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Abstract

Online Internet platforms require sophisticated marketing strategies to optimize
user retention and platform revenue — a classical resource allocation problem.
Traditional solutions adopt a two-stage pipeline: machine learning (ML) for pre-
dicting individual treatment effects to marketing actions, followed by operations
research (OR) optimization for decision-making. This paradigm presents two
fundamental technical challenges. First, the prediction-decision misalignment:
Conventional ML methods focus solely on prediction accuracy without considering
downstream optimization objectives, leading to improved predictive metrics that
fail to translate to better decisions. Second, the bias-variance dilemma: Observa-
tional data suffers from multiple biases (e.g., selection bias, position bias), while
experimental data (e.g., randomized controlled trials), though unbiased, is typically
scarce and costly — resulting in high-variance estimates. We propose Bi-level
Decision-Focused Causal Learning (Bi-DFCL) that systematically addresses these
challenges. First, we develop an unbiased estimator of OR decision quality using
experimental data, which guides ML model training through surrogate loss func-
tions that bridge discrete optimization gradients. Second, we establish a bi-level
optimization framework that jointly leverages observational and experimental data,
solved via implicit differentiation. This novel formulation enables our unbiased
OR estimator to correct learning directions from biased observational data, achiev-
ing optimal bias-variance tradeoff. Extensive evaluations on public benchmarks,
industrial marketing datasets, and large-scale online A/B tests demonstrate the
effectiveness of Bi-DFCL, showing statistically significant improvements over
state-of-the-art. Currently, Bi-DFCL has been deployed across several marketing
scenarios at Meituan, one of the largest online food delivery platforms in the world.

1 Introduction

Marketing is one of the most effective strategies for enhancing user engagement and platform revenue,
and as such, a variety of marketing campaigns have been widely adopted by online platforms. For
instance, coupons on Taobao[45] stimulate user activity, dynamic pricing on Airbnb[44]] and discounts
on Uber[13] encourage increased usage. However, while these actions can generate incremental
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revenue, they also consume substantial marketing resources such as budget. Due to these constraints,
only a subset of individuals (e.g., shops or products) can receive marketing treatments. Therefore,
determining how to allocate marketing resources effectively—given that users respond differently to
various promotional offers—is crucial for campaign success. This challenge is typically formulated
as a resource allocation problems, which has been extensively studied in both academia and industry.

The mainstream solutions to these problems are two-stage methods (TSM) [2, 48| 3| [39] [13]]. In the
first stage (ML), machine learning models are used to predict individual-level (incremental) responses
to different treatments. In the second stage (OR), these predictions are fed into combinatorial
optimization algorithms to maximize overall revenue. Hence, existing two-stage methods focus
on separately optimizing the prediction and the subsequent resource allocation, treating them as
decoupled problems. Despite widespread use, TSM suffer from two fundamental technical challenges:

* The prediction-decision misalignment: ML focuses on predictive accuracy, while OR aims
for decision quality. However, improved prediction accuracy does not necessarily yield better
decisions in many predict-then-optimize scenarios [23} 14, 32], due to the decoupled design. This
misalignment is especially pronounced in marketing for two reasons. First, marketing OR problems
are typically non-convex and NP-hard resource allocation tasks, which can amplify or accumulate
prediction errors from the ML stage when passed to OR. Second, marketing involves counterfactual
challenges (discussed later), making accurate predictions even harder. As a result, two-stage
methods often lead to suboptimal decisions in marketing optimization.

* The bias-variance dilemma: In marketing optimization and causal inference [31]], observational
(OBS) data are abundant and easy to collect, e.g., from user behavior logs or transactions. However,
such data are inherently biased due to confounding and lack of randomization, leading to high bias
and low variance. In contrast, randomized controlled trials (RCTs) [[10l|36] are considered the
gold standard for causal inference, as randomization provides experimental data that yield unbiased
estimates. Yet, RCT data are costly and limited in size, resulting in low bias and high variance,
which also increases the risk of overfitting and reduces generalization. While OBS and RCT data
are complementary, two-stage methods that rely solely on one type or naively combine both fail to
achieve an effective bias-variance tradeoff, limiting robust decision-making in marketing.

Recently, Decision-Focused Learning (DFL) [23} 129} 4] 127, [14]] has emerged as a promising alternative
to traditional TSM by integrating ML and OR objectives within an end-to-end framework, specifically
designed to address the Prediction-decision misalignment. The core idea is to train ML models
using a loss function that directly reflects the quality of the resulting decisions. However, applying
general DFL methods to marketing optimization raises unique challenges, including complexity of
multi-choice knapsack problem (MCKP), constraint uncertainty, counterfactuals, computational cost
of large-scale marketing data [52]. To tackle these domain-specific issues of marketing optimization,
two specialized DFL approaches—DHCL [51] and DFCL [52]—have been proposed for marketing
scenarios. While DHCL and DFCL have made notable progress in narrowing the gap between
prediction and decision objectives (Challenge 1 of TSM), they do not fully resolve this misalignment,
and further improvements are needed. Moreover, these methods may even exacerbate the bias-
variance dilemma (Challenge 2 of TSM), as will be discussed in detail in Sec. E}

In this work, we propose Bi-Level Decision-Focused Causal Learning (Bi-DFCL). The key idea is to
establish a bi-level optimization framework that leverages RCT data to end-to-end train an auxiliary
Bridge Network by minimizing our proposed unbiased OR estimator, which in turn dynamically
corrects the training direction on OBS data. By bridging OBS and RCT data, this design enables Target
Network to better capture unbiased task-specific knowledge and address both the prediction-decision
misalignment and bias-variance dilemma in TSM and DFL. We summarize our main contributions as:

* Bridging the prediction-decision gap: We propose an unbiased estimator of decision quality
within the DFL paradigm and design two innovative surrogate decision losses leveraging RCT
data. Such losses enable exact and efficient gradient computation for discrete optimization and,
by operating on the primal problem, directly target the actual budget constraints of real-world
marketing—leading to a more practical and consistent alignment between prediction and decision.

* Addressing the bias-variance dilemma: We establish a bi-level optimization framework that
bridges OBS and RCT data. This architecture enables our unbiased OR estimator to dynamically
correct the learning direction from biased OBS data via an auxiliary Bridge Network, achieving



optimal bias-variance trade-off. We further develop an implicit differentiation-based algorithm for
bi-level optimization, ensuring end-to-end differentiability and scalability for large-scale marketing.

* Adaptive multi-objective loss balancing: By explicitly assigning prediction and decision losses
the lower and upper levels of bi-level optimization, Bi-DFCL automatically and flexibly balances
these objectives in a data-driven manner, eliminating the need for manual hyperparameter tuning.

* Comprehensive offline and online validation: We conduct extensive offline experiments on
public benchmarks and industrial marketing datasets, as well as large-scale online A/B tests at
Meituan, one of the largest online food delivery platforms in the world. Results show that Bi-DFCL
consistently outperforms state-of-the-art methods. Notably, Bi-DFCL has already been deployed in
several real-world marketing scenarios on this platform, generating significant revenue gains.

2 Related Works

Two-Stage Method (TSM). The mainstream approach to the resource allocation problem in marketing
typically adopts a two-stage paradigm [3, |39} 48] 12, [13]], in which the machine learning (ML) and
operations research (OR) stages are addressed independently. In the first stage, uplift models are
employed to predict the individual treatment effects. In the second stage, the resource allocation task
is formulated as a multi-choice knapsack problem (MCKP), which is NP-hard but can be efficiently
solved using Lagrangian duality theory [2} 1339, 51]]. Note that the core idea of these methods is to
continuously improve the predictive accuracy of the uplift models in the first stage. Accordingly, prior
studies have focused on the design of uplift models, which can be categorized into four main groups:
meta-learners [[17,24], causal forests [5} 138} 149 2], reweighting-based methods [48} 140,41, (9,47, 18],
and representation learning approaches [16| 43} |35, 8, [19]. However, as discussed in Sec. E], TSM
suffers from misalignment between prediction and decision objectives and fails to achieve an effective
bias-variance tradeoff. Thus, even with improved predictive accuracy from advanced uplift models,
better predictive metrics often do not translate into better or more robust decision quality.

Decision-Focused Learning (DFL). DFL offers an appealing alternative to the traditional two-
stage approach by integrating prediction and optimization into an end-to-end framework. However,
computing the decision loss typically involves solving optimization problems with non-differentiable
operations, making it difficult for automatic differentiation tools in machine learning frameworks
such as PyTorch [26] and TensorFlow [[1] to provide correct gradients. Prior work has proposed three
main strategies for gradient computation: (1) differentiating optimality conditions (e.g., via KKT or
self-dual formulations, as in OptNet [4]], DQP [[12]], QPTL [42], and IntOpt [21]), (2) smoothing by
random perturbations and treating the optimization as a black box (e.g., DBB [27]], DPO [7], - MLE
[25]), and (3) using surrogate loss functions (e.g., SPO [14], LTR [22]], LODL [32]], TaskMet[6]],
Lancer[50]]). The first approach is limited to convex quadratic or linear programs, which do not
fit settings of resource allocation problems. The second, while more general, is computationally
expensive and impractical for large-scale marketing data. The third relies on access to optimal
solutions, which are typically unobservable in offline marketing scenarios due to counterfactuals. As
a result, effectively applying DFL to real-world marketing resource allocation remains challenging.

