
Obfuscation Padding Schemes
that Minimize Rényi Min-Entropy

for Privacy

Sebastian Simon, Cezara Petrui, Carlos Pinzón(B), and Catuscia Palamidessi

Inria Saclay, France, Laboratoire d’Informatique de l’École Polytechnique (LIX),
Palaiseau, France

carlos.pinzon@lix.polytechnique.fr

Abstract. Consider a set of users, each of which is choosing and down-
loading one file out of a central pool of public files, and an attacker that
observes the download size for each user to identify the choice of each
user. This paper studies the problem of padding the files to obfuscate
the exact file sizes and minimize the expected accuracy of the attacker,
without exceeding some given padding constraints. We derive the algo-
rithm that finds the optimal padding scheme, prove its correctness, and
compare it with an existing solution that uses a similar but different
attack model. We also discuss how the two solutions are related in terms
of private information leakage.

Keywords: obfuscation · privacy · padding · Rényi min-entropy

1 Introduction

Consider a set of users, each of which is choosing and downloading one file out of
a central pool of public files, and an attacker that observes the download size for
each user and is willing to identify the choice of each user. The files are public,
but the choices are private. The objective is to pad the files with some small
overhead to obfuscate the information gained by the attacker and reduce his
chances of discovering the choices of the users. This paper studies the problem
of minimizing the expected accuracy of the attacker by padding the files without
exceeding some given padding constraints.

On one extreme, if the files are not padded at all, the attacker might easily
map the observed download sizes with the original files; e.g., if there is just one
file of size 10.32Mb and the attacker observes that the network traffic of some
user corresponds to a file of size 10.32Mb, he will immediately know what file
was chosen. This can be prevented by padding several files to common sizes to
obfuscate the information gained by the attacker. On the other extreme, if all
files are padded to a common size, this common size should be large enough to

S. Simon and C. Petrui—Authors contributed equally.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 74–90, 2023.
https://doi.org/10.1007/978-981-99-7032-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_5&domain=pdf
https://doi.org/10.1007/978-981-99-7032-2_5

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 75

cover the largest file in the set, and, as a consequence, many small files will be
padded excessively, increasing the bandwidth use. The ideal solution lies between
these two extreme cases. For this reason, this paper considers the problem of
maximizing privacy while respecting some flexible padding constraints, like, for
example, that no file can increase its size more than 10%.

The attacker we consider makes just one attempt to re-identify the file, and
to maximize his chances, he will of course guess a file that has the maximum
posterior probability given the observed (obfuscated) size. This model of attack
is known in literature as one-try attack [14], and it has been characterized in
information-theoretic terms using Rényi min-entropy. More specifically, entropy
in general represents the (lack of) information content of a discrete probabil-
ity distribution, and Rényi min-entropy is a form of entropy that emphasizes
the highest probability value. The prior and posterior entropies represent the
probabilistic knowledge of the attacker before and after he observes the obfus-
cated size, respectively. In particular, Rényi posterior min-entropy is related to
hypothesis testing and, as a measure, it closely corresponds to the Bayes error.
The difference between the prior and posterior entropies represents how much the
knowledge of the attacker (and hence his probability of success) increases thanks
to the observation, and it is, therefore, a measure of the efficiency of the padding
scheme. In literature this difference is known as Rényi min-entropy leakage.

The padding problem considered in this paper might also apply to equiva-
lent scenarios in which an attacker exploits time side-channel information. For
illustration, consider an intelligence service that is surveiling people entering
and exiting a building. They can use the time each user took inside to infer the
type of service he received, e.g., whether he was at the bank, shopping, or at
the cinema in the mall. In this case, the users can waste some time inside the
building on purpose to confuse the observer. Equivalently, a server can delay its
responses in a planned manner to prevent an attacker from inferring the chosen
type of request. More generally, an algorithm can sleep on purpose to prevent
leaking information about the input, as exploited by timing attacks [13,15].

1.1 Contributions

– We propose two algorithms that derive the optimal padding schemes, one
for the deterministic case, and one for the randomized case (PRP and POP,
defined in Sect. 2).

– We prove the correctness of the algorithms and test the implementations
against brute-force solutions using small synthetic datasets.

– Likewise, we compare our algorithms with an existing solution [11] that
uses an attack model based on Shannon entropy, and discuss how the two
approaches are related in terms of the type of private information leakage
that each attacker represents.

– The code is publicly available at [10]. It includes not only the algorithms we
propose, but also the reimplementation of the algorithms of [11] to support
flexible padding constraints, multiple files having the same size, and sparse
matrix representations.

76 S. Simon et al.

1.2 Related Work

The model of attacker we use has been well investigated in the field of Quanti-
tative Information Flow (QIF), which is a branch of security aimed at studying
inference attacks, namely attackers that try to infer the value of the secret from
related observations. The QIF theory actually formalizes a variety of models,
each of them characterized by parameters that represent the capabilities and
the goal of the attacker. For a detailed coverage of the topic we refer to [1].

This paper is strongly related with the work of Reed and Reiter [11], in
which the authors consider the same problem with a different attack model,
based on Shannon entropy, and more specifically, on measuring the leakage in
terms of Shannon mutual information. Shannon mutual information is a well
known notion that has been shown to be very useful in the several scientific
fields. In security and privacy, however, it does not seem the right notion for
modeling the attacker. Indeed, its operational interpretation corresponds to an
attacker that can try to guess the exact secret by making an unbound number
of attempts, and his objective is to minimize the expected number of attempts
before he identifies it correctly. This seems a less natural model of attacker than
those of QIF (and hence than the one we use, based on Rényi min-entropy), and
it also sometimes leads to conclusions that are contrary to common sense. For a
detailed discussion about this issue, refer to [14].

Reed and Reiter [11] propose three padding algorithms, called PrpSh, PopSh
and PwoD (padding without a distribution), for finding padding schemes that
minimize Shannon leakage under different bandwidth constraints. These algo-
rithms do not support, however, multiple files having the same size nor flexible
padding constraints as defined in this paper. We re-implemented their algorithms
with these additional details before comparing them with our proposed solutions,
and we explained in terms of attack models and information leakage the core
difference between them.

In [4] they consider the BREACH/CRIME [7] security attack in which the
attacker observes sizes and can also control a malicious script that runs in the
browser of the victim. By exploiting the greedy mechanism of the Huffman
encoder in the compression stage of the cookies, the attacker is able to use
repeatedly the size information to discover the cookie secret and impersonate
the victim. As they show, random gaussian padding can be used and is better
than uniform padding to reduce the attacker’s probability of success from 1.0 to
0.0026. Although this paper is more related with security than privacy, it shows
how important padding can be to obfuscate information.

Lastly, one of the main conclusions in [16] is that the optimal way to reduce
information obtained by an attacker that monitors traffic is to modify the traf-
fic patterns so that they are confused with other patterns. We draw a similar
conclusion formally in our problem (Proposition 1), proving that it is optimal
to pad messages to reach the sizes other existing files.

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 77

2 Problem Formalization

The collection of public files is denoted as E = {e1, e2, . . . , en}, where E is
sorted non-decreasingly by the sizes |ei| ∈ N. For the sake of generality, we allow
different files to have the same size, hence the set of file sizes S

def
:= {|e| |e ∈ E}

has m ≤ n unique elements, which we enumerate in increasing order as S =
{s1, s2, . . . , sm}.

A padding function or padding scheme is a function f : E → N respecting
f(ei) ≥ |ei| that tells to what size each file should be padded. The padding
constraints are expressed with the proposition ∀i, f(ei) ∈ [|ei|, bi], where each
[|ei|, bi] = {|ei|, |ei| + 1, ..., bi} is an integer interval.

The sequence of users with their respective choices is modelled as a sequence
of i.i.d. samples coming from the marginal distribution of the files. File ei is
chosen with frequency pi ∈ [0, 1], where

∑n
i=1 pi = 1. We let X be a random

variable satisfying P(X=ei)
def
:= pi, thus, a sequence of users with choices can be

represented as a sequence of i.i.d. choices following the distribution of X.
The attacker will predict, upon seeing a download of size z ∈ Im(f) (where

the image Im(f)
def
:= {z ∈ N | P(f(X)=z) > 0} denotes the set of possible outputs

of f), that the secret value of X is the file ei that maximizes P(f(ei)=z). To do
this, he uses the public information he has access to and the information he can
infer. The files and their sizes before padding are public, and he can determine
the padding scheme by requesting each of the files himself, possibly multiple
times in case of a randomized padding scheme. In addition, considering the
worst-case scenario, we assume that he knows or has estimated the frequencies
pi with which files are chosen on average. With this information, the attacker
can always find a file ei that maximizes P(f(ei)=z) for the observed z, and his
expected probability of success is therefore

∑

z∈Im(f)

max
i∈[1..n]

P(X = ei ∧ f(X)=z) =
∑

z∈Im(f)

max
i∈[1..n]

pi · P(f(ei) = z). (2.1)

The objective is to find a padding function f : E → N that minimizes
the accuracy of the attacker while respecting the given padding constraints.
In addition, two scenarios are considered separately: per-object-padding (POP)
refers to the case when f is deterministic, hence the files are padded once and
forever; per-request-padding (PRP) refers to the case when the padding is done
on demand and f is probabilistic.

2.1 Presentation in Terms of Privacy Leakage

The objective of minimizing the attacker accuracy can equivalently be presented
in terms of minimizing privacy leakage. There are several definitions for leakage
I(|X|, f(X)) of a padding function f : E → N. Particularly, Rényi min-entropy
leakage [14], which we call Rényi leakage in this paper, is defined using Rényi
min-entropy H∞ as follows:

I∞(f)
def
:= I∞(|X|, f(X)) = H∞(|X|) − H∞(|X| | f(X)), (2.2)

78 S. Simon et al.

H∞(|X|) = − log2 max
z∈Im(f)

P(|X|= z), (2.3)

H∞(|X| | f(X)) = − log2
∑

z∈Im(f)

max
i∈[1..n]

(pi · P(f(ei) = z)). (2.4)

The importance of Rényi leakage in more general contexts can be found in [9]
and [14]. Basically, Rényi leakage is a special case (α = ∞) of a family of leakages
Iα based on α-Rényi entropy Hα. Since Rényi-min entropy H∞(|X|) is constant
in regard to the padding-scheme, minimizing Eq. (2.2) is equivalent to maximiz-
ing Eq. (2.4), which is in turn equivalent to minimizing Eq. (2.1). Therefore,
Rényi leakage is in direct one-to-one correspondence with the probability of suc-
cess of the attacker.

