ′(rx)σ(rx)x⟩⟨σ(rx)σ(rx+ r′z)⟩ (66)

where r′ =
√
1− r2. After a change of measure from standard Guassian p(x) to

p̃(x) = p(x)
⟨σ(rx+ r′z)⟩z

σ(rx)

/〈
σ(rx+ r′z)

σ(rx)

〉
, (67)

this is equivalent to the following inequality〈
σ′(rx)x

σ(rx)

〉
p̃

〈
σ(rx)

⟨σ(rx+ r′z)⟩

〉
p̃

≤
〈
σ′(rx)x

σ(rx)

σ(rx)

⟨σ(rx+ r′z)⟩

〉
p̃

. (68)

What remains to show is that
⟨σ(rx+ r′z)⟩z

σ(rx)
is non-increasing in x since then we can conclude by the FKG inequality. Since r> 0 we can drop
it up to a change in the standard deviation of x. We want to show that its derivative is non-positive

σ(x)⟨σ′(x+ r′z)⟩ ≤ σ′(x)⟨σ(x+ r′z)⟩ ⇔ σ(x)

σ′(x)
≤ ⟨σ(x+ r′z)⟩

⟨σ′(x+ r′z)⟩
. (69)

From the property (iii) of softplus (Lemma C.3), we have that R(x) = σ(x)/σ′(x) is convex. Ap-
plying Jensen, we get

σ(x)

σ′(x)
≤

〈
σ(x+ r′z)

σ′(x+ r′z)

〉
. (70)

What remains to show is that〈
σ(x+ r′z)

σ′(x+ r′z)

〉
⟨σ′(x+ r′z)⟩ ≤ ⟨σ(x+ r′z)⟩. (71)

Note that ⟨σ′(x+ r′z)⟩z is increasing in x since σ′′ is positive everywhere. Moreover, the function〈
σ(x+ r′z)

σ′(x+ r′z)

〉
z

is increasing in x since its integrand R is increasing from the property (iii) of softplus (Lemma C.3).
Finally, the FKG inequality completes the proof.

In summary, we showed that for a given u∈(0, 1), if r solves the fixed point Eq. 41, it satisfies r≥u.
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C.3.3 BOUNDING THE OUTGOING WEIGHT

To get a bound on a, let us analyze the ratio of potentials in Eq. 41

g(r, 1, u)

g(r, r, 1)
=

a

k
. (72)

Using the convexity of softplus (property (i) of Lemma C.3), we get

⟨σ(rx)σ(ux+ u′z)⟩
⟨σ(rx)2⟩

≥ ⟨σ(rx)σ(rx)⟩+ ⟨σ(rx)((u− r)x+ u′z)σ′(rx)⟩
⟨σ(rx)2⟩

(73)

= 1 + (u− r)
⟨σ′(rx)σ(rx)x⟩

⟨σ(rx)2⟩
. (74)

We can transform the numerator using the Stein’s lemma with v(x) = σ(rx)σ′(rx)

⟨σ(rx)σ′(rx)x⟩ = r⟨σ′(rx)σ′(rx) + σ(rx)σ′′(rx)⟩ (75)

which is positive since softplus is positive, increasing, and convex. Combining it with u ≥ r, we get
that the ratio is bounded below by 1 which yields the lower bound k on the outgoing weight a.

C.3.4 HELPER LEMMAS

In this subsection, we provide helper lemmas used in the proof of Theorem 3.4. We first present
Lemma C.1 and its proof where we use Lemma C.2, which shows that G̃ is increasing in correlation
for all u ∈ [0, 1] for any given r ≥ 0. Finally, we present several properties of the softplus family in
Lemma C.3.

Lemma C.1. The following function is increasing in u ∈ [0, 1]

G̃(u, r) =
⟨σ′(rx)σ(y)x⟩
⟨σ(rx)σ(y)⟩

(76)

for any r ≥ 0, where x and y are standard Gaussians with correlation ⟨xy⟩ = u.

Proof. Let us first reparameterize y = ux + u′z where u′ =
√
1− u2 to make the correlation u

explicit. Derivating it w.r.t u, we get

∂uG̃(u, r) =
⟨σ′(rx)σ′(y)x2⟩
⟨σ(rx)σ(y)⟩

− ⟨σ′(rx)σ(y)x⟩⟨σ(rx)σ′(y)x⟩
⟨σ(rx)σ(y)⟩2

.

Showing ∂uG̃(u, r) > 0 is equivalent to the following

⟨σ′(rx)σ′(y)x2⟩⟨σ(rx)σ(y)⟩ > ⟨σ′(rx)σ(y)x⟩⟨σ(rx)σ′(y)x⟩.

Changing the measure from the standard Gaussian p(x) to

p̃(x) = p(x)
σ(rx)⟨σ(y)⟩z
⟨σ(rx)σ(y)⟩

(77)

where ⟨σ(y)⟩z denotes the conditional average over z with fixed x, we get〈
σ′(rx)

σ(rx)
x
⟨σ′(y)⟩z
⟨σ(y)⟩z

x

〉
p̃

>

〈
σ′(rx)

σ(rx)
x

〉
p̃

〈
⟨σ′(ux+ u′z)⟩
⟨σ(ux+ u′z)⟩

x

〉
p̃

. (78)

Thanks to the property (iv) of softplus (Lemma C.3), we have that σ′(rx)x/σ(rx) is increasing in
x after a substitution x → rx. For r = 0, the function reduces to αx with some α > 0, thus it is
increasing also in this case. In Lemma C.2, we show also that ⟨σ′(y)⟩zx/⟨σ(y)⟩z is increasing in x
considering x with standard deviation u and z with standard deviation u′. For u= 0, the function
reduces to αx with some α>0, thus it is increasing also in this case.

Therefore, we conclude with the FKG inequality that σ′(rx)x/σ(rx) and ⟨σ′(y)⟩zx/⟨σ(y)⟩z are
positively correlated.
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Lemma C.2. The following function
⟨σ′(x+ z)⟩zx
⟨σ(x+ z)⟩z

is increasing in x where z is a centered Gaussian with arbitrary standard deviations.

Proof. In the proof, all averages are w.r.t. the standard Gaussian z, hence we drop the subindex.
Taking the derivative, we want to show(

⟨σ′′(x+ z)⟩x
⟨σ′(x+ z)⟩

+ 1

)
⟨σ(x+ z)⟩ > ⟨σ′(x+ z)⟩x (79)

which is equivalent to the following due to the property σ′′(z) = βσ′(z)(1− σ′(z))(
βx

(
1− ⟨σ′(x+ z)2⟩

⟨σ′(x+ z)⟩

)
+ 1

)
⟨σ(x+ z)⟩ > ⟨σ′(x+ z)⟩x. (80)

In the case x≥ 0, the LHS is bigger than ⟨σ(x + z)⟩ since σ′(·) is upper bounded by 1. Moreover,
since σ(x)>x and from the convexity of softplus, we get ⟨σ′(x + z)⟩ > x. This yields the above
inequality by again noting that ⟨σ′(x+ z)⟩ is upper bounded by 1.

In the case x<0, we need another strategy. We have thanks to Cauchy-Schwartz

⟨σ′(x+ z)2⟩
⟨σ′(x+ z)⟩

≥ ⟨σ′(x+ z)⟩, (81)

thus it suffices to show

(βx− βx⟨σ′(x+ z)⟩+ 1) ⟨σ(x+ z)⟩ > ⟨σ′(x+ z)⟩x. (82)

We will show the following

⟨σ′(x+ z)⟩ ≥ σ′(x), (83)

which does not trivially come from Jensen’s inequality since the sigmoid is convex only for x< 0.
Let us explicitly write out the sigmoid〈

eβ(x+z)

eβ(x+z) + 1

〉
− eβx

eβx + 1
≥ 0 ⇔

〈
eβz − 1

eβ(x+z) + 1

〉
≥ 0. (84)

Since we have eβ(x+z) ≤ eβz for all x<0, it suffices to show〈
eβz − 1

eβz + 1

〉
≥ 0 ⇔ ⟨σ′(z)⟩ ≥ 1

2
(85)

which comes from noting that σ′(z) + σ′(−z) = 1, and since the distribution of z is symmetric
around the origin. Hence, it remains to show

βx+ eβx + 1

eβx + 1
⟨σ(x+ z)⟩ > ⟨σ′(x+ z)⟩x. (86)

From the proof of Lemma C.3, we have that σ′(x) < βσ(x), which in combination with the follow-
ing observation for all x < 0

βx+ eβx + 1

eβx + 1
=

βx

eβx + 1
+ 1 > βx+ 1 (87)

completes the proof of Eq. 86, hence the proof of the lemma.

Lemma C.3. The softplus family has the following properties

i. σ(x) is increasing and convex,

ii. σ(x) is log concave (equivalently, σ(x)/σ′(x) is increasing),

iii. σ(x)/σ′(x) is convex,
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iv. σ′(x)x/σ(x) is increasing.

Proof. For the property (i), see the proof of Lemma B.2. We next prove each one of the properties
one after the other. Let us start with the property (ii). First note that σ(x) is log concave if and only
if σ(x)/σ′(x) is increasing since

d

dx

σ(x)

σ′(x)
= 1− σ(x)σ′′(x)

σ′(x)2
> 0 ⇔ σ′(x)2 > σ(x)σ′′(x). (88)

We will prove that R(x) := σ(x)/σ′(x) is increasing. Let us write out the ratio explicitly

R(x) =
1

β

(
log(eβx + 1) +

log(eβx + 1)

eβx

)
. (89)

Let us compute the first derivative of R (dropping the factor 1/β since it does not change the sign)

R′(x) = σ′(x) +
σ′(x)− βσ(x)

eβx
=

eβx − βσ(x)

eβx
. (90)

Since log is concave, expanding it around 1 we get log(y + 1) < y for all y > 0. Substituting
y = eβx, we get that the numerator of R′ is positive, thus R is increasing. This completes the proof
of property (ii). Computing the second derivative of R, we get

R′′(x) =
σ′′(x)(eβx + 1)− 2βσ′(x) + β2σ(x)

eβx
= β

(
−σ′(x) + βσ(x)

eβx

)
. (91)

What remains to show is that βσ(x) > σ′(x). We have the following identity due to the fundamental
theorem of calculus

log(y + 1)

y
=

1

y

∫ y

0

1

t+ 1
dt >

1

y + 1
(92)

since 1/(y + 1) is a lower bound of the integrand. Substituting y = eβx, we get

log(eβx + 1) >
eβx

eβx + 1
(93)

which completes the proof of the property (iii). Let us prove the property (iv) by taking the derivative
of the function of interest

d

dx

σ′(x)x

σ(x)
=

(σ′′(x)x+ σ′(x))σ(x)− σ′(x)2x

σ(x)2
(94)

Using σ′′(x) = βσ′(x)(1− σ′(x)) and after dropping the positive term σ′(x), the numerator of the
derivative is

((1− σ′(x))βx+ 1)σ(x)− σ′(x)x =

(
βx

1 + eβx
+ 1

)
σ(x)− eβx

1 + eβx
x (95)

=
eβx

eβx + 1

(
1

eβx
(eβx + βx+ 1)σ(x)− x

)
(96)

For the case x ≥ 0, we have σ(x) > x and (βx+ 1)/eβx > 0, hence the derivative is positive.

For the case x < 0, we want to show(
eβx + βx+ 1

) log(eβx + 1)

eβx
> βx. (97)

If eβx + βx+ 1 > 0, it is done since the LHS is positive. If eβx + βx+ 1 ≤ 0, we have(
eβx + βx+ 1

) log(eβx + 1)

eβx
≥

(
eβx + βx+ 1

)
sup

log(eβx + 1)

eβx
(98)

since log(eβx+1)/eβx is positive. We will next show that log(eβx+1)/eβx is a decreasing function
therefore its supremum is achieved at x→−∞. From the integral expression in Eq. 92, we derive
that log(y + 1)/y is a decreasing function since adding smaller terms in the average decreases it.
Thus the following limit gives us the supremum

lim
y→0

log(y + 1)

y
= lim

y→0

1

y + 1
= 1. (99)

Combining it with the Eq. 98 after the substitution y = eβx, we get the desired Ineq. 97 which
implies that the derivative is positive in this case too. This completes the proof of property (iv).
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D SECOND-ORDER NATURE OF SYMMETRY-INDUCED CRITICAL POINTS

In this section, we prove Theorem 4.1. First we present a proof sketch.

Proof Sketch. We decompose the Hessian of a symmetry-induced critical point ⊕j,µ(θ) using a
specific linear transformation A(µ) as follows

HL(⊕j,µ(θ)) = A(µ)T

[
µ(1−µ)Y −V 0

−V 0 0
0 0 HL(θ)

]
A(µ)

H(µ) = A(µ)T · H̃L(⊕j,µ(θ)) ·A(µ).

In our decomposition, A(µ) is invertible for all µ. Thanks to the Sylvester’s law of inertia, the
number of positive, negative, and zero eigenvalues of H(µ)=HL(⊕j,µ(θ)) are the same as those of
H̃(µ)=H̃L(⊕j,µ(θ)) which is a congruent matrix.