We emphasize that although existing DFL methods can address the inconsistency between prediction
and decision objectives, none can be directly applied to marketing optimization due to domain-specific
challenges such as the multi-choice knapsack problem, constraint uncertainty, counterfactuals, and
the computational demands of large-scale datasets. Therefore, the most relevant works to ours are
two DFL applications in marketing: DHCL [51]] and DFCL [52]. DHCL directly learns an unbiased
estimator of the decision factor in OR by customized loss, while DFCL introduces two surrogate
losses (DFCL-DPL and DFCL-DIFD) for effective gradient estimation of the dual decision loss
within the DFL paradigm. However, both approaches still have two notable limitations:

» Exacerbation of the bias-variance dilemma. In DHCL and DFCL, counterfactuals prevent
direct computation of decision loss, so it can only be unbiasedly estimated from RCT data. Thus,
abundant OBS data cannot be used for training, and learning is limited to scarce RCT samples,
making models prone to overfitting and poor generalization (low bias but high variance).

* Insufficiency in addressing prediction-decision misalignment. DFCL still faces two key issues
in aligning prediction and decision objectives. First, its loss is a weighted sum of decision and
prediction losses, with the trade-off controlled by a manually tuned hyperparameter «, which is
inflexible and not fully automated. Second, DFCL uses a dual decision loss that evaluates quality



across all possible budgets, while real-world marketing budgets are typically limited to a narrow or
discrete set. This mismatch can reduce alignment with actual decision quality in practice.

3 Problem Formulation

We initiate our formal analysis with a marketing optimization scenario involving M distinct treatments.
For each individual-treatment pair (4, j), let r;; € R* and ¢;; € R denote the potential revenue and
associated cost respectively. The constrained optimization objective requires developing an allocation
policy w : [N] — [M] that maximizes the platform’s cumulative revenue under a global budget
constraint B. This combinatorial decision-making challenge, which we term the Multi-Treatment
Budget Allocation Problem (MTBAP), admits the following primal and dual formulations:

max H(z;r,c) Zzzwr”
Zzzijcij <B max AB + ZZ TU )‘Clj Zij
v min .
Zzij =1, Vi € [N] A>0 | s.t. XJ:Z” =1, Vi € [N]

zi; € {0,1}, Vi € [N], j € [M]

Zij € {071}7 Vi € [N], j e [M}
Figure 1: The primal (left) and dual (right) formulations of the MTBAP.

The binary variable z;; € {0, 1} indicates whether individual 7 is assigned treatment j. The primal
problem is an instance of the NP-Hard MCKP [37]. The Lagrangian relaxation algorithm A (see
Appendix[A.T) efficiently finds the optimal solution to dual problem via binary search for \*, yielding
an approximate solution to primal problem with a worst-case approximation ratio of p = 1 — =241 :

2zl = A(H(z;r,c)) = 1< j = arg max_[r;;; — A*¢;jr (€))
= Al (r.0) = 1 {5 = ang s [y = e}
where 1 is indicator function. Let ¢ denote the parameters of Target Network Fy , with () and &(0)
representing the predicted revenue and cost for individuals under different treatments, respectively.
The prediction loss Lpr,(6) is defined as the following MSE Loss between predicted and true values:

Lpr(0) = Eicn), jei [(rij — 7i5(0))* + (cij — €5(0))?] 2

Given predicted parameters 7(0) and ¢(6), the allocation policy z*(7(8), ¢(6)) is obtained by applying
algorithm A to the optimization problem H (z;#(6), é(6)), as shown in eq[l]and Appendix [A.1] The
decision loss Lpy, directly quantifies decision quality through the negative realized objective value:

CDL(H) =—-M- Eie[N],je[M] [Zl*j (72(9), 6(9)) . Tij] (3)
Note that the prediction loss Lp1, enhances model generalizability by minimizing estimation errors,
whereas the decision loss Ly, evaluates policy suboptimality in downstream OR tasks and enables

real-time decision quality awareness of the model. Thus, the composite objective Lppcy, in DECL[52]
is formulated to explicitly captures the dual objectives of predictive accuracy and decision quality as:

Lprcr, = Lpr, + oLpy, 4

In digital marketing causal inference, each sample is represented by (X, T, R, C), where z; denotes
user features, t; the assigned treatment index, and (r,, ¢;t,) the observed factual revenue-cost
pair under Rubin’s potential outcomes framework [31]. The complete counterfactual surfaces
(R(t), C(t)) remain partially observable across two distinct data modalities: experimental data Drcr
from randomized controlled trials satisfies strong ignorability (X, R(t), C(¢t)) L T yet suffers from
prohibitive collection costs and scarcity, whereas observational data Dopg provides abundant samples
via passive collection at the expense of confounding biases due to non-random treatment assignment.

The fundamental challenge in causal inference originates from Rubin’s missing counterfactual
problem: for any individual 7 exposed to treatment ¢;, only the factual outcome (74, , ¢;z, ) is observed,
while the counterfactual responses {(r;;, ¢;j) } j¢, remain fundamentally unobserved. This inherent
data incompleteness implies the ground-truth values {7}, ¢;; }JNi1 can never be fully ascertained,
making both prediction loss Lpy, and decision loss Lp1, non-computable given either Drcr or Dops.
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Figure 2: Overview of the Bi-Level Decision-Focused Causal Learning (Bi-DFCL) Framework.

4 Proposed Methods

4.1 Bi-level Optimization Framework

As discussed in Sec. [3] our objective is to minimize the composite loss Lprcr, = Lpr, + aLpr.
While the DFCL framework [52]] minimizes this loss solely on D¢t to ensure unbiasedness, this
approach overlooks complementary strengths of both Drct and Dopsg, as well as distinct advantages
of Lpr, and Lpy. Specifically, Lpy, is highly dependent on the unbiasedness of Drcr: minimizing
Lpr, on biased Dopg would greatly amplify bias and severely degrade decision quality. Conversely,
Lp1, is designed to improve generalization and is most effective when optimized on low-variance,
large-scale Dopg. Ultimately, our goal is for a Target Network Fy trained on Dopg to achieve high
decision quality on Drcr. Motivated by this, we propose applying Lpy, to Drer and Lpr, to Dops,
assigning them to the upper and lower levels of a bi-level optimization framework, respectively.

= arg rrgn Loy (0°(¢); Drer) (5)
s.t. 0% (¢) = arg moin Lp1,(¢,0; Dogs). 6)

6 and ¢ denote parameters of Target Network Fy and Bridge Network Gy, respectively. This setup
constitutes a bi-level optimization (BLO) problem [46, [T5] 28| 20], where the upper-level (3) and
the lower-level (6)) are nested: the objective and variables of upper level depend on the optimizer
of lower level. The core idea is to end-to-end learn G, by minimizing Lpi, on D, such that the
parameterized prediction loss Lpr1,(¢, 8) on Dops is adaptively refined. The bridge Vector w, output
by Gy, is dynamically updated and used to generate counterfactual pseudo-labels ¢ s ¢ijon Dops:

riy =1y () wi; 47 (0) - (L—why), o = ey (¥) -w; +¢5(0) - (1 - wf,j% o
Here, w acts as a gating coefficient, adaptively combining outputs from Fy and a fixed teacher

Network F;, (pretrained on Drgt via any uplift model and kept fixed). This mechanism bridges
Doss and Drer and generates stable counterfactual pseudo-labels to parameterize Lpy, on Dops:

Lpr(6,0) =Ky, [(ri, — Pt ) + (cir, — éiti)z] + By, [(Tffj —Fi)? + (Cffj — 613)2] C)]

By fully leveraging unbiased decision signals from Drcr, this approach makes the lower-level (6)
both decision-aware and less biased, dynamically correcting the learning direction of Target Network
Fo. Assigning Lpy, and Lpy, to the upper and lower levels also enables adaptive balancing of two
learning objectives in Lppcr, = Lpr, + aLpL, thus eliminating the need for manual hyperparameter
tuning of c. An overview of the Bi-DFCL framework is shown in Figure[2] Despite these advantages,
solving the resulting bi-level optimization problem is non-trivial. The lower-level loss (6) is differen-
tiable with respect to 6, allowing Fy to be updated via gradient descent (GD). However, computing
the gradient for the upper-level loss (B) is much more challenging. By the chain rule, we have:

N 00*
VLo (67(¢); Drer) = VoLl (0; Drer)lg—p-(4) a;d)) (10)
To calculate the gradient V4 Lpr.(6*(¢); Dret), We require both Vo Lpr,(6; Drer) at 0 = 0*(¢)

and Jacobian %ﬁ’). However, as will be discussed in Sec , Lp1, is non-differentiable, and thus



the first term cannot be directly computed. Moreover, the second term is also difficult to obtain, as
the optimal solution 6*(¢) lacks a closed-form expression, making its Jacobian intractable. We will
discuss how to address these two non-differentiability challenges in Sec.[d.2]and Sec.[4.4] respectively.

4.2 Differentiation of Decision Loss

As is mentioned in Sec. [3] Lpr, is non-computed due to the lack of the counterfactual responses.
By leveraging strong ignorability (X, R(t), C(¢)) L T of experimental data, we derive an unbiased
estimator of the decision loss as follows (see Appendix [A.2]for the formal proof):

N
0;:D =-E;; |—
Lpr(0; Drer) 4N,

<23, (7(0),6(0)) - i, | - (11)
Ny, is the number of individuals assigned treatment ¢; in Drc, and by the chain rule, the gradient is:

dLpr(9; Prer) 027, (F(0),€(0))
927, (7(6),¢(0)) 0 '

VoLpr(0; Dret) = (12)

The first term is trivial since Lpy, is continuously differentiable with respect to 2 (7(0),¢(0))
according to Eq. (TT). Based on the Lagrangian relaxation algorithm A (I), the solution is:

25 (1(0),¢(0)) =1 {t,» = arg max [f;;(6) — )\*éij(ﬁ)}} (13)
’ j€lM]

where 1 is indicator function and \* is the optimal Lagrange multiplier. By introducing dual decision

variables 27 (7(6), &(0)) satisfying 23, (7(8), &(0)) = Ly, —arg mas, c(ar) 74 ()~ Aés, (9)» the Lagrange

multiplier A* in Eq. (I3) can be determined by binary search of A with the terminal condition:

N B
Boa |y (0100 e - 37| < 14

Due to the existence of indicator functions, z}; (#(¢), ¢(¢)) is non-differentiable with respect to 6.
By utilizing Softmax functions, the discrete solution z}; (7(6), ¢(6)) can be relaxed to a continuously
differentiable function zj, (7(#), ¢(6)), which can also be regarded as the probability of z;;, = 1:

exp|Fit; (0) — A ¢, (0)]

ziy, (7(6),¢(0)) = : el (15)
" > jeran €xp[Fi (0) — A*éi;(0)]
Hence, we obtain a surrogate decision loss Lppy, of Lpy,, called the primal policy learning loss:
N exp(rit, (0) — AN*€, (6
Lppr(0; Drer) = —E G 1+ (6) (16)

iti | Nr ~ A Tt |
' N, Zje[M] explfy; (0) — A*¢i;(0)] '

Note that minimizing Lppr,(0; Drer) is equivalent to maximizing the expected reward of policy
7 = 2, (7(0),¢(0)). Additionally, an alternative derivation of the primal policy learning loss can be
obtained through the maximum entropy regularization trick, as detailed in Appendix [A.3] Unlike
dual decision loss in [52] which considers all budgets, Lppy, directly targets decision quality under a
specific budget B, thereby ensuring better alignment with real-world marketing constraints.

We further introduce the primal improved finite difference strategy (PIFD), which leverages the

mathematical definition of the gradient terms 9LpL(6:Drcr) . pipp directly estimates their values via
azij (T’(@) 70(9))

black-box perturbations on Lpy, and accelerates computation with Lppy -aware gradient estimator
(see Appendix [A.4]for details). Compared to Lppr,, PIFD preserves original optimization landscape
without relaxation, and by freezing computed gradients as non-trainable nodes, enables seamless
integration with automatic differentiation libraries. This final surrogate decision loss Lpipp is given:

OLp(0;D . R
EPIFD(Q;DRCT) = Eie[N],jE[M] m ! ZZ/-j(’I"(Q), 0(9)) . (17)
1] ’



4.3 Implicit Differentiation-Based Algorithm

Next, we address the second challenge in Bi-DFCL: computing the Jacobian 89(;4(;25) without a closed-

form solution for 6*(¢), a well-known issue in BLO. A common approach is to explicitly differentiate
through the gradient descent step, assuming 6*(¢) can be reached in one GD step [15} (9, 41]] (see
Appendix [A.5). However, this method relies on the optimization path and, when combined with
decision loss, often suffers from vanishing gradients and suboptimal solutions. To address this, we
propose an implicit differentiation-based algorithm. Note that the optimal solution 6* (¢) satisfies the

first-order condition: w lp—o+(¢) = 0. Differentiating both sides with respect to ¢ gives:

9*Lp1(¢,0; Dops) 00*(¢)  9*Lpr(0,0; Dops) 1
562 |9:9*(¢) ’ ¢ - 600 |9:9*(¢) (18)
Eq. (I8) is also a direct result of the implicit function theorem [34]]. Notably, this approach avoids
explicitly storing the optimization trajectory; the optimal solution 6*(¢) can be obtained using any
optimization algorithm, and we only need to differentiate the optimality condition it satisfies to
implicitly obtain its Jacobian. This path-independence leads to more accurate and stable gradients.

While a closed-form expression for the Jacobian 608*(;‘1)) can be directly derived, computing and

storing the inverse of the Hessian matrix is computationally expensive, especially in large-scale
marketing applications. To overcome this, we employ the conjugate gradient (CG) algorithm [34],
which solves Az = b by equivalently minimizing 1z " Az — b z and can be implemented using only
Hessian-vector products. This approach efficiently solves without explicit Hessian construction
or inversion (see Appendix [A.6), making Bi-DFCL applicable to large-scale marketing optimization.

4.4 Opverall training procedure of Bi-DFCL

We now summarize the overall training procedure of Bi-DFCL in Algorithm 1}

Algorithm 1 Pseudocode for Bi-Level Decision-Focused Causal Learning (Bi-DFCL)

Input: Dror  {(2i, ti, Tit,, City ) }RCT, Dops  {(xi, i, Tir, , Cit, )} OPS, Target Network Fp,
Bridge Network G4, Teacher Network Fy,, k& (number of GD steps for assumed updates, default k& = 5).
Pretrain Teacher Network F,, on Drcr using any uplift model with standard MSE loss

Initialize Target Network Fy (random or warm start) and Bridge Network G, (random).

1: for each mini-batch BSJI)SS in Dogs over all epochs do

2: if b mod k = 0 (i.e., every k-th batch), then solve the upper-level problem () :

3: Step 1 —— Perform & assumed updates to obtain 6* (¢) (without modifying Fy):

4: Copy Fs to Fp; generate counterfactual pseudo-labels 5%, ¢5%; for BOL as in Eq. (7)~(8).

S: Perform k steps gradient descent(GD) on Lpr (¢, 6; Bgl)as) (Eq. @©)) so that Fy update to Fp, .
6: Step 2 Obtain two non-differentiability terms as shown in Eq. (I0):

7: Solve Eq. (18) via conjugate gradient (CG) Algorithm to obtain Jacobian aeaq(;;a) .

8: Using Fp, , compute Epp or ﬁplp on Drcr , obtain Vo Lpr,(6; DRCT)|0:0*(¢>.

9: Step 3 —— End-to-End update Bridge Network G4 according to Eq.(T0):

10: Perform one GD step on Gy with Drer : ¢ <= ¢ — o - VoLoL(0; Drer)lg_gs (4 - 8937;)@-
11: end if
12: Solve the lower-level problem (6) with the latest G:
13: Generate updated counterfactual pseudo-labels r§’;, cffj for ngl)as as in Eq. (7)—().

14: Compute Lp1,(¢, 0; Bg%s) (Eq. (O)); update Fy by one GD step: 0 < 6 —ag - Vo Lpr (¢, 0; Doss).
15: end for

Output: Well-trained Target Network Fy for predicting 7;, €;;.

5 Real-World Experiments

5.1 Offline Experimental Setup

Dataset and Preprocessing. Three types of offline datasets are provided: an open real-world dataset
and two marketing datasets collected from Meituan, an online food delivery platform. The detailed
statistics of three datasets are shown in Table |1} Readers can see more details in Appendix



* CRITEO-UPLIFT v2. This public dataset from Criteo [11] contains 13.9 million RCT samples,
each with 12 features, a binary treatment indicator, and two response labels (visit/conversion).
Since practical marketing scenarios typically have large number of OBS data and little RCT data,
we simulate a marketing policy to convert part of the RCT data into OBS data. Further details can
be found in Appendix [B.1.1 We refer to the transformed dataset as CRITEO-UPLIFT v2 (Hybrid).

* Marketing data I. Money-off is a common marketing campaign at Meituan, an online food
delivery platform. We conduct a two-month RCT to collect data in this platform. The money-off
T €{0,1,...,7} is taken as the treatment, where 7' = ¢ means $t cash off for each order whose
price meets a given threshold. This dataset contains 180 features, 1 treatment label and 2 response
labels (daily cost/orders). This dataset contains 5.5 million RCT and 22.2 million OBS samples.

» Marketing data II. Discounting is another common marketing campaign at Meituan. We conduct a
four-week RCT to collect data. The discount T’ € {0, 5, 10, 15, 20} is taken as the treatment, where
T = t means t% off for each order whose price meets a given threshold. This dataset contains
192 features, 1 treatment label and 2 response labels (daily cost/orders). This dataset contains 5.0
million RCT samples and 33.8 million OBS samples.

Table 1: Statistics of three offline datasets.

Dataset Features Treatment Training (OBS) Training (RCT) Validation (RCT) Test (RCT)
CRITEO-UPLIFT v2 (Hybrid) 12 2 3498294 698980 1397959 4193878
Marketing data I 180 8 22201405 2220781 555014 2775976
Marketing data II 192 5 33815274 2017450 504362 2521813

Baselines and Experimental Details. We compare the proposed methods with three categories of
causal learning baselines: (1) Methods trained with RCT data, (2) Methods trained with OBS data,
and (3) Methods trained with both RCT and OBS data. Also see more details in Appendix [B.1.3]

* Methods trained with RCT data: With RCT data only, the baselines include two simple two-stage
methods: TSM-SL[48]], TSM-CF|2], and three end-to-end methods: DHCL[51]], DFCL-DPL[52],
DFCL-DIFDI[52]. Note that these end-to-end methods can only be trained using RCT data.

* Methods trained with OBS data: With OBS data only, the baselines include two simple two-stage
methods: TSM-SL[48]], TSM-CF[2], and two reweighting-based methods: IPS[30], DR-JT[40],
and three representation learning methods: CFR-WASS[33]], CFR-MMD|33]], DragonNet[35]].

¢ Methods trained with both RCT and OBS data: Based on both RCT and OBS data, the baselines
include TSM-SL[48], and reweighting-based methods: LTD-IPS[41], LTD-DR[41]], AutoDebias[9],
and representation learning methods: CausE[S8]], KD-Label[|19]], KD-Feature[19].

Evaluation Metrics. Two evaluation metrics are provided for offline evaluation in this experiment.

* AUCC (Area under Cost Curve). A common metric used in existing works [22} [13}[51]], which is
designed for evaluating the performance to rank ROI of individuals in the binary treatment setting.
Because AUCC represents the decision quality of marketing under binary treatments, we use AUCC
to compare the performance of different methods in CRITEO-UPLIFT v2(Hybrid).

* EOM (Expected Outcome Metric). EOM is also commonly used in [2} 51} 149} 52]. Based on
RCT data, an unbiased estimation of the expected outcome (per-capita revenue/per-capita cost) for
arbitrary budget allocation policy can be obtained. Details of EOM are shown in Appendix
Since EOM represents the decision quality of marketing under multilple treatments, we use EOM
to compare the performance of different methods in Marketing data I and II.

5.2 Offline Experimental Results

Overall Performance Comparison. Table 2| compares Bi-DFCL with all baselines. We have four
main observations: (1): Among methods trained solely on RCT data, end-to-end methods consistently
outperform two-stage methods across all datasets, highlighting the importance of directly optimizing
for decision quality and validating our motivation to bridge the prediction-decision gap. (2): Our
proposed DFCL-PPL and DFCL-PIFD outperform dual decision loss, showing that optimizing primal
decision losses better aligns with real-world marketing constraints, as they directly target decision
quality under specific budget values B. (3): The relative performance of TSM trained on RCT or



Table 2: Performances of the proposed methods and baselines (mean =+ standard deviation across 20
runs). The best result is bolded and the best results of three types of baseline methods are underlined.

| | CRITEO-UPLIFT v2 (Hybrid) | Marketing Data I | Marketing Data I
Data ‘ Methods ‘ AUCC Improvement ‘ EOM Improvement ‘ EOM Improvement
RCT TSM-SL 0.7143+0.0299 - 1.000040.0032 - 1.00004:0.0020 -
RCT TSM-CF 0.6730+0.0196 -5.78% 0.9767+0.0005 -2.33% 0.9680£0.0006 -3.20%
RCT DHCL 0.7278+0.0358 1.90% 0.997240.0011 -0.28% 1.00594-0.0007 0.59%
RCT DFCL-DPL 0.7416+0.0170 3.82% 1.01204-0.0020 1.20% 1.0094+0.0008 0.94%
RCT DFCL-DIFD 0.7441+40.0233 4.17% 1.015140.0033 1.51% 1.01104:0.0029 1.10%
RCT DFCL-PPL (Ours) 0.7419+0.0128 3.86% 1.016740.0024 1.67% 1.0156+0.0016 1.56%
RCT DFCL-PIFD (Ours) 0.7437+£0.0204 4.12% 1.01704-0.0024 1.70% 1.015340.0016 1.53%
OBS TSM-SL 0.7413+0.0038 3.78% 1.006740.0013 0.67% 0.9957£0.0015 -0.43%
OBS TSM-CF 0.7105+0.0020 -0.53% 0.9825+0.0002 -1.75% 0.9680+0.0004 -3.20%
OBS 1PS 0.709240.0131 -0.71% 1.007040.0037 0.70% 0.9990£0.0026 -0.10%
OBS DR-JT 0.743940.0053 4.14% 1.01024-0.0019 1.02% 1.0054+0.0018 0.54%
OBS CFR-WASS 0.7245+0.0109 1.43% 1.003240.0020 0.32% 0.9961£0.0013 -0.39%
OBS CFR-MMD 0.733940.0045 2.74% 1.00554-0.0020 0.55% 0.99974-0.0033 -0.03%
OBS DragonNet 0.7490+0.0066 4.86% 1.0069+0.0041 0.69% 0.9988+£0.0021 -0.12%
RCT+0OBS | TSM-SL 0.7438+0.0032 4.13% 1.007140.0011 0.71% 0.9988-+0.0022 -0.12%
RCT+OBS | CausE 0.739240.0081 3.49% 1.003140.0019 0.31% 1.00014:0.0014 0.01%
RCT+OBS | KD-Label 0.737440.0055 3.23% 1.00334-0.0027 0.33% 0.9997+0.0019 -0.03%
RCT+0OBS | KD-Feature 0.7306£0.0064 2.28% 1.007440.0019 0.74% 0.9983£0.0019 -0.17%
RCT+OBS | LTD-IPS 0.7427+ 0.0080 3.98% 1.012040.0036 1.20% 1.0040£0.0042 0.40%
RCT+0OBS | LTD-DR 0.7533+ 0.0059 5.46% 1.016840.0026 1.68% 1.006740.0021 0.67%
RCT+OBS | AutoDebias 0.7489+ 0.0077 4.84% 1.01754-0.0027 1.75% 1.0066£0.0032 0.66%
RCT+OBS | Bi-DFCL-PPL (Ours) 0.7797+ 0.0094 9.16% 1.027740.0024 2.77% 1.025240.0023 2.52%
RCT+OBS | Bi-DFCL-PIFD (Ours) | 0.7812+ 0.0084 9.37% 1.029740.0030 2.97% 1.0249+0.0018 2.49%

OBS data varies across datasets, reflecting the complementary strengths of the two data sources: RCT
data offer low bias but high variance, while OBS data are more biased but lower variance. However,
all existing end-to-end methods are restricted to RCT data, limiting their ability to leverage abundant
OBS data and making them prone to overfitting. (4): Bi-DFCL consistently outperforms all baselines
on all datasets, demonstrating superior alignment of prediction and decision objectives and ability to
achieve optimal bias-variance tradeoff by fully leveraging both RCT and OBS data. By overcoming
the overreliance on limited RCT data that hampers previous decision-focused methods, Bi-DFCL
delivers improved generalization and decision quality in real-world marketing scenarios.

Ablation Studies. To show the effects of individual components, we conduct ablation study by
incrementally adding four key components of Bi-DFCL to baseline in a sequential manner: Decision
Loss (PPL), Bi-level Optimization by hybrid RCT and OBS data, Counterfactual Labels, and Implicit
Differentiation Algorithm. The experimental results on marketing datasets are reported in Table[3] We
can find that after the introduction of each module, the performance can all be strengthened to some
extent, which demonstrates that our three contributions can all benefit the marketing optimization. In
addition, we provide detailed descriptions for these baselines of ablation studies in Appendix [B.2]

Table 3: Ablation study of each individual component in Bi-DFCL with two marketing datasets.

Components of Bi-DFCL |  Marketing Datal |  Marketing Data II
Decision Loss (PPL)  Bi-level Optimization ~Counterfactual Labels ~ Implicit Differentiation | EOM  Improvement | EOM  Improvement
1.0000 - 1.0000 -
1.0167 1.67% 1.0156 1.56%

1.0240 2.40% 1.0175 1.75%
1.0248 2.48% 1.0213 2.13%
1.0277 2.77% 1.0252 2.52%

NN
NS X X
NAX X X
AX X X X

In-depth Analysis. We conduct in-depth analysis to explore the effect of the training data size,
as well as to validate the bias-variance properties of the RCT and OBS data. We further evaluate
the sensitivity of the hyper-parameters using different values and evaluate the robustness of our
proposed methods under multiple sets of budget values B. Additionally, we also provide a detailed
discussion comparing the computational overhead of Bi-DFCL against different baseline methods.
See Appendix [B.3]for more detailed experimental results.

5.3 Online A/B Tests

Setups. We deploy our proposed Bi-DFCL-PPL, Bi-DFCL-PIFD and three baselines: DFCL-PIFD,
LTD-DR and TSM-SL together to support a discount campaign at Meituan (our online food delivery
platform) and conduct large-scale online A/B tests for four weeks. The experiment contains 790K



online shops and they are randomly divided every day into five groups called G-BPPL, G-BPIFD, G-
PIFD , G-LTD and G-TSL respectively. Each shop will be assigned a discount ¢ € {0, 5, 10, 15,20}
as the treatmemt, which means t% off for each order whose price meets a given threshold. The
marketing goal is to maximize the orders by assigning an appropriate discount to each store every
day for a limited budget that may change slightly from day to day.

Table 4: Results of online A/B tests with the confidence interval (four weeks)

Week
Method Group Tst nd 3rd It Improvement
TSM-SL G-TSL 1.0000 4+ 0.0022  1.033540.0030  0.9217 £0.0017  0.9720 £ 0.0048 -
LTD-DR G-LTD 1.0183 +0.0020 1.0378 +0.0039  0.9344 £ 0.0037  0.9723 £ 0.0070 0.91%
DFCL-PIFD G-PIFD 1.0302 +0.0013  1.0436 4 0.0020  0.9440 £ 0.0020  0.9799 £ 0.0018 1.80%
Bi-DFCL-PPL  G-BPPL  1.0428 £0.0019 1.0558 £ 0.0025 0.9582 #+ 0.0019  0.9872 4 0.0014 3.00%
Bi-DFCL-PIFD  G-BPIFD  1.0470 £0.0021  1.0537 £0.0027  0.9581 £0.0024  0.9906 + 0.0031 3.22%

Results. Table[]illustrates the online weekly orders for five groups during four weeks. In order to
preserve data privacy, all data points have been normalized that are divided by the orders of TSM-SL
in the first week. We can see that Bi-DFCL exhibits significantly superior overall performance during
four weeks, which validates the effectiveness of Bi-DFCL for real-world marketing optimization.

6 Conclusion

In this paper, we propose the Bi-Level Decision-Focused Causal Learning (Bi-DFCL) framework for
large-scale marketing optimization, addressing two key challenges in existing approaches: prediction-
decision misalignment and bias-variance dilemma. Extensive offline experiments and online A/B tests
demonstrate that Bi-DFCL consistently outperforms state-of-the-art. Our future work includes further
improving computational efficiency and applying Bi-DFCL to other decision-making domains.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction include the claims made in the paper, and our
contributions are clearly summarized in sec.1:introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in sec. 6: Conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper provides the full set of assumptions and complete proofs for the
theoretical results in the main paper and the Appendix(Supplemental material).

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results and Experimental Details in Sec. 4 and 5 and Appendix(Supplemental
material).

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide open access to the public dataset and code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test information including datasets,
preprocessing, experimental protocols and details in Sec. 5 and Appendix(Supplemental
material).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We clearly report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments in sec. 5.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources (type of
compute workers, memory) in Appendix(Supplemental material).

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential positive societal impacts in abstract, introduction and
sec.5.3:online a/b tests and Appendix(Supplemental material).

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creator or original owner of the assets (e.g., code, data, models) used in
the paper is properly credited, and the license and terms of use are explicitly mentioned and
appropriately respected.

Guidelines:
* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: [Yes]
Guidelines: Our code is available(see abstract) and the documentation is provided alongside.

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Large language models (LLMs) are not used as an important, original, or
non-standard component of the core methods in this work.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More details of Bi-DFCL Framework

Here, we provide additional details for Sec.3 and Sec.4 of the main text.

A.1 The Lagrangian relaxation algorithm 4 in Sec.3

We give pseudocode of the Lagrangian relaxation algorithm A in Algorithm 2]

Algorithm 2 The Lagrangian relaxation algorithm A for the primal formulation of MTBAP

Input: budget B; predicted revenue/cost 7, ¢; data D = {(;,t;,74t,, ¢it, ) } X1 ; small constant e.
Compute: For each t in [M], N; < number of samples with t; = ¢; p; + N;/N.

Initialize: \yin < 0, Amax < max; ; (%) zij < Oforall4,j
)

1: while A\, .x — Amin > €do

2: A W

3: for all 7, j do

4: zi5 1 (j = arg Inan(fij — )\é,]))

5: end for

6: ¢\ e, 7, ¢) % > p%icti]l (t; = argmax; 2;;)
7. if |2 — ¢\ r,c,7,¢)| < ethen

8: break

9: end if
10 if £ -\, rc 7, ¢é) > 0then
11: Amax ¢ A
12: else

13: )\min — A
14: end if
15: end while
16: A" < A
Output: Solution z;; for MTBAP with a worst-case approximation ratio of p = 1 — 254

A.2 The Formal Proof of Eq. (11) in Sec.4.2

Proof. Recall that Eq.is given by Lpr,(0; Dror) = —E; 4, [% - 25, (7(0),¢(0)) - Tm} . We aim
to show that this is an unbiased estimator of Lpr,(0) = —M - E;c(ny, je(n [2]5(F(0), é(0
Note that Lpr,(6; Drer) can be rewritten as:

N

LpL(8; Drer) t { N,
L N

J
==Y Eilz;(7(0),80)) - riy] (T LX)
J
=M - —Eiciny, jepa) [255(7(0),8(0)) - 73] -
where T' 1 X holds because the data set is Drcr from random control trials (RCT). Therefore,
N * ~ A * (A ~
“Eun, | (F00,600) i | = M ~Bicy et [560).60) ).

which completes the proof. Note that there is a multiplicative factor of M. To ensure consistency, we
revise Eq. 3|in the main text as : Lpr,(0) = —M - Eie(n), jean [255(7(0), €(0)) - 5] O
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A.3 More details of The maximum entropy regularization trick in Sec.4.2

The primal policy learning loss Lppr, can also be derived through the maximum entropy regularization
trick. After obtaining the optimal Lagrange multiplier \* via binary search, we introduce a maximum
entropy regularizer into the objective function of the dual formulation of the MTBAP:

mzaX ZZ(ﬂ] — )\*éij)zij — TZ Zzij anij,
% J i J
s.t. Zzij = 1,VZ',
J
Zij € [O, 1],

where 7 > 0 is the temperature hyperparameter controlling the entropy regularization strength. Note
that the dual formulation of MTBAP can be equivalently relaxed to z € [0, 1]. Further we have:

N M N M
L(Z,,B) = ZZ(?QU — )\*é,‘j)zij — TZZZ”‘ lnzij — ZB‘ 1-— Zzij , (19)
i J

i=1 j=1 i=1 j=1
where 3 represents the dual variables associated with the equality constraints. Setting % =0
and %}’B) = ( yields the optimal solution:

d __ exp(fij — A"¢y)/7] 20)

z5 = L L .
Y 2k expl(Pik — Atix) /7]
Substituting this into Eq[TT], we derive Lppy, by the maximum entropy regularization trick:

. o | N exp|(Fir () — A", (0))/7]
LppL(0; Drer) = —Eiy, Ny, ZjG[M] expl(74;(0) — A*¢;;(0)) /7]

‘Tt 2

A.4 More details of The Primal Improved Finite Difference Strategy (PIFD) in Sec.4.2

The primal improved finite difference strategy (PIFD) estimates gradients % via black-
13 ’

box perturbations on Lpr,. Using the finite difference strategy, the gradient of Lpy,(6; Drcor) with
respect to 7;; is estimated as:

8£DL(r, C,f,é) . ,CDL(’I“, c, T+ €ijh,é) — Lpr(r C,’ﬂé)
oy 0 :

}NXM

where A is a small constant, and e;; € {0,1 is a matrix where only the element in the i-th row

and j-th column is 1, and all other elements are 0. The gradient term M can be computed

similarly. We accelerate above computation with the Lppy,-aware gradient estimator. This involves
two key improvements: first, replacing the black-box perturbation with a semi-black-box one; and
second, unifying the separate perturbations on r and c¢ into a single perturbation on z. Together, these
changes improve the stability of the gradient and significantly accelerate the solution process. Given

the gradients % and freeze them, this final surrogate decision loss Lprrp is defined as:

8EDL(9;DRCT) -Z/»‘ P ¢
52,0 9O ‘9”]

_E, _ 9LpL(0; Drer) exp[fi; (0) — A*¢;5(0)]
i€[N],j€[M] 52& (7:(9)7 6(9)) Zj’e[M} GXp[ﬂj/(a) — A*éz‘j' (9)]

Lp1rp(0; Dret) = Eiciny,jeqm]

The pseudocode for the Lppr,-aware gradient estimator in PIFD is provided in Algorithm [3] For
each sample, we first compute the minimal perturbation that alters the primal decision loss, and then
update the loss by correcting only the original result. For clarity, Algorithm 3]is presented using for
loops; in practice, we implement it with matrix operations in order to accelerates computation.
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Algorithm 3 Lppy,-aware gradient estimator of the primal improved finite difference strategy (PIFD)

Input: budget B; Training data D = {(z;,t;, 7i,, cit,) } ¥ ; predicted revenue/cost 7, ¢.
Compute: For each t in [M], N; < number of samples with ¢; = ¢; p; < N;/N.
Im&Mhe:%%%%%%%%::QZM::OﬂHaH@j
Given 7, ¢, and D, call AlgorithmE]to obtain A* and z;;.
Viaja Q5 = (Tij — A" Cij)7 Zij = Hj:arg max; (7 —A*-Cij)
F(A*, e, 7, ¢) % > irtiﬂti:argmax]' zi;» —LprL(B,r,¢,7,¢) = T7(\*, 7, ¢, 7, ¢)
matching_indices = {7 | ¢; = arg max; z;;, Vi}
mismatching_indices = {i | t; # argmax; z;;, Vi}
for all : € matching_indices do

hft,i = mMaX;+¢, Ajj — At

A A S S

i

" Nopyg, Tty

<
?
ANl
o
=
|

0
=
]
[
=
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m

~

-

JM .

=

<.

N

S
[=7
=)

9: hfj = Qjt; — Q45
oL ~ Nopg, Tits
. —_~DL ba
10: CET
11: end for
12: end for
13: for all 7 € mismatching_indices do
14: J = argmax; a;;
15: hfm = aij — am, hlzj = —h;—ﬁtl
1 .
. 8—Lpy _ N, i
16: 9z, T h?

ity ity

N-pt, Tity

h%.
ij

17:  2Lpr -

18: end for
) . dLpL(0;Pret) . d—LpL(8;Drer) . . C s
Output: the gradients azz%i(9)7§&§) =— 84;3(;(9)76?55 ; the optimal Lagrange multiplier \*.

A.5 The Explicit Differentiation Algorithm for Bi-level Optimization in Sec.4.3

We now introduce the explicit differentiation algorithm for Bi-level Optimization. As discussed

in Sec. 4.3, computing the Jacobian 86;“” in the absence of a closed-form solution for 6*(¢) is a

well-known challenge in bilevel optimization (BLO). A common approach is to explicitly differentiate
through the gradient descent step, under the assumption that 8* (¢) can be reached in a single gradient
descent (GD) step [15} 19, 41]], as shown below:

0% (¢) < 0 — g - VoLpr (¢,0; Dons) - (22)

By retaining the above update path within any automatic differentiation library, we can explicitly dif-
ferentiate through the gradient step to compute gradients with respect to the bridge model parameters
¢. Specifically, V4 Lpr (0*(¢); Drcr) can be computed as:

ol
Vd)ﬁDL (9*(¢)§DRCT) = VeﬁDL(e;DRCT)lgzg*(¢) . 6((;5)

= VoLow(0: Dret)lg—g (g - (Vo (a9 VoLrr (6,6; Dops))) )
= —ag - VoLpL(0; Drer)lg—_g(4) - Vo VoLrL (¢, 0; Dops)

Here, 80{;5;;5) is computed by differentiating through the single gradient descent update in Eq. (22):
00"(9) _ _ . 9*Lp1, (¢,0; Dops)
96 ’ 9600 '

This approach, known as the Explicit Differentiation Algorithm, enables end-to-end optimization
of the bridge model parameters ¢ using standard automatic differentiation frameworks. However,

(24)
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the Explicit Differentiation Algorithm relies heavily on the optimization path and, when combined
with decision loss, is often susceptible to vanishing gradients and suboptimal solutions. It should
be emphasized that the assumption of reaching the optimum in one gradient descent step is often
unrealistic. In practice, a single update typically leads to a suboptimal solution, whereas multiple
updates can result in severe vanishing gradient issues.

A.6 More details of the conjugate gradient (CG) Algorithm in Sec.4.3

In this appendix, we provide additional details on the conjugate gradient (CG) algorithm, which
serves as a component within Algorithm [T]described in Sec. 4.3. Note that the conjugate gradient
(CG) algorithm is employed to efficiently solve the following large-scale linear system:

9*Lp1(¢,0; Dogs) 00%(9) 9*LpL(¢,0; Doss)

06 =0y 09 0¢90 0=0*(9)

which is the same as Eq. (I8). The core idea of the CG algorithm is that solving Az = b is equivalent
to minimizing the quadratic function 5 12T Az —b" x. Moreover, the CG algorithm can be implemented
without explicit storage of large matrices by relying solely on matrix-vector products. For example, for
a Hessian matrix A = Vgﬁ, the matrix-vector product Ap can be computed as: Ap = Vy (pTV9£) ,
where p is an arbitrary vector. This trick, which uses automatic differentiation twice, also applies
to other matrices, enabling efficient implicit computation without explicit matrix construction. The
pseudocode for the standard conjugate gradient algorithm is summarized in Algorithm 4]

Algorithm 4 The Conjugate Gradient (CG) Algorithm

Input: Matrix A; Vector b; Initial guess z¢; Tolerance ¢; Maximum iterations n.g.

1: x + x9 > Initialize solution
2:r+b— Ax > Compute initial residual
3 p+r > Set initial search direction
4: fork=0,1,2,...,n, — 1do

5: if ||r]| < e then

6: break > Converged
7: end if T,

8: o~ TAp > Step size
9: T+ ap > Update solution
10: Tnew < T — QAp > Update residual
11: if || 7hew|| < € then
12: break > Converged
13: end if
14: B+ “CWT“” > Update coefficient
15: D rnew + Bp > Update search direction
16: T 4 Thew > Prepare for next iteration
17: end for

Output: Solution z such that Ax ~ b

A.7 Dual Decision Loss (Lppr,), Dual Policy Learning Loss (Lppr,), and Dual Improved
Finite Difference Strategy (DIFD)

We provide an alternative formulation of the decision loss, termed the dual decision loss, which is
designed to directly quantify the decision quality of the dual formulations of MTBAP.

Lppr(0) = =M - Eiciny, jepm) Z wal(7(6),e(0)) - (rij — A~ )] - (25)

Lppr is also non-computed due to the lack of the counterfactual responses. By leveraging strong
ignorability (X, R(t),C(t)) L T of experimental data, we derive an unbiased estimator of the dual
decision loss as follows:

N s
LppL(0; Drer) = —Eis, {N~Zﬁ‘?dl(r(0)7c(9))-(riti—A-cm) ) (26)
;N t



Ny, is the number of individuals assigned treatment ¢; in Drcr. Note that in this context, X is not the
optimal Lagrange multiplier A* obtained by binary search, but rather a user-specified hyperparameter.
It represents a discrete interpolation over arbitrary budget constraints B.

Lppr, is continuously differentiable with respect to z7; (7(¢),¢(¢)). Based on the Lagrangian
relaxation algorithm .A (T)), and given arbitrary ), the solution is:

2 (7(0),6(0)) = 1 {ti = arg max [#;;(6) — Aeij(e)]} 27)
’ jelM]
where 1 is indicator function and X is an arbitrary user-specified Lagrange multiplier. Due to

the existence of indicator functions, z}; (#(¢),¢(6)) is non-differentiable with respect to 6. By

utilizing Softmax functions, the discrete solution 23" (7(6), ¢(6)) can be relaxed to a continuously

differentiable function zft‘jall (7(6),¢(0)), which can also be regarded as the probability of z"! = 1:

__ explfir, () — Adir, (6)]
> e €xp[Pi; (0) — Aci; (0)]

Hence, we obtain a surrogate decision loss Lppr, of Lppi,, called the dual policy learning loss:

(28)

N exp[Fi, (0) — Néit, (0)]
Lopr(0; Drer) = —Eig, = \% 0
T t 2}\: Nti Z]E[M] exp[r”(e) — )\C”

While the dual loss considers all budget levels, our proposed Lppi, in the main text directly targets
decision quality under a specific budget B, thereby better aligning with real-world marketing con-
straints. We also introduce the Dual Improved Finite Difference (DIFD) strategy, which estimates the

gradients % via black-box perturbations on Lppi,, and accelerates computation using a
ij )

Lppr-aware gradient estimator. Compared to Lppr,, DIFD preserves the dual optimization landscape
without relaxation, and, by freezing the computed gradients as non-trainable nodes, enables seamless
integration with automatic differentiation libraries. The surrogate decision loss Lpipp is given by:

ILppL(0; DReT) _dval’ 1y 4
82’?]-14&1/(72(9),6(9)) Zij (T(9)>C<9)) . (30)

(9)} : (r’iti - A Citi) 5 (29)

Lpirp (0; Drer) = Eigvyjeim Z
)

Also, the pseudocode for the Lppr,-aware gradient estimator in DIFD is provided in Algorithm@

B More Details of Offline Experiment

Here, we provide additional details for Sec.5.1 (Offline Experimental Setup) and Sec.5.2 (Offline
Experimental Results) of the main text.

B.1 Details of Offline Experimental Setup

Here, we provide additional information for Sec. 5.1 (Offline Experimental Setup) of the main text,
covering the dataset and preprocessing, evaluation metrics, and experimental details.

B.1.1 CRITEO-UPLIFT v2 (Hybrid)

CRITEO-UPLIFT v2. This public dataset is provided by the AdTech company Criteo in the
AdKDD’18 workshop[lL1]. The dataset contains 13.9 million samples collected from a random
control trial (RCT) that prevents a random part of users from being targeted by advertising. Each
sample has 12 features, 1 binary treatment indicator and 2 response labels(visit/conversion). In
order to study resource allocation problem under limited budget using the dataset, we follow[S1]] and
take the visit/conversion label as the cost/value respectively. To better reflect real-world marketing
scenarios where OBS data far outnumbers RCT data, we simulate a marketing policy to convert part
of RCT data into OBS data. We refer to this as CRITEO-UPLIFT v2 (Hybrid).

CRITEO-UPLIFT v2 (Hybrid). Given a total of 13.9 million RCT samples, we use 5% of the data
to train a two-stage model with the standard cross-entropy loss. This trained model is then used to
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Algorithm 5 Lppr -aware gradient estimator of the dual improved finite difference strategy (DIFD)

Input: Lagrange multiplier \; data D = {(x;, t, rit,, cit, ) } Y15 predicted revenue/cost 7, ¢.
Compute: For each t in [M], N; < number of samples with ¢; = ¢; p; < N;/N.
O0LpL(0;DrcT)

Initialize: Dl (7(),2(6)) =0, z;; = 0 forall 4, j.
12 Vi, g, aig = (1ij — A ciz)s 2ij = Licarg max; (rij—Acij)
- P 1 1
20 TN,y 0,7, C) < 7 D p—tirtiﬂtizmgmaxj 2
- PN 1 1
3: C()\, r,c,r, C) N Zz Ectiﬂti:arg max; 2i;
4 —Lppr(\r ¢, 7,¢) « T(A\re,7,¢8) — X\, r, e, 7, ¢)
5: matching_indices = {i | ¢; = argmax; z;;, Vi}
6: mismatching_indices = {i | t; # arg max; z;;, Vi}
7. for all 7 € matching_indices do
8: hi,, = maxjzy, aij — g,
1 i — NeCa
9: 9—Lppr _ N7 (rirg —A-cir,)
: 82?;;‘“1' hy,
10: forall j € {1,2,..., M}, j #t;do
11: hfj = Qjt; — Q45
1 . — O
12: 0-Lppr _ _N'i”ti'(nt’? A-cit,)
: 82,‘}}"’1/ h%;
13: end for
14: end for
15: for all 7 € mismatching_indices do
16: jZ: arg maxj; a;; . )
17: Wiy, = aij — @ir,, hiy = —hiy,
1
18: 0—Lppr _ Ny (rie —Acirs)
: 8z?t‘fial' h,,
1
19: 9—Lppr _ N'ipti'(r“i_/\'cu’i)
. 82?}‘“1/ - hf,j
20: end for

9LppL(0;PreT) _ _ 0—LppL(0;Drer)
azfi:ljual/(f(g)’é(e)) azﬂjgal’(f(G),é(e)) '

Output: the gradients

simulate a marketing policy on 50% of the total RCT samples. We construct the observational (OBS)
dataset by selecting users for whom the coupon assignment under the simulated policy matches the
actual assignment in the data. Note that this procedure discards unmatched RCT samples, resulting
in an OBS dataset with 3,498,294 samples, which accounts for approximately 25% of the total
data. Our analysis shows that the constructed OBS dataset achieves an 82.43% improvement in ROI
compared to the random dataset, which demonstrates that the constructed OBS dataset closely reflects
observational data generated by real-world marketing strategies. Excluding the 55% of random data
that is not utilized in the above process, we further split the remaining 45% RCT samples into 5% for
the RCT training set, 10% for validation set, and 30% for test set. To summarize, the resulting datasets
contain 3,498,294 samples in the OBS training set, 698,960 in the RCT training set, 1,397,959 in
the RCT validation set, and 4,193,878 in the RCT test set. It is worth noting that the ratio of OBS to
RCT samples in the training set is approximately 5:1.

B.1.2 EOM (Expected Outcome Metric).

EOM (Expected Outcome Metric). EOM is a common metric for marketing optimization in [2, 51}
49!152]]. Based on RCT data, an unbiased estimation of the expected outcome (per-capita revenue/per-
capita cost) for arbitrary budget allocation policy can be obtained. Since EOM represents the decision
quality of marketing under multilple treatments, we use EOM to compare the performance of different
methods in Marketing data I and II. We give pseudocode of EOM (Expected Outcome Metric) for
unbiased estimation of per-capita revenue or cost in Algorithm 6]
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Algorithm 6 EOM: Unbiased estimation of expected outcome (per-capita revenue or cost) for
Lagrangian budget allocation policy A with predicted revenue 7 and cost ¢ under budget B.

Input:data D = {(x;,t;, 7it,, cit,) 2\ ; budget B; predicted revenue/cost 7, ¢ small constant e
Compute: For each t in [M|, N; < number of samples with t; = ¢; p; + N;/N.

Initialize: Auin < 0 Amax < maxs; (£2), 235 - 0 foralli,j

1: while A\, — Amin > €do

2: A w

3: for all 7, j do

4: Zij < H(j = arg man(fi]‘ — )‘élj))

5: end for

6: T e e) «— &, p%irtil[ (t; = arg max; z;;)
7: e\, e, 7,8) +— %>, p—iictiﬂ (t; = argmax; 2;;)
8: if |% —ée(A,r, c,f,é)| < e then

9: break
10: end if
11: if%—é()\,r,c,f,é)>0then
12: Amax < A

13: else
14: Amin < A

15: end if

16: end while

17: X« A

18: #(B,r, ¢, 7, ¢) + F(\*,r,¢, 7, ¢)

19: &(B,r, ¢, T, ¢) < ¢(A*, 7, ¢, 7, ¢)

Output: expected per capita revenue 7(B, r, ¢, 7, ¢), expected per capita cost &(B, r, ¢, 7, é), A*;

B.1.3 Experimental Details

Model Architecture. For CRITEO-UPLIFT v2 (Hybrid), we employ a 4-layer multi-head multilayer
perceptron (MLP) with layer sizes of 64-32-32-4, where the first two outputs correspond to predicted
revenue and the remaining outputs correspond to predicted cost. For Marketing Data I, we use a
4-layer multi-head MLP with layer sizes of 128-64-32-16; in this case, the first eight outputs represent
predicted revenue, and the remaining outputs represent predicted cost. For Marketing Data II, the
model is a 4-layer multi-head MLP with layer sizes of 128-64-32-10, where the first five outputs are
for predicted revenue and the remaining outputs are for predicted cost. Note that, unless otherwise
specified, the target model, bridge model, and teacher model all adopt the same architecture.

Device. All experiments are conducted on two NVIDIA A100 GPUs with a total of 232 GB memory.
Optimizer. We use the Adam optimizer for training.

Training Procedure. In the three experiments, the models are trained for 100, 500, and 500 epochs,
respectively. For each experiment, the model checkpoint with the highest AUCC/EOM on the
validation set is selected as the best model.

Other Hyperparameters. The number of gradient descent (GD) steps for assumed updates, k, is
set to 5. The number of conjugate gradient iterations, 7, is set to 50. The warm-start period for
Bi-DFCL, if applicable, is set to 20 epochs.

B.2 Details of Ablation Studies.

To show the effects of individual components, we conduct ablation study by incrementally adding
four key components of Bi-DFCL to baseline in a sequential manner: Decision Loss (PPL), Bi-level
Optimization by hybrid RCT and OBS data, Counterfactual Labels, and Implicit Differentiation
Algorithm. The experimental results on marketing datasets are reported in Table[3]or Table[5]

Specifically, the baselines corresponding to each row in Table [3|are described as follows:
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Table 5: Ablation study of each individual component in Bi-DFCL with two marketing datasets.

