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ABSTRACT

As a model-agnostic approach to long context modeling, multi-agent systems can process
inputs longer than a large language model’s context window without retraining or archi-
tectural modifications. However, their performance often heavily relies on hand-crafted
multi-agent collaboration strategies and prompt engineering, which limit generalizability.
In this work, we introduce a principled framework that formalizes the model-agnostic long
context modeling problem as a compression problem, yielding an information-theoretic
compression objective. Building on this framework, we propose Graph of Agents (GoA),
which dynamically constructs an input-dependent collaboration structure that maximizes
this objective. For Llama 3.1 8B and Qwen3 8B across six document question answering
benchmarks, GoA improves the average F1 score of retrieval-augmented generation by
5.7% and a strong multi-agent baseline using a fixed collaboration structure by 16.35%,
respectively. Even with only a 2K context window, GoA surpasses the 128K context win-
dow Llama 3.1 8B on LongBench, showing a dramatic increase in effective context length.

1 INTRODUCTION

From analyzing entire codebases to synthesizing evidence across multiple documents, critical AI applica-
tions require reasoning over long contexts. Yet, modern large language models (LLMs) remain fundamen-
tally constrained by their context windows, the maximum number of tokens they can reliably process. When
inputs exceed those seen during training, performance quickly deteriorates (Anil et al., 2022; Zhou et al.,
2024). Further, some architectures cannot accept inputs beyond their pre-trained length due to constraints
such as fixed positional encodings (Press et al., 2022). While retraining on longer inputs seems like a di-
rect solution, it is often infeasible due to prohibitive computational costs and data scarcity. This mismatch
between model capabilities and practical needs hinders LLM deployment in complex real-world tasks.

Post-hoc modification methods offer appealingly simple and training-free alternatives. For example, position
embedding interpolation (Chen et al., 2023b) extends pre-trained position encodings to longer sequences.
Vasylenko et al. (2025) propose a sparse attention method that preserves distributional characteristics of
the attention weights by restricting information flow to fixed patterns in longer sequences. However, they
often do not enhance the long context modeling ability, leaving a gap between the claimed context window
(maximum input length) and the effective context window (range where the model reliably performs) (Liu
et al., 2024; Hsieh et al., 2024). Addressing long context challenges requires paradigms beyond simply
increasing input length.

Multi-agent systems offer a promising alternative for long context modeling by leveraging auxiliary LLMs to
restructure and compress the input. A prominent paradigm is to orchestrate agents in structured workflows.
For example, in Chain-of-Agents (CoA) (Zhang et al., 2024), agents collaborate in a sequential chain to
progressively summarize the input (cf. Figure 1 (Bottom)). LongAgent (Zhao et al., 2024a) employs a leader
agent to dispatch tasks to a team of specialized member agents, manually defining a collaborative workflow
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Figure 1: A comparison of multi-agent systems for long context modeling, where worker agents ( ) process
distinct text chunks and collaborate to generate a compressed summary for a manager agent ( ). Top:
Graph of Agents: Our proposed method generates an input-dependent collaboration structure. First, agents
are grouped into clusters based on the semantic similarity of their assigned chunