
Published as a conference paper at ICLR 2023

WHAT IS MISSING IN IRM TRAINING AND EVALUA-
TION? CHALLENGES AND SOLUTIONS

Yihua Zhang1, Pranay Sharma2, Parikshit Ram3, Mingyi Hong4, Kush Varshney3, Sijia Liu1,3

1Michigan State University, 2Carnegie Mellon University, 3IBM Research, 4University of Minnesota

ABSTRACT

Invariant risk minimization (IRM) has received increasing attention as a way to
acquire environment-agnostic data representations and predictions, and as a prin-
cipled solution for preventing spurious correlations from being learned and for im-
proving models’ out-of-distribution generalization. Yet, recent works have found
that the optimality of the originally-proposed IRM optimization (IRMV1) may
be compromised in practice or could be impossible to achieve in some scenar-
ios. Therefore, a series of advanced IRM algorithms have been developed that
show practical improvement over IRMV1. In this work, we revisit these recent
IRM advancements, and identify and resolve three practical limitations in IRM
training and evaluation. First, we find that the effect of batch size during training
has been chronically overlooked in previous studies, leaving room for further im-
provement. We propose small-batch training and highlight the improvements over
a set of large-batch optimization techniques. Second, we find that improper se-
lection of evaluation environments could give a false sense of invariance for IRM.
To alleviate this effect, we leverage diversified test-time environments to precisely
characterize the invariance of IRM when applied in practice. Third, we revisit
Ahuja et al. (2020)’s proposal to convert IRM into an ensemble game and identify
a limitation when a single invariant predictor is desired instead of an ensemble of
individual predictors. We propose a new IRM variant to address this limitation
based on a novel viewpoint of ensemble IRM games as consensus-constrained bi-
level optimization. Lastly, we conduct extensive experiments (covering 7 existing
IRM variants and 7 datasets) to justify the practical significance of revisiting IRM
training and evaluation in a principled manner.

1 INTRODUCTION

Deep neural networks (DNNs) have enjoyed unprecedented success in many real-world applications
(He et al., 2016; Krizhevsky et al., 2017; Simonyan & Zisserman, 2014; Sun et al., 2014). However,
experimental evidence (Beery et al., 2018; De Haan et al., 2019; DeGrave et al., 2021; Geirhos et al.,
2020; Zhang et al., 2022b) suggests that DNNs trained with empirical risk minimization (ERM), the
most commonly used training method, are prone to reproducing spurious correlations in the training
data (Beery et al., 2018; Sagawa et al., 2020). This phenomenon causes performance degradation
when facing distributional shifts at test time (Gulrajani & Lopez-Paz, 2020; Koh et al., 2021; Wang
et al., 2022; Zhou et al., 2022a). In response, the problem of invariant prediction arises to enforce
the model trainer to learn stable and causal features (Beery et al., 2018; Sagawa et al., 2020).

In pursuit of out-of-distribution generalization, a new model training paradigm, termed invariant
risk minimization (IRM) (Arjovsky et al., 2019), has received increasing attention to overcome
the shortcomings of ERM against distribution shifts. In contrast to ERM, IRM aims to learn a
universal representation extractor, which can elicit an invariant predictor across multiple training
environments. However, different from ERM, the learning objective of IRM is highly non-trivial to
optimize in practice. Specifically, IRM requires solving a challenging bi-level optimization (BLO)
problem with a hierarchical learning structure: invariant representation learning at the upper-level
and invariant predictive modeling at the lower-level. Various techniques have been developed to
solve IRM effectively, such as (Ahuja et al., 2020; Lin et al., 2022; Rame et al., 2022; Zhou et al.,
2022b) to name a few. Despite the proliferation of IRM advancements, several issues in the theory
and practice have also appeared. For example, recent works (Rosenfeld et al., 2020; Kamath et al.,

1

Published as a conference paper at ICLR 2023

2021) revealed the theoretical failure of IRM in some cases. In particular, there exist scenarios where
the optimal invariant predictor is impossible to achieve, and the IRM performance may fall behind
even that of ERM. Practical studies also demonstrate that the performance of IRM rely on multiple
factors, e.g., model size (Lin et al., 2022; Zhou et al., 2022b), environment difficulty (Dranker et al.,
2021; Krueger et al., 2021), and dataset type (Gulrajani & Lopez-Paz, 2020).

Therefore, key challenges remain in deploying IRM to real-world applications. In this work, we
revisit recent IRM advancements and uncover and tackle several pitfalls in IRM training and evalu-
ation, which have so far gone overlooked. We first identify the large-batch training issue in existing
IRM algorithms, which prevents escape from bad local optima during IRM training. Next, we show
that evaluation of IRM performance with a single test-time environment could lead to an inaccurate
assessment of prediction invariance, even if this test environment differs significantly from train-
ing environments. Based on the above findings, we further develop a novel IRM variant, termed
BLOC-IRM, by interpreting and advancing the IRM-GAME method (Ahuja et al., 2020) through
the lens of BLO with Consensus prediction. Below, we list our contributions (❶-❹).

❶ We demonstrate that the prevalent use of large-batch training leaves significant room for perfor-
mance improvement in IRM, something chronically overlooked in the previous IRM studies with
benchmark datasets COLORED-MNIST and COLORED-FMNIST. By reviewing and comparing
with 7 state-of-the-art (SOTA) IRM variants (Table 1), we show that simply using small-batch train-
ing improves generalization over a series of more involved large-batch optimization enhancements.

❷ We also show that an inappropriate evaluation metric could give a false sense of invariance to IRM.
Thus, we propose an extended evaluation scheme that quantifies both precision and ‘invariance’
across diverse testing environments.

❸ Further, we revisit and advance the IRM-GAME approach (Ahuja et al., 2020) through the lens of
consensus-constrained BLO. We remove the need for an ensemble (one per training environment)
of predictors in IRM-GAME by proposing BLOC-IRM (BLO with Consensus IRM), which pro-
duces a single invariant predictor.

❹ Lastly, we conduct extensive experiments (on 7 datasets, using diverse model architectures and
training environments) to justify the practical significance of our findings and methods. Notably,
we conduct experiments on the CELEBA dataset as a new IRM benchmark with realistic spurious
correlations. We show that BLOC-IRM outperforms all baselines in nearly all settings.

1.1 RELATED WORK

IRM methods. Inspired by the invariance principle (Peters et al., 2016), Arjovsky et al. (2019)
define IRM as a BLO problem, and develop a relaxed single-level formulation, termed IRMV1, for
ease of training. Recently, there has been considerable work to advance IRM techniques. Exam-
ples of IRM variants include penalization on the variance of risks or loss gradients across training
environments (Chang et al., 2020; Krueger et al., 2021; Rame et al., 2022; Xie et al., 2020; Xu &
Jaakkola, 2021; Xu et al., 2022), domain regret minimization (Jin et al., 2020), robust optimization
over multiple domains (Xu & Jaakkola, 2021), sparsity-promoting invariant learning (Zhou et al.,
2022b), Bayesian inference-baked IRM (Lin et al., 2022), and ensemble game over the environment-
specific predictors (Ahuja et al., 2020). We refer readers to Section 2 and Table 1 for more details on
the IRM methods that we will focus on in this work.

Despite the potential and popularity of IRM, some works have also shown the theoretical and prac-
tical limitations of current IRM algorithms. Specifically, Chen et al. (2022); Kamath et al. (2021)
show that invariance learning via IRM could fail and be worse than ERM in some two-bit environ-
ment setups on COLORED-MNIST, a synthetic benchmark dataset often used in IRM works. The
existence of failure cases of IRM is also theoretically shown by Rosenfeld et al. (2020) for both
linear and non-linear models. Although subsequent IRM algorithms take these failure cases into
account, there still exist huge gaps between theoretically desired IRM and its practical variants. For
example, Lin et al. (2021; 2022); Zhou et al. (2022b) found many IRM variants incapable of main-
taining graceful generalization on large and deep models. Moreover, Ahuja et al. (2021); Dranker
et al. (2021) demonstrated that the performance of IRM algorithms could depend on practical details,
e.g., dataset size, sample efficiency, and environmental bias strength. The above IRM limitations in-

2

Published as a conference paper at ICLR 2023

spire our work to study when and how we can turn the IRM advancements into effective solutions,
to gain high-accuracy and stable invariant predictions in practical scenarios.

Domain generalization. IRM is also closely related to domain generalization (Carlucci et al.,
2019; Gulrajani & Lopez-Paz, 2020; Koh et al., 2021; Li et al., 2019; Nam et al., 2021; Wang
et al., 2022; Zhou et al., 2022a). Compared to IRM, domain generalization includes a wider range
of approaches to improve prediction accuracy against distributional shifts (Beery et al., 2018; Jean
et al., 2016; Koh et al., 2021). For example, an important line of research is to improve representation
learning by encouraging cross-domain feature resemblance (Long et al., 2015; Tzeng et al., 2014).
The studies on domain generalization have also been conducted across different learning paradigms,
e.g., adversarial learning (Ganin et al., 2016), self-supervised learning (Carlucci et al., 2019), and
meta-learning (Balaji et al., 2018; Dou et al., 2019).

2 PRELIMINARIES AND SETUP

In this section, we introduce the basics of IRM and provide an overview of our IRM case study.