Components of Bi-DFCL | Marketing Datal |  Marketing Data IT
Decision Loss (PPL)  Bi-level Optimization ~Counterfactual Labels Implicit Differentiation ‘ EOM  Improvement ‘ EOM  Improvement
X X X X 1.0000 - 1.0000 -
v X X X 1.0167 1.67% 1.0156 1.56%
v v X X 1.0240 2.40% 1.0175 1.75%
v v v X 1.0248 2.48% 1.0213 2.13%
v v v v

1.0277 2.77% 1.0252 2.52%

Row 1 (Baseline): This is the TSM-SL baseline trained on RCT data only, without any of the
proposed components. It serves as the basic reference model.

Row 2 (Baseline + Decision Loss): This variant corresponds to DFCL-PPL, which incorporates the
decision loss (Lppr,) on RCT data, but does not include bi-level optimization.

Row 3 (Baseline + Decision Loss + Bi-level Optimization): This setting corresponds to Bi-DFCL-
PPL without using synthesized counterfactual pseudo-labels to parameterize Lpy,. Instead, it employs
an improved version of IPW (inverse propensity weighting), where the bridge model directly outputs
dynamically adaptive weights for reweighting factual samples, rather than using fixed or estimated
propensity scores. Implicit differentiation is not employed here(i.e., explicit differentiation is used).

Row 4 (Baseline + Decision Loss + Bi-level Optimization + Counterfactual Labels): This config-
uration is Bi-DFCL-PPL, where synthesized counterfactual pseudo-labels are used to parameterize
the Lppr,, but implicit differentiation is still not applied (i.e.,explicit differentiation is used).

Row 5 (Full Model): This is the complete Bi-DFCL-PPL with all four components enabled: decision
loss (PPL), bi-level optimization, counterfactual labels, and implicit differentiation.

We can find that after the introduction of each module, the performance can all be strengthened to some
extent, which demonstrates that our three contributions can all benefit the marketing optimization.

B.3 Details of In-depth Analysis

The effect of RCT and OBS training data size. We first conduct an in-depth analysis to investigate
the effect of training data size on performance using Marketing Data I, as well as to validate the
bias-variance properties of RCT and OBS data. The experimental results are summarized in Table [6]

Table 6: Effect of training data size (OBS and RCT) on performance with Marketing Data I.

Method | OBS RCT | OBS:RCT Ratio | EOM  Improvement
TSM-SL 2,220,781 0 - 0.9869 -1.31%
TSM-SL 0 2,220,781 - 1.0000 -
TSM-SL 22,201,405 0 - 1.0067 0.67%
Bi-DFCL-PPL | 22,201,405 222,000 100.01:1 1.0190 1.90%
Bi-DFCL-PPL | 22,201,405 1,100,000 20.18:1 1.0258 2.58%
Bi-DFCL-PPL | 22,201,405 2,220,781 10.00:1 1.0277 2.77 %

As shown in Table@, models trained solely on RCT data (e.g., TSM-SL with 2,220,781 RCT samples)
serve as an unbiased reference, but their performance is limited by high variance due to the relatively
small sample size. In contrast, models trained only on large-scale OBS data may suffer from bias,
as reflected in lower EOM values when using 2,017,450 or even 3,381,5274 OBS samples alone.
Notably, as the amount of OBS data increases from 2,220,781 to 22,201,405, the EOM improves from
0.9869 to 1.0067, which highlights that the low-variance property of large-scale observational data is
highly beneficial for robust and high-quality decision making. Furthermore, when a sufficient amount
of RCT data is combined with abundant OBS data (e.g., Bi-DFCL-PPL with 22,201,405 OBS and
2,220,781 RCT samples), the model achieves the best performance (EOM = 1.0277, Improvement =
2.77%). This demonstrates the effectiveness of leveraging large-scale observational data to reduce
variance, together with a moderate amount of randomized data to correct for bias, thereby achieving
a favorable bias-variance trade-off and superior overall model performance.

The sensitivity of key hyperparameters. We further evaluate the sensitivity of key hyperparameters,
specifically the number of gradient descent (GD) steps for assumed updates (k, default = 5) and the
number of conjugate gradient iterations (n.g, default = 50), by varying their values. The results on
Marketing Data II are summarized in Table
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Table 7: Sensitivity analysis of key hyperparameters on performance with Marketing Data II.
k (GD Steps) nc, (CG Iterations) | EOM  Improvement

1 10 1.0199 1.99%
1 50 1.0217 2.17%
5 10 1.0230 2.30%
5 50 1.0252 2.52%
5 100 1.0253 2.53%
5 200 1.0249 2.49%
10 50 1.0255 2.55%
10 100 1.0252 2.52%

As shown in Table[/] the performance of our method is relatively stable across a range of values
for k and ncg, indicating that the proposed approach is robust to these hyperparameter settings.
Notably, when k£ = 1, the implicit differentiation algorithm does not provide a significant advantage
over explicit differentiation. This suggests that the strength of implicit differentiation lies in its
independence from the optimization path, allowing for any number of iterative updates to reach the
optimal solution, rather than relying on the overly strong assumption of explicit differentiation that a
single gradient descent step suffices to achieve optimality.

The Robustness of Bi-DFCL. Moreover, we evaluate the robustness of Bi-DFCL under multiple sets
of budget values B. The results on Marketing Data I and II are summarized in Figure 3]
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(a) Incremental reward (normalized EOM) on Market-  (b) Incremental reward (normalized EOM) on Market-
ing Data I across 10 budget levels. ing Data II across 10 budget levels.

Figure 3: Robustness of Bi-DFCL under multiple budget values B on Marketing Data I and II.

As illustrated in Figure 3] Bi-DFCL consistently achieves higher incremental reward (EOM) across a
range of candidate budget values on both Marketing Data I and II. This demonstrates the robustness
and effectiveness of Bi-DFCL in maintaining superior decision quality when the budget varies within
several candidate levels, further highlighting its practical applicability in real-world marketing.

Computational Efficiency Analysis. Finally, we provide a comprehensive analysis of the computa-
tional overhead of Bi-DFCL from both space and time efficiency perspectives.

Space Efficiency: Bi-DFCL does not incur additional space overhead compared to existing baselines.
While implicit differentiation algorithms typically require storing large-scale inverse matrices, we
employ the Conjugate Gradient (CG) algorithm to avoid this issue. The CG algorithm circumvents
the storage of large-scale inverse matrices through matrix-vector products (see Appendix [A.6).

Time Efficiency: For online inference, Bi-DFCL only uses the well-trained target model, resulting in
inference time identical to simple causal learning methods. However, additional time overhead occurs
during offline training. Table [§|compares the training time of different methods on Marketing Data II.

For fairness, all methods were fully trained for 500 epochs using the same model structure (no early
stopping). As shown in Table |8} Bi-DFCL requires approximately 6-7 times the training time of the
simplest causal method TSM-SL. The ablation studies reveal that most time overhead stems from
solving the bi-level optimization problem. Our use of implicit differentiation with the CG algorithm
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Table 8: Comprehensive analysis of training time (minutes) across different methods

Method Data Training Time (min) \ Relative to TSM-SL
TSM-SL RCT 2.505 0.06x
DFCL-PPL RCT 3.163 0.07x
DFCL-PIFD RCT 9.948 0.23x
TSM-SL OBS 39.918 0.94x
TSM-SL RCT+OBS 42.332 1.00x
KD-Label RCT+OBS 67.358 1.59x
LTD-DR RCT+OBS 492.559 11.63x
AutoDebias RCT+OBS 397.886 9.40x
Bi-DFCL-PPL RCT+OBS 265.263 6.26x
Bi-DFCL-PIFD RCT+OBS 294.927 6.96x
Bi-DFCL-PPL w/o ID  RCT+OBS 345.132 8.15x%
Bi-DFCL-PIFD w/o ID RCT+OBS 427.515 10.10x

provides two key advantages: (1) it reduces time complexity from O(n?®) to O(n) by avoiding
matrix inversion, and (2) it obtains more accurate optimal solutions, allowing bilevel optimization
solving once every k batches rather than every batch. The comparison between Bi-DFCL variants
with and without implicit differentiation (ID) demonstrates the efficiency gains of our approach. In
summary, although Bi-DFCL introduces additional offline training time, this investment is justified
by significantly improved online decision quality. Our further improvements also effectively mitigate
this overhead, making Bi-DFCL practical for real-world marketing applications.

C Boarder Impacts

Our work offers several positive societal impacts. First, by improving the decision quality of marketing
resource allocation, our method helps platforms maximize the effectiveness of their marketing
campaigns under real-world budget constraints. This can lead to increased user engagement and
satisfaction, as users are more likely to receive relevant and timely offers. Second, the reduction of
resource waste contributes to more sustainable business operations, which benefits both companies
and consumers. Third, our approach has demonstrated strong performance in both offline benchmarks
and large-scale online deployments, indicating its practical value for the digital economy. The
adoption of such data-driven decision-making tools can further support innovation and the healthy
development of the broader digital marketing ecosystem.
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