Another important case (α = 1) is Shannon leakage, which is given by:
I(|X|, f(X)) =

∑
i,z pi P(f(ei)=z) log2

P(f(ei)=z)
P(f(X)=z) . With some effort, this leakage

can also be interpreted in terms of an attacker that we call Shannon attacker. The
Shannon attacker is assumed to have access to an oracle that answers queries of
the type “is the file in this set of files?” for each user, and his objective is to find
the right files using the minimal number of queries, as in a 20Q game. Although
the oracle assumption makes the Shannon attacker unrealistic, defenses against
him are useful against the Rényi attacker of this paper because, intuitively, the
more queries the Shannon attacker needs, the harder it is to guess the correct
file in a single try.

For this particular application, the direct pragmatic connection between
Rényi leakage and a simple adversary success makes it more appealing than
the Shannon attacker. The same argument is used in [3], whose privacy measure
is closely related with ours. More generally in the privacy community, leakage
functions are better described in terms of their associated attacker rather than
their information theoretic properties [2,12].

2.2 Why Not Differential Privacy?

Differential privacy [5], is one of the most prevalent formalizations of privacy.
For this particular problem, a padding scheme f satisfies ε-differential privacy if
and only if for all input files ei, ej ∈ E and all output sizes z ∈ Im(f), we have
P(f(e1) = z) ≤ exp(ε)P(f(e2) = z).

This notion of privacy represents an attacker whose success function is given
by how much more likely one input file is with respect to another one for a given
observation. However, this is excessively strong for the problem under consider-
ation. Indeed, as Theorem 1 shows, differential privacy can only be achieved at
the total detriment of bandwidth use.

Theorem 1. For any ε > 0, the padding scheme that satisfies ε-differential
privacy and minimizes bandwidth is the one that pads all input files to the size
of the largest one.

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 79

Proof. Fix ε > 0 and let ej
def
:= arg maxei∈E |ei| be the largest file in E. For all

sizes z < |ej |, we have P(f(ej) = z) = 0 because ej can not be padded to smaller
sizes than |ej |. Moreover, the differential privacy constraint forces every other
file ei 	= ej to satisfy P(f(ei) = z) ≤ exp(ε)P(f(ej) = z) = 0 whenever z < |ej |.
In other words, all files must be padded to sizes at least as large as |ej |, i.e.
P(f(X) ≥ |ej |) = 1. Among all the mappings f that have this property, the one
that minimizes bandwidth is the one that pads all files exactly to the largest file
size |ej |, and it satisfies ε differential privacy trivially because it is a constant
function.

Theorem 1 is the reason why we exclude differential privacy from the analysis
and focus on the privacy notions discussed in the previous section. This theorem
is a direct consequence of the inevitable fact that padding can only enlarge files
and not reduce their sizes. Apart from putting in evidence the abusive overhead
required by differential privacy, this theorem also shows that its parameter ε is
irrelevant as a measure of privacy for the problem under consideration, making
it inappropriate.

2.3 Simplification of the Output Set

We conclude this section by proving that optimal padding functions always map
to sizes in S. This is a key-fact for the derivation of the algorithms and their
proofs. Intuitively, if a set of files can be padded to a common certain size z, but
can also be padded to z − 1, we can pad them to z − 1 and win some bandwidth
without leaking any additional information. This forces the optimal padding
functions to always pad to the sizes z for which it is not possible to pad to z − 1
without sacrificing privacy, which are precisely the sizes in S. The same holds
true for padding schemes that minimize Shannon leakage, as shown in [11].

Proposition 1. For any padding-scheme f : E → N, there exists a padding-
scheme f∗ : E → S such that I(f∗) ≤ I(f). Moreover, P(f∗(X) ≤ f(X)) = 1,
hence f∗ uses less padding (bandwidth) than f .

Proof. Define f∗ as the composition f∗ def
:= g ◦ f , where g(z) = max{s ∈ S :

s ≤ z}, that is, f∗(X) = g(f(X)). The function g is defined only for z ≥ min S
and f∗ is well-defined because the padding constraints force P(f(X) ≥ min S) ≤
P(f(X) ≥ |X|) = 1. By definition, g(z) ≤ z, thus P(f∗(X) ≤ f(X)) = 1.
Let us now show, regarding privacy leakage, that I(f∗) ≤ I(f). Let I∗

xs denote
P(X=x ∧ f∗(X)=s) and Ixz denote P(X=x ∧ f(X)=z). We will show that the
accuracy of the attacker (Eq. 2.1) is smaller or equal for f∗ than for f . This can be
expressed as

∑
s maxx I∗

xs ≤ ∑
s

∑
z:g(z)=s maxx Ixz. On the left and right-hand

sides, we have summations on s ∈ S, so it suffices to prove that this inequality
holds for each fixed s. At each s ∈ S, since I∗

xs =
∑

z:g(z)=s Ixz, the inequal-
ity becomes maxx

∑
z:g(z)=s Ixz ≤ ∑

z:g(z)=s maxx Ixz, which is necessarily true.

Indeed, letting x(s) def
:= arg maxx

∑
z:g(z)=s Ixz for the left-hand side, we have for

each z with g(z) = s that Ix(s)z ≤ maxx Ixz. �

80 S. Simon et al.

Proposition 1 can be seen as an instance of the Data Processing Inequality,
which can be found as Theorem 8 of [6], or more generally for privacy contexts
in [8].

Corollary 1. A padding function that has minimal leakage must pad each file
to the size of another file in the initial set.