Therefore it suffices to study the eigenvalue signs of H̃(µ) which is composed of two block matrices
on the diagonal –the matrix in Eq. 18 and the Hessian of the original local minimum HL(θ)– with
off-diagonal blocks being all-zero. Thus the eigenvalues of H̃(µ) are identical to the union of
eigenvalues of its block-diagonal matrices. Since θ is a local minimum, HL(θ) is a positive definite
matrix which completes the proof of the first part of the statement. Finally, the eigenvalue signs in
the new d + dout directions are determined by the matrix in Eq. 18 which is the second part of the
statement. End of Proof Sketch.

Let us now present the full-Hessian of a symmetry-induced critical point

HL(⊕j,µ(θ)) =


µ2X + µY µ(1−µ)X µU + V µU 0
µ(1−µ)X (1−µ)2X + (1−µ)Y (1−µ)U (1−µ)U + V 0
µUT + V T (1−µ)UT Z Z 0

µUT (1−µ)UT + V T Z Z 0
0 0 0 0 HL(⊖j(θ))


(100)

where X and Y are d× d; U and V are d× dout; and Z is dout × dout and HL(⊖j(θ)) is the Hessian
corresponding to the parameter θ except for the j-th neuron, which we denote by ⊖j(θ). We need
to compute the second order derivatives to write out the submatrices explicitly. First let us compute
the first order derivatives

∂aiL(θ) = ⟨σ(wix)c
′(f(x), f∗(x))⟩P

∂wi
L(θ) = ⟨σ′(wix)xa

T
i ⟩P.

Then the second-order derivatives follow

∂2
wiwj

L(θ) = ⟨σ′(wix)σ
′(wjx)xx

TaTi c
′′(f(x), f∗(x))aj⟩P

∂2
w2

i
L(θ) = ⟨σ′(wix)

2xxTaTi c
′′(f(x), f∗(x))ai + σ′′(wix)xx

TaTi c
′(f(x), f∗(x))⟩P

∂2
wjai

L(θ) = ⟨σ(wix)σ
′(wjx)xa

T
j c

′′(f(x), f∗(x))⟩P
∂2
wiai

L(θ) = ⟨σ(wix)σ
′(wix)xa

T
i c

′′(f(x), f∗(x)) + σ′(wix)xc
′(f(x), f∗(x))T ⟩P

∂2
aiaj

L(θ) = ⟨σ(wix)σ(wjx)c
′′(f(x), f∗(x))⟩P

∂2
a2
i
L(θ) = ⟨σ(wix)

2c′′(f(x), f∗(x))⟩P.

We introduce the following submatrices to ease the notation

X = ⟨σ′(wix)
2xxTaTi c

′′(f(x), f∗(x))ai⟩P
Y = ⟨σ′′(wix)xx

TaTi c
′(f(x), f∗(x))⟩P

U = ⟨σ(wix)σ
′(wix)xa

T
i c

′′(f(x), f∗(x))⟩P
V = ⟨σ′(wix)xc

′(f(x), f∗(x))T ⟩P
Z = ⟨σ(wix)

2c′′(f(x), f∗(x))⟩P
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which reduces the second-order derivatives into

∂2
wiwj

L(θ) = X((wi, ai), (wj , aj))

∂2
w2

i
L(θ) = X(wi, ai) + Y (wi, ai)

∂2
wjai

L(θ) = U((wi, ai), (wj , aj))

∂2
wiai

L(θ) = U(wi, ai) + V (wi, ai)

∂2
aiaj

L(θ) = Z((wi, ai), (wj , aj))

∂2
a2
i
L(θ) = Z(wi, ai).

Note that X(wi, ai) and Z(wi, ai) are positive definite if the cost c is convex. Moreover Y (wi, ai)
is a symmetric matrix thus it has real eigenvalues.

Next we change the basis via an invertible matrix A. We obtain the following transformed Hessian
denoted by H̃ which has an approximate block-diagonal structure after the change of basis, where
P−=P−(d+ dout)

H̃(µ) =


µ(1−µ)Y 0 0 −V 0

0 X + Y U + V 0 0
0 U + V Z 0 0

−V 0 0 0 0
0 0 0 0 HL(⊖j(θ))



H̃(µ) =


(1−µ)Id −µId 0 0 0

Id Id 0 0 0
0 0 µIdout (1−µ)Idout 0
0 0 −Idout Idout 0
0 0 0 0 IP−

H(µ)


(1−µ)Id Id 0 0 0
−µId Id 0 0 0
0 0 µIdout −Idout 0
0 0 (1−µ)Idout Idout 0
0 0 0 0 IP−


H̃(µ) = (A(µ)−1)TH(µ)A(µ)−1; (101)

where A(µ) is given by

A(µ) =


Id −Id 0 0 0
µId (1−µ)Id 0 0 0
0 0 Idout Idout 0
0 0 −(1−µ)Idout µIdout 0
0 0 0 0 IP−

 .