IRM formulation. In the original IRM framework Arjovsky et al. (2019), consider a super-
vised learning paradigm, with datasets {D(e)}e∈Etr

collected from N training environments Etr =
{1, 2, . . . , N}. The training samples in D(e) (corresponding to the environment e) are of the form
(x, y) ∈ X × Y , where X and Y are, respectively, the raw feature space and the label space. IRM
aims to find an environment-agnostic data representation ϕθ : X → Z , which elicits an invariant
prediction fw : Z → Y that is simultaneously optimal for all environments. Here θ and w denote
model parameters to be learned, and Z denotes the representation space. Thus, IRM yields an invari-
ant predictor fw ◦ ϕθ : X → Y that can generalize to unseen test-time environments {D(e)}e/∈Etr

.
Here ◦ denotes function composition, i.e., fw ◦ϕθ(·) = fw(ϕθ(·)). We will use w◦θ as a shorthand
for fw ◦ ϕθ. IRM constitutes the following BLO problem:

minimize
θ

∑
e∈Etr

ℓ(e)(w∗(θ) ◦ θ); subject to w∗(θ) ∈ argmin
w̄

ℓ(e)(w̄ ◦ θ), ∀e ∈ Etr, (IRM)

where ℓ(e)(w◦θ) is the per-environment training loss of the predictor w◦θ under D(e). Clearly, IRM
involves two optimization levels that are coupled through the lower-level solution w∗(θ). Achiev-
ing the desired invariant prediction requires the solution sets of the individual lower-level problems
{argminw̄ ℓ(e)(w̄ ◦ θ), e ∈ Etr} to be non-singleton. However, BLO problems with non-singleton
lower-level solution sets are significantly more challenging (Liu et al., 2021). To circumvent this dif-
ficulty, Arjovsky et al. (2019) relax (IRM) into a single-level optimization problem (a.k.a., IRMv1):

minimize
θ

∑
e∈Etr

[ℓ(e)(θ) + γ∥∇w|w=1.0ℓ
(e)(w ◦ θ)∥22], (IRMv1)

where γ > 0 is a regularization parameter and ∇w|w=1.0ℓ
(e) denotes the gradient of ℓ(e) with respect

to w, computed at w = 1.0. Compared with IRM, IRMv1 is restricted to linear invariant predictors,
and penalizes the deviation of individual environment losses from stationarity to approach the lower-
level optimality in (IRM). IRMv1 uses the fact that a scalar predictor (w = 1.0) is equivalent to a
linear predictor. Despite the practical simplicity of (IRMv1), it may fail to achieve the desired
invariance (Chen et al., 2022; Kamath et al., 2021).

Case study of IRM methods. As illustrated above, the objective of IRM is difficult to optimize,
while IRMv1 only provides a sub-optimal solution. Subsequent advances have attempted to reduce
this gap. In this work, we focus on 7 popular IRM variants and evaluate their invariant prediction
performance over 7 datasets. Table 1 and Table 2 respectively summarize the IRM methods and the
datasets considered in this work. We survey the most representative and effective IRM variants in
the literature, which will also serve as our baselines in performance comparison.

Following Table 1, we first introduce the IRMV0 variant, a generalization of IRMv1, by relaxing
its assumption of linearity of the predictor w, yielding

minimize
w,θ

∑
e∈Etr

[ℓ(e)(w ◦ θ) + γ∥∇wℓ(e)(w ◦ θ)∥22]. (IRMv0)

Next, we consider the risk extrapolation method REX (Krueger et al., 2021), an important baseline
based on distributionally robust optimization for group shifts (Sagawa et al., 2019). Furthermore,

3

Published as a conference paper at ICLR 2023

Table 1: Summary of the 7 existing IRM variants consid-
ered in this work, and the proposed BLOC-IRM method
(see Section 5). We also list the 7 benchmark datasets used
to evaluate IRM performance, namely, COLORED-MNIST
(CoM), COLORED-FMNIST (CoF), CIFAR-MNIST (CiM),
COLORED-OBJECT (CoO), CELEBA (CA), PACS (P) and
VLCS (A). The symbols ‘✓’ signifies the dataset used in the
specific reference.

IRM
Method Venue Datasets ReferenceCoM CoF CiM CoO CA P V

IRMV1 arXiv ✓ (Arjovsky et al., 2019)
IRMV0 N/A This Work

IRM-GAME ICML ✓ ✓ (Ahuja et al., 2020)
REX ICML ✓ ✓ ✓ ✓ (Krueger et al., 2021)

BIRM CVPR ✓ ✓ ✓ (Lin et al., 2022)
SPARSEIRM ICML ✓ ✓ ✓ (Zhou et al., 2022b)

FISHR ICML ✓ ✓ ✓ (Rame et al., 2022)

Ours N/A ✓ ✓ ✓ ✓ ✓ ✓ ✓ This Work

Table 2: Dataset setups. ‘Invariant’ and
‘Spurious’ represent the core and spurious
features. ‘Env1’ and ‘Env2’ are environ-
ments with different spurious correlations.

Dataset Invariant Spurious Env 1 Env 2

CoM Digit Color

CoF Object Color

CiM CIFAR MNIST

CoO Object Color

CA Smiling Hair Color

P Object Texture

V Object Environment

inspired by the empirical findings that the performance of IRM could be sensitive to model size
(Choe et al., 2020; Gulrajani & Lopez-Paz, 2020), we choose the SOTA methods Bayesian IRM
(BIRM) (Lin et al., 2022) and sparse IRM (SPARSEIRM) (Zhou et al., 2022b), both of which show
improved performance with large models. Also, we consider the SOTA method FISHR (Rame
et al., 2022), which modifies IRM to penalize the domain-level gradient variance in single-level
risk minimization. FISHR provably matches both domain-level risks and Hessians. Lastly, we
include IRM-GAME (Ahuja et al., 2020) as a special variant of IRM. Different from the other
methods which seek an invariant predictor, IRM-GAME endows each environment with a predictor,
and leverages this ensemble of predictors to achieve invariant representation learning. This is in
contrast to other existing works which seek an invariant predictor. Yet, we show in Section 5 that
IRM-GAME can be interpreted through the lens of consensus-constrained BLO and generalized
for invariant prediction. We also highlight that diverse dataset types are considered in this work
(see Table 2) to benchmark IRM’s performance. More details on dataset selections can be found in
Appendix A.

3 LARGE-BATCH TRAINING CHALLENGE AND IMPROVEMENT

In this section, we demonstrate and resolve the large-batch training challenge in current IRM imple-
mentations (Table 1).

64 256 1k 2k 4k 50k
Batch Size

64

65

66

67

68

69

70

In
va

ria
nt

 A
cc

ur
ac

y
(%

)

IRM-V1
IRM-V0
REx

Figure 1: The performance of three
IRM methods (IRMV1, IRMV0, and
REX) vs. batch-size under COLORED-
MNIST. The full batch-size is 50k.

Large-batch optimization causes instabilities of IRM train-
ing. Using very large-size batches for model training can
result in the model getting trapped near a bad local optima
(Keskar et al., 2016). This happens as a result of the lack
of stochasticity in the training process, and is known to ex-
ist even in the ERM paradigm (Goyal et al., 2017; You et al.,
2017a). Yet, nearly all the existing IRM methods follow the
training setup of IRMV1 (Arjovsky et al., 2019), which used
the full-batch gradient descent (GD) method rather than the
mini-batch stochastic gradient descent (SGD) for IRM train-
ing over COLORED-MNIST and COLORED-FMNIST. In the
following, we show that large-batch training might give a false
impression of the relative ranking of IRM performances.

We start with an exploration of the impact of batch size on the invariant prediction accuracy of
existing IRM methods under COLORED-MNIST. Here the invariant prediction accuracy refers to
the averaged accuracy of the invariant predictor applied to diverse test-time environments. We defer
its formal description to Section 4. Figure 1 shows the invariant prediction accuracy of three IRM
methods IRMV1, IRMV0, and REX vs. the data batch size (see Figure A1 for results of other IRM
variants and Figure A5 for COLORED-FMNIST). Recall that the full batch size (50k) was used in
the existing IRM implementations (Arjovsky et al., 2019; Krueger et al., 2021). As we can see, in
the full-batch setup, IRM methods lead to widely different invariant prediction accuracies, where
REX and IRMV1 significantly outperform IRMV0. In contrast, in the small-batch case (with size

4

Published as a conference paper at ICLR 2023

1k), the discrepancy in accuracy across methods vanishes. We see that IRMv0 can be as effective as
IRMv1 and other IRM variants (such as REX) only if an appropriate small batch size is used.

Empirical evidence in Figure 1 shows that large-batch IRM training is less effective than small-
batch. This is aligned with the observations in ERM (You et al., 2017b; 2018; 2019), where the lack
of stochasticity makes the optimizer difficult to escape from a sharp local minimum. We also justify
this issue by visualizing the loss landscapes in Figure A2. Notably, the small-batch training enables
IRMV1 to converge to a local optimum with a flat loss landscape, indicating better generalization
(Keskar et al., 2016).

Small-batch training is effective versus a zoo of large-batch optimization enhancements. To
mitigate the large-batch IRM training issue, we next investigate the effectiveness of both small-
batch training and a zoo of large-batch optimization enhancements. Inspired by large-batch training
techniques to scale up ERM, we consider Large-batch SGD (LSGD) (Goyal et al., 2017) and Layer-
wise Adaptive Learning Rate (LALR) (You et al., 2017b; 2018; 2019; Zhang et al., 2022a). Both
methods aim to smoothen the optimization trajectory by improving either the learning rate scheduler
or the quality of initialization. Furthermore, we adopt sharpness-aware minimization (SAM) (Foret
et al., 2020) as another possible large-batch training solution to explicitly penalize the sharpness of
the loss landscape. We integrate the above optimization techniques with IRM, leading to the variants
IRM-LSGD, IRM-LALR, and IRM-SAM. See Appendix B.1 for more details.

Table 3: Prediction accuracy of IRM
methods on COLORED-MNIST using the
original large-batch implementation (‘Origi-
nal’), the large-batch optimization-integrated
implementations (‘LSGD/LALR/SAM’), and
the small-batch training recipe (‘Small’).