Having Corollary 1 in mind, the padding scheme f can be represented as
an obfuscation channel matrix P where pij = P(f(ei)=sj), in which case, the
problem can be specified as shown below, and the attacker accuracy becomes

∑

j

max
i∈[1..n]

pi · pij . (2.5)

Problem input: (1) A set E of n files {ei |i ∈ [1..n]} with frequencies pi,
sorted sizes |ei| and set of unique sizes S = {s1, ..., sm}. (2) Padding con-
straints of the form ∀i, sli ≤ f(ei) ≤ sri

, parametrized with pairs of indices
li, ri ∈ [1..m].

Desired output: A padding function f : E → S in the form of a channel
matrix pij = P(f(ei)=sj) that minimizes Rényi leakage I∞(f) or equivalently
Eq. (2.5). Depending on the problem variant, f must be deterministic (POP)
or randomized (PRP).

3 Algorithms

In this section, we derive the algorithms PopRe and PrpRe that minimize the
Rényi leakage (2.2) for the POP and PRP cases respectively. They contrast those
for Shannon mutual information minimization found in the paper [11], denoted
here as PopSh and PrpSh. The complexities of these algorithms are summarized
in Table 1.

Table 1. Complexities, where b̄
def
:= (1/n)

∑n
i=1 ri − li + 1 is the matrix average band

size. For practical reference, with reasonable padding constraints, if the files are diverse
with a large and spread spectrum of sizes, one expects b̄ � m ≈ n.

Algorithm Minimizes WC Runtime complexity Memory

PopRe Rényi leakage O(n2 b̄) n b̄

PrpRe, PrpReBa Rényi leakage O(n b̄) n b̄

PopSh Shannon leakage O(n b̄) n b̄

PrpSh Shannon leakage O(iters · n m) n m

Algorithm PrpSh is an approximation algorithm and has a runtime com-
plexity that depends on the degree of accuracy imposed by the user and the
limit number of iterations iters allowed. Also, the complexities of the dynamic

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 81

programming algorithms correspond to the theoretical worst-case and might
overestimate the actual implementations. For instance, although PopRe has two
parameters varying in [1..n], not all combinations need to be calculated in a
top-down implementation.

3.1 Per-Object-Padding Scenario, PopRe

In this section we develop the algorithm that minimizes Rényi leakage in the
POP variation, in which the matrix P is constrained to pij ∈ {0, 1}. Before
describing the algorithm, we will prove Remark 1, which will be used as the
main update of the entries of the channel-matrix.

Remark 1. Let f be a Rényi
optimal padding-scheme and ei

be the file with the highest asso-
ciated frequency pi, and assume
that pij = 1 for some j ∈ [1..m].
Then there exists a padding-
scheme f∗ with the same Rényi
leakage such that pkj = 1 for all
k ∈ [1..n] such that j ∈ [lk..rk].

Fig. 1. Remark 1: if the file with maximal fre-
quency is e11 and the left matrix (f) is optimal,
the right one (f∗) must be as well.

Proof. We consider the padding-scheme f to be represented as the channel-
matrix between the secrets and the observables. When we want to minimize
(2.5) we sum over each column of the matrix P . In particular, on the column j
we have maxa∈[1..n](pa · paj) = pi since pi is the highest frequency among the
frequencies of the files and pij = 1. Now, let us consider the padding-scheme f∗

whose matrix P ∗, consists on moving every 1 that we can to column j:

p∗
ab =

⎧
⎪⎨

⎪⎩

pab if b 	= j and a ∈ [1..n] such that j 	∈ [la..ra]
1 if b = j and a ∈ [1..n] such that j ∈ [la..ra]
0 otherwise

On the column j of the matrix P ∗ we will still have maxa∈[1..n](pa · p∗
aj) = pi

because the padding-scheme f∗ preserves the maximum on column j. Moreover,
on the rest of the columns, the maximum either decreases or stays the same since
we created more entries p∗

ab = 0, which means that the product pa · p∗
ab = 0.

However, we chose f to be the Rényi optimal padding-scheme and with the
remarks above, f and f∗ give the same leakage. �

Figure 1 depicts an example of a sub-matrix of P as described in Remark 1. In
the figure, we have exactly one entry equal to 1 in each line because the channel-
matrix is stochastic, and we are in the POP case. Additionally, the quantity in
(2.5) represents the sum of the maximum over columns where each 1 counts for
the frequency of the file. Then, the update does not increase the (2.5) because
the 1 with maximal frequency dominates its column, and moving all possible 1’s
above or below it does not increase Rényi leakage.

82 S. Simon et al.

Algorithm 1. Per-object-padding pseudocode. This implementation uses recur-
sion both for computation and reconstruction.

procedure Renyi POP � Main function
memo ← {} � Empty map
pij ← 0 � A matrix p full of zeros
renyi ← Reconstruct(0, n)
return (p, renyi) � Output matrix p and its renyi leakage

end procedure
procedure Reconstruct(a, b)