Finally, after a change of block-rows and block columns, we recover the statement of the Thm. 4.1
due to the following observation

HL(θ) =

X + Y U + V 0
U + V Z 0

0 0 HL(⊖j(θ))

 . (102)

In the case of biases, the decomposition applies in the same way. The only important thing to take
into account is the update in the submatrices of Y and V

Y (wj , bj , aj) = ⟨σ′′([wj , bj ] · [x, 1])[x, 1][x, 1]Taj · c′(f(x), f∗(x))⟩P ∈ R(d+1)×(d+1)

V (wj , bj , aj)kℓ = ⟨σ′([wℓ
j , b

ℓ
j ]·[x, 1])[x, 1]kc′(f(x), f∗(x))ℓ⟩P with k ∈ [d+1], ℓ ∈ [dout].

D.1 MULTIPLE OUTPUT NEURONS

Lemma D.1. For multiple output neurons with dout ≥ 2, if the matrix V is non-vanishing, the
submatrix in Eq. 18 has at least one negative eigenvalue.

Proof. We will show that H̃ has a negative eigenvalue as long as at least one entry of V is non-
vanishing, i.e. Vkℓ ̸= 0. It suffices to show that a submatrix of the submatrix, say 2 × 2 in Eq. 18
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has one negative eigenvalue since we can that construct an vector such as [a1, a2, 0] which returns a
negative direction by picking out 2× 2 submatrix. We pick the following 2× 2 submatrix[

Ykk −Vkℓ

−Vkℓ 0

]
. (103)

Note that the determinant of the above matrix is −V 2
kℓ < 0 since Vkℓ ̸= 0. This completes the

proof.

Lemma D.1 implies that for multiple number of output neurons, if V ̸= 0, then all symmetry-induced
critical points on the line are strict saddles!

For the mixing ratio µ = 0, changing the corresponding incoming vector does not change the
network function. Therefore we obtain a d-dimensional subspace that goes through the SI critical
point ⊕j,0(θ) where the loss remains constant. We also have an additional direction of constant loss
in the span of the outgoing vectors which is the one pointing towards the line of symmetry-induced
critical points. However, this does not guarantee d + 1 zero eigenvalues in its Hessian since this
subspace may correspond to the directions that are not eigenvectors, nevertheless the second-order
derivatives vanish. This happens for the Hessians that have positive and negative eigenvalues and
where the second-order derivative vanish on the directions between the eigenvectors. A simple
example is L(w1, w2) = w2

1 − w2
2 where the Hessian is

HL =

[
2 0
0 −2

]
.

The Hessian HL has no zero eigenvalues, however in the direction w1 = w2, the loss remains
constant, which lies in between the two eigenvectors [1, 0] and [0, 1].

Next we investigate the eigenvalues signs of[
0 V
V T 0

]
. (104)

to determine the eigenvalue signs of the Hessian of SI critical points at µ ∈ {0, 1} in the new
directions. Note that the dimensionality of the null space of V is at least one due to the constraint in
Eq. 20.
Lemma D.2. Let V be a matrix of size d× dout such that dim(Null(V )) = n≥1. Then the number
of zero-eigenvalues of the following matrix [

0 V
V T 0

]
(105)

of size (d+dout)×(d+dout) is at least |d−dout|. If d > dout, then at least d−dout+n zero-eigenvalues
are guaranteed in particular for n=1, the exact number of zero-eigenvalues is d− dout + 2.

Proof. Non-zero eigenvalues. First, observe that for every non-zero eigenvalue λ with the eigenvec-
tor [a, b] [

0 V
V T 0

] [
a
b

]
=

[
V b
V Ta

]
=

[
λa
λb

]
,

−λ is an eigenvalue corresponding to the eigenvector [−a, b] due to the following[
V b

−V Ta

]
=

[
−λ(−a)
−λb

]
.

In short, the non-zero eigenvalues of the matrix in Eq. 104 come in pairs (λ,−λ).

Zero eigenvalues. We search for the number of different solutions (up to sign and scaling) of the
following equation [

V b
V Ta

]
=

[
0
0

]
.
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For V , recall that we have V aj = 0.

Case1: dout ≤ d. In this case V T is dout × d so it has a null-space of the dimension at least d− dout.
We choose d − dout orthogonal vectors spanning it, say v1, ..., vd−dout . Concatenating each one of
d − dout vectors with 0 gives orthogonal eigenvectors, i.e. [v1, 0], ..., [vd−dout , 0] of the matrix in
Eq. 104 with zero eigenvalues. In addition, we can concatenate the 0 vector with aj which is in the
null space of V , i.e. [0, aj ], which is orthogonal to the others. In general, if dim(N(V )) = n, by
concatenating all with zero vectors, we get [0, v] eigenvectors that are orthogonal to each other and
others of the form [v, 0]. Therefore, we constructed d− dout + n orthogonal eigenvectors with zero
eigenvalues.

Finally we know that the number of non-zero eigenvalues should be even. If n is odd, so is (d +
dout)− (d− dout + n) = 2dout − n, therefore there has to be at least one more zero eigenvalue.

In this case, there are at least d− dout + n+ 1 zero eigenvalues.

On the other hand, the rank of V TV is dout − n. Let v be an eigenvector with a non-zero eigenvalue
λ2. Therefore, [ 1λV v, v] is an eigenvector of the matrix in Eq. 104 with the eigenvalue λ. Following
this construction, overall we get 2(dout − n) non-zero eigenvalues.

If n = 1, there are exactly 2(dout − 1) non-zero and d− dout + 2 zero eigenvalues.

Case2: d < dout. In this case V is d × dout, therefore it has a null-space of the dimension at least
dout − d. Concatenating each one of them with 0 vectors, we find at least dout − d zero eigenvalues.

Note the asymmetry between the two cases: aj is a non-zero vector in the null space of V , but we
do not have such a knowledge for V T thus its null space may be 0-dimensional.

D.2 BOUNDING THE MINIMAL HESSIAN EIGENVALUE

Now using the decomposition, we will provide an upper bound for the minimum eigenvalue of the
Hessian. In this section we denote the Hessian by H to ease notation (i.e. dropping the loss L) or
by H(µ) where it makes sense to emphasize µ.

D.2.1 NEGATIVE MINIMUM EIGENVALUE

The Rayleigh quotient for any u ̸= 0 upper bounds the minimum eigenvalue

uTHu

uTu
≥ λmin(H).

Plugging in the decomposition (Eq. 102), we get

uTAT H̃Au

uTu
=

vTHv

(A−1v)TA−1v
≥ λmin(H).

for any vector v. Wlog we can assume that it is a unit vector. Let us choose v such that [v0, 0, 0, 0, 0]
where v0 is a unit eigenvector of Y with an eigenvalue λ0. Thus we have

vT H̃v =
[
vT0 0 0 0 0

]

µ(1−µ)Y 0 0 −V 0

0 X + Y U + V 0 0
0 U + V Z 0 0

−V 0 0 0 0
0 0 0 0 H(⊖j(θ))



v0
0
0
0
0



=
[
vT0 0 0 0 0

]

µ(1−µ)λ0v0

0
0

−V v0
0


= µ(1−µ)λ0 (106)
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(a) neuron-I (b) neuron-II (c) neuron-III (d) neuron-IV

Figure 6: The minimal Hessian eigenvalue of the sym. ind. strict saddles as a function of µ (black)
and the upper bound (blue). We observe that the upper bound on the most negative eigenvalue of the
Hessian qualitatively captures the behavior of the most negative eigenvalue. In the cases (b-c-d), the
matrix Y is positive-definite, the upper bound for the line segment µ ∈ (0, 1) is positive. Since we
already know that the min. eigenvalue for this line segment is zero, the upper bound is not plotted.

We need to check

A−1v =


(1−µ)Id Id 0 0
−µId Id 0 0 0
0 0 µIdout −Idout 0
0 0 (1−µ)Idout Idout 0
0 0 0 0 0



v0
0
0
0
0

 =


(1−µ)v0
−µv0
0
0
0


so the norm of A−1v is

∥A−1v∥2 = (1−µ)2 + µ2.

Therefore by choosing a specific unit eigenvector v, we obtained the following upper bound on the
minimum eigenvalue

µ(1−µ)

(1−µ)2 + µ2
λ0 ≥ λmin(H)

which is valid for every µ and every eigenvalue of Y . To make the bound tightest using this form of
v, we need to choose v0 as the extreme eigenvectors of Y . We obtain (see Fig. 6):

• for µ∈(0, 1):

µ(1−µ)

(1−µ)2 + µ2
λmin(Y ) ≥ λmin(H(µ)) for µ ∈ (0, 1),

• for µ∈R/[0, 1]:

µ(1−µ)

(1−µ)2 + µ2
λmax(Y ) ≥ λmin(H(µ)) for µ ∈ R/[0, 1].

In particular, in the limits as µ → ±∞, we get

−1

2
λmax(Y ) ≥ lim

µ→±∞
λmin(H(µ)).

Next, using an additive decomposition, we will give a lower bound on the minimum eigenvalue.
Note that the entries of the Hessian are at most quadratic in µ, which can be written out as

µ2


X −X 0 0 0
−X X 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

M2

+µ


Y X U U 0
X −2X − Y −U −U 0
UT −UT 0 0 0
UT −UT 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

M1

+


0 0 V 0 0
0 X + Y U U + V 0
V T UT Z Z 0
0 UT + V T Z Z 0
0 0 0 0 H(⊖j(θ))


︸ ︷︷ ︸

M0

since X is positive definite. Moreover, λmin(M2) = 0 since we can choose an eigenvector [v, v, 0, 0]
where v is an eigenvector of X .
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Using the following general inequality twice

λmin(A+B) = min
∥u∥=1

uT (A+B)u ≥ min
∥u∥=1

uTAu+ min
∥u∥=1

uTBu = λmin(A)+λmin(B),

we obtain the following bound on the min. eigenvalue for µ ≥ 0

λmin(H(µ)) ≥ µ2λmin(M2) + µλmin(M1) + λmin(M0) ≥ µλmin(M1) + λmin(M0),

and for µ < 0

λmin(H(µ)) ≥ µλmax(M1) + λmin(M0).

In particular, as µ → ∞, we show that λmin(H(µ)) is at most linearly decreasing.

D.2.2 MINIMUM POSITIVE EIGENVALUE & ONE OUTPUT NEURON

If the minimum eigenvalue is not negative, we know that it is zero since all symmetry-induced crit-
ical points have a zero-eigenvalue in the Hessian. In this case, we want to bound the minimum
positive eigenvalue to get a measure of sharpness for the symmetry-induced local minimum. Recall-
ing the decomposition in the case of one output neuron, we have

H = AT


µ(1−µ)Y 0 0 0 0

0 X + Y U + V 0 0
0 U + V Z 0 0
0 0 0 0 0
0 0 0 0 H(⊖j(θ))

A. (107)

We know the eigenvector of H̃ corresponding to the trivial-zero eigenvalue, let’s denote it by e =
[0, 0, 0, 1, 0]. First note that

HA−1e = AT H̃AA−1e = 0. (108)

Let’s denote the minimum non-negative eigenvalue of H by λ+
min excluding the trivial zero corre-

sponding to the eigenvector A−1e. We have the following upper bound for all u ⊥ A−1e

uTHu

uTu
≥ λ+

min(H). (109)

Plugging in the decomposition we get

uTAT H̃Au

uTu
=

vT H̃v

(A−1v)TA−1v
≥ λ+

min(H) (110)

where for any v ⊥ e. We can choose v = [v0, 0, 0, 0, 0] which is orthogonal to e where v0 is an
eigenvector of Y as in the previous case (Sec. D.2.1) which gives us the following upper bound

µ(1−µ)

(1−µ)2 + µ2
λ0 ≥ λ+

min(H).

Therefore the tightest bounds are as follows:

• positive definite Y , for µ∈(0, 1):

µ(1−µ)

(1−µ)2 + µ2
λmin(Y ) ≥ λ+

min(H);

• negative definite Y , for µ∈R/[0, 1]:

−µ(1−µ)

(1−µ)2 + µ2
λmin(|Y |) ≥ λ+

min(H).
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(a) ⊕1,µ(θ) (b) ⊕2,µ(θ) (c) ⊕3,µ(θ) (d) ⊕4,µ(θ)

Figure 7: The sign of the initial alignment of the perturbation with the minimum eigenvector deter-
mines where the gradient flow trajectories end up. The gradient trajectories can converge to (i) a
global minimum point (dark blue), (ii) a local minimum at infinity (pink-green), (iii) a local min-
imum (orange), or (iv) an SI-minima (blue cross). Each panel represents splitting one of the four
neurons. In the legend, n represents the norm of the final parameter and d is the distance to the
initial line of symmetry-induced critical points (and l is the loss, g is the gradient norm). (a-b-c) All
SI-critical points are strict saddles except for µ = 0. In (a) for µ ∈ (0, 0.5), both positive and neg-
ative perturbations converge to the same local minimum (orange), for µ < 0, positive perturbations
converge to a local min. at infinity (pink), and the negative ones converge to a global min.; in (b) for
µ < 0, positive perturbations converge to a local min. at infinity (green), and all others converge to a
global min.; in (c) for µ < 0, negative perturbations converge to another local min. at infinity (blue),
positive ones converge to the green local min. at infinity, also for µ ∈ (0, 0.5), all perturbations
converge to the same local min. In (d) SI-critical points are local minima for µ ∈ (0, 0.5), so all
perturbations converge to them; for µ < 0, positive perturbations converge to the green local min.
and the negative perturbations converge to a global min. At the non-strict saddles at µ = 0, since the
multiplicity of the zero eigenvalue is three; we cannot identify a unique eigenvector corresponding
to the minimum eigenvalue.
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Figure 8: Loss surfaces corresponding to the two-dimensional model with constants c2 = 1, c1 ∈
{−2,−1, 2} in (a)-(b)-(c), respectively. (a)-(b) c1c2 < 0: perturbations from the strict saddles at
(0, µ) with µ ∈ R/[0, 1] move towards a local minimum at infinity, the horizontal alignment of
the local minima is c1/2 or c2/2. (c) c1, c2> 0: perturbations from the strict saddles at (0, µ) with
µ ∈ (0, 1) converge towards either a local minimum at (min{c1, c2}, 0.5) (for positive perturbations,
i.e. w > 0), or diverge away to −∞ (for negative perturbations, i.e. w < 0).

D.2.3 PERTURBATIONS & A MODEL OF LOCAL MINIMUM AT INFINITY NEAR THE LINE OF
CRITICAL POINTS

We propose the following model for understanding the geometry of the loss landscape near the line
of symmetry-induced saddles. Our focus is to understand the mechanism of how a local minimum
emerges at infinity near the line of critical points and how the perturbation from the line of critical
points either converge to one of the two types of minima.

L(w, µ) = −w2

(
w2

4
− w

3
u(µ)(c1 + c2) +

1

2
u(µ)2c1c2

)
u(µ)

where u(µ) =
µ(1− µ)

µ2 + (1− µ)2
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(a) symmetry-induced local minimum (b) new local minimum

Figure 9: Perturbations from the symmetry-induced saddles corresponding to local minimum-I
shown in Fig. 3 either converges to (a) symmetry-induced local minimum at infinity or to a (b)
new local minimum. We plot the network that we obtained at a late snapshot in training in Fig. 9-a.
Note that the parameter vector effectively corresponds to a symmetry-induced local minimum corre-
sponding to local minimum-II of the network with 4 neurons. The gradient flow dynamics pushes the
parameter vector towards infinity such that the outgoing weights grow in opposite signs and cancel
out each other.

Note that the loss is zero on the line of µ = {0, 1} and w = 0. The partial derivatives are given by

∂wL(w, µ) = −w(w − u(µ)c1)(w − u(µ)c2)u(µ),

∂µL(w, µ) = −w2
(
−w

3
u′(µ)(c1 + c2) + u(µ)u′(µ)c1c2

)
u(µ)− w2

(
w2

4
− w

3
u(µ)(c1 + c2) +

1

2
u(µ)2c1c2

)
u′(µ),

where both are zero at w = 0. Therefore, we have a line of critical points at zero-loss on the line
w = 0. On the line of critical points, due to the w2 term in the loss, the mixed second-derivatives
∂2
wµ and ∂2

µµ vanish. The only non-vanishing second derivative is then

∂2
wwL(w = 0, µ) = −2c1c2u(µ)

3.

If the constants c1, c2 have opposite signs, say c1 > 0 and c2 < 0 wlog, we have that for µ ∈ R/[0, 1]
the critical points are strict saddles, and for µ ∈ (0, 1) they are local minima.

In this model, we observe

1. for µ ∈ (0, 1), all perturbations converge back to the line segment of local min.
2. for µ > 1, for a positive perturbation such that w > 0, the trajectories converge to the local

minimum at (c1/2,+∞)

3. for µ > 1, for a negative perturbation such that w < 0, the trajectories converge to the local
minimum at (c2/2,+∞)

4. for µ < 0, due to permutation-symmetry, positive perturbations go to the local minimum
at (c2/2,−∞) and negative ones go to the local minimum at (c1/2,−∞).

If the constants have the same signs, then for µ ∈ R/[0, 1], the critical points are local minima; for
µ ∈ (0, 1), they are strict saddles. If both c1, c2 > 0 wlog, perturbing from a strict saddle at some
µ ∈ (0, 1), for positive w > 0, the trajectories get stuck at the local min. of (min{c1, c2}, 0.5), and
for negative w < 0, there is no local min. and the trajectories diverge away.
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