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Abstract

In this paper, we introduce a novel end-to-end predictive model for efficient fetal motion
correction using deep neural networks. Diverging from conventional methods that estimate
fetal brain motions and geometric distortions separately, our approach introduces a newly
developed joint learning framework that not only reliably estimates various degrees of rigid
movements, but also effectively corrects local geometric distortions of fetal brain images.
Specifically, we first develop a method to learn rigid motion through a closed-form update
integrated into network training. Subsequently, we incorporate a diffeomorphic deformation
estimation model to guide the motion correction network, particularly in regions where local
distortions and deformations occur. To the best of our knowledge, our study is the first to
simultaneously track fetal motion and address geometric deformations in fetal echo-planar
images. We validated our model using real fetal functional magnetic resonance imaging data
with simulated and real motions. Our method demonstrates significant practical value to
measure, track, and correct fetal motion in fetal MRI.

Keywords: Deep Learning, Fetal MRI, Rigid Motion Correction, Geometric Deformation.

1. Introduction

Motion estimation is a critical procedure, meticulously designed to correct image artifacts
induced by object motion, especially in the realm of medical image analysis for fetal imaging.
Its critical role spans across various fields, including image segmentation (Ebner et al., 2020;
Faghihpirayesh et al., 2022), reconstruction (Gholipour et al., 2010; Kuklisova-Murgasova
et al., 2012; Xu et al., 2023), and pose estimation (Salehi et al., 2018; Golland and Adal-
steinsson, 2020), among others. Effective motion compensation and correction techniques
significantly contribute to the overall accuracy and efficiency of fetal imaging studies (Mala-
mateniou et al., 2013). Estimating fetal motion presents inherent challenges, notably the
unpredictable nature of fetal head movements and local geometric distortions due to accu-
mulated imaging errors. To overcome these challenges, existing motion correction methods
mostly fall into two distinct categories: i) iterative optimization methods based on mathe-
matical models, and ii) predictive models learned by deep neural networks.
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One of the initial paradigms of 3D fetal brain reconstruction using motion correction
was a three-step model (Rousseau et al., 2006) involving multi-resolution slice alignment for
motion correction, intensity non-uniformity correction, and super-resolution reconstruction
through scattered data interpolation. To address motion errors from 2D slice misalign-
ments, a slice-to-volume registration (SVR) model was introduced (Jiang et al., 2007),
incorporating a scattered data interpolation method with a novel multi-level B-spline ker-
nel. A motion correction technique was presented in (Kim et al., 2009) to align image stacks
based on 2D slice intersections to facilitate the reconstruction of a high isotropic resolution
3D volume. A forward model of slice acquisition and its inverse problem solution were pro-
posed in (Gholipour et al., 2010). This approach featured a robust M-estimation solution
to reduce the effects of corrupted (outlier) slices in a super-resolution reconstruction frame-
work. Building upon these developments, an SVR approach was presented to encompass
complete outlier removal through robust statistics based on the expectation-maximization
algorithm (Kuklisova-Murgasova et al., 2012). Tourbier et al. (Tourbier et al., 2015) used to-
tal variation regularized SVR, solved using the primal-dual hybrid gradient method. While
these advancements have enhanced the accuracy and efficiency of motion correction in im-
age reconstruction, all gradient-based optimization methods for slice realignments have a
very limited capture range, often failing in cases of large and rapid fetal movements.

Motivated by the progress in deep learning, a spectrum of models has emerged, with a
particular focus on advancing predictive motion estimation (Mahendran et al., 2017). Hou
et al. developed a method for predicting 3D rigid transformations of arbitrarily oriented
2D slices (Hou et al., 2018). This pursuit expanded with the introduction of a real-time
fetal motion tracking system, leveraging the strengths of diverse neural networks, including
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), to predict
motion directly from input images (Salehi et al., 2018; Singh et al., 2020; Evan et al., 2022).

To address non-rigid deformations in fetal MRI, two distinct approaches were presented.
These include the patch-to-volume reconstruction technique (Alansary et al., 2017) and the
deformable SVR technique (Uus et al., 2020), both designed to correct non-rigid motion
to reconstruct deformable anatomy such as fetal body parts. In the domain of automated
fetal MRI reconstruction, Ebner et al. developed a toolkit that featured slice-level outlier
rejection, fetal brain localization, and volume reconstruction (Ebner et al., 2020).

Noteworthy progress has been achieved in the domain of sensorless imaging, particularly
in 3D volume reconstruction from 2D freehand ultrasound images, leveraging deep implicit
representations (Yeung et al., 2021). Xu et al. incorporated transformers (Vaswani et al.,
2017) trained on synthetically transformed data, streamlining automatic relevance detection
between slices (Xu et al., 2022). Advancing this approach, Xu et al. further introduced a
reconstruction technique that incorporates implicit neural representations, enhancing im-
age reconstruction performance (Xu et al., 2023). Evan et al. introduced KeyMorph, an
unsupervised deep learning framework designed for robust and interpretable multi-modal
medical image registration (Evan et al., 2022). Utilizing anatomically-consistent keypoints,
KeyMorph aims to enhance the registration process and increase alignment accuracy. Moyer
et al. introduced a real-time method for tracking rigid motion by employing equivariant
neural networks (Moyer et al., 2021). The effectiveness of this approach in capturing signif-
icant rigid motions is derived from the intrinsic rotation-equivariant nature of equivariant
filters (Cohen and Welling, 2016).
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Despite the notable performance achieved by the aforementioned methods, there is cur-
rently a lack of an end-to-end predictive motion correction framework that can adequately
address both uncontrollable fetal motion and geometric distortions. This gap in the existing
literature motivated our endeavor to develop a comprehensive framework proficient in effi-
ciently managing fetal motions and geometric distortions through deep learning. The core
contributions of our proposed motion correction method are summarized in three folds:

• Pioneering contribution: Our study introduces the first comprehensive end-to-end
predictive motion tracking framework adept at handling both significant rigid motion
and geometric distortions in fetal echo planar imaging (EPI).

• Significance: Our proposed framework not only achieves motion correction accuracy
comparable to current state-of-the-art methods but also ensures faster and more stable
convergence. This attribute is of significant value, especially in real-time, automated
fetal head steering systems, where frequent and substantial motions occur.

• Theoretical advancement for broad applicability: The theoretical tool devel-
oped through our joint learning algorithm demonstrates wide applicability, offering
advantages in various fetal imaging applications. This includes real-time fetal brain
segmentation, facilitating population-based studies of fetal brain development using
mean template estimation, and improving EPI image reconstruction with advanced
distortion correction techniques.

2. Methodology

In this section, we first outline the theoretical basis needed to address rigid motions and de-
formations in fetal imaging. We start by reviewing the principles of rigid motion estimation.
Next, we focus on correcting geometric distortions, specifically using Large Deformation Dif-
feomorphic Metric Mapping (LDDMM), chosen for its effectiveness in creating smooth, in-
vertible mappings that maximally maintain the correctness of topological information (Beg
et al., 2005). Finally, we describe the design of our proposed network architecture and the
approach to its training.

2.1. Rigid Motion Estimation

Rigid motion estimation aims to identify the best translation T and rotation R parameters
that define a rigid transformation Q(T ,R) between a pairwise images. This process involves
minimizing the Euclidean distance d between the source image S and the target image T ,

Q∗(T ,R) = arg min
Q

d[S ◦Q(T ,R), T ], (1)

where ◦ is the composition operator that resamples S using the rigid transformationQ(T ,R).
When this operator is applied to any vector v, it yields a transformed vector Q(v) of the
form Q(v) = Rv + T . Here, RT = R−1 indicating that R is an orthogonal matrix.

