
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

GRAPH OF AGENTS: PRINCIPLED LONG CONTEXT MOD-
ELING BY EMERGENT MULTI-AGENT COLLABORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

As a model-agnostic approach to long context modeling, multi-agent systems can process
inputs longer than a large language model’s context window without retraining or archi-
tectural modifications. However, their performance often heavily relies on hand-crafted
multi-agent collaboration strategies and prompt engineering, which limit generalizability.
In this work, we introduce a principled framework that formalizes the model-agnostic long
context modeling problem as a compression problem, yielding an information-theoretic
compression objective. Building on this framework, we propose Graph of Agents (GoA),
which dynamically constructs an input-dependent collaboration structure that maximizes
this objective. For Llama 3.1 8B and Qwen3 8B across six document question answering
benchmarks, GoA improves the average F1 score of retrieval-augmented generation by
5.7% and a strong multi-agent baseline using a fixed collaboration structure by 16.35%,
respectively. Even with only a 2K context window, GoA surpasses the 128K context win-
dow Llama 3.1 8B on LongBench, showing a dramatic increase in effective context length.

1 INTRODUCTION

From analyzing entire codebases to synthesizing evidence across multiple documents, critical AI applica-
tions require reasoning over long contexts. Yet, modern large language models (LLMs) remain fundamen-
tally constrained by their context windows, the maximum number of tokens they can reliably process. When
inputs exceed those seen during training, performance quickly deteriorates (Anil et al., 2022; Zhou et al.,
2024). Further, some architectures cannot accept inputs beyond their pre-trained length due to constraints
such as fixed positional encodings (Press et al., 2022). While retraining on longer inputs seems like a di-
rect solution, it is often infeasible due to prohibitive computational costs and data scarcity. This mismatch
between model capabilities and practical needs hinders LLM deployment in complex real-world tasks.

Post-hoc modification methods offer appealingly simple and training-free alternatives. For example, position
embedding interpolation (Chen et al., 2023b) extends pre-trained position encodings to longer sequences.
Vasylenko et al. (2025) propose a sparse attention method that preserves distributional characteristics of
the attention weights by restricting information flow to fixed patterns in longer sequences. However, they
often do not enhance the long context modeling ability, leaving a gap between the claimed context window
(maximum input length) and the effective context window (range where the model reliably performs) (Liu
et al., 2024; Hsieh et al., 2024). Addressing long context challenges requires paradigms beyond simply
increasing input length.

Multi-agent systems offer a promising alternative for long context modeling by leveraging auxiliary LLMs to
restructure and compress the input. A prominent paradigm is to orchestrate agents in structured workflows.
For example, in Chain-of-Agents (CoA) (Zhang et al., 2024), agents collaborate in a sequential chain to
progressively summarize the input (cf. Figure 1 (Bottom)). LongAgent (Zhao et al., 2024a) employs a leader
agent to dispatch tasks to a team of specialized member agents, manually defining a collaborative workflow

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

Figure 1: A comparison of multi-agent systems for long context modeling, where worker agents () process
distinct text chunks and collaborate to generate a compressed summary for a manager agent (). Top:
Graph of Agents: Our proposed method generates an input-dependent collaboration structure. First, agents
are grouped into clusters based on the semantic similarity of their assigned chunks. Then, within each cluster,
a collaboration structure is adaptively determined to generate an optimal partial summary tailored for each
input and query. This allows for flexible and parallelizable compression. Bottom: Chain-of-Agents. A
baseline approach where worker agents collaborate in a prescribed serial order for every input. This static
structure can be suboptimal when relevant information is not organized linearly in the source document.

based on pre-assigned roles. Such strategies have been shown to effectively handle inputs far beyond a
model’s context window, outperforming post-hoc modification methods (Zhang et al., 2024; Lee et al., 2024).
However, current multi-agent approaches rely heavily on hand-crafted designs, such as predefined roles,
fixed collaboration structures, and task-specific prompts (e.g., a serial communication chain in CoA), that
may not generalize across diverse tasks.

In this work, we design a principled multi-agent system where an input-dependent optimal collaboration
structure emerges from the statistical structure of an input. To this end, we formalize the long context mod-
eling problem as a compression problem, yielding a natural information-theoretic objective. Building on
this foundation, we propose Graph of Agents (GoA), which models multi-agent collaboration as a dynamic
graph tailored to each input (cf. Figure 1 (Top)). In GoA, agents (nodes) responsible for distinct text chunks
are first grouped into clusters based on semantic similarity. Then, within each cluster, a communication
structure (edges) is determined greedily by selecting the next chunk most relevant to the query given the
evolving summary. Crucially, this adaptive graph structure guided by the information-theoretic objective
allows GoA to generalize across diverse tasks, from locating knowledge from single-document to complex
multi-document reasoning, without requiring task-specific hand-crafted workflows. As a result, GoA im-
proves the average F1 score of retrieval-augmented generation by 5.7% and CoA by 16.35%, respectively,
for Llama 3.1 8B and Qwen3 8B across six single- and multi-document question-answering datasets.

Our contribution can be summarized as follows: 1) We formalize long context modeling from the perspec-
tive of compression, providing unique insights into existing long context modeling approaches and guiding
a principled multi-agent system design; 2) We develop a training-free multi-agent system, GoA, where the
input-dependent collaboration structure emerges to maximize the principled long context compression ob-
jective; 3) GoA effectively handles inputs longer than the context window, notably outperforming a 128K
context window Llama 3.1 8B with only a 2K context window model on LongBench.

2 BACKGROUND: MODEL-AGNOSTIC APPROACH FOR LONG CONTEXT MODELING

We address the problem of applying an LLM P̂ with context window Tmax to inputs exceeding this limit.
When a prompt prompt(x, q) constructed from an input x and query q is too long (i.e., |prompt(x, q)| >

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

Tmax), the model cannot directly compute P̂ (y | prompt(x, q)). In this setting, the model-agnostic long
context modeling aims to find a compressed representation (x̃, q) ≜ (g(x; q), q) with a compression function
g summarizing input x conditioned on a query q, ensuring that |prompt(g(x; q), q))| ≤ Tmax. For brevity,
we omit the explicit dependence on q in g throughout the paper (i.e., g(x) ≜ g(x; q)).

In the following, we review two popular directions for model-agnostic long context modeling that design
g that effectively preserves the information necessary to answer the query. Both approaches process long
inputs by dividing them into smaller chunks. Accordingly, without loss of generality, we assume that x can
be divided into l number of chunks (c1, c2, · · · , cl) with |ci| = L for all i ∈ [l] ≜ {1, · · · , l}.

Retrieval-augmented generation (RAG) implements compression by retrieving relevant chunks within the
context window Tmax (Lewis et al., 2020). Specifically, RAG first ranks the chunks based on their proximity
to the query q (e.g., lexical matching (Robertson et al., 1995)) and then selects the top κ relevant chunks such
that κ = max{a ∈ N | a · |L| ≤ Tmax}: x̃RAG = [cπRAG(1), · · · , cπRAG(κ)] where πRAG(i) is the index of the
i-th closest chunk to the query q. While conceptually simple, RAG-based approaches have been shown to
be highly effective for long context modeling, often outperforming methods that naively attend to the entire
input, especially for knowledge-intensive tasks like document-based question answering (Sarthi et al., 2024;
Zhao et al., 2024b). However, this filtering-style approach risks discarding information that is not directly
similar to the query but nevertheless essential for comprehensive reasoning and understanding.

Multi-agent systems iteratively summarizes x by using multiple collaborating LLMs. As a prominent
example, we consider the Chain-of-Agents (CoA) framework (Zhang et al., 2024) for its broad applicabil-
ity. Unlike many systems that rely on highly specialized agents with hand-crafted roles and prompts, CoA
employs a chain of homogeneous worker agents, each performing a generic summarization task to collab-
oratively synthesize the document. Specifically, each worker agent Wi produces a communication unit zi,
which is a summary of a chunk ci and the previous communication unit zi−1 (with z0 being an empty string),
and passes zi to the next worker Wi+1. Given (x, q), this process is formalized as

zi = Wi(ci, zi−1, q), for i = 1, 2, · · · , l, (1)

where Wi involves a structural prompt and an inference by an LLM (cf. §E.3). The final worker output zl is
passed to the LLM manager M for producing an output ŷ by ŷ = M(zl, q) as described in §E.3.

While the CoA paper shows that its sequential communication of providing the contextual information zi−1

to the next agent is key to outperforming parallel systems (Zhao et al., 2024a; Lee et al., 2024), this design
is fundamentally heuristic. Its effectiveness is not grounded in a principled objective, which obscures its
potential limitations and prevents generalization. Similarly, many existing multi-agent systems rely on hand-
crafted rules, such as assigning agents specialized roles for atomic tasks like question decomposition or fact
verification (Zhao et al., 2025) or employing a supervising agent to manage other specialists within a fixed
workflow (Zhao et al., 2024a). This lack of a theoretical foundation makes it hard to understand the multi-
agent system’s behavior and its performance unreliable across diverse tasks and inputs.

3 COMPRESSION PERSPECTIVE ON LONG CONTEXT MODELING

The heuristic nature of existing multi-agent systems highlights a fundamental gap: they lack a formal crite-
rion for optimal compression. Our goal is to derive this criterion from first principles, which will provides
the foundation of our novel method in §4. The natural goal of the compression function g is to produce a
representation x̃ that maximizes the performance of the LLM P̂ . This can be formulated as an optimization
problem maxg E(X,Q,Y)∼P [log P̂ (Y |g(X), Q)] where (X,Q, Y) are random variables of input, query and
output with P being the data generating distribution.

The main limitation of this objective is its lack of predictive power; it can only evaluate a compression func-
tion retrospectively, not guide its design. Therefore, we consider the case where the LLM is a Bayes optimal

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

predictor (i.e., it models the underlying posterior probability almost everywhere (Jeon et al., 2024)). This
idealization isolates the information loss attributable solely to the compression method, while remaining ag-
nostic to characteristics of any particular model. Under this condition, the following proposition establishes
a natural information-theoretic objective for compression.
Proposition 1. For the Bayes optimal predictor P̂ , the following equivalence relationship holds:

E(X,Q,Y)∼P

[
log P̂ (Y |g(X), Q)

]
⇐⇒ I(Y ; g(X), Q), (2)

where I(X;Y) ≜ E
[
log P (X,Y)

P (X)P (Y)

]
is the mutual information.

The proof is based on an elementary result about the Bayesian posterior (see §A.1). Proposition 1 pro-
vides a powerful and intuitive objective that reframes the goal of compression for long context modeling
as preserving information about the final answer. This result extends to imperfect LLMs, where the mutual
information objective remains a valid compression metric, up to a tolerance term reflecting the LLM’s error
(cf. Proposition 2 in §B). Unlike prior work that relies heavily on empirical benchmarking, this perspective
yields a predictive criterion for evaluating compression g(X). While this provides a principled criterion, the
objective’s intractability (Poole et al., 2019) and dependence on the unknown output Y prevent its direct use
for guiding multi-agent collaboration. Building upon this foundation, we derive a tractable objective in the
next section, from which we construct a principled multi-agent system designed for its optimization.

4 GRAPH OF AGENTS

We introduce Graph of Agents (GoA), a framework that models multi-agent collaboration as an input-
dependent graph to optimize the mutual information objective in (2). In this graph, each agent is assigned a
text chunk and represents a node. The edges, which act as communication channels, are established based on
the statistical relationship between chunks. In the following, we develop GoA by addressing three key algo-
rithmic designs: 1) Determine a proper family of graph structures for long context modeling; 2) Formulate
the intractable mutual information objective in (2) as a tractable surrogate; 3) Generate an input-dependent
graph that maximizes this tractable objective. We present pseudocode of GoA in Algorithm 1.

4.1 INDUCTIVE BIAS ON THE GRAPH STRUCTURE

Introducing proper inductive biases is an effective way to reduce the complexity of AI system design with
desired qualities. To enable a fast and flexible communication structure, we introduce a structural inductive
bias by constraining the agent collaboration topology to that of a linear forest. A linear forest F is a graph
whose connected components {Gi}i∈[k] are all path graphs. Formally, this means that the set of all agents
(representing chunks {c1, c2, · · · , cl}1) is partitioned into disjoint vertex sets V1, · · · ,Vk. Each subgraph
Gi = (Vi, Ei) is a path graph, where the directed edge set Ei is defined by an ordering πi of the agents in Vi:
Ei = {(πi(j), πi(j + 1))|j ∈ [|Vi|]}, where πi(j) represents the j-th worker in Gi. We denote the family of
all possible linear forests satisfying these conditions as F.

GoA’s primary goal is to instantiate an optimal input-dependent linear forest F∗(x, q) ∈ F. Before describ-
ing how GoA finds this optimal structure in §4.3, we first explain the collaboration mechanism for any given
forest F ∈ F. Within each path graph Gi ∈ F , worker agents {Wπi(j)}

|Vi|
j=1 collaborate sequentially to

compress the chunks assigned to them (corresponding to Vi). Each worker agent Wπi(j) takes its assigned
chunk cπi(j) and the summary from the previous agent zπi(j−1) to produce an updated summary zπi(j):

zπi(j) = Wπi(j)

(
cπi(j), zπi(j−1), q

)
, for j = 1, 2, · · · , |Vi|, (3)

1As in CoA (Zhang et al., 2024), we construct a chunk by sequentially adding paragraphs until it reaches the context
window. We deliberately chose this generic chunking strategy to focus on the effects of the communication topology,
leaving the exploration of more general chunking methods as future work.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

where Wπi(j) performs an LLM inference prompted to summarize its inputs (cπi(j), zπi(j−1)) for answering
the query q (cf. §E.3 for the prompt). The final output zπi(|Vi|) summarizes chunks in Vi.