(renyi, k, a�, b�) ← f(a, b)
for j = a�..b� do pjk ← 1 end for
if a < a� then Reconstruct(a, a�) end if
if b� < b then Reconstruct(b�, b) end if
return renyi

end procedure
procedure f(a, b)

if (a, b) ∈ memo then return memo[(a, b)] end if
if a = b then return (0, ∞, a, b) end if
best ← (∞, ∞, ∞, ∞)
imax ← arg maxi=a..b pi

for k = limax ..rimax do
jmin, jmax ← range of files ejmin ..ejmax that can be padded to size sk

a� ← max(a, jmin)
b� ← min(b, jmax)
renyi ← f(a, a�)[0] + pimax + f(b�, b)[0] � Index [0] is the renyi component
this ← (renyi, k, a�, b�)
best ← min(best, this) � Lexicographic (compares first by renyi)

end for
(renyi, k, a�, b�) ← best � Unpack tuple
memo[(a, b)] ← (renyi, k, a�, b�)
return (renyi, k, a�, b�)

end procedure

Using Remark 1 we can divide the padding problem into sub-problems that
minimize (2.5) and leverage dynamic programming: ∀a ≤ b ∈ [1..n], we define

D[a][b] = min
P channel matrix

∑

j∈[1..m]

max
i∈[a+1..b]

(pi · pij),

i.e. D[a][b] gives the minimal leakage for the sub-problem that pads files from
ea+1 to eb, under the general constraints.

By convention, we consider D[i][i] = 0, which will be the base case. To write
the recurrence formula, we need to take the file eimax with maximum frequency
pimax , imax ∈ [a+1, b]. We go through every size index k ∈ [1..m] such that eimax

can be padded to the size of sk, and we update the channel-matrix according
to Remark 1, i.e. add 1’s on k-th column if we can (taking into consideration
the padding constraints) and complete the lines that have a fixed 1 with 0’s on

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 83

the remaining entries. Then, we apply the recurrence on the rows which are not
updated, i.e. from a to a∗ def

:= max(a,maxi∈[1..n]{i|ri < k}), and, respectively,

from b∗ def
:= min(k, b) to b. Hence,

D[a][b] = pimax + min
k∈[limax ..rimax]

(D[a][a∗] + D[b∗][b])

After applying the dynamic algorithm program with the aforementioned recur-
rence, we get the minimization of (2.5) in D[0][n], from which we can compute
the minimal Rényi leakage. If we want to recover the channel-matrix itself, in
D[a][b] we pass on the index k for which the maximum happens, as an argu-
ment. In case of a tie, we choose the smallest index k ∈ {1, . . . , n} in order
to reduce average padding. Hence, we know in each sub-interval [a, b] what we
pad everything to, so the information is enough to recover the channel matrix.
A pseudocode summarizing all the logic is shown in Algorithm 1. A concrete
optimized implementation can be found in [10].

Fig. 2. PopRe on a dataset of 6 files.

In Fig. 2 we depict the
channel-matrix of the files with
sizes S = {1000, 1050, 1100,
1110, 1120, 1140} and associ-
ated frequencies {22%, 5%, 23%,
12%, 18%, 20%}. As shown in
the visual representation of the
padding-scheme in the right, we
observe that, for both of the
existing padded sizes, there are
multiple files that are padded to the same element, making them indistinguish-
able for an attacker. Moreover, the blue bars on the graph indicate the frequencies
of the files, and the red bars, the maximum frequency among the frequencies of
the files padded to each specific size. The red bars are effectively highlighting
the terms of the sum (2.5).

3.2 Per-Request-Padding Scenario, PrpRe

In this section, we treat the case of Per-Request-Padding and provide an
algorithm for finding the probabilistic channel-matrix P which minimizes the
Rényi leakage. We will look at the joint distribution matrix I with entries
Iij = pi · pij ,∀i ≤ n, j ≤ m, for which

∑m
j=1 Iij = p1 for each i ∈ [1..n].

We proceed by finding iteratively, for each of the m columns, starting from the
last one, the Rényi optimal manner of setting the entries of I given the padding
constraints. Furthermore, we define the optimal distribution of pi across the i-th
row, 1 ≤ i ≤ n to be the way we fill in the entries pi1, . . . , pim such as to obtain
the minimum sum of the type (2.5) and preserve the relation pi1 + ...+pim = pi.

The proof of our algorithm requires us to consider sub-problems in which the
sequence (pi)1≤i≤n is updated at each step of the algorithm, thus being different
from the initial set of frequencies associated to each file. Hence, we rewrite the

84 S. Simon et al.

problem as a more general one in terms of a budget sequence (bi)1≤i≤n of length
n (initialized as (pi)1≤i≤n), which dictates the remaining value to be distributed
across each row i, for i ∈ [1..n]. The general problem is “Given a non-negative
budget sequence (bi)k

i=1 of length k ∈ [1..n], find a solution matrix Ik×m that
minimizes Eq. (2.5), under the padding constraints for rows i ∈ [1..k], namely
the set {[l1, r1], . . . , [lk, rk]} and

∑m
j=1 Iij = bi”.

We will design the algorithm to solve the general problem recursively by
returning the matrix I for the budget sequence {p1, . . . , pn} with n terms. The
recurrence relationship can be described using the following observation that is
used when creating the probabilistic channel-matrix for the padding-scheme f :

Remark 2. The solution Ik×m for a given (bi)k
i=1 that minimizes Rényi leakage

satisfies the recurrence relationship

Iij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

bi if j = m and i ∈ [1..k], |ei| = sm

bi − b
′
i if j = m and i ∈ [1..k − 1], |ei| 	= sm,

m ∈ [li..ri]
I

′
ij otherwise

where I
′
(k−t)×(m−1) is the solution to the same minimization problem for the

sequence (b
′
i)

k−t
i=1 of length k− t, t = number of files from E which can be padded

to sm, such that for any i ∈ [1..k − t], it is defined as:

b
′
i =

⎧
⎪⎨

⎪⎩

max(bi − btmax , 0) if m ∈ [li..ri] and
btmax = max{bi| |ei| = sm}

bi otherwise

Proof. If there are no files among {e1, . . . , ek} which can be padded to sm, we
set t = 0 and solve the minimization problem for the same budget sequence and
for the set of m − 1 sizes {s1, . . . , sm−1}.