The transformation function Q can be calculated using low-dimensional representations,
such as point clouds or key points of images (Moyer et al., 2021; Evan et al., 2022). This

3



Wang Faghihpirayesh Erdoğmuş Gholpour

process is quantified by the energy function E(Q), as shown in the equation,

E(Q) = ∥S ◦Q(T ,R) − T∥F , (2)

where ∥ · ∥F denotes the Frobenius norm, and S̄, T̄ represent the low-dimensional represen-
tations of the source and target respectively. We derive the closed-form solution for both
translation and rotation parameters,

T = T̄ −RS̄, R = V · UT , s.t. det(R) = 1, (3)

where UΣV ∗ = S̄ · T̄ T , U and V ∗ are real orthogonal matrices, Σ is a diagonal matrix with
non-negative real numbers on the diagonal. Setting the determinant of R to 1 guarantees
that it accurately reflects a rigid transformation.

2.2. Geometric Deformation Correction via LDDMM

In this section, we provide an overview of the LDDMM algorithm for image registration (Beg
et al., 2005). This algorithm is employed to address deformable geometric distortions be-
tween the rigid motion-corrected image S ◦Q(T ,R) and the target image T . For simplicity,
we denote Ŝ as S ◦Q(T ,R).

Given both Ŝ and T , defined on a d-dimensional torus domain Γ = Rd/Zd (Ŝ(x), T (x) :
Γ → R), the objective of diffeomorphic image registration is to find the shortest path
to generate time-varying diffeomorphisms {ψt(x)} : t ∈ [0, 1] such that Ŝ ◦ ψ1 is similar
to T . This is typically solved by minimizing an explicit energy function over the initial
transformation fields v0 (Vialard et al., 2012), which can be expressed as follows,

E(v0) =
1

σ2
∥Ŝ ◦ ψ1(v0) − T∥22 + (Lv0, v0), (4)

where σ2 is noise variance in images and L : V → V ∗ is a symmetric, positive-definite
differential operator that maps a tangent vector vt ∈ V into its dual space as a momentum
vector mt ∈ V ∗. This is typically denoted as mt = Lvt or vt = Kmt, with K being an
inverse operator of L. The notation (·, ·) denotes the pairing of a momentum vector with a
tangent vector, which is similar to an inner product.

The geodesic shooting process states that the geodesic path {ψt} can be uniquely deter-
mined by integrating a given initial velocity v0 forward in time by using the Euler-Poincaré
differential (EPDiff) equation (Arnol’d, 1966; Miller et al., 2006) as:

∂vt
∂t

= −K
[
(Dvt)

T ·mt +Dmt · vt +mt · div vt
]
,

dψt

dt
= −Dψt · vt, (5)

where the operator D denotes a Jacobian matrix and · represents element-wise matrix
multiplication. Here, div is the divergence.

2.3. Network Architecture and Training

We develop a deep learning model that explicitly estimates both rigid motion and geometric
distortions by integrating a combination of Eq. (2) and Eq. (4) into our objective function.
We show that such joint estimation results in improved accuracy and robustness of the
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Figure 1: An illustration of our proposed joint correction network (JCN) architecture.
The top module performs rigid motion correction on pairs of images using closed-
form updates derived from their key point representations. The bottom module
corrects geometric distortions in the aligned and target images, employing a ge-
ometric loss function with a regularization term in diffeomorphic transformation
space. Both models are interrelated—the geometrically corrected data is fed back
as augmented data to enhance the accuracy of rigid motion correction. This, in
turn, aligns better with the geometric distortion network, facilitating the correc-
tion of local distortions in corresponding positions of the fetal brain.

model. Our framework consists of two modules: an enhanced rigid motion correction neural
network that corrects rigid motions with closed-form update, and an unsupervised learning
of geometric distortion correction through an image registration network. An illustration
of our joint learning framework is shown in Fig. 1. Below, we provide a detailed description
of our network architecture and objective function.