Method Original LSGD LALR SAM Small
IRMV1 67.13 67.31 67.44 67.79 68.33
IRMV0 65.39 66.42 66.76 66.99 68.37

IRM-GAME 65.69 65.82 65.47 66.23 67.73
REX 67.42 67.53 67.59 67.82 68.42

BIRM 67.93 67.99 68.21 68.32 68.71
SPARSEIRM 67.72 67.85 67.99 68.13 68.81

FISHR 67.88 67.82 67.93 68.11 68.69
Average 67.02 67.25 67.34 67.63 68.44

In Table 3, we compare the performance of the sim-
plest small-batch IRM training with that of those large-
batch optimization technique-integrated IRM variants
(i.e., ‘LSGD/LALR/SAM’ in the Table). As we can see,
the use of large-batch optimization techniques indeed
improves the prediction accuracy over the original IRM
implementation. We also observe that the use of SAM
for IRM is consistently better than LALR and LSGD,
indicating the promise of SAM to scale up IRM with
a large batch size. Yet, the small-batch training proto-
col consistently outperforms large-batch training across
all the IRM variants (see the column ‘Small’). Addi-
tional experiment results in Section 6 show that small-
batch IRM training is effective across datasets, and promotes the invariance achieved by all methods.

4 MULTI-ENVIRONMENT INVARIANCE EVALUATION

In this section, we revisit the evaluation metric used in existing IRM methods, and show that expand-
ing the diversity of test-time environments would improve the accuracy of invariance assessment.

Nearly all the existing IRM methods (including those listed in Table 1) follow the evaluation pipeline
used in the vanilla IRM framework (Arjovsky et al., 2019), which assesses the performance of the
learned invariant predictor on a single unseen test environment. This test-time environment is signif-
icantly different from train-time environments. For example, COLORED-MNIST (Arjovsky et al.,
2019) suggests a principled way to define two-bit environments, widely-used for IRM dataset cura-
tion. Specifically, the COLORED-MNIST task is to predict the label of the handwritten digit groups
(digits 0-4 for group 1 and digits 5-9 for group 2). The digit number is also spuriously correlated
with the digit color (Table 2). This spurious correlation is controlled by an environment bias param-
eter β, which specifies different data environments with different levels of spurious correlation1. In
(Arjovsky et al., 2019), β = 0.1 and β = 0.2 are used to define two training environments, which
sample the color ID by flipping the digit group label with probability 10% and 20%, respectively.
At test time, the invariant accuracy is evaluated on a single, unseen environment with β = 0.9.

However, the prediction accuracy of IRM could be sensitive to the choice of test-time en-
vironment (i.e., the value of β). For the default test environment β = 0.9, the predic-
tor performance of three representative IRM methods (IRMV1, IRM-GAME, FISHR) ranked
from high to low is IRM-GAME>FISHR>IRMV1. Given this apparent ranking, we ex-
plore more diverse test-time environments, generated by β ∈ Ω := {0.05, 0.1, . . . , 0.95}.

1In the two-bit environment, there exists another environment parameter α that controls the label noise level.

5

Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Test Env. Bias Parameter

0

20

40

60

80

100

In
va

ria
nt

 A
cc

ur
ac

y
(%

)

Test Env.

IRMv1
IRM-Game
Fishr

IRMv1 IRM-Game Fishr
50

60

70

80

90

In
va

ria
nt

 A
cc

ur
ac

y
(%

)

Average Accuracy (%)

(A) (B)
Figure 2: Performance comparison of IRM variants IRMV1,
IRM-GAME, and FISHR on COLORED-MNIST. (A) Evalua-
tion in different test-time environments (corresponding to dif-
ferent β). β values used by the two training environments are
0.1, 0.2 respectively. The conventional evaluation is done with
the test environment β = 0.9 (see ‘▲’). (B) Box plots of pre-
diction accuracies over diverse test environments correspond-
ing to β ∈ {0.05, 0.1, . . . , 0.95}. IRMV1 achieves the best
average accuracy (67.13%), followed by FISHR (67.05%) and
IRM-GAME (65.53%).

Although the train-time bias parameters
{0.1, 0.2} belong to Ω, test data is gener-
ated afresh, different from training data.
We see in Figure 2A that the superior-
ity of IRM-GAME at β = 0.9 vanishes
for smaller β. Consequently, for invari-
ant prediction evaluated in other testing
environments (e.g., β < 0.4), the per-
formance ranking of the same methods
becomes IRMV1>FISHR>IRM-GAME.
This mismatch of results suggests we
measure the ‘invariance’ of IRM methods
against diverse test environments. Oth-
erwise, evaluation with single β could
give a false sense of invariance. In Fig-
ure 2B, we present the box plots of pre-
diction accuracies for IRM variants, over
the diverse set of testing environments
(β ∈ Ω). Evidently, IRMV1, the oldest
(sub-optimal) IRM method, yields the least variance of invariant prediction accuracies and the best
average prediction accuracy, compared to both IRM-GAME and FISHR. To summarize, the new
evaluation method, with diverse test environments, enables us to make a fair comparison of IRM
methods implemented in different training environment settings. Unless specified otherwise, we use
the multi-environment evaluation method throughout this work.

5 ADVANCING IRM-GAME VIA CONSENSUS-CONSTRAINED BLO

In this section, we revist and advance a special IRM variant, IRM-GAME (Ahuja et al., 2020),
which endows each individual environment with a separate prediction head and converts IRM into
an ensemble game over these multiple predictors.

Revisiting IRM-GAME. We first introduce the setup of IRM-GAME following notations used in
Section 2. The most essential difference between IRM-GAME and the vanilla IRM framework is
that the former assigns each environment with an individual classifier w(e), and then relies on the
ensemble of these individual predictors, i.e., 1

N

∑
e∈Etr

(w(e) ◦θ), for inference. IRM-GAME is in a
sharp contrast to IRM, where an environment-agnostic prediction head w∗ simultaneously optimizes
the losses across all environments. Therefore, we raise the following question: Can IRM-GAME
learn an invariant predictor?

Inspired by the above question, we explicitly enforce invariance by imposing a consensus prediction
constraint C := {

(
w̄(1), w̄(2), . . . w̄(N)

)
| w̄(1) = . . . = w̄(N)} and integrate it with IRM-GAME.

Here, w̄(e) denotes the prediction head for the e-th environment. Based on the newly-introduced
constraint, the ensemble prediction head 1

N

∑
e∈Etr

w(e) can be interpreted as the average consensus
over N environments: w∗ := 1

N

∑
e∈Etr

w(e) = argmin{w̄(e)}e∈C
∑

e∈Etr
∥w̄(e) − w(e)∥22. With

the above consensus interpretation, we can then cast the invariant predictor-baked IRM-GAME as a
consensus-constrained BLO problem, extended from (IRM):

minimize
θ

∑
e∈Etr

ℓ(e)(w∗(θ) ◦ θ)

subject to (I): w(e)(θ) ∈ argmin
w̄(e)

ℓ(e)(w̄(e) ◦ θ), ∀e ∈ Etr,

(II): w∗(θ) = 1
N

∑
e∈Etr

w(e)(θ).

(1)

The above contains two lower-level problems: (I) per-environment risk minimization, and (II) pro-
jection onto the consensus constraint ({w(e)} ∈ C). The incorporation of (II) is intended to ensure
the use of invariant prediction head w∗(θ) in the upper-level optimization problem of (1).

Limitation of (1) and BLOC-IRM. In (1), the introduced consensus-constrained lower-level prob-
lem might compromise the optimality of the lower-level solution w∗(θ) to the per-environment
(unconstrained) risk minimization problem (I), i.e., violating the per-environment stationarity

6

Published as a conference paper at ICLR 2023

∥∇wℓ(e)(w∗(θ) ◦ θ)∥22. Figure A3 justifies this side effect. As we can see, the per-environment
stationarity is hardly attained at the consensus prediction when solving (1). This is not surpris-
ing since a constrained optimization solution might not be a stationary solution to minimizing the
(unconstrained) objective function. To alleviate this limitation, we improve (1) by explicitly pro-
moting the per-environment stationarity ∥∇wℓ(e)(w∗(θ) ◦ θ)∥22 in its upper-level problem through
optimization over θ. This leads to BLOC-IRM (BLO with Consensus IRM):

minimize
θ

∑
e∈Etr

[
ℓ(e)(w∗(θ) ◦ θ) + γ∥∇wℓ(e)(w∗(θ) ◦ θ)∥22

]
subject to Lower-level problems (I) and (II) in (1),

(BLOC-IRM)

where γ > 0 is a regularization parameter like IRMv0. Assisted by the (upper-level) predic-
tion stationarity regularization, the consensus prediction (II) indeed simultaneously minimizes
the risks of all the environments, supported by the empirical evidence that the convergence of
∥∇wℓ(e)(w∗(θ) ◦ θ)∥22 towards 0 along each environment’s optimization path (see Figure A3).

Further, we elaborate on how the BLOC-IRM problem can be effectively solved using an ordinary
BLO solver. First, it is worth noting that although both (IRM) and BLOC-IRM are BLO problems,
the latter is easier to solve since the lower-level constraint (I) is unconstrained and separable over
environments, and the consensus operation (II) is linear. Based on these characteristics, the implicit
gradient dw∗(θ)

dθ can be directly computed as

dw∗(θ)

dθ
=

1

N

∑
e∈Etr

dw(e)(θ)

dθ
, subject to w(e)(θ) ∈ argmin

w̄(e)

ℓ(e)(w̄(e) ◦ θ). (2)

(c) BLOC-IRM

 Forward Pass Backward Pass

(a) IRM (b) IRM-Game

Inputs

Feature
Extractor

Classifiers

Prediction
Logits

Algor ithm

Figure 3: Schematic overview of BLOC-IRM over two
training environments (red and green), and its compari-
son to IRM and IRM-GAME.

Since the above lower-level problem is un-
constrained, we can call the standard argmin
differentiating method, such as implicit func-
tion approach (Gould et al., 2016) or gradi-
ent unrolling (Liu et al., 2021) to compute
dw(e)(θ)

dθ . In our work, we adopt the gra-
dient unrolling method, which approximates
w(e)(θ) by a K-step gradient descent solu-
tion, noted by w

(e)
K (θ) and then leverages au-

tomatic differentiation (AD) to compute the
derivative from w

(e)
K (θ) to the variable θ. Fig-

ure 3 shows the working pipeline of BLOC-
IRM and its comparison to original IRM and
IRM-GAME methods. We use K = 1 for the lower-level problem throughout our experiments. We
refer readers to Appendix B.2 for more algorithmic details. We also explore the performance of our
proposed BLOC-IRM with various regularization terms, based on the penalties used in the existing
literature. We show the best performance is always achieved when the stationarity is penalized in
the upper-level (see Table A3).

6 EXPERIMENTS

In this section, we begin by introducing some key experiment setups (with details in Appendix C.1),
and then empirically show the effectiveness of our proposed IRM training and evaluation improve-
ments over existing IRM methods across various datasets, models, and learning environments.

6.1 EXPERIMENT SETUPS

Datasets and models. Our experiments are conducted over 7 datasets as referenced and shown in
Tables 1, 2. Among these datasets, COLORED-MNIST, COLORED-FMNIST, CIFAR-MNIST, and
COLORED-OBJECT are similarly curated, mimicking the pipeline of COLORED-MNIST (Arjovsky
et al., 2019), by introducing an environment bias parameter (e.g., β for COLORED-MNIST in Sec-
tion 4) to customize the level of spurious correlation (as shown in Table 2) in different environments.
In the CELEBA dataset, we choose the face attribute ‘smiling’ (vs. ‘non-smiling’) as the core fea-
ture aimed for classification, and regard another face attribute ‘hair color’ (‘blond’ vs. ‘dark’) as the

7

Published as a conference paper at ICLR 2023

source of spurious correlation imposed on the core feature. By controlling the level of spurious cor-
relation, we then create different training/testing environments in CELEBA. Furthermore, we study
PACS and VLCS datasets, which were used to benchmark domain generalization ability in the real
world (Borlino et al., 2021). It was recently shown by Gulrajani & Lopez-Paz (2020) that for these
datasets, ERM could even be better than IRMV1. Yet, we will show that our proposed BLOC-IRM
is a promising domain generalization method, which outperforms all the IRM baselines and ERM in
practice. In addition, we follow Arjovsky et al. (2019) in adopting multi-layer perceptron (MLP) as
the model for resolving COLORED-MNIST and COLORED-FMNIST problems. In the other more
complex datasets, we use the ResNet-18 architecture (He et al., 2016).

Baselines and implementation. Our baselines include 7 IRM variants (Table 1) and ERM, which
are implemented using their official repositories if available (see Appendix C.2). Unless specified
otherwise, our training pipeline uses the small-batch training setting. By default, we use the batch
size of 1024 for COLORED-MNIST and COLORED-FMNIST, and 256 for other datasets. In Sec-
tion 6.2 below, we also do a thorough comparison of large-batch vs small-batch IRM training.

Table 4: Performance of existing IRM methods in
large and small-batch settings. GRAYSCALE refers to
ERM on uncolored data, which yields the best predic-
tion (supposing no spurious correlation during train-
ing). The IRM performance is evaluated by average
accuracy (‘Avg Acc’) and accuracy gap (‘Acc Gap’),
in the format mean±std. A higher Avg Acc and lower
Acc Gap is preferred. The theoretically optimal per-
formance is 75% (Arjovsky et al., 2019).

Dataset COLORED-MNIST COLORED-FMNIST
Metrics(%) Avg Acc (↑) Acc Gap (↓) Avg Acc (↑) Acc Gap (↓)

GRAYSCALE 73.39±0.16 0.32±0.03 74.05±0.09 0.13±0.04
ERM 49.19±1.89 90.72±2.08 49.77±1.71 88.62±2.49

L
ar

ge
B

at
ch

IRMV1 67.13 ±0.33 3.43±0.14 67.19±0.22 3.35±0.11
IRMV0 65.39 ±0.34 4.69±0.18 66.44±0.28 3.53±0.13

IRM-GAME 65.69 ±0.42 8.75±0.14 65.91±0.29 3.74±0.09
REX 67.42 ±0.29 3.76±0.07 67.82±0.31 3.26±0.16

BIRM 67.93 ±0.31 3.81±0.11 67.75±0.26 3.81±0.11
SPARSEIRM 67.72 ±0.28 3.65±0.08 67.89±0.30 3.12±0.15

FISHR 67.49±0.39 4.37±0.10 67.33±0.24 4.49±0.16

Sm
al

lB
at

ch

IRMV1 68.33±0.31 2.04±0.05 68.76±0.31 1.45±0.09
IRMV0 68.37±0.28 1.32±0.09 69.07±0.27 1.36±0.06

IRM-GAME 67.73±0.24 1.67±0.14 67.49±0.32 1.82±0.13
REX 68.42±0.29 1.65±0.07 68.66±0.22 1.29±0.08

BIRM 68.71±0.21 1.35±0.09 68.64±0.32 1.44±0.13
SPARSEIRM 68.81±0.25 1.72±0.05 68.29±0.22 1.28±0.15

FISHR 68.69±0.19 2.13±0.08 68.79±0.17 1.77±0.10

Evaluation setup. As proposed in Section 4,
we use the multi-environment evaluation met-
ric unless specified otherwise. To capture both
the accuracy and variance of invariant predictions
across multiple testing environments, the average
accuracy and the accuracy gap (the difference of
the best-case and worst-case accuracy) are mea-
sured for IRM methods. The resulting perfor-
mance is reported in the form a ± b, with mean
a and standard deviation b computed across 10
independent trials.

6.2 EXPERIMENT RESULTS

Small-batch training improves all existing
IRM methods on COLORED-MNIST &
COLORED-FMNIST. Recall from Section 3
that all the existing IRM methods (Table 1) adopt
full-batch IRM training on COLORED-MNIST
& COLORED-FMNIST, which raises the large-
batch training problem. In Table 4, we conduct
a thorough comparison between the originally-used full-batch IRM methods and their small-batch
counterparts. In addition, we present the performance of ERM and ERM-grayscale (we call it
‘grayscale’), where the latter is ERM on uncolored data. In the absence of any spurious correlation
in the training set, grayscale gives the best performance. As discussed in Section 4 & 6.1, the
IRM performance is measured by the average accuracy and the accuracy gap across 19 testing
environments, parameterized by the environment bias parameter β ∈ {0.05, . . . , 0.95}. We make
some key observations from Table 4. First, small batch size helps improve all the existing IRM
methods consistently, evidenced by the 1% ∼ 3% improvement in average accuracy. Second,
the small-batch IRM training significantly reduces the variance of invariant predictions across
different testing environments, evidenced by the decreased accuracy gap. This implies that the
small-batch IRM training can also help resolve the limitation of multi-environment evaluation for
the existing IRM methods, like the sensitivity of IRM-GAME accuracy to β in Figure 2. Third, we
observe that IRMV0, which does not seem to be useful in the large batch setting, becomes quite
competitive with the other baselines in the small-batch setting. Thus, large-batch could suppress
the IRM performance for some methods. In the rest of the experiments, we stick to the small-batch
implementation of IRM training.

BLOC-IRM outperforms IRM baselines in various datasets. Next, Table 5 demonstrates the ef-
fectiveness of our proposed BLOC-IRM approach versus ERM and existing IRM baselines across
all the 7 datasets listed in Table 2. Evidently, BLOC-IRM yields a higher average accuracy com-
pared to all the baselines, together with the smallest accuracy gap in most cases. Additionally, we
observe that CELEBA, PACS and VLCS are much more challenging datasets for capturing invari-
ance through IRM, as evidenced by the small performance gap between ERM and IRM methods. In

8

Published as a conference paper at ICLR 2023

Table 5: IRM performance comparison between BLOC-IRM and other baselines. We use ResNet-18 (He
et al., 2016) for all the datasets. The evaluation setup is consistent with Table 4, and the best performance
per-dataset is highlighted in bold. We present the results with the full dataset list in Table A1.

Algorithm COLORED-OBJECT CIFAR-MNIST CELEBA VLCS PACS
Metrics (%) Avg Acc Acc Gap Avg Acc Acc Gap Avg Acc Acc Gap Avg Acc Acc Gap Avg Acc Acc Gap

ERM 41.11±1.44 86.43±2.89 40.39±1.32 85.53±2.33 72.38±0.29 10.73±0.36 63.23±0.23 12.39±0.35 69.95±0.35 14.32±0.75

IRMV1 64.42±0.21 4.18±0.29 61.49±0.29 7.17±0.33 72.49±0.38 10.15±0.27 62.72±0.29 12.74±0.27 68.93±0.33 14.99±0.51
IRMV0 62.39±0.25 5.36±0.31 60.14±0.18 8.83±0.39 72.42±0.35 10.43±0.38 62.59±0.32 12.99±0.36 68.72±0.29 15.29±0.71

IRM-GAME 62.88±0.34 5.59±0.28 60.44±0.31 6.72±0.41 72.18±0.44 12.32±0.41 62.31±0.38 13.37±0.62 68.12±0.22 15.77±0.66
REX 63.37±0.35 5.42±0.31 62.32±0.24 5.55±0.32 72.34±0.26 10.31±0.23 63.19±0.31 12.87±0.31 69.43±0.34 15.31±0.67

BIRM 65.11±0.27 3.31±0.22 62.99±0.35 5.23±0.36 72.93±0.28 9.92±0.33 63.33±0.40 12.13±0.23 69.34±0.25 15.76±0.49
SPARSEIRM 64.97±0.39 3.97±0.25 62.16±0.29 4.14±0.31 72.42±0.33 9.79±0.21 62.86±0.26 12.79±0.35 69.52±0.39 15.81±0.82

FISHR 64.07±0.23 4.41±0.29 61.79±0.25 5.55±0.21 72.89±0.25 9.42±0.32 63.44±0.37 11.93±0.42 70.21±0.22 14.52±0.43
BLOC-IRM 65.97±0.33 4.10±0.36 63.69±0.32 4.89±0.36 73.35±0.32 8.79±0.21 63.62±0.35 11.55±0.32 70.31±0.21 14.73±0.65

particular, all the IRM methods, except FISHR and BLOC-IRM, could even be worse than ERM
on PACS and VLCS. Here, we echo and extend the findings of Krueger et al. (2021, Section 4.3).
However, we also show that BLOC-IRM is a quite competitive IRM variant when applied to re-
alistic domain generalization datasets. We also highlight that the CELEBA experiment is newly
constructed and performed in our work for invariance evaluation. Like PACS and VLCS, this ex-
periment also shows that ERM is a strong baseline, and among IRM-based methods, BLOC-IRM
is the best-performing, both in terms of accuracy and variance of invariant predictions.

0 200 400 600 800 1000
Intermediate Layer Dimension

60

62

64

66

68

70

In
va

ria
nt

 A
cc

ur
ac

y
(%

)

IRM-V1
IRM-V0
IRM-Game
REx

BIRM
SIRM
Fishr
BLOC-IRM

Figure 4: IRM performance
on COLORED-MNIST against the
layer dimension in MLP. The dot-
ted line represents the default di-
mension (d = 390) used in the
literature. The invariant prediction
accuracy is presented via the dot
line (mean). The results are based
on 10 independent trials and we re-
port the variance in Figure A4.

IRM against model size and training environment variation.
Furthermore, we investigate the effect of model size and train-
ing environment diversity on the IRM performance. The recent
works (Lin et al., 2022; Zhou et al., 2022b) have empirically
shown that IRMV1 may suffer a significant performance loss
when trained over large-sized neural network models, and thus
developed BIRM and SPARSEIRM approaches as advancements
of IRMV1. Inspired by these works, Figure 4 presents the sensi-
tivity of invariant prediction to model size for different IRM meth-
ods on COLORED-MNIST. Here the model size is controlled by
the dimension of the intermediate layer (denoted by d) in MLP,
and the default dimension is d = 390 (i.e., the vertical dotted line
in Figure 4), which was used in (Arjovsky et al., 2019) and fol-
lowed in the subsequent literature. As we can see, when d > 390,
nearly all the studied IRM methods (including BLOC-IRM) suf-
fer a performance drop. Yet, as d ≥ 800, from the perspective
of prediction accuracy and model resilience together, the top-3
best IRM methods with model size resilience are BIRM, SPAR-
SEIRM, and BLOC-IRM, although we did not intentionally de-
sign BLOC-IRM to resist performance degradation against model size.

We also show more experiment results in the Appendix. In Table A2, we study IRM with different
numbers of training environment configurations and observe the consistent improvement of BLOC-
IRM over other baselines. In Table A4 we show that the performance of invariant prediction de-
grades, if additional covariate shifts (class, digit, and color imbalances on COLORED-MNIST) are
imposed on the training environments following Krueger et al. (2021, Section 4.1) and also demon-
strate that BLOC-IRM maintains the accuracy improvement over baselines with each variation. In
Table A5, we compare the performance of different methods in the failure cases of IRM pointed out
by (Kamath et al., 2021) and show the consistent improvement brought by BLOC-IRM.

7 CONCLUSION

In this work, we investigate existing IRM methods and reveal long-standing but chronically over-
looked challenges involving IRM training and evaluation, which may lead to sub-optimal solutions
and incomplete invariance assessment. As a remedy, we propose small-batch training and multi-
environment evaluation. We reexamine the IRM-GAME method through the lens of consensus-
constrained BLO, and develop a novel IRM variant, termed BLOC-IRM. We conducted extensive
experiments on 7 datasets and demonstrate that BLOC-IRM consistently improves all baselines.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

The work of Y. Zhang and S. Liu was partially supported by National Science Foundation (NSF)
Grant IIS-2207052. The work of M. Hong was supported by NSF grants CNS-2003033 and CIF-
1910385. The computing resources used in this work were partially supported by the MIT-IBM
Watson AI Lab and the Institute for Cyber-Enabled Research (ICER) at Michigan State University.

REPRODUCIBILITY STATEMENT

The authors have made an extensive effort to ensure the reproducibility of algorithms and results pre-
sented in the paper. First, the details of the experiment settings have been elaborated in Section 6.1
and Appendix C.1. In this paper, seven datasets are studied and the environment generation process
for each dataset is described with details in Appendix A. The evaluation metrics are also clearly in-
troduced in Section 3. Second, eight IRM-oriented methods (including our proposed BLOC-IRM)
are studied in this work. The implementation details of all the baseline methods are clearly presented
in Appendix C.2, including the hyper-parameters tuning, model configuration, and used code bases.
For our proposed BLOC-IRM, we include all the implementation details in Section 5 and Ap-
pendix B.2, including training pipeline in Figure 3 and the pseudo-code in Algorithm A1. Third, all
the results are based on 10 independent trials with different random seeds. The standard deviations
are also reported to ensure fair comparisons across different methods. Fourth, codes are available at
https:/github.com/OPTML-Group/BLOC-IRM.

10

https:/github.com/OPTML-Group/BLOC-IRM

Published as a conference paper at ICLR 2023

REFERENCES

Faruk Ahmed, Yoshua Bengio, Harm van Seijen, and Aaron Courville. Systematic generalisation with group
invariant predictions. In International Conference on Learning Representations, 2020.

Kartik Ahuja, Karthikeyan Shanmugam, Kush Varshney, and Amit Dhurandhar. Invariant risk minimization
games. In International Conference on Machine Learning, pp. 145–155. PMLR, 2020.

Kartik Ahuja, Jun Wang, Amit Dhurandhar, Karthikeyan Shanmugam, and Kush R Varshney. Empirical or
invariant risk minimization? a sample complexity perspective. In International Conference on Learning
Representations, 2021.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain generalization using
meta-regularization. Advances in neural information processing systems, 31, 2018.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of the European
conference on computer vision (ECCV), pp. 456–473, 2018.

Francesco Cappio Borlino, Antonio D’Innocente, and Tatiana Tommasi. Rethinking domain generalization
baselines. In 2020 25th International Conference on Pattern Recognition (ICPR), pp. 9227–9233. IEEE,
2021.

Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana Tommasi. Domain gener-
alization by solving jigsaw puzzles. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2229–2238, 2019.

Shiyu Chang, Yang Zhang, Mo Yu, and Tommi Jaakkola. Invariant rationalization. In International Conference
on Machine Learning, pp. 1448–1458. PMLR, 2020.

Yongqiang Chen, Kaiwen Zhou, Yatao Bian, Binghui Xie, Kaili Ma, Yonggang Zhang, Han Yang, Bo Han, and
James Cheng. Pareto invariant risk minimization. arXiv preprint arXiv:2206.07766, 2022.

Yo Joong Choe, Jiyeon Ham, and Kyubyong Park. An empirical study of invariant risk minimization. arXiv
preprint arXiv:2004.05007, 2020.

Pim De Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning. Advances in
Neural Information Processing Systems, 32, 2019.

Alex J DeGrave, Joseph D Janizek, and Su-In Lee. Ai for radiographic covid-19 detection selects shortcuts
over signal. Nature Machine Intelligence, 3(7):610–619, 2021.

Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generalization via
model-agnostic learning of semantic features. Advances in Neural Information Processing Systems, 32,
2019.

Yana Dranker, He He, and Yonatan Belinkov. Irm—when it works and when it doesn’t: A test case of natural
language inference. Advances in Neural Information Processing Systems, 34:18212–18224, 2021.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for effi-
ciently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. The journal of
machine learning research, 17(1):2096–2030, 2016.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge,
and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11):
665–673, 2020.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison Guo. On
differentiating parameterized argmin and argmax problems with application to bi-level optimization. arXiv
preprint arXiv:1607.05447, 2016.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

11

Published as a conference paper at ICLR 2023

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Neal Jean, Marshall Burke, Michael Xie, W Matthew Davis, David B Lobell, and Stefano Ermon. Combining
satellite imagery and machine learning to predict poverty. Science, 353(6301):790–794, 2016.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Domain extrapolation via regret minimization. arXiv
preprint arXiv:2006.03908, 2020.

Pritish Kamath, Akilesh Tangella, Danica Sutherland, and Nathan Srebro. Does invariant risk minimization
capture invariance? In International Conference on Artificial Intelligence and Statistics, pp. 4069–4077.
PMLR, 2021.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A benchmark of in-the-
wild distribution shifts. In International Conference on Machine Learning, pp. 5637–5664. PMLR, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. Communications of the ACM, 60(6):84–90, 2017.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang, Remi
Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). In Interna-
tional Conference on Machine Learning, pp. 5815–5826. PMLR, 2021.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain general-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 5542–5550, 2017.

Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M Hospedales. Episodic training
for domain generalization. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 1446–1455, 2019.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. Advances in neural information processing systems, 31, 2018.

Yong Lin, Qing Lian, and Tong Zhang. An empirical study of invariant risk minimization on deep models. In
ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning, pp. 7, 2021.

Yong Lin, Hanze Dong, Hao Wang, and Tong Zhang. Bayesian invariant risk minimization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16021–16030, 2022.

Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and Zhouchen Lin. Investigating bi-level optimization for
learning and vision from a unified perspective: A survey and beyond. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In Proceed-
ings of International Conference on Computer Vision (ICCV), December 2015.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with deep
adaptation networks. In International conference on machine learning, pp. 97–105. PMLR, 2015.

Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing domain gap by
reducing style bias. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 8690–8699, 2021.

Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant prediction: identi-
fication and confidence intervals. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
78(5):947–1012, 2016.

12

Published as a conference paper at ICLR 2023

Alexandre Rame, Corentin Dancette, and Matthieu Cord. Fishr: Invariant gradient variances for out-of-
distribution generalization. In International Conference on Machine Learning, pp. 18347–18377. PMLR,
2022.

Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. The risks of invariant risk minimization. arXiv
preprint arXiv:2010.05761, 2020.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust neural net-
works for group shifts: On the importance of regularization for worst-case generalization. arXiv preprint
arXiv:1911.08731, 2019.

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why overparameteri-
zation exacerbates spurious correlations. In International Conference on Machine Learning, pp. 8346–8356.
PMLR, 2020.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The pitfalls of
simplicity bias in neural networks. Advances in Neural Information Processing Systems, 33:9573–9585,
2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep learning face representation from predicting 10,000 classes.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1891–1898, 2014.

Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR 2011, pp. 1521–1528. IEEE,
2011.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion: Maximiz-
ing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun Zeng,
and Philip Yu. Generalizing to unseen domains: A survey on domain generalization. IEEE Transactions on
Knowledge and Data Engineering, 2022.

Chuanlong Xie, Haotian Ye, Fei Chen, Yue Liu, Rui Sun, and Zhenguo Li. Risk variance penalization. arXiv
preprint arXiv:2006.07544, 2020.

Renzhe Xu, Xingxuan Zhang, Peng Cui, Bo Li, Zheyan Shen, and Jiazheng Xu. Regulatory instruments for
fair personalized pricing. In Proceedings of the ACM Web Conference 2022, pp. 4–15, 2022.

Yilun Xu and Tommi Jaakkola. Learning representations that support robust transfer of predictors. arXiv
preprint arXiv:2110.09940, 2021.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017a.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for imagenet training. arXiv
preprint arXiv:1708.03888, 6, 2017b.

Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. Imagenet training in minutes. In
Proceedings of the 47th International Conference on Parallel Processing, pp. 1. ACM, 2018.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, James
Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training bert in 76
minutes. arXiv preprint arXiv:1904.00962, 2019.

Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, and Aaron Courville. Can subnetwork structure be the
key to out-of-distribution generalization? In International Conference on Machine Learning, pp. 12356–
12367. PMLR, 2021.

Gaoyuan Zhang, Songtao Lu, Yihua Zhang, Xiangyi Chen, Pin-Yu Chen, Quanfu Fan, Lee Martie, Lior Horesh,
Mingyi Hong, and Sijia Liu. Distributed adversarial training to robustify deep neural networks at scale. In
Uncertainty in Artificial Intelligence, pp. 2353–2363. PMLR, 2022a.

Xingxuan Zhang, Linjun Zhou, Renzhe Xu, Peng Cui, Zheyan Shen, and Haoxin Liu. Nico++: Towards better
benchmarking for domain generalization. arXiv preprint arXiv:2204.08040, 2022b.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022a.

Xiao Zhou, Yong Lin, Weizhong Zhang, and Tong Zhang. Sparse invariant risk minimization. In International
Conference on Machine Learning, pp. 27222–27244. PMLR, 2022b.

13

Published as a conference paper at ICLR 2023

APPENDIX

A DATASET SELECTION

Compared to existing work, we expand the dataset types for evaluating the performance of different
IRM methods (see Table 2). In addition to the most commonly-used benchmark datasets COLORED-
MNIST (Arjovsky et al., 2019) and COLORED-FMNIST (Ahuja et al., 2020), we also consider the
datasets CIFAR-MNIST (Lin et al., 2021; Shah et al., 2020) and COLORED-OBJECT (Ahmed et al.,
2020; Zhang et al., 2021), which impose artificial spurious correlations, MNIST digit number and
object color, into the original CIFAR-10 and COCO Detection datasets, respectively. Furthermore,
we consider other three real-world datasets CELEBA (Liu et al., 2015), PACS (Li et al., 2017)
and VLCS (Torralba & Efros, 2011), without imposing artificial spurious correlations. Notably,
CELEBA was first formalized and introduced to benchmark IRM performance. The recent work
(Gulrajani & Lopez-Paz, 2020) showed that when carefully implemented, ERM could outperform
IRMV1 in PACS and VLCS. Thus, we regard them as challenging datasets to capture invariance.

For COLORED-OBJECT dataset, we strictly follow the setting adopted in (Lin et al., 2022) to gen-
erate the spurious features. For CIFAR-MNIST we use the class “bird” and “plane” in the dataset
CIFAR as the invariant feature, while the digit “0” and “1” in MNIST as the spurious correlation.

CELEBA dataset is, for the first time, introduced to measure IRM performance. We select the
attribute “Smiling” as the invariant label and use the attribute “Hair Color” (blond and black hair) to
create a spurious correlation in each environment.

B IMPLEMENTATION DETAILS

B.1 DETAILS ON LARGE-BATCH OPTIMIZATION ENHANCEMENTS

✦ IRM-LSGD: We first integrate large-batch SGD (LSGD) with IRM. Following (Goyal et al.,
2017), we make two main modifications: (1) scaling up learning rate linearly with batch size, and
(2) prepending a warm-up optimization phase to IRM training. We call the LSGD-baked IRM
variant IRM-LSGD.

✦ IRM-LALR: Next, we adopt layerwise adaptive learning rate (LALR) in IRM training. Follow-
ing (You et al., 2019), we advance the learning rate scheduler by assigning each layer of a neural
network-based prediction model with an adaptive learning rate (i.e., proportional to the norm of
updated model weights per layer). More specifically, the model parameter update rule becomes:

θt+1,i = θt,i −
τ(∥θt,i∥22) · ηt

∥ut,i∥22
ut,i, (A1)

where θt,i denotes the i-th layer of the model parameters at iteration t, and ut,i represents the
first-order gradient of the corresponding layer-wise model parameters. We use τ(∥θt,i∥22 =
min{max{∥θt,i∥22, cl}, cu}) as the scaling factor of the adaptive learning rate ηt

∥ut,i∥ . We use cl = 0

and cu = 1 in our experiments.

✦ IRM-SAM: Lastly, we leverage sharpness-aware minimization (SAM) to simultaneously mini-
mize the IRM loss and the loss sharpness. The latter is achieved by explicitly penalizing the worst-
case training loss of model weights when facing small weight perturbations. This yields a wide
minimum within a flat loss landscape. More specifically, the sharpness-aware loss can be formu-
lated as:

min
θ

ℓSAM(θ), where ℓSAM(θ) = max
∥ϵ∥2

2≤ρ
ℓ(θ + ϵ), (A2)

where the parameter perturbation ϵ is subject to the perturbation constraint ∥ϵ∥22 ≤ ρ. When applied
to IRM, we replace the per-environment training loss with the SAM loss, and adopt the ρ = 0.001.

B.2 BLOC-IRM IMPLEMENTATION

As described in Section 5, the BLOC-IRM algorithm solves the IRM problem with two optimiza-
tion levels. We use 1-step gradient descent to get the lower-level solution. We retain the gradient

14

Published as a conference paper at ICLR 2023

graph in PyTorch to enable auto differentiation. We assign each of the classification head {w(e)} a
separate optimizer and use the same learning rate as the feature extractor θ. For COLORED-MNIST
and COLORED-FMNIST, we adopt a learning rate of 2 × 10−3 and use the Adam (Kingma & Ba,
2014) optimizer. As for other datasets, we use the multi-step learning rate scheduler with an initial
learning rate of 0.1, which is consistent with other baselines. We adopt the same penalty weight of
106 as IRMV1 and IRMV0.

Algorithm A1 BLOC-IRM

1: Initialization: Training data {x(e)} from N environments, Model feature extractor θ0, and N

model classification heads {w(e)
0 }, learning rate {ηt} series, penalty weight {γt} series.

2: for Step t = 0, 1, . . . , do
3: Lower-level: update classification head for each environment:

∀e ∈ Etr, w̃
(e)
t+1 = w

(e)
t − ηt

dℓ(e)(w ⊙ θ)

dw

∣∣∣∣
θ=θt,w=w

(e)
t

(A3)

4: Consensus projection: ∀e ∈ Etr,w(e)
t+1 = w∗

t+1 = 1
N

∑
e∈Etr

w̃
(e)
t+1

5: Upper-level: update feature extractor with stationary penalty:

θt+1 = θt − ηt
∑
e∈Etr

d

dθ

(
ℓ(e)(w ⊙ θ) + γt∥∇wℓ(e)(w ◦ θ)∥22

)∣∣∣
θ=θt,w=w∗

t+1

(A4)

6: end for

C EXPERIMENTATION

C.1 ENVIRONMENT SETUP

As proposed in Section 4, we use the multi-environment evaluation metric unless specified other-
wise. To capture both the accuracy and variance of invariant predictions across multiple testing
environments, the average accuracy and the accuracy gap (the difference between the best-case and
worst-case accuracy) are evaluated for IRM methods.

Specifically, for the COLORED-MNIST, COLORED-FMNIST, COLORED-OBJECT, CIFAR-
MNIST, and CELEBA dataset, we manually create 19 test environments with uniformly sampled
bias parameter β ∈ {0.05, 0.1, . . . , 0.95}, where the environment bias parameter β controls the
spurious correlation (see Section 4 for more details).

For VLCS and PACS datasets, the training and test sets have 4 environments, namely {art painting,
cartoon, sketch, photo} and {CALTECH, LABELME, PASCAL, SUN} respectively. We use the
first three environments as the training environments, while we use the test set of all four environ-
ments to form our proposed multi-environment invariance evaluation system.