If there are files that can be padded to sm, then due to the padding con-
straints, the element ei can only be padded to sm, so the entry Iim must
necessarily be equal to bi, for all i such that |ei| = sm. Let us denote by
T = {k − t + 1, . . . , k} the set of indices satisfying |ei| = sm,∀i ∈ T and
btmax = max{bi|i ∈ T}. Clearly, for every i ∈ T , Iij = 0,∀j ∈ {1, . . . , k − 1}.
On the m-th column of the matrix I, we have maxi∈[1..k] Iim ≥ btmax .

In order to minimize the sum (2.5) and taking into consideration that the
maximum entry on column m is at least btmax , we aim to distribute for every i
such that ei can be padded to sm and |ei| 	= sm, a quantity equal to btmax (or, if
bi < btmax , then we distribute the whole bi) on the entry Iim, so that we preserve
the maximum on this last column to be btmax . This way, we can assure that,
among the other columns, we’ll have to distribute a smaller fraction of bi, which
means that the maximum on each column between 1 and m − 1 will decrease,
and so will (2.5).

The problem reduces to find the optimal sub-matrix I
′
(k−t)×(m−1) to complete

the first k − t rows of I, and with the aforementioned remark, we can actually

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 85

consider I
′

to be the solution given the updated sequence (b
′
i)1≤i≤k−t which

is defined, for every i such that file ei that can be padded to sm, as either
0, if bi ≤ btmax , or as bi − btmax , if bi ≥ btmax . When we reconstruct the matrix
I, on the m-th column we will have the value I

′
im + btmax or I

′
im + bi (depending

on whether bi is smaller, respectively larger, than btmax).
Now, let us show that, for the sub-matrix I

′
, we have 0’s on every entry

of the m-th column. By definition, I
′

must be a Rényi optimal solution for
the updated sequence of b

′
i’s. Using Proposition 1, there exists a Rényi optimal

padding-scheme f
′

which maps ei, i ∈ [1..k − t] → {s1, . . . , sk−t}, for any set of
files {e1, . . . , ek−t} with the associated frequencies {b

′
1, . . . , b

′
k−t}. Consequently,

for every i ∈ [1..k − t],P(f
′
(ei) = sm) = 0 ⇒ I

′
im = 0. �

Algorithm 2. Per-request-padding pseudocode.
procedure Renyi PRP

∀i, bi ← pi � budget array
I ← Joint prob. matrix of zeros
for j=m, m-1, ..., 1 do

tmax = arg max{i ||ei|=sj} bi

if btmax > 0 then
jmin, jmax ← range of files ejmin ..ejmax that can be padded to size sj

for i = jmax, jmax − 1, ..., jmin do
I[i, j] ← min(btmax , bi)
bi = bi − I[i, j]

end for
end if

end for
P ← channel matrix after dividing each row i of I by pi

return P
end procedure

Therefore, we have proved that the matrix I can be recursively expressed
using the sub-matrices obtained when we update the budget sequence accord-
ingly, at each step decreasing by 1 the number of columns and by at least 1
the number of rows of the matrix returned from the algorithm, until we reduce
a problem to finding the Rényi optimal scheme for a budget sequence with a
single element. Since we want to minimize (2.5) in the case of n files with fre-
quencies {p1, . . . , pn} and the associated set of sizes {s1, . . . , sm}, we proceed
the induction on the number of rows and columns as described in Remark 2 and
eventually fill in all the entries of the solution In×m. The channel-matrix P is
then computed as pij = Iij/pi, and this is the output of PrpRe.

This algorithm is presented in Algorithm 2 in the form of pseudocode, and
it is implemented in [10] with some optimizations.

86 S. Simon et al.

Bandwidth Minimization. Once PrpRe has found a channel matrix that min-
imizes Rényi leakage, it is still possible to use heuristics to search for other chan-
nel matrices with the same (minimal) leakage but with less bandwidth use. We
call PrpReBa to be the algorithm that runs PrpRe and the bandwidth reduction
heuristics afterwards.

Let the list C of maximums on each column after running PrpRe, i.e.
C =

{
maxi∈[1..n] Iij |j ∈ [1..m]

}
, where Cj = maxi∈[1..n] Iij for every j ∈ [1..m].

Define a move to be a change in the matrix I performed on two of the entries of
the matrix at line i, for some i ∈ [1..n] such that (Iia, Iib) becomes (Iia−α, Iib+α)
while keeping the entries of I positive, i.e. α ≤ Iia.

Now, we will describe an update on the line i, which will consist of a series
of moves and will return a new matrix I∗. We start with I∗ to be the matrix
I, but with 0’s on the i-th line. Since the sum on row i is equal to pi, we start
with this quantity and go through the columns in order from j = 1 to j = m.
For each column, we set:

Iij =

{
Cj if Cj +

∑j−1
k=1 Iik ≤ pi

pi − ∑j−1
k=1 Iik otherwise

4 Experiments and Comparison

Several experiments were carried out for three distinct purposes, namely, (1) to
test the correctness of the implementations against brute-force algorithms for
small sized problems, (2) to corroborate the direct link between Rényi leakage
and the success rate of an attacker and (3) to compare the runtime, bandwidth
and leakages of all the algorithms on a public dataset. The code of all the exper-
iments is available in [10].

4.1 Brute-Force Tests for Correctness

To complement and corroborate the theory developed in this paper, all the algo-
rithms were tested against brute-force implementations for small datasets (with
at most 10 elements). More precisely, for each randomly generated test case of file
sizes and frequencies, we explored (exhaustively) all the POP padding schemes
satisfying the constraints, and chose among them, the ones that minimized Rényi
leakage, Shannon leakage or bandwidth, with the purpose of comparing them
with the solutions returned by our algorithms.

We ran ten thousand experiments (code available in [10]), all corroborating
that: among all POP schemes, PopRe achieves minimal Rényi leakage, PopSh
achieves minimal Shannon leakage, and PrpRe leaks at most the Rényi leakage
of PopRe.

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 87

4.2 Attacker Test for Illustration

Fig. 3. Attacker’s success convergence.

We simulated the attacker described
in this paper by Eq. (2.1), who
always guesses the original file
with maximum probability given
the priors and the padding scheme.
Figure 3 shows that as the number
of user increases, the success rate
of the attacker against the padding
proposed by PrpRe approaches the
expected theoretical minimal pos-
sible success rate. This is a direct
consequence of the law of large
numbers as well as the equivalence

between minimizing the expected success of the attacker (2.1) and the Rényi
leakage, via Eq. (2.5).

4.3 Dataset Tests for Comparison

We used the dataset of NodeJS, proposed originally in [11]. This dataset consists
of a list of 423,450 javascript packages provided by NPM for browser and nodeJS
applications, each with its associated file size and access frequency, as of August
2021. Taking into account the large number of files and the availability of the
access frequencies, we used the NodeJS dataset to benchmark the algorithms.

We used two versions of the NodeJS dataset: the large NodeJS dataset is the
original dataset with 423,450 files, and the small consists of only the 1000 most
frequently accessed files. The small NodeJS dataset allowed us to benchmark
and compare the algorithms with large complexity, which timed-out on the large
dataset. In all experiments, we parametrize the padding constraints with a single
constant c > 0 that represents the constraint |X| ≤ f(X) ≤ (1 + c) · |X|.

Fig. 4. Rényi and Shannon leakage on the small dataset.

Figure 4 depicts the variation of privacy leakage as a function of c on the small
dataset. The trend is approximately equal in the large dataset, except that PopRe

88 S. Simon et al.

times out. The Rényi plot does not include PrpReBa to reduce redundancy, as
it coincides with PrpRe. In the figure, we can appreciate the expected trend
that larger c allows for more padding and less leakage of privacy, both in Rényi
and Shannon definitions. It can also be verified that the algorithms tuned to
minimize Rényi leakage, have a very small (but not minimal) Shannon leakage,
and vice-versa. For instance, the differences between PopRe and PopSh in both
leakages are inferior to 2%. This is a consequence of the information theoretical
connection between the two types of leakage.

Fig. 5. Bandwidth increase on the small (left) and large (right) datasets.

The bandwidth increase generated by the padding of the files can be ana-
lyzed in Fig. 5. For reference, the average file size in the dataset, weighted by
frequency is 52.5 kb, so 1% increase, means around 5.3 additional kilobytes.
Several observations can be made out of Fig. 5. First, as anticipated, the larger
the c, the larger the paddings on average. Second, the algorithms do not pad as
much as they are allowed. Instead, when 10% is allowed, the optimal paddings
lie at around 2% for the small dataset and 4% for the large dataset. For this par-
ticular example, the algorithms used more of the available padding on the large
than in the small dataset, but we did not explore in depth in our experiments
whether this pattern holds in general. Third, the improvements of PrpReBa over
PrpRe can be corroborated, and estimated to approximately 20% less bandwidth
use with the same Rényi leakage. Lastly, it appears empirically that the solu-
tions that minimize Rényi leakage use less padding on average than those that
minimize Shannon leakage.

Figure 6 depicts the runtime of the algorithms under analysis. We refer the
reader to Table 1 for a richer analysis of the plots. The left plot does not have a
clear tendency of longer executions for more relaxed padding constraints (higher
c, thus also higher b̄), meaning that for small datasets, all algorithms are suit-
able. In this regime, the runtime is not yet affected significantly by the growth
of b̄, possibly due to large constants that are masked by the complexity class
and implementation details, especially for PrpReBa. Nevertheless, the difference
between PopRe versus PrpRe and PopSh is already visible, and indeed, PopRe
times out (several hours) for the large dataset. The right plot highlights the
scalability of the algorithms. For all values of c plotted in this graph, the run-
time for PrpRe is under 7 seconds, which makes it the fastest algorithm. PrpReBa

Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy 89

Fig. 6. Runtime plots on small (left) and large (right) datasets. The plots ignore the
7 additional seconds needed for JIT compilation.

peaks at c = 10% with around 3 minutes while PopSh needed 15 minutes. In this
regime, the effect of increasing b̄ via c on the runtime is clear.