Enhanced motion correction network. Let Θ = (T ,R) represent the encoder param-
eters that learn rigid parameters and key features from image spaces, with Q(Θ) denoting
the transformation function yielded by the learned rigid parameters from the key points of
images. The rigid correction loss is computed between the aligned and target images. Θ is
characterized using one of two backbone structures, (i) a 7-layer equivariant neural network
to effectively capture rotation-equivaraint representations using 3D steerable CNNs (Weiler
et al., 2018; Moyer et al., 2021), and (ii) a conventional 9-layer CNN as employed in Key-
Morph (Evan et al., 2022).

Geometric distortion correction based on image registration network. Let Φ
denote the parameters of an encoder-decoder in our geometric learning network, where
ψ(Φ) represents the deformation fields and v0(Φ) represents the velocity fields learned by the
network. Except for estimating deformations by LDDMM (Hinkle, 2018), we also provide

5



Wang Faghihpirayesh Erdoğmuş Gholpour

another deep learning model that learns stationary velocity fields (Balakrishnan et al., 2019)
meanwhile maintains a comparable model accuracy. Advanced predictive image registration
models, including TransMorph (Chen et al., 2022) and DiffuseMorph (Kim et al., 2022),
can easily be integrated into our framework.

Joint correction network and objective function. Our joint correction network
(JCN) comes in two versions: JCN: EF, which employs equivariant filters, and JCN: KM,
based on the CNN architecture that is similar to KeyMorph. Our total objective function,
which serves as the network’s training loss, combines both the motion correction component
(Eq. (2)) and the geometric deformation estimation (Eq. (4)), formulated as follows,

l(Θ,Φ) =λ∥S ◦Q(Θ) − T∥F︸ ︷︷ ︸
lrigid

+
1

σ2
∥S ◦Q(Θ) ◦ ψ(Φ) − T∥22 + (Lv0(Φ), v0(Φ))︸ ︷︷ ︸

lgeo

+ reg(Θ,Φ), s.t. Eq. (3), & Eq. (5). (6)

Here, reg(·) is a regularization term constrained on network parameters, and λ is a weighting
factor balancing the effects of both networks. Other image dissimilarity terms, such as
normalized cross correlation (Avants et al., 2008) and mutual information (Wells III et al.,
1996; Wang et al., 2023) can be adopted in our framework.

3. Experimental Setup

Data. Our study includes 1, 881 pairs of 3D EPIs from fMRI time series of 15 subjects
who underwent fetal MRI scans using a Siemens 3T scanner (Skyra or Prisma) between
August 2015 and September 2021. Approved by the institutional review board, the study
obtained written informed consent from all participants. The dataset covers a gestational
age range from 22.57 to 38.14 weeks (mean 32.39 weeks). Imaging parameters included a
slice thickness of 2 to 3mm, TR of 2 to 5.6 seconds (mean 3.1 seconds), TE of 0.03 to 0.08
seconds (mean 0.04 seconds), and a FA of 90 degrees. Fetal brains were extracted using a
real-time deep learning segmentation method (Faghihpirayesh et al., 2023), resampled to
963 with a voxel resolution of 3mm3, and underwent intensity normalization.

Baselines & Evaluation Metrics. We compared various motion correction methods,
including conventional iterative rigid registration in ITK to estimate rigid transformation
as 3D versors (Ibanez et al., 2003), and rigid motion estimation by deep learning methods
such as DeepPose (Salehi et al., 2018) and KeyMorph (Evan et al., 2022). We compared
their performance with our joint models JCN: KM and JCN. To demonstrate the benefit
of our joint learning, we report the best Dice score of disjoint approaches, where rigid
motion estimation is treated as a preprocessing step before geometric distortion estimation.
Performance was evaluated through visual comparison and by computing translational and
angular errors on simulated motions. We also manually added translations (in mm) and
rotations (in degrees) to real fMRI scans with natural fetal motions, altering their maximum
motion values in three directions. To better demonstrate our model’s stability, we compared
the Dice coefficient by computing the overlapping regions between the aligned image and
the target across three levels of motion1.

