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Abstract
Variational optimization (VO) offers a general approach for handling objectives which may involve
discontinuities, or whose gradients are difficult to calculate. By introducing a variational distribution
over the parameter space, such objectives are smoothed, and rendered amenable to VO methods.
Local gradient information, though, may be available in certain problems, which is neglected by
such an approach. We therefore consider a general method for incorporating local information via
an augmented VO objective function to accelerate convergence and improve accuracy. We show how
our augmented objective can be viewed as an instance of multilevel optimization. Finally, we show
our method can train a genetic algorithm simulator, using a recursive Wasserstein distance objective.
Keywords: Variation methods, Black-box optimization, Multilevel optimization

1. Introduction

There has been much attention recently in developing efficient methods to optimize objectives which
may contain function or gradient discontinuities, or whose gradients are difficult to calculate. Such
situations arise, for instance, in black box optimization methods [1], objectives over mixed discrete
and continuous variables [2], optimization of simulator parameters, and hyper-parameter optimization
[3]. An interesting general class of methods for such problems are Variational Optimization (VO)
approaches, which involve placing an auxiliary variational distribution over the parameter space,
which may be optimized in place of directly optimizing the parameters [4]–[6]. Such an approach
may be classed as a type of smoothing-based optimization [5], and has been related to scale-space
methods in computer vision [7] and Gaussian continuation methods [3], [8].

Adopting a VO approach can be used to render almost any objective function differentiable.
Methods such as score-function gradients with control variates [1], or stochastic gradient descent
(SGD) [6] may then be applied to optimize the resulting VO objective. However, the need to
stabilize score function gradients means that this approach may not be efficient for all problems if
appropriate control variates cannot be provided or learned, and SGD approaches such as [6] will only
be applicable when an approximate gradient or sub-gradient is straightforwardly calculated.
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The smoothing-based VO approach of [5] offers advantages, in light of the above issues, since it
requires only that the objective function be efficiently evaluable. Further, the gradient-free updates
are guaranteed to improve the scale-space objective in expectation. However, due to the lack of
gradient information, such updates may be inefficient. We note that, while many objectives include
function and gradient discontinuities globally, there will often be regions or subspaces of parameter
space over which gradients may be calculated. We therefore propose an augmented form of the
VO approach of [5], which may make use of such local gradient information. In doing so, we are
influenced by recent approaches to mixed discrete-continuous multilevel optimization [9], and we
show that our method may also be formulated as solving a multilevel optimization problem.

We briefly summarize the contributions and significance of our work below. (a) Sec. 2 outlines
our approach to smoothing-based VO augmented with local gradients, and details its relationship with
multilevel optimization (Appendix A). (b) In Sec. 3 we then demonstrate our approach on the problem
of learning the parameters of an arbitrary genetic algorithm (GA), using a multilevel Wasserstein
objective, where output populations of the GA are available as training data. (c) Finally, we note
that this problem, while complex, has extensive biological applications, where such approaches may
be used for instance to infer phylogenetic structure in large-scale genetics analyses. A number of
Variational Inference (VI) methods have recently been proposed in related contexts [10]–[12], and
our method offers an alternative VO-based approach which may offer advantages in terms of its
scalability. We conclude with a brief discussion of such directions in Sec. 4.

2. Variational Optimization Augmented with Local Gradients

2.1. Smoothing-based Variational Optimization

We briefly summarize the smoothing-based VO framework of [5]. We assume that we desire to
optimize maximize a non-negative function, F (θ), where θ ∈ Rd, and F may be discontinuous or
contain discontinuities in its gradients. Hence, F can model an output value which depends on a
discrete deterministic latent variable; for example F may depend on z = g(θ), with z a categorical
variable. Additional examples are included in Appendix B. To optimize F , we introduce a variational
distribution Qµ,σ(θ) = N (θ|µ, σ2I), with I the identity matrix, where N (.|µ,Σ) is a multivariate
Gaussian distribution, and an associated smoothed variational objective:

Lsmooth(µ, σ) = Eθ∼Qµ,σ [F (θ)]. (1)

By optimizing Lsmooth we are optimizing a lower-bound on L, since:

Eθ∼Qµ,σ [F (θ)] ≤ max
µ,σ

Eθ∼Qµ,σ [F (θ)] ≤ max
θ

F (θ). (2)

In [5], it is shown that the following updates are guaranteed to increase Lsmooth in expectation:

µt+1 =

∑
s fsθ

t
s∑

s fs
, σt+1 =

√∑
s fs|θt

s − µt|22
d
∑

s fs
,

where θt
s for s ∈ {1...S} are samples drawn from Qt = N (.|µt, σ

2
t I), and fs = F (θt

s). As noted in
[5], introducing the variational distribution Q allows us to navigate complex optimization landscapes,
potentially with many local minima, by smoothing the underlying objective. Further, any nonnegative
function with compact support has a single global maximum for a sufficiently large value of σ,
although this may not hold for nonnegative functions with infinite support [13].
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2.2. Augmented Objective with Local Gradients

We now consider that, in addition to the function F , we have a local differentiable region selector
R(θ), defined as:
Definition 1 (Local Differentiable Region Selector): A function R(θ) is a local differentiable region
selector for F , with θ and F defined as above, iff for all θ ∈ Rd, we have that R(θ) ⊆ Rd, and either
R(θ) = ∅, or there exists a linear subspace R′(θ) ⊆ Rd such that R(θ) is an open neighborhood
of θ in R′(θ) (hence θ ∈ R(θ) ⊆ R′(θ)), and the restriction of F to R′ is differentiable over R.
Further, we require that θ′ ∈ R(θ) =⇒ R(θ′) = R(θ). □
Given such a function R(θ), we now consider a local optimizer, O that performs gradient ascent
starting at θ for U steps, with the update parameter θu+1,α constrained to lie within R(θu,α). More
formally, O(θ) = OU,α(θ), with :

O0,α(θ) = θ

Ou+1,α(θ) =

{
θ′ = Ou,α(θ) + αg(Ou,α(θ)), if F (θ′) > F (Ou,α(θ)) ∧ θ′ ∈ R(θ)

Ou,α(θ), otherwise
(3)

where U is the maximum number of steps taken by the optimizer, α is the step-size, and g(θ) returns
the gradient at θ in R′(θ) if R(θ) is non-empty, and 0d otherwise.

Since the updates in Eq. 3 are non-decreasing in F , we have F (O(θ)) ≥ F (θ). We can thus
define the auxiliary objective, and the associated augmented variational lower-bound:

F ′(θ) = F (O(θ)), Laug(µ, σ) = EQ[F
′(θ)], (4)

which provides a tighter bound on the original loss, since:

EQ[F (θ)] ≤ EQ[F
′(θ)] ≤ max

µ,σ
EQ[F

′(θ)] ≤ max
θ

F (θ), (5)

where EQ[.] denotes Eθ∼Qµ,σ [.]. We can optimize Laug similarly to Lsmooth, by replacing fs in Eq.
3 with f ′

s = F ′(θt
s).

3. Experimental Results

3.1. Learning a Genetic Algorithm using a Multilevel Wasserstein Objective

We design a synthetic problem to test our optimization approach, based on learning the parameters of
a fitness function for a discrete Genetic Algorithm (GA), whose genotypes represent solutions to
a Traveling Salesman Problem (TSP), with a prior over the parameter space. We use a multilevel
Wasserstein distance as our objective, as outlined below.

The underlying TSP consists of finding the shortest path connecting M cities, whose coordinates
sampled from a standard 2d Gaussian distribution. Since the coordinates of the cities implicitly
define the fitness of a chosen path, we denote the m’th city’s coordinates as θm = (θm,1,θm,2), and
our goal in training the GA is to learn θ, hence the coordinates of the cities. Further, we denote the
distance between cities m1 and m2 as dm1,m2 . The underlying space of genotypes X is thus the set
of permutations on M elements, and the fitness of genotype x ∈ X is defined as:

f(x) = exp(−β
∑

i=1...M−1

dxi,xi+1) (6)
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where β is an inverse temperature parameter. A simulation of the GA consists of sampling a
population of genotypes of size N uniformly from X , and updating these for T generations using an
update rule derived from the Wright-Fisher process with constant population size and selection (see
[14]). Hence, at time-step t > 0, to generate a new population of size N , N parents are sampled
from the population at t− 1, with each parent being sampled with a probability proportional to its
fitness (with replacement). The genotypes at generation t are then generated either by coping the
parent’s genotype, or with probability pm, mutating the parents genotype by exchanging two cities
(note that reproduction here is asexual, hence each offspring has a single parent).

We run L simulations as above up to time-step T , and a training set is generated by including
only the final population state from each simulation. The intention here is to mimic the situation
where only genotypes from existing species are available in evolutionary data, or genomics data
from a cancer are only available from the time of resection, and the evolutionary history must be
inferred. Our ground-truth training set may thus be represented as X ∈ {1...M}LNM , where Xlnm

represents the city (1...M ) visited by the n’th population member in simulation l at the m’th location
on the route. Similarly, for a given parameter setting θ, we may generate a new set of simulations,
S(θ) = X̃θ ∈ {1...M}LNM , of the same dimensions. For convenience, we assume the simulator is
deterministic, which may be achieved by fixing the random seed. Further, we provide the parameters
β, T, pm, although in general these may also be inferred. We then perform inference using an
objective of the form in Example 2 in Appendix B, where F2(θ, θ0) = N (θ, θ0, I), with N denoting
the normal distribution and θ0 = 0, and F1 is defined as a multilevel Wasserstein distance as follows:

F1(X̃,X) = exp
(
−W ′(X̃,X)

)
W ′(X̃,X) = W2

(∑
l δ(X̃l)

L
,

∑
l δ(Xl)

L
,C

)
C(ρa, ρb) = W2(ρ

a, ρb, H) (7)

where W2(Pa, Pb, C) is the second-order Wasserstein distance between distributions Pa and Pb

using cost function C, ρa and ρb are distributions over genotype space X , δ(a) is a delta distribution
centered at a, and H is the Hamming distance between genotypes, H(xa, xb) =

∑
m[xam ̸= xbm].

We apply the VO approach of Sec. 2.2 to learn the parameter vector θ, and compare this with the
stochastic gradient-based SPSA method in Appendix C, where F (θ) is defined identically. For the
simulations, we use M = 5, N = 4, L = 4, T = 10, S = 10, β = 1 and pm = 0.1. Further, we use
100 meta-epochs for both VO and SPSA algorithms, which we observed to be sufficient for both
algorithms to converge.

3.2. Learning an adaptive Graph Neural Network for Protein Liquid-Liquid Phase Separation

To illustrate the generality of our approach, we also apply the VO approach of Sec. 2.2 to learning
an adaptive Graph Neural Network to predict Protein Liquid-Liquid Phase Separation (LLPS) on
scaffold proteins, following the problem description in Example 1 of Appendix B, and using the same
experimental setup as in [2]. To compare our VO approach, we use a stochastic gradient descent
(SGD) optimizer to optimize F (θ) directly (see [2]), and we use 60 meta-epochs of both VO and
SGD optimizers, which was sufficient to ensure convergence.
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Table 1: Comparing performance of Variational Optimization and Stochastic Gradient-based
approaches on Genetic Algorithm (GA) and adaptive GNN (aGNN) optimization. Mean
and standard deviation of 10 models are shown. Methods are compared using 2-level
Wasserstein distance defined in Eq. 7 and the Euclidean distance of the estimated solution
to the TSP to the ground-truth (up to rotation and translation) for the GA problem, and the
test set AUC for the aGNN problem.

Problem Metric Variational Optimization SPSA(GA) / SGD(aGNN)

GA 2-level Wasserstein 0.136± 0.0607 0.213± 0.0211
GA Euclidean 0.735± 0.054 0.942± 0.0667

aGNN AUC 0.726± 0.022 0.671± 0.03

3.3. Performance Comparison

Table 1 compares the performance of our VO optimizer against stochastic gradient-based approaches
for the GA and aGNN optimization problems, comparing with SPSA for the GA problem (Appendix
C) and SGD for the aGNN problem. We note that applying SPSA was not found to be advantageous
in the aGNN problem, possibly due to the higher dimensionality of the parameter space. As observed,
the VO approach achieves better solutions in both problems. For the GA problem, the solutions
found achieve lower 2-level Wasserstein distances as measured by Eq. 7, and a lower Euclidean
distance between the cities of the estimated TSP to the ground-truth (up to rotation and translation),
which determine the underlying fitness function of the genetic algorithm. For the adaptive GNN, VO
optimization achieves higher AUC performance on hold-out data for prediction of scaffold proteins.

4. Discussion

We have introduced a method for augmenting smoothing-based Variational Optimization with local
gradients, appropriate for a wide range of objectives with discontinuities in function or gradient
values, mixed discrete-continuous optimization problems, or problems in which full gradients may
be difficult to evaluate. We have shown that our method may be viewed as a type of multi-level
optimization approach, and have demonstrated the efficiency of the approach in training a simulator
based on a genetic algorithm and an adaptive Graph Neural Network architecture, each using objective
functions with function and gradient discontinuities.

In future work, we plan to investigate the potential of our approach in a number of domains. As
discussed, we are particularly interested in using a similar approach to Secs. 2 and 3.1 on data from
biological evolutionary processes, including phylogenetics and cancer genomics. In the case of the
latter, this approach may for instance be used to infer tumor clonal structure (see [15]). Further,
we intend to investigate applications to learning discrete structures, for instance, graph inference,
in the context of structure learning for energy-based models. Finally, we plan to investigate the
potential of our approach in the context of mixed continuous-discrete optimization problems. We
note that our division of the parameter space into local differentiable regions has similarities with
branch-and-bound-based approaches, and an interesting avenue for further investigation would be
to combine VO with branch-and-bound methods. We also plan to investigate integrating implicit
gradient methods within our framework to handle multilevel optimization problems.
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Appendix A. Multilevel Optimization Formulation

The augmented VO approach in Sec. 2.2 may be regarded as an instance of a mixed discrete-
continuous bi-level optimization problem (see [9]). Here, for convenience, we assume that, for all non-
empty regions R(θ), F (θ) is convex within R(θ), R(θ) is a convex set, and that supθ′∈R(θ) F (θ′)
is achieved for some value θ′ ∈ R(θ). For such problems, we can form the equivalent bi-level
optimization problem:

max
θ∈Rd

Fbilev(θ,θ
′), θ′ ∈ arg max

θ′∈Rd
Gbilev(θ,θ

′) (8)

where:

Fbilev(θ,θ
′) = F (θ′), Gbilev(θ,θ

′) = F (θ′)−∞[θ′ /∈ R(θ) ∪ {θ}]

where [.] denotes the Iverson bracket, which is 1 for a true proposition and 0 otherwise. The
augmented VO approach of Sec. 2.2 can thus be viewed as a solution to the bi-level problem in Eq.
8, where the outer optimization problem Fbilev is solved via VO, and the inner problem Gbilev is
solved via the gradient-based optimizer O (where a sufficiently small step-size α and large U will
ensure the optimum is found for each convex inner problem). A similar approach has been proposed
for meta-learning [16], where the inner problem is solved approximately by performing a few SGD
steps.

Appendix B. Examples of Continuous-Discrete problems

Example 1 (Adaptive Graph Neural Network): We consider a problem, as discussed in [2], where
θ = {θ1,θ2}, and F has the form F (θ) = −

∑
i L(Yi|θ1, Gi(θ2)). Here, L(Yi|θ1, Gi) is the loss

for predicting the label Yi for datapoint i using a graph neural network (GNN) with parameters
θ1, where the underlying graph has topology Gi. If Gi is fixed, F is differentiable for many GNN
parameterizations. Letting Gi depend on θ2, though, allows the graph to adaptively be learned for
each datapoint, causing F to become discontinuous (at values for which the graph changes for some
datapoint). Hence, we may choose R(θ) = R′(θ) = {θ′|θ2 = θ′

2} to apply the above approach. We
therefore perform local gradient descent within the subspace defined by θ1 while fixing the graph
structure for each datapoint by ensuring O leaves θ2 constant.
Example 2 (Discrete Simulator with Continuous Prior): We consider that we have a simulator
S(θ), which generates discrete outputs that we wish to match to ground-truth observations X . Further,
we wish to choose θ to be similar to a prior θ0. We may thus form the objective F = F1(S(θ),X ) +
F2(θ, θ0), where F1 and F2 are appropriately defined non-negative similarity functions. In this case,
we let R(θ) be the largest connected open neighborhood of θ over which F ′

1(θ
′) = F1(S(θ′),X ) is

constant (that is, θ′ ∈ R(θ) =⇒ F ′
1(θ

′) = F ′
1(θ)). Further, R′(θ) = Rd. By definition then, we

have that F (θ) is continuous within each region R(θ) when the latter is non-empty.

Appendix C. Simultaneous Perturbation Stochastic Perturbation (SPSA) optimizer

As an alternative approach, Simultaneous Perturbation Stochastic Perturbation (SPSA) [17] provides
a method for performing stochastic gradient descent on a function which is easy to evaluate, but for
which an analytic gradient is not available. The method requires hyperparameters a,A, α, c, γ, and
for epoch τ we define aτ = (a/(τ +A))α and cτ = (c/τ)γ . Then, θ is initialized randomly at epoch
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0, and for each epoch τ we sample a vector δ ∈ {−1, 1}Dθ , representing randomized perturbations to
the current value of θ (where δ(i) is sampled independently and uniformly from {−1, 1}). Assuming
we wish to minimize the function F (θ) as above, we then use the following gradient estimator and
update at each epoch:

ĝτ =
F (θτ + cτδ)− F (θτ − cτδ)

2cτ

and we update the parameters using: θτ+1 = θτ − aτ ĝτ .
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