C.2 BASELINES

For each baseline method, we follow its official PyTorch repository except IRM-GAME and SPAR-
SEIRM. We translate the TensorFlow-based original code base of IRM-GAME to PyTorch. As
one of the latest IRM advancements, the official code of SPARSEIRM is not yet publicly available.
Therefore, we reproduce SPARSEIRM in PyTorch.

In particular, for COLORED-MNIST and COLORED-FMNIST, we stick to the original hyper-
parameters for the large-batch setting and tune the hyper-parameters of each method, including
the penalty weight, number of warm-up epochs, and learning rate for the small batch setting.

In particular, for the large-batch setting, we use the penalty weight of 106, 190 warm-up epochs,
and 500 epochs in total, as suggested by the original IRMV1 and inherited by its variants. For the
small-batch setting, we adopt the same penalty weight 106. Further, we found that the warm-up

15

Published as a conference paper at ICLR 2023

phase could be shortened without sacrificing accuracy. Therefore, we use 50 warm-up epochs and
total 200 epochs for all the methods.

For other datasets, we adopt the batch size of 128 and use ResNet-18 as the default model architec-
ture. We train for 200 epochs. We adopt the step-wise learning rate scheduler with an initial learning
rate of 0.1. The learning rate decays by 0.1 at the 100th and 150th epochs.

C.3 ADDITIONAL EXPERIMENT RESULTS

The influence of batch size with all the baselines. We show in Figure A1 the influence of training
batch size on the performance of different methods. We observe in Figure A1, as in Figure 1, that full
batch setting does not achieve the best performance, and the use of mini-batch (stochastic gradient
descent) indeed improves performance.

64 256 1k 2k 4k 50k
Batch Size

64

65

66

67

68

69

70
In

va
ria

nt
 A

cc
ur

ac
y

(%
)

IRM-V1
IRM-V0
IRM-Game
REx

BIRM
SIRM
Fishr

Figure A1: The performance of all the baselines in this work trained with different batch sizes on COLORED-
MNIST dataset. The full data batch-size is 50k. The invariant accuracy corresponds to the average accuracy
evaluated based on the diversified environments-based evaluation metric.

-0.4 -0.2 0.0 0.2 0.4
-0.4

0.2

0.0

0.2

0.4

1.0
1.8
2.63.4

4.2

5.0

5.8

6.6

6.6

6.6

7.4

7.4

8.2

8.2

8.2

9.
0

9.0

9.0

9.0

9.09.
8

9.8

9.
8

9.8

9.810

10

10

10

10

-0.4 -0.2 0.0 0.2 0.4
-0.4

0.2

0.0

0.2

0.4
1.0
1.8
2.6 3.4

4.2

5.0

5.86.6

7.4

8.2 9.0

9.8

10

(A) Large Batch (B) Small Batch

Figure A2: The loss landscapes of invariant prediction models acquired by (A) large-batch IRMV1 training
with 50k batch size and (B) small-batch training with 1k batch size. The 2D loss landscape visualization is
realized using the tool in (Li et al., 2018). The x and y axes represent the linear interpolation coefficients over
two directional vectors originated from the converged local optima. Here the numbers on the contour denote
the loss values over test data.

Loss landscapes of IRMV1 with different batch sizes. We plot the loss landscapes of the models
trained with IRMV1 on COLORED-MNIST using large (full) and small batch in Figure A2. Using
small batch training, IRMV1 (Fig. A2B) converges to a smooth neighborhood of a local optima.
This also corresponds to a flatter loss landscape than the landscape of the large-batch training (Fig-
ure A2(A)). The loss landscapes demonstrate consistent results as other experiments discussed in
Section 3.

Training trajectory with BLOC-IRM with and without stationary loss. In Figure A3, we plot
the per-environment training trajectory of stationary loss when solving (1) and (BLOC-IRM) on
COLORED-MNIST. For (BLOC-IRM) we use the regularization term λ = 106, which is aligned
with the penalty coefficient used in IRMV1. As we can see, without the stationarity regularization,

16

Published as a conference paper at ICLR 2023

the stationary loss remains at a high level for both environments (the dotted curves). Notably, the
lower-level stationary can be reached fast with the stationarity penalty, as shown in the solid curves.

0 25 50 75 100 125 150 175 200
Epoch Number

10 3

10 2

10 1

100

101

102

St
at

io
na

ry
 L

os
s

Eq.(2), Env1
Eq.(2), Env2
BLOC-IRM, Env1
BLOC-IRM, Env2

Figure A3: The per-environment training trajectory for the stationarity loss of (1) and (BLOC-IRM) on
COLORED-MNIST. The training setting is the same as Figure 2. The algorithmic details can be found in
Appendix B.

Performance of all the methods with full dataset list. We show in Table A1 the results of all the
methods on the seven datasets we studied. To be more specific, in Table A1, we append the results of
COLORED-MNIST and COLORED-FMNIST into Table 5 as a whole. As we can see, our methods
outperforms other baselines in all the datasets in terms of average accuracy, and stands top in most
cases in terms of the accuracy gap.

Table A1: IRM performance comparison between our proposed BLOC-IRM method and other baselines
under the full list of datasets. We use MLP for COLORED-MNIST and COLORED-FMNIST, and ResNet-18
(He et al., 2016) for the rest datasets. The evaluation setup is consistent with Table 4, and the best performance
per-evaluation metric and per-dataset is highlighted in bold.

Algorithm COLORED-MNIST COLORED-FMNIST COLORED-OBJECT CIFAR-MNIST CELEBA VLCS PACS
Metrics (%) Avg Acc Acc Gap Avg Acc Acc Gap Avg Acc Acc Gap Avg Acc Acc Gap Avg Acc Acc Gap Avg Acc Acc Gap Avg Acc Acc Gap

ERM 49.19±1.89 90.72±2.08 49.77±1.71 88.62±2.49 41.11±1.44 86.43±2.89 40.39±1.32 85.53±2.33 72.38±0.29 10.73±0.36 63.23±0.23 12.39±0.35 69.95±0.35 14.32±0.75

IRMV1 68.33±0.31 2.04±0.05 68.76±0.31 1.45±0.09 64.42±0.21 4.18±0.29 61.49±0.29 7.17±0.33 72.49±0.38 10.15±0.27 62.72±0.29 12.74±0.27 68.93±0.33 14.99±0.51
IRMV0 68.37±0.28 1.32±0.09 69.07±0.27 1.36±0.06 62.39±0.25 5.36±0.31 60.14±0.18 8.83±0.39 72.42±0.35 10.43±0.38 62.59±0.32 12.99±0.36 68.72±0.29 15.29±0.71

IRM-GAME 67.73±0.24 1.67±0.14 67.49±0.32 1.82±0.13 62.88±0.34 5.59±0.28 60.44±0.31 6.72±0.41 72.18±0.44 12.32±0.41 62.31±0.38 13.37±0.62 68.12±0.22 15.77±0.66
REX 68.42±0.29 1.65±0.07 68.66±0.22 1.29±0.08 63.37±0.35 5.42±0.31 62.32±0.24 5.55±0.32 72.34±0.26 10.31±0.23 63.19±0.31 12.87±0.31 69.43±0.34 15.31±0.67

BIRM 68.71±0.21 1.35±0.09 68.64±0.32 1.44±0.13 65.11±0.27 3.31±0.22 62.99±0.35 5.23±0.36 72.93±0.28 9.92±0.33 63.33±0.40 12.13±0.23 69.34±0.25 15.76±0.49
SPARSEIRM 68.81±0.25 1.72±0.05 68.29±0.22 1.28±0.15 64.97±0.39 3.97±0.25 62.16±0.29 4.14±0.31 72.42±0.33 9.79±0.21 62.86±0.26 12.79±0.35 69.52±0.39 15.81±0.82

FISHR 68.69±0.19 2.13±0.08 68.79±0.17 1.77±0.10 64.07±0.23 4.41±0.29 61.79±0.25 5.55±0.21 72.89±0.25 9.42±0.32 63.44±0.37 11.93±0.42 70.21±0.22 14.52±0.43
BLOC-IRM 69.47±0.24 1.04±0.07 69.43±0.21 1.14±0.11 65.97±0.33 4.10±0.36 63.69±0.32 4.89±0.36 73.35±0.32 8.79±0.21 63.62±0.35 11.55±0.32 70.31±0.21 14.73±0.65

Experiment on different model sizes. We show in Figure A4 the influence of the increasing
model size on the performance of different baselines considered in this work. Compared to Fig-
ure 4, we report additional standard deviation of the 10 independent trials in Figure A4.

0 200 400 600 800 1000
Intermediate Layer Dimension

60

62

64

66

68

70

In
va

ria
nt

 A
cc

ur
ac

y
(%

)

IRM-V1
IRM-V0
IRM-Game
REx

BIRM
SIRM
Fishr
BLOC-IRM

Figure A4: IRM performance on COLORED-MNIST against the dimension of the intermediate layer in MLP.
The dotted line represents the default dimension (d = 390) used in the literature. The invariant prediction
accuracy is presented via the dot line (mean) and shaded area (standard deviation) over 10 random trials.

17

Published as a conference paper at ICLR 2023

Experiment with different training environments. In Table A2, we show the performance of all
the methods in more complex training environments, such as more training environments and more
skewed environment bias parameter β. As we can see, BLOC-IRM outperforms other baselines.

Table A2: Performance under different training environments in COLORED-MNIST.

Environment ptr ∈ {0.1, 0.15} ptr ∈ {0.1, 0.15, 0.2}
Metrics (%) Avg Acc Acc Gap Avg Acc Acc Gap

OPTIMUM 75.00 0.00 75.00 0.00
GRAYSCALE 73.82±0.11 0.37±0.05 73.97±0.14 0.29±0.08

ERM 49.21±0.79 91.88±3.31 49.03±0.93 92.17±3.04

IRMV1 67.36±0.31 2.77±0.15 67.11±0.34 2.42±0.12
IRMV0 67.01±0.42 2.85±0.18 66.71±0.42 2.36±0.19

IRM-GAME 66.39±0.72 4.47±0.61 65.93±0.53 4.25±0.84
REX 66.82±0.44 2.59±0.11 67.14±0.38 2.16±0.13

BIRM 67.35±0.39 2.65±0.10 68.05±0.43 1.99±0.07
SPARSEIRM 67.12±0.53 2.33±0.18 67.72±0.41 2.11±0.19

FISHR 67.22±0.43 2.44±0.15 67.32±0.39 2.59±0.15
BLO-IRM 68.72±0.41 2.19±0.15 68.89±0.31 2.39±0.09

BLOC-IRM with different regularizations. Based on the penalty terms used in the existing
IRM variants, we explore the performance of our proposed BLOC-IRM with various regulariza-
tion, including the ones used in IRMV1 (BLOC-IRM-V1), REX (BLOC-IRM-REX), and FISHR
(BLOC-IRM-FISHR). We conduct experiments on three different datasets and the results are shown
in Table A3. It is obvious that the best performance is always achieved when the per-environment
stationarity is penalized in the upper-level. This is not surprising since without an explicit promotion
of stationarity, other forms of penalties do not guarantee the BLO algorithm to achieve an optimal
solution.

Table A3: The performance of BLOC-IRM with different regularization terms. Three datasets are studied
and the latest baseline SPARSEIRM is listed as reference for comparison. The best performance per-evaluation
metric and per-dataset is highlighted in bold.

Dataset COLORED-MNIST COLORED-OBJECT CIFAR-MNIST
Metrics Avg Acc Acc Gap Avg Acc Acc Gap Avg Acc Acc Gap

SPARSEIRM 68.81±0.25 1.72±0.05 64.97±0.39 3.97±0.25 62.87±0.29 4.14±0.31

BLOC-IRM 69.47±0.24 1.04±0.07 65.97±0.33 4.10±0.36 63.69±0.32 4.89±0.36
BLOC-IRM-V1 67.14±0.24 4.33±0.83 63.38±0.29 6.31±0.51 61.13±0.51 6.71±0.41

BLOC-IRM-REX 62.71±0.21 8.74±1.21 60.31±0.33 7.62±0.66 59.39±0.55 7.89±0.45
BLOC-IRM-FISHR 63.25±0.16 7.12±0.39 61.17±0.34 6.98.±0.45 60.86±0.51 6.63±0.30

Performance comparison of different methods with additional covariate shifts. Besides the
sensitivity check on model size, Table A4 examines the resilience of IRM to variations in the train-
ing environment. This study is motivated by Krueger et al. (2021), who empirically showed that
the performance of invariant prediction degrades if additional covariate shifts are imposed on the
training environments. Thus, we present the IRM performance on COLORED-MNIST by introduc-
ing class, digit, and color imbalances, following Krueger et al. (2021, Section 4.1). Compared with
Table 4, IRM suffers a greater performance loss in Table A4, in the presence of training environ-
ment variations. However, the proposed BLOC-IRM maintains the accuracy improvement over
baselines with each variation. In Table A2, we also study IRM with different numbers of training
environments and observe the consistent improvement of BLOC-IRM over other baselines.

Exploration on the failure cases of previous IRM methods. Some papers either theoreti-
cally (Rosenfeld et al., 2020) or empirically (Kamath et al., 2021) pointed out that the origi-
nal IRMV1 method could fail in certain circumstances, due to the fact that the regularization
term used in IRMV1 heavily relies on the “linear predictor” assumption. Regarding this is-
sue, we first bring to attention that the BLOC-IRM formulation does not require the predictors
to be linear, since we adopt the regularization in the form of IRMV0 in the upper-level objec-
tive, not IRMV1. To justify our argument, we repeat the experiments in (Kamath et al., 2021),
which points out a specific scenario using the COLORED-MNIST dataset where IRMV1 fails.

18

Published as a conference paper at ICLR 2023

Table A4: IRM performance on COLORED-MNIST and COLORED-FMNIST with training environment
variations in terms of class, digit and color imbalances. The best IRM performance per-evaluation metric and
per-variation source is highlighted in bold.

Dataset COLORED-MNIST COLORED-FMNIST

Variation Class Imbalance Digit Imbalance Color Imbalance Class Imbalance Digit Imbalance Color Imbalance
Metrics (%) Avg Acc Acc Gap Avg Acc Acc Gap Avg Acc Acc Gap Avg Acc Acc Gap Avg Acc Acc Gap Avg Acc Acc Gap

GRAYSCALE 71.23±0.18 2.76±0.11 70.31±0.21 2.79±0.15 72.29±0.16 2.88±0.14 70.15±0.21 2.29±0.12 69.92±0.15 2.72±0.21 73.31±0.11 1.17±0.23
ERM 43.72±1.01 92.76±1.45 45.89±2.82 91.65±1.86 46.19±2.88 90.88±1.69 41.72±1.98 93.37±2.15 42.39±2.39 92.23±2.72 45.89±0.27 91.31±2.27

IRMV1 65.39±0.22 4.44±0.29 64.89±0.26 4.19±0.44 66.12±0.25 3.31±0.29 62.49±0.33 4.93±0.45 61.88±0.23 5.54±0.39 64.39±0.44 3.79±0.33
IRMV0 65.01±0.28 4.29±0.33 65.13±0.25 3.87±0.28 66.72±0.25 3.01±0.44 62.78±0.48 5.33±0.47 61.62±0.29 5.29±0.41 64.93±0.27 3.28±0.31

IRM-GAME 62.21±0.42 6.45±0.35 62.10±0.35 6.72±0.44 61.82±0.65 7.78±0.55 60.73±0.84 6.24±0.43 60.79±0.45 6.47±0.82 64.32±0.42 5.73±0.31
REX 66.45±0.25 3.39±0.28 66.23±0.43 3.21±0.20 66.99±0.42 3.32±0.27 64.89±0.36 5.78±0.53 63.95±0.25 4.73±0.62 65.87±0.42 4.30±0.42

BIRM 65.73±0.25 4.11±0.31 65.73±0.88 4.49±0.67 66.72±0.24 3.47±0.25 64.39±0.34 4.47±0.39 63.24±0.39 4.54±0.42 65.08±0.31 3.80±0.29
SPARSEIRM 65.32±0.39 4.92±0.22 64.44±0.36 4.85±0.33 66.03±0.32 2.85±0.19 64.32±0.51 4.15±0.36 62.97±0.35 5.75±0.52 64.72±0.46 3.99±0.39

FISHR 66.13±0.28 3.99±0.32 65.87±0.42 3.72±0.41 65.48±0.21 4.49±0.31 63.62±0.53 5.59±0.35 62.47±0.26 5.72±0.33 65.13±0.32 4.44±0.21
BLOC-IRM 66.32±0.27 3.11±0.22 66.41±0.29 3.32±0.25 67.25±0.24 3.72±0.27 65.99±0.31 3.97±0.43 65.13±0.31 5.11±0.45 66.79±0.26 3.72±0.36

Table A5: Performance com-
parisons on COLORED-MNIST
among ERM, IRMV1, and BLOC-
IRM in the scenarios where IRM-
variants failed following (Kamath
et al., 2021).

Method Avg. Acc. Acc. Gap

ERM 83.09 13.79
IRMV1 76.89 27.68

BLOC-IRM 84.22 11.01

More specifically, the models are trained in the training environ-
ments (α, β) = (0.1, 0.2) and (0.1, 0.25), and evaluated in the
test environment (0.1, 0.9). Note that denotes the label flipping
rate and represents the environment bias parameter. The results
are shown in the Table A5. As we can see, IRMV1 is clearly
worse than ERM as it achieves much lower average accuracy and
higher accuracy gap. However, BLOC-IRM outperforms ERM
by obtaining high average accuracy and lower accuracy gap. This
result shows that BLOC-IRM seems promising to address the
empirical IRM challenge discovered in (Kamath et al., 2021). In
the meantime, we also acknowledge that BLOC-IRM is not per-
fect since the advantage achieved by BLOC-IRM over ERM is not strong enough. However, we
stress that the main contribution of BLOC-IRM does not lie in solving the failure cases of IRMV1,
but to fix the issue of IRM-Game that resorts to a predictor ensemble to make the invariant predic-
tion, which deviates from the spirit of acquiring invariant predictors in the original IRM paradigm.

A similar curve to Figure 1 on COLORED-FMNIST. We show the results for COLORED-
FMNIST similar to Figure 1 in Figure A5and the conclusion does not change much. As mentioned
before, the large-batch training setup was typically used for IRM training over the COLORED-
MNIST and COLORED-FMNIST datasets.

64 256 1k 2k 4k 50k
Batch Size

64

65

66

67

68

69

70

In
va

ria
nt

 A
cc

ur
ac

y
(%

)

IRM-V1
IRM-V0
REx

Figure A5: The performance of three IRM methods (IRMV1, IRMV0, and REX) vs. batch size under
COLORED-FMNIST.

19

	Introduction
	Related Work

	Preliminaries and Setup
	Large-batch Training Challenge and Improvement
	Multi-environment Invariance Evaluation
	Advancing IRM-Game via Consensus-constrained BLO
	Experiments
	Experiment Setups
	Experiment Results

	Conclusion
	Dataset Selection
	Implementation Details
	Details on Large-batch Optimization Enhancements
	BLOC-IRM Implementation

	Experimentation
	Environment Setup
	Baselines
	Additional Experiment Results