1. Our code is released online, https://github.com/bchimagine/JointMotionTracking
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Source Target JCN: KM JCN: EF Conventional DeepPose KeyMorph

Figure 2: Fetal motion correction visualizations for all methods. Left to right: source, tar-
get (the contour is highlighted as red), motion-corrected images by our methods
(JCN: KM and JCN: EF), the iterative conventional method, DeepPose, and
KeyMorph. Dice scores, 0.95 for JCN: KM, 0.97 for JCN: EF, 0.32 for
conventional, 0.63 for DeepPose, and 0.73 for KeyMorph. Brief Dice score com-
parison between the best model of disjoint ones and ours, 0.90/ 0.97. Motion
correction efficiency with average time consumption: 0.491s per pair.

Hyperparameters. We set the dimension for low-dimensional key points to 128 when
computing the close-form update of rigid transformation in Eq. (3) and set α = 3 for the
operator L with using 5 as time steps of Euler integration for geodesic shooting (Eq. (5)).
The noise variance was fixed at σ = 0.02. For network training, we set batch size as 4, weight
decay as 0.0001 for a L2 regularization, and a learning rate of η = 1e−5 for 300 epochs with
Adam optimizer. We divided the data into training (1283 pairs from 11 subjects), validation
(299 pairs from 2 subjects), and testing (299 pairs from 2 subjects). The best-performing
networks were saved based on validation performance across all models. All experiments
were conducted with an NVIDIA RTX A6000 GPU.

4. Results

Fig. 2 presents a motion correction study for pairwise fMRI scans characterized by signifi-
cant motions. It shows that the conventional and DeepPose methods fail to correctly align
images, while our approach excels, closely matching the target image. Our method effec-
tively handles both rigid motion and local geometric deformations, leveraging estimated
velocity fields for more accurate correction.

Fig. 3 illustrates the comparative analysis of motion correction errors in translation and
rotation across different methods. It highlights the enhanced performance of our proposed
technique in correcting fetal motions, surpassing the state-of-the-art methods.

Fig. 4 shows the dice coefficient comparisons for fMRI time sequences under various
motion conditions. It demonstrates that our method consistently achieves higher dice scores,
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Figure 3: Motion correction comparison of translation and rotation errors (averaged for all
directions) of 299 real fMRI scans with simulated motions.

D
ic

e 
S

co
re

s

1

0
Small motions Medium motions Large motions

Conventional
DeepPose
KeyMorph
JCN: KM
JCN: EF

0.5

Figure 4: Motion correction performance by dice evaluation on real fMRI with differ-
ent degrees of motions, small (Tmax = 10mm, Rmax = 5◦), medium (Tmax =
20mm,Rmax = 10◦) and large motions (Tmax = 30mm, Rmax = 20◦). The dice
score of our best model, for motion levels from left to right are, 0.97, 0.93, 0.92.

regardless of the motion degree. This highlights the robustness and stability of our model,
particularly in challenging scenarios with significant motion occurrences.

5. Conclusion

This paper presents a pioneering predictive model for fetal motion correction using deep
neural networks. In contrast to conventional approaches that independently estimate fe-
tal brain motions and geometric distortions, our proposed method adopts an efficient and
robust joint learning framework. This framework excels in achieving optimal and consis-
tent performance across various degrees of fetal motions. The model demonstrates notable
effectiveness on fMRI data with both simulated and real motions, showcasing significant
potential in real-time tracking and steering systems for fetal head motion. An intriguing
avenue for future exploration involves applying our developed model to image reconstruction
for EPI data, which poses more challenging fetal motion artifacts.
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V. I. Arnol’d. Sur la géométrie différentielle des groupes de Lie de dimension infinie et
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