5 Conclusion

We designed and proved the optimality of several algorithms (PopRe, PrpRe,
PrpReBa) that minimize the expected success rate of an attacker. The algorithms
were compared with existing solutions (PopSh, PrpSh) that consider a different
attack model. The comparison was done both numerically via experiments and
theoretically via privacy leakage.

Prioritizing scalability, we recommend using either PrpRe or PrpReBa for the
PRP problem, as they are much faster and provide protection against a more
reasonable attacker than the existing solutions (PopSh, PrpSh). Nevertheless, for
the POP problem, we recommend any of either the existing solution PopSh or
our algorithm PopRe that minimizes Rényi leakage, because even though our
attack model is more realistic, the complexity of PopSh makes it more practical.

In general terms, the two attack models are correlated in the sense that
the optimizing against one of them results in a strong, though not optimal,
protection against the other one (with empirical differences of less than 2%).
In more detail, however, the Rényi attacker is more realistic than the Shannon
attacker, and the padding schemes that minimize Rényi leakage seem to use less
bandwidth in practice, making our proposed algorithms even more appealing.

Acknowledgements. This work was supported by the European Research Council
(ERC) project HYPATIA under the European Union’s Horizon 2020 research and
innovation programme. Grant agreement n. 835294.

90 S. Simon et al.

References

1. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: The Science of Quantitative Information Flow. Information Security and Cryp-
tography. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-319-96131-6

2. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring infor-
mation leakage using generalized gain functions. In: Proceedings of the 25th
IEEE Computer Security Foundations Symposium (CSF), pp. 265–279 (2012).
http://doi.ieeecomputersociety.org/10.1109/CSF.2012.26, http://hal.inria.fr/hal-
00734044/en

3. Cherubin, G.: Bayes, not näıve: security bounds on website fingerprinting defenses.
Proc. Priv. Enhanc. Technol. 2017(4), 215–231 (2017). https://doi.org/10.1515/
popets-2017-0046

4. Degabriele, J.P.: Hiding the lengths of encrypted messages via gaussian padding.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 1549–1565 (2021)

5. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

6. Espinoza, B., Smith, G.: Min-entropy leakage of channels in cascade. In: Barthe,
G., Datta, A., Etalle, S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 70–84. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29420-4 5

7. Gluck, Y., Harris, N., Prado, A.: Breach: reviving the crime attack (2013). Dos-
tupné také z http://css.csail.mit.edu/6 858 (2015)

8. M’rio, S.A., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: 2012 IEEE 25th Computer Secu-
rity Foundations Symposium, pp. 265–279. IEEE (2012)

9. Palamidessi, C., Romanelli, M.: Feature selection with Rényi min-entropy. In: Pan-
cioni, L., Schwenker, F., Trentin, E. (eds.) ANNPR 2018. LNCS (LNAI), vol.
11081, pp. 226–239. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99978-4 18

10. Pinzón, C., Petrui, C., Simon, S.: Min-leakage-padding (2022). https://github.
com/caph1993/min-leakage-padding. Accessed August 2022

11. Reed, A.C., Reiter, M.K.: Optimally hiding object sizes with constrained padding
(2021). https://doi.org/10.48550/ARXIV.2108.01753, https://arxiv.org/abs/2108.
01753

12. Romanelli, M.: Machine learning methods for privacy protection: leakage mea-
surement and mechanisms design. Ph.D. thesis, Institut Polytechnique de Paris;
Università degli studi (Sienne, Italie) (2020)

13. Schindler, W.: A timing attack against RSA with the Chinese remainder theorem.
In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 109–124. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 8

14. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 21

15. Song, D.: Timing analysis of keystrokes and SSH timing attacks. In: Proceedings
of 10th USENIX Security Symposium (2001)

16. Wright, C.V., Coull, S.E., Monrose, F.: Traffic morphing: an efficient defense
against statistical traffic analysis. In: NDSS, vol. 9. Citeseer (2009)

https://doi.org/10.1007/978-3-319-96131-6
http://doi.ieeecomputersociety.org/10.1109/CSF.2012.26
http://hal.inria.fr/hal-00734044/en
http://hal.inria.fr/hal-00734044/en
https://doi.org/10.1515/popets-2017-0046
https://doi.org/10.1515/popets-2017-0046
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/978-3-642-29420-4_5
http://css.csail.mit.edu/6
https://doi.org/10.1007/978-3-319-99978-4_18
https://doi.org/10.1007/978-3-319-99978-4_18
https://github.com/caph1993/min-leakage-padding
https://github.com/caph1993/min-leakage-padding
https://doi.org/10.48550/ARXIV.2108.01753
https://arxiv.org/abs/2108.01753
https://arxiv.org/abs/2108.01753
https://doi.org/10.1007/3-540-44499-8_8
https://doi.org/10.1007/978-3-642-00596-1_21

	Obfuscation Padding Schemes that Minimize Rényi Min-Entropy for Privacy
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Problem Formalization
	2.1 Presentation in Terms of Privacy Leakage
	2.2 Why Not Differential Privacy?
	2.3 Simplification of the Output Set

	3 Algorithms
	3.1 Per-Object-Padding Scenario, PopRe
	3.2 Per-Request-Padding Scenario, PrpRe

	4 Experiments and Comparison
	4.1 Brute-Force Tests for Correctness
	4.2 Attacker Test for Illustration
	4.3 Dataset Tests for Comparison

	5 Conclusion
	References