After all final summaries {zπi(|Vi|)}i∈[k] are generated, a manager agent M synthesizes them to produce
the final answer. The total length of these summaries is designed to fit within Tmax by properly setting a
maximum output token limit for each worker. The manager’s operation is defined as:

y = M
(
⊕k

i=1zπi(|Vi|), q
)
, (4)

where ⊕m
i=1ai = a1 ⊕ a2 ⊕ · · · ⊕ am is the concatenation of (a1, a2, · · · , am) and M performs an LLM

inference prompted to synthesize an answer from the provided summaries (cf. §E.3 for the prompt).

The linear forest structure in GoA provides two key advantages over single-chain methods (e.g., CoA in (1)):
Parallelization: Inferences across the different subgraphs (G1, · · · ,Gk) can be run in parallel, significantly
reducing latency. Flexibility: The input-dependent paths πi are determined dynamically for each input,
creating more effective data-driven collaboration than a static collaboration structure (e.g., a serial chain).

4.2 TRACTABLE COMPRESSION OBJECTIVE FORMULATION

Our goal is to design a compressor g that maximizes the mutual information objective I(Y ; g(X), Q) (cf.
(2)). Direct optimization is infeasible due to its dependence on Y . Recent work (Liu et al., 2025), however,
reveals a strong connection between I(Y ; g(X), Q) and a tractable surrogate I(Q; g(X)): for particular
answer y of a query q and an input x, the log-odds of the answer log P (y|q,x)

1−P (y|q,x) are strongly correlated with

the pointwise mutual information PMI(q, x) = log P (q,x)
P (q)P (x) . Intuitively, if a question and input co-occur

frequently, the input is more likely to contain the information needed to answer the question. This motivates
replacing I(Y ; g(X), Q) with I(Q; g(X)) (see derivation in §A.2).

Although I(Q; g(X)) is tractable in principle, estimating the mutual information remains computationally
challenging (Poole et al., 2019). To address this, we exploit the relationship between embedding distance
and the distributional similarity (i.e., pointwise mutual information (PMI)). For word embeddings, inner
products approximate PMI: e(w)T e(w′) ≈ PMI(w,w′) (Levy & Goldberg, 2014; Arora et al., 2016).
Intuitively, since word embedding spaces capture co-occurrence statistics, proximity in embedding space
reflects distributional similarity. The same intuition extends to sentence embeddings trained with contrastive
losses that maximize similarity between related documents while minimizing similarity to irrelevant ones.
In particular, InfoNCE, which is a widely used contrastive objective, has been shown to approximate PMI at
optimality (Oord et al., 2018; Zhang et al., 2023). Specifically, for chunks c and c′, it holds that

emb(c)Temb(c′) = log P (c|c′)
P (c) + γ(c′) = PMI(c; c′) + γ(c′), (5)

where γ is an arbitrary function and emb denotes an embedding model trained with InfoNCE.

We therefore approximate the intractable optimization problem maxg I(Y ; g(X), Q) by finding the com-
pressed representation g(x; q) maximizing the semantic similarity maxg(x;q) emb(g(x; q))

Temb(q) for all
(x, q) pairs. This tractable surrogate allows us to operationalize input-dependent compression while pre-
serving theoretical grounding in the principled mutual information objective.

4.3 DYNAMIC INPUT-DEPENDENT GRAPH CONSTRUCTION

Combining §4.1 and §4.2, GoA instantiates a specific linear forest that generates a compressed representation
most semantically aligned with the query. Specifically, for each (x, q), we aim to find the linear forest

F∗(x, q) ∈ argmax
F :Linear Forest

sim
(
emb(q),emb(x̃GoA

F)
)
, (6)

where x̃GoA
F is the final concatenated output from workers of GoA under F and sim is the cosine similarity.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

Algorithm 1. Graph of Agents.
Input Input x, query q, cluster size k
Output Prediction ŷ
Require Embedding model, clustering algorithm

1: Decompose x into chunks (c1, c2, · · · , cl)
2: Construct k number of clusters V1, · · · ,Vk in the em-

bedding space
3: for i = 1, · · · , k do ▷ Parallelizable
4: Initialize zπi(0) = ∅
5: for j = 1, · · · , |Vi| do
6: Determine a next chunk cπi(j) semantically

closest to q given a context zπi(j−1) with (7)
7: Worker LLM generates zπi(j) summarizing a

chunk cπi(j) and a context zπi(j−1) with (3)
8: end for
9: end for

10: Manager LLM generates a prediction ŷ from outputs
from all subgraphs {zπi(|Vi|)}ki=1 with (4)

Directly solving the combinatorial optimiza-
tion problem in (6) is impractical since eval-
uating objective value of F requires execut-
ing all worker communication chains via se-
quential LLM inferences (cf. (3)). Instead,
we design a greedy graph construction pro-
cedure that clusters chunks and sequentially
builds paths within each cluster to maximize
query similarity.

Node construction. The linear tree prevents
a worker from leveraging contextual informa-
tion from chunks in different subgraphs. To
minimize its impact, we group semantically
related chunks together with a clustering algo-
rithm that finds k clusters {V1, · · · ,Vk} in the
embedding space. This reduces redundancy
across subgraphs while preserving local co-
herence.

Edge construction. Within each cluster Vi, we
construct a path πi(1:|Vi|) under which the final worker output is semantically closest to the query, aiming
to maximize sim

(
emb(q),emb(zπi(|Vi|))

)
with respect to πi(1 : |Vi|). To this end, we implement a greedy

algorithm that sequentially selects a chunk that maximally increases the similarity given the current context:

πi(j) ∈ argmax
c∈Vi,c/∈πi(1:j−1)

sim(emb(q),emb(zπi(j−1) ⊕ c)), j = 1, 2, · · · , |Vi|. (7)

This greedy step progressively builds a summary that is increasingly aligned with the query’s informational
needs, ensuring that each chunk is selected based on its marginal utility given the context generated so far.

Discussion. In Appendix D, we discuss advantages of GoA’s worker collaboration in (3) as a flexible contex-
tual compressor. Compared to GoA, multi-agent systems without contextual compressors (e.g., Zhao et al.
(2024a)) are fundamentally inferior at maximizing the compression objective since the lack of context pre-
vents them from performing critical functions like disambiguating terms or eliminating redundancy. Also,
RAG’s filtering-style compression makes it inherently hard to understand the entire context unlike GoA.

5 EXPERIMENTS

5.1 SETUP

Datasets. We evaluate GoA using F1 score on single and multi documents QA tasks on six question answer-
ing datasets from LongBench (Bai et al., 2024). Single-document QA datasets (NarrativeQA, Qasper, Mul-
tifiledQA) test reading comprehension of long stories (movie/book), academic papers, and Wikipedia with
both yes/no/unanswerable and open-ended types of questions. Multi-document QA datasets (HotpotQA,
2WikiM, Musique) have open-ended questions requiring multi-hop reasoning (upto 5-hop questions) and
therefore require understanding the entire context. The datasets range from 3.6K to 18K tokens, on average
(see §E.4 for dataset details). We use generic prompts such as instructing only output formats to minimize
any biases coming from hand-crafted prompts (see §E.3 for exact prompts used for each benchmark).

Backbone LLMs & Baselines. We use Llama 3.1 8B and Qwen3 8B as backbone LLMs for all methods.
As baselines, we consider a RAG with a strong retriever (Xiao et al., 2024) with 300-word chunks, Chain-of-
Agents (Zhang et al., 2024), and a vanilla base model. To evaluate performance on inputs much longer than

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Table 1: Benchmark results on question answering tasks in LongBench. Scores are F1 averages over three
random seeds. Boldface highlights the best method for each context window.

Base Model Method Single Doc QA Multi Doc QA
NarrativeQA Qasper MultifieldQA Hotpot 2WikiM Musique Average

Llama 3.1 8B Vanilla (2K) 27.05 58.03 47.83 50.68 49.22 30.33 43.86
Vanilla (8K) 34.82 48.25 58.44 63.82 46.06 37.35 48.12
Vanilla (128K) 30.05 51.09 59.83 63.95 47.64 34.94 47.92
RAG (2K) 32.68 51.65 54.71 46.18 47.46 26.37 43.18
RAG (8K) 38.37 41.63 58.35 51.17 49.00 36.48 45.83
CoA (2K) 25.90 59.32 49.76 44.27 32.02 19.96 38.54
CoA (8K) 28.53 66.81 53.38 46.64 56.43 24.67 46.08
GoA (2K) 34.11 66.20 51.17 52.88 49.00 38.66 48.67
GoA (8K) 36.76 68.05 53.02 46.59 59.23 31.40 49.18

Qwen3 8B Vanilla (2K) 9.74 60.35 41.11 52.68 40.34 21.66 37.65
Vanilla (8K) 19.09 69.67 48.37 55.28 47.44 30.47 45.05
Vanilla+YaRN (128K) 23.55 70.32 50.95 59.14 50.75 38.13 48.81
RAG (2K) 9.65 76.06 45.89 54.37 47.04 21.43 42.41
RAG (8K) 19.07 72.04 51.35 53.43 52.37 35.47 47.29
CoA (2K) 17.52 56.96 43.23 44.94 49.69 24.49 39.47
CoA (8K) 22.35 57.12 49.20 52.45 63.33 24.43 44.81
GoA (2K) 14.51 57.59 42.12 56.79 46.28 35.06 42.06
GoA (8K) 15.82 54.56 41.01 57.87 63.37 36.75 48.98

the available context, we test all methods under different context windows (2K, 8K, and 128K). Following
the methodology in Bai et al. (2024), any input longer than the context window is truncated by removing
content from its middle. Additional implementation details are deferred to §E.1.

GoA Setup. We use BGE-M3 (Chen et al., 2024a) that uses BERT (Devlin et al., 2019)-based architecture
trained with the InfoNCE loss, matching our setting discussed in §4.2. We set the number of subgraphs
k = 4 for all benchmarks, and find clusters with k-medoid clustering algorithm for its robustness to outliers.

5.2 BENCHMARK RESULTS

Question Answering Tasks in LongBench. Table 1 shows the results on the LongBench QA tasks. Our
findings demonstrate the superiority of GoA’s flexible collaboration for handling long context data. For both
Llama 3.1 8B and Qwen3 8B, GoA consistently outperforms all baselines with the same context window.
For instance, on Llama 3.1 8B with a 2K context, GoA achieves an average F1 score of 48.67, a significant
improvement over Vanilla (43.86), RAG (43.18), and CoA (38.54). Further, GoA significantly extends the
effective context window, generally allowing a model with a shorter context window to outperform the vanilla
model with a larger one. Notably, GoA on Llama 3.1 8B with an 2K window (48.67 F1) outperforms the
128K context window model (47.92 F1). This confirms that GoA serves as a powerful and efficient method
for processing long context inputs without expensive retraining.

Flexible collaboration is crucial for complex multi-hop reasoning. Unlike GoA, CoA struggles on multi-
document QA tasks like HotpotQA and Musique. This is because GoA’s flexible collaboration guides an op-
timal information processing order, while the linear chain of CoA can be ill-suited for these non-sequential
tasks. This leads to a significant performance gap between CoA and GoA on the multi-document QA tasks
with a notable statistical significancy p ≈ 0.006 under the paired t-test. This is a stark contrast to CoA’s
strong performance on single-document QA tasks, where its serial communication chain aligns well with a
natural linear information flow. Further, while RAG is shown to be very effective at single doc QA that re-
quires to recall some factual information that directly answer the query, it also does not consistently improve
the performance of the vanilla method (only five out of twelve cases, as opposed to nine cases in GoA).

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Figure 2: Proximity of a summarized input to a
query measured by the cosine similarity in the em-
bedding space. The box plot describes the interquar-
tile range (IQR) with whiskers extending to 1.5
times the IQR. The blue line represents the median,
while the red diamond indicates the mean.

Figure 3: Performance of GoA under different re-
trieval methods with Llama 3.1 8B with 2K context
window on Qasper, HotpotQA, and 2WikiM. x-axis
represents different methods. y-axis represents av-
erage performance change from three different ran-
dom seeds. The marker is the average change with
the bar represent the standard error.

5.3 GOA’S COMPRESSION BEST DESCRIBES THE QUESTION

We now evaluate whether GoA’s compression strategy, based on greedy optimization of embedding similar-
ity, successfully generates summaries that are maximally informative about the query. Figure 2 shows the
cosine similarity between the final compressed summary and the query for each method, providing strong
evidence for our hypothesis. Specifically, GoA consistently produces summaries that are most semantically
aligned with the query. It achieves the highest mean and median similarity and, crucially, the lowest vari-
ance, confirming that our greedy optimization algorithm effectively maximizes the intended objective. In
contrast, the baselines reveal their structural weaknesses. RAG’s lower similarity demonstrates the limita-
tions of simple filtering, which cannot synthesize disparate information into a holistically relevant summary.
CoA’s high variance highlights the pitfalls of its static left-to-right collaboration structure: its performance
degrades significantly when a document’s key information is not organized linearly. This analysis confirms
that GoA’s input-dependent collaboration is key to generating high-quality summaries.

5.4 SEMANTIC, CONTEXTUAL SEARCH IS CRUCIAL FOR GOA
Figure 3 confirms that semantic, contextual search that adaptively selects the next chunk semantically closest
to the question given the previous context (cf. (7)) is a key component of GoA. Semantic search: Replacing
semantic search with lexical BM25 leads to a larger performance degradation than replacing it with another
semantic search method (ColBERT). This confirms that GoA’s performance is tied to its ability to identify se-
mantically relevant information, as intended by our algorithm design (cf. §4.2). Contextual search: Ablating
contextual search (choosing the next chunk based only on its similarity to the query without the intermedi-
ate summary) leads to a severe degradation in performance. Without context, GoA no longer optimizes the
principled objective (2), which can result in an incoherent and repetitive final summary.

5.5 SENSITIVITY ANALYSES

In Appendix C, we carefully analyze algorithmic design choices of GoA with a series of sensitivity analyses
with Llama 3.1 8B with 2K context window on Qasper, HotpotQA, and 2WikiM. Findings can be summa-
rized as: GoA’s performance is robust to the choice of document embedding models (Figure A4). However,
switching the embedding model by the average of GloVe word embedding (Pennington et al., 2014) causes a
significant performance drop, which weakens a connection to the distributional similarity as opposed to the
InfoNCE-trained sentence embedding models. k-mediod clustering turns out to be suboptimal, being dom-
inated by k-means and spectral clustering (Figure A4). A plausible explanation is that our dataset is either
less influenced by outliers than anticipated or exhibits a complex, non-globular structure more effectively
captured by spectral clustering. The number of subgraphs reveals a key trade-off (Figure A5), achieving the

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

best score at k = 2 and k = 4 for Llama and Qwen, respectively. Too much parallelism (e.g., k = 8 as in
without contextual compressors) creates chains too short for meaningful context, while too little (e.g., k = 1
as in CoA) results in a single long chain that “forgets” early information.

6 RELATED WORK

Multi-Agent Systems. The direction closest to ours is multi-agent system-based approaches that leverage
multiple LLM agents collaboratively solve complex tasks with long context inputs. A common paradigm
in these systems is to define agents with specialized roles and orchestrate their interactions through a pre-
defined workflow. For instance, agents may be specialized for atomic actions like question decomposition
and fact verification (Zhao et al., 2025), or a supervising agent may select and manage other task-specific
agents (e.g., for summarization or QA) (Zhao et al., 2024a). Many other systems follow similar patterns
of role specialization and fixed interaction protocols (Zhang et al., 2025a; Chen et al., 2024b; Zhang et al.,
2024; Gur et al., 2024; Li et al., 2024; Sun et al., 2023). While often effective, these approaches rely on pre-
defined collaboration strategies that may not be effective for every problem instance. In contrast, rather than
prescribing fixed roles and interactions, GoA employs homogeneous worker agents guided by a fundamental
objective for long context modeling (cf. (2)). This allows the optimal collaboration strategy for summarizing
the input to emerge dynamically from the statistical structure of each query and context.

Input Reduction Approaches. GoA is also conceptually related to approaches aiming for reducing long
context input. RAG is arguably the most widely used approach in this category due to its simplicity and
strong empirical performances (see survey (Gao et al., 2023) for more details). However, RAG’s filtering
mechanism is inherently incapable of exploiting interdependencies across the entire context, limiting its
effectiveness on tasks that require complex reasoning. To address this, subsequent works have employed
LLMs as more sophisticated compressors. These methods may progressively summarize chunks into a tree
structure (Chen et al., 2023a), maintain a compressed “gist memory” for retrieval (Lee et al., 2024), or
use LLMs to filter redundant sentences (Jin et al., 2025). While an improvement over simple filtering, these
approaches typically perform compression locally on isolated chunks, lacking a global objective to guide the
synthesis of information. GoA addresses this shortcoming directly: its principled objective guides agents to
construct a globally coherent summary that is maximally informative for the given query.

7 CONCLUSION & FUTURE WORK

We introduce a principled information-theoretic perspective on long context modeling, recasting it as a
compression problem. This framing yields a mutual information objective that guides the design of multi-
agent systems, moving beyond heuristic approaches. We propose GoA, a framework that operationalizes
this objective by dynamically constructing an input-dependent collaboration graph. Unlike prior methods
that rely on a static hand-crafted collaboration structure, GoA’s emergent structure is tailored to each input
and query. As a result, GoA significantly extends the effective context window of LLMs, demonstrably
outperforming strong retrieval-based and static multi-agent baselines.

We remark several promising future direction that can further generalize a flexible descriptive approach
to multi-agent collaboration for long context modeling: Generalizing the Collaboration Graph: The linear
forest structure in GoA could be generalized to more complex topologies, such as directed acyclic graphs,
to enable richer information flow. Furthermore, the disjoint partitioning of chunks could be relaxed to
allow key information to act as a shared context between subgraphs, albeit with the expense of repeating
inference on the shared context. Learning to Collaborate: While we present GoA as a training-free method,
its information-theoretic objective provides a natural loss function for learning collaboration. This could
involve training a policy to construct the optimal graph or fine-tuning agents for query-aware compression
to directly maximize the objective in Eq. (2).

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We attach the code used in this paper, including the implementation of the Graph of Agents framework and
baselines, and will open-source these libraries. Implementation details can be found in Appendix E.

REFERENCES

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Ambrose
Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization in large lan-
guage models. In Advances in Neural Information Processing Systems, 2022.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model ap-
proach to pmi-based word embeddings. Transactions of the Association for Computational Linguistics,
4:385–399, 2016.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu,
Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A Bilingual, Multitask Bench-
mark for Long Context Understanding. In Annual Meeting of the Association for Computational Linguis-
tics, 2024.

Howard Chen, Ramakanth Pasunuru, Jason Weston, and Asli Celikyilmaz. Walking down the memory maze:
Beyond context limit through interactive reading. arXiv preprint arXiv:2310.05029, 2023a.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding: Multi-
lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation. arXiv
preprint arXiv:2402.03216, 2024a.

Ruirui Chen, Weifeng Jiang, Chengwei Qin, Ishaan Singh Rawal, Cheston Tan, Dongkyu Choi, Bo Xiong,
and Bo Ai. Llm-based multi-hop question answering with knowledge graph integration in evolving envi-
ronments. In Findings of the Association for Computational Linguistics: EMNLP, 2024b.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of large
language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023b.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset of
information-seeking questions and answers anchored in research papers. In Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, 2019.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun, Haofen
Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2(1), 2023.

Izzeddin Gur, Hiroki Furuta, Austin V Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and Aleksan-
dra Faust. A real-world webagent with planning, long context understanding, and program synthesis. In
International Conference on Learning Representations, 2024.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop QA
dataset for comprehensive evaluation of reasoning steps. In International Conference on Computational
Linguistics, 2020.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and Boris Gins-
burg. RULER: What’s the real context size of your long-context language models? In Conference on
Language Modeling, 2024.

Hong Jun Jeon, Jason D Lee, Qi Lei, and Benjamin Van Roy. An information-theoretic analysis of in-context
learning. In International Conference on Machine Learning, 2024.

Bowen Jin, Jinsung Yoon, Jiawei Han, and Sercan O Arik. Long-context LLMs meet RAG: Overcoming
challenges for long inputs in RAG. In International Conference on Learning Representations, 2025.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis, and Ed-
ward Grefenstette. The NarrativeQA Reading Comprehension Challenge. Transactions of the Association
for Computational Linguistics, 6:317–328, 2018.

Kuang-Huei Lee, Xinyun Chen, Hiroki Furuta, John Canny, and Ian Fischer. A human-inspired reading
agent with gist memory of very long contexts. In International Conference on Machine Learning, 2024.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In Advances in
Neural Information Processing Systems, 2014.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for
knowledge-intensive nlp tasks. In Advances in Neural Information Processing Systems, 2020.

Shilong Li, Yancheng He, Hangyu Guo, Xingyuan Bu, Ge Bai, Jie Liu, Jiaheng Liu, Xingwei Qu, Yangguang
Li, Wanli Ouyang, Wenbo Su, and Bo Zheng. GraphReader: Building Graph-based Agent to Enhance
Long-Context Abilities of Large Language Models, 2024.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. Lost in the middle: How language models use long contexts. Transactions of the Association for
Computational Linguistics, 12:157–173, 2024.

Tianyu Liu, Jirui Qi, Paul He, Arianna Bisazza, Mrinmaya Sachan, and Ryan Cotterell. Pointwise mutual
information as a performance gauge for retrieval-augmented generation. In Conference of the Nations of
the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), 2025.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word represen-
tation. In Conference on Empirical Methods in Natural Language Processing, 2014.

Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun Cho, and Douwe Kiela. Unsupervised question de-
composition for question answering. In Conference on Empirical Methods in Natural Language Process-
ing, 2020.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational bounds of
mutual information. In International Conference on Machine Learning, 2019.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables input
length extrapolation. In International Conference on Learning Representations, 2022.

Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford, et al.
Okapi at TREC-3. British Library Research and Development Department, 1995.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Manning. Rap-
tor: Recursive abstractive processing for tree-organized retrieval. In International Conference on Learning
Representations, 2024.

Simeng Sun, Yang Liu, Shuohang Wang, Chenguang Zhu, and Mohit Iyyer. Pearl: Prompting large language
models to plan and execute actions over long documents. arXiv preprint arXiv:2305.14564, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multihop ques-
tions via single-hop question composition. Transactions of the Association for Computational Linguistics,
10:539–554, 2022.

Pavlo Vasylenko, Marcos Treviso, and André FT Martins. Long-context generalization with sparse attention.
arXiv preprint arXiv:2506.16640, 2025.

Andrea Wynn, Harsh Satija, and Gillian Hadfield. Talk isn’t always cheap: Understanding failure modes in
multi-agent debate. In International Conference on Machine Learning, 2025.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack: Packed
resources for general chinese embeddings. In International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2024.

Taolin Zhang, Dongyang Li, Qizhou Chen, Chengyu Wang, and Xiaofeng He. Belle: A bi-level multi-agent
reasoning framework for multi-hop question answering. arXiv preprint arXiv:2505.11811, 2025a.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie, An Yang,
Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and reranking through
foundation models. arXiv preprint arXiv:2506.05176, 2025b.

Yuhui Zhang, Yuichiro Wada, Hiroki Waida, Kaito Goto, Yusaku Hino, and Takafumi Kanamori. Deep
clustering with a constraint for topological invariance based on symmetric infonce. Neural Computation,
35(7):1288–1339, 2023.

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Ö Arik. Chain of agents: Large
language models collaborating on long-context tasks. In Advances in Neural Information Processing
Systems, 2024.

Jun Zhao, Can Zu, Hao Xu, Yi Lu, Wei He, Yiwen Ding, Tao Gui, Qi Zhang, and Xuanjing Huang. Lon-
gagent: Scaling language models to 128k context through multi-agent collaboration. In Conference on
Empirical Methods in Natural Language Processing, 2024a.

Qingfei Zhao, Ruobing Wang, Yukuo Cen, Daren Zha, Shicheng Tan, Yuxiao Dong, and Jie Tang. Longrag:
A dual-perspective retrieval-augmented generation paradigm for long-context question answering. arXiv
preprint arXiv:2410.18050, 2024b.

Xinjie Zhao, Fan Gao, Xingyu Song, Yingjian Chen, Rui Yang, Yanran Fu, Yuyang Wang, Yusuke Iwasawa,
Yutaka Matsuo, and Irene Li. Reagent: Reversible multi-agent reasoning for knowledge-enhanced multi-
hop qa. arXiv preprint arXiv:2503.06951, 2025.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Transformers
can achieve length generalization but not robustly. arXiv preprint arXiv:2402.09371, 2024.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

A PROOFS OF CLAIMS

A.1 PROOF OF PROPOSITION 1

Proposition 1. For the Bayes optimal predictor P̂ , the following equivalence relationship holds:

E(X,Q,Y)∼P

[
log P̂ (Y |g(X), Q)

]
⇐⇒ I(Y ; g(X), Q), (2)

where I(X;Y) ≜ E
[
log P (X,Y)

P (X)P (Y)

]
is the mutual information.

Proof. The Bayes optimal predictor P̂ satisfies P̂ (Y |g(X), Q)
a.e.
= P (Y |g(X), Q) (Lemma 3.1 in (Jeon

et al., 2024)). Then, we get:

E(X,Q,Y)∼P

[
log P̂ (Y |g(X), Q)

]
= E(X,Q,Y)∼P [logP (Y |g(X), Q)]

= −H(Y |g(X), Q) +H(Y)−H(Y)

= I(Y ; g(X), Q)−H(Y).

The equivalence result follows from the constant nature of H(Y) with respect to g.

A.2 PROOF OF EQUIVALENCE

We first formalize the observation in (Liu et al., 2025) about a strong correlation between the log odds ratio
of the answer log P (y|q,x)

1−P (y|q,x) and the pointwise mutual information PMI(q, x) ≜ log P (q,x)
P (q)P (x) .

Observation 1 (Generalized version of Hypothesis 2.1 in Liu et al. (2025)). For any choices of (x, q, g),
there exist constants α > 0 and β such that

log
P (y|q, g(x))

1− P (y|q, g(x))
= αPMI(q, g(x)) + β + ϵ(q, x), (8)

where y is an answer to the query q and the input x and ϵ(q, x) is a zero-mean residual uncorrelated with
the choice of g.

We establish the equivalence between maximizing I(Y ; g(X), Q) and the log odds ratio of the answer with
respect to g as

I(Y ; g(X), Q) ≜ E
[
log

P (Y |Q, g(X))

P (Y)

]
⇐⇒ E [logP (Y |Q, g(X))] ⇐⇒ E

[
log

P (Y |Q, g(X))

1− P (Y |Q, g(X))

]
(9)

where the first equivalence is obtained by removing the term constant with respect to g and the second
equivalence is due to the monotonicity.

Under Observation 1 above, for each observed triple (y, q, x, g), we get

log
P (y|q, g(x))

1− P (y|q, g(x))
= αPMI(q, g(x)) + β + ϵ(q, x). (10)

Taking expectation both sides gives

E
[
log

P (Y |Q, g(X))

1− P (Y |Q, g(X))

]
= αE[PMI(q, g(x))] + β, (11)

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

where maximizing the left-hand side over g is equivalent to maximizing E[PMI(q, g(x))].

Finally, recall the identity E[PMI(Q, g(X))] = I(Q; g(X)), so we connect maxg I(Y ; g(X), Q) with
maxg I(Q; g(X)) by combining (9) and (11).

B ADDITIONAL THEORETICAL RESULT

Proposition 2. Suppose LLM P̂ has a uniform bound for the expected error
E(X,Q,Y)∼P [DKL(P (Y |g(X), Q))||P̂ (Y |g(X), Q))] ≤ ϵ for any compressor g. Consider two com-
pression functions g1 and g2 such that I(Y ; g1(X), Q) > I(Y ; g2(X), Q) + δ for δ > 0. Then if δ > ϵ, it
holds that:

E(X,Q,Y)∼P

[
log P̂ (Y |g1(X), Q)

]
> E(X,Q,Y)∼P

[
log P̂ (Y |g2(X), Q)

]
. (12)

Proof. For any compression function g and predictor P̂ , we can decompose the expected log-likelihood as

E
[
log P̂ (Y |g(X), Q)

]
= E [logP (Y |g(X), Q)]− E[DKL(P (Y |g(X), Q))||P̂ (Y |g(X), Q))] (13)

= I(Y ; g(X), Q)−H(Y)− E[DKL(P (Y |g(X), Q))||P̂ (Y |g(X), Q))] (14)

where (14) is based on Proposition 1. Here, all expectations are with respect to (X,Q, Y) ∼ P and omitted
for brevity.

Then, for g1 and g2 such that I(Y ; g1(X), Q) > I(Y ; g2(X), Q) + δ for δ > 0, we get the desired result as:

E
[
log P̂ (Y |g1(X), Q)

]
− E

[
log P̂ (Y |g2(X), Q)

]
= I(Y ; g1(X), Q)− I(Y ; g2(X), Q)

− E
[
DKL(P (Y |g1(X), Q)|P̂ (Y |g1(X), Q))−DKL(P (Y |g2(X), Q)|P̂ (Y |g2(X), Q))

]
> δ − ϵ > 0.

C ABLATION STUDY & SENSITIVITY ANALYSIS

GoA’s performance is robust to external models. As shown in Figure A4, GoA is robust to the choice of
modern embedding models (BGE-M3 vs. Qwen3 Embedding (Zhang et al., 2025b)). However, switching to
the average of GloVe word embedding (Pennington et al., 2014) causes a significant performance drop. This
could be contributed to its weak connection to the distributional similarity as opposed to the InfoNCE-trained
sentence embedding models.

k-mediod clustering turns out to be suboptimal. Surprisingly, we found that k-means and spectral cluster-
ing outperformed our initial choice of k-medoids. In the initial phase of our work, we opted to choose the
k-medoid algorithm since it is less sensitive to outliers and operates on actual data points as cluster repre-
sentatives, enabling representative-based search strategies. In this regard, a plausible explanation is that our
dataset is either less influenced by outliers than anticipated or exhibits a complex, non-globular structure
more effectively captured by spectral clustering.

The number of subgraphs reveals a key trade-off. Figure A5 shows a clear hill-shaped curve for performance
as k changes, achieving the best score at k = 2 and k = 4 for Llama and Qwen, respectively. This illustrates

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Figure A4: Performance of GoA under different embedding and clustering methods with Llama 3.1 8B
with 2K context window on Qasper, HotpotQA, and 2WikiM. x-axis represents different methods. y-axis
represents average performance change from three different random seeds. The marker is the average change
with the bar represent the standard error.

Figure A5: Performance of GoA under different number of subgraphs with Llama 3.1 8B with 2K context
window on Qasper, HotpotQA, and 2WikiM. In x-axis, GoA-k represents GoA with k number of subgraphs.
y-axis represents average performance change from three different random seeds. The marker is the average
change with the bar represent the standard error.

the fundamental trade-off between context length and parallelism. For large k, each chain is too short
to build meaningful context, degrading performance at the expense of supporting massive parallelization.
Conversely, for k = 1, GoA becomes a single, long chain similar to CoA. The significant performance
drop here highlights the ”forgetting phenomenon” in long-chain models: information from early chunks is
progressively diluted in the iterative summarization process. GoA’s use of shorter, parallel chains (k > 1)
effectively mitigates this issue.

D DISCUSSION

The per-sample collaboration in GoA generalizes the static left-to-right communication in CoA, suggest-
ing GoA’s superiority when semantic and distributional similarities are equivalent (cf. §4.2) and the
greedy algorithm is effective (cf. §4.3). However, it remains unclear how GoA performs against other
model-agnostic approaches like RAG and multi-agent systems. To investigate this, we analyze the im-
plicit compression function within these existing methods. To this end, we formalize GoA and CoA

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

as a contextual compressor gctx(chunk;context), where prior information is used to compress subse-
quent chunks. For example, the CoA compression scheme (a special case of GoA) can be expressed as:
x̃ctx = [gctx(c1), g

ctx(c2; c1), · · · , gctx(cl; c1, · · · , cl−1)].

Multi-Agent Systems without Contextual Compressors. Despite differences in prompts and overall com-
munication protocols, multi-agent systems involve an LLM-based compressor that operates for separate
chunks (e.g., the collaborative reasoning steps in Zhao et al. (2024a)), with the notable exception of CoA
and multi-agent debates (Wynn et al., 2025). This chunk-wise compression through an LLM, denoted as
gAgent, can be formalized as

x̃Agent ≜ gAgent(x) = [gAgent(c1), g
Agent(c2), · · · , gAgent(cl)]. (15)

The lack of contextual information in gAgent makes it fundamentally inferior to gctx in maximizing the com-
pression objective I(Y ; g(X), Q) = I(Y ; g(C1), Q)

∑l
i=2 I(Y ; g(Ci), Q|g(C1), · · · , g(Ci−1)) because it

discards context before compression is applied. Specifically, it creates an irreversible information bottle-
neck from the Markov chain Y → (C1, C2, · · · , Cl) → Ci → gagent(Ci). Consequently, this approach is
limited to optimizing I(Y ; gagent(Ci), Q|C1, . . . , Ci−1) for each chunk, falling short of the contextual com-
pressor’s objective, which includes the prior context (C1, . . . , Ci−1) within the compression function itself.
This loss of context prevents the compressor from performing critical functions like disambiguating terms
or eliminating redundancy.

RAG. RAG involves an implicit compression algorithm gRAG that retains all information if a chunk is among
the top-κ relevant chunks, and otherwise removes it entirely: x̃RAG ≜ gRAG(x) = [gRAG(c1), · · · , gRAG(cl)]
where

gRAG(ci) =

{
ci if ci ∈ Top-κ relevant chunks among {cj}lj=1

∅ otherwise
. (16)

The compression algorithm gRAG has severe structural limitations compared to gctx and gAgent. Specifically,
the filtering-style compression in RAG makes it inherently hard to understand the entire context or capture
interdependency between multiple chunks, leading to its deficient performance on complex tasks such as
summarization and multi-hop reasoning. Besides, from the perspective of empirical laws on diminishing
returns in mutual information, which exhibit logarithmic information gains with more tokens, RAG does
not exploit initial sharp increases in mutual information that could have been obtained by just retaining few
tokens from each chunk.

E ADDITIONAL DETAILS

E.1 IMPLEMENTATION DETAILS

For all experiments, we adopt a generic setting to minimize biases from dataset-specific configurations. We
use a decoding temperature of 0.1 and a top-p of 0.9. For manager LLMs and vanilla LLMs that produce
the final answer, the maximum number of output tokens is set to 128. For worker LLMs, the maximum
number of output tokens is set to 256 for models with a 2K context window and 1024 for models with an
8K context window. When an input’s length exceeds a model’s context limit, we truncate the middle of
the input, a strategy shown to have the least performance degradation (Bai et al., 2024). The final answer
is extracted from the generated text enclosed within <answer>ExtractedAnswer</answer> tags.
Specific prompts used are detailed in §E.2 and §E.3.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

E.2 PROMPTS FOR VANILLA LLMS

The prompts for the baseline LLM evaluations are adapted from LongBench (Bai et al., 2024). We remove
all task-specific instructions, preserving only the guidelines for output formatting. This foundational prompt
structure is also used for our Graph of Agents (GoA) method and the Chain-of-Agents (CoA) baseline.

Vanilla LLM Prompt (Multi-Document QA).

Answer the question based on the given passages. Only give me the answer
and do not output any other words. Put your answer inside the answer
tag, like <answer>your answer</answer>.

↪→
↪→

The following are given passages.
{context}

Answer the question based on the given passages. Only give me the answer
and do not output any other words. Put your answer inside the answer
tag, like <answer>your answer</answer>.

↪→
↪→

Question: {input}
Answer:

Vanilla LLM Prompt (Single-Document QA).

Answer the question based on the given passages as concisely as you can,
using a single phrase or sentence if possible. If the question
cannot be answered based on the information in the given passages,
write "unanswerable". If the question is a yes/no question, answer
"yes", "no", or "unanswerable". Do not provide any explanation. Put
your answer inside the answer tag, like <answer>your
answer</answer>.

↪→
↪→
↪→
↪→
↪→
↪→

The following are given passages.
{context}

Answer the question based on the given passages as concisely as you can,
using a single phrase or sentence if possible. If the question
cannot be answered based on the information in the given passages,
write "unanswerable". If the question is a yes/no question, answer
"yes", "no", or "unanswerable". Do not provide any explanation. Put
your answer inside the answer tag, like <answer>your
answer</answer>.

↪→
↪→
↪→
↪→
↪→
↪→

Question: {input}

Answer:

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

E.3 PROMPTS FOR COA AND GOA

The prompts for CoA and GoA are largely identical. The worker prompts for both meth-
ods are intentionally generic, instructing the agent to summarize the input text based on the
query to ensure broad applicability. The manager prompt, which generates the final answer,
is the same for both methods as well. It uses the vanilla LLM prompt structure but adds
the instruction: However, the source text is too long and has been summarized.
You need to generate a final summary based on the provided summary (Zhang
et al., 2024). The only distinction arises in how GoA structures the input for the manager agent. Because
GoA generates summaries from multiple subgraphs, these are concatenated and presented to the manager,
with each summary section clearly marked by the header [Summary of Worker i out of k].

Worker LLM Prompt.

You need to read [SOURCE TEXT] and [PREVIOUS SUMMARY] and generate a
summary to include them both. Later, this summary will be used for
other agents to answer [QUERY], if any. So please write the summary
that can include the evidence for answering [QUERY].

↪→
↪→
↪→

[SOURCE TEXT]: {input_chunk}

[PREVIOUS SUMMARY]: {prev_cu}

[QUERY]: {query}

Summary:

Manager LLM Prompt (Multi-Document QA).

Answer the question based on the provided information. Only give me the
answer and do not output any other words. Put your answer inside the
answer tag, like <answer>your answer</answer>.

↪→
↪→

The following are given passages. However, the source text is too long
and has been summarized. You need to generate a final summary based
on the provided summary:

↪→
↪→

{summary}

Answer the question based on the given passages. Only give me the answer
and do not output any other words. Put your answer inside the answer
tag, like <answer>your answer</answer>.

↪→
↪→

Question: {query}

Answer:

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

Manager LLM Prompt (Single-Document QA)

Answer the question based on the given passages as concisely as you can,
using a single phrase or sentence if possible. If the question
cannot be answered based on the information in the given passages,
write "unanswerable". If the question is a yes/no question, answer
"yes", "no", or "unanswerable". Do not provide any explanation. Put
your answer inside the answer tag, like <answer>your
answer</answer>.

↪→
↪→
↪→
↪→
↪→
↪→

The following are given passages. However, the source text is too long
and has been summarized. You need to generate a final summary based
on the provided summary:

↪→
↪→

{summary}

Answer the question based on the given passages as concisely as you can,
using a single phrase or sentence if possible. If the question
cannot be answered based on the information in the given passages,
write "unanswerable". If the question is a yes/no question, answer
"yes", "no", or "unanswerable". Do not provide any explanation. Put
your answer inside the answer tag, like <answer>your
answer</answer>.

↪→
↪→
↪→
↪→
↪→
↪→

Question: {query}

Answer:

E.4 DATASET DETAILS

Below we give a brief background on each of the datasets in our evaluations, and in Table A2 we list summary
statistics showing the context length in terms of the number of tokens in samples from the datasets. In Figure
A6 we plot the distribution of token lengths for samples within each of the six Longbench v1 datasets.

Single Doc QA Datasets In NarrativeQA (Kočiský et al., 2018) the task is to answer questions about
stories or scripts. The questions require understanding elements such as characters, plots, and themes. The
Qasper (Dasigi et al., 2021) dataset about NLP research papers, where NLP practitioners proposed the
questions and answers. MultiFieldQA (Bai et al., 2024) consists of data from long articles from 10
sources, including Latex papers, judicial documents, government work reports, and PDF documents indexed
by Google. For each article, several graduate students annotated questions and answers.

Multi Doc QA Datasets The Hotpot (Perez et al., 2020) dataset requires reasoning across multiple
passages to find an answer, where questions are sourced from Wikipedia. 2WikiM (Ho et al., 2020) requires
the system to answer questions based on multiple given documents, which requires finding a reasoning path
across the multi-hop questions. MuSiQue (Trivedi et al., 2022) is a multi-hop question and answering
dataset that is more difficult than HotpotQA (of which it is based on). The MuSiQue dataset contains more
hops per sample, questions without answers, and additional distracting content.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Table A2: Summary statistics on the token lengths of context for each evaluation dataset. Datasets are
tokenized with Llama 3.1 8B’s tokenizer to find sequence lengths.

Single Doc QA Multi Doc QA
NarrativeQA Qasper MultifieldQA Hotpot 2WikiM Musique

Median 31284 4536 6947 14208 6280 16106
Mean 29776 4921 6888 12779 7096 15542
St. Dev 17271 2603 3408 3772 3469 1567
Minimum 7963 1846 1286 1726 912 6482
Maximum 65270 21110 14947 16322 16319 16335

Figure A6: Distribution of context lengths for each dataset within Longbench v1, as measured by number of
tokens. Texts are tokenized using the Llama 3.1 tokenizer.

20

	Introduction
	Background: Model-Agnostic Approach for Long Context Modeling
	Compression Perspective on Long Context Modeling
	Graph of Agents
	Inductive Bias on the Graph Structure
	Tractable Compression Objective Formulation
	Dynamic Input-Dependent Graph Construction

	Experiments
	Setup
	Benchmark results
	GoA's Compression Best Describes the Question
	Semantic, Contextual Search is Crucial for GoA
	Sensitivity Analyses

	Related Work
	Conclusion & Future Work
	Proofs of Claims
	Proof of Proposition 1
	Proof of Equivalence

	Additional Theoretical Result
	Ablation Study & Sensitivity Analysis
	Discussion
	Additional Details
	Implementation Details
	Prompts for Vanilla LLMs
	Prompts for CoA and GoA
	Dataset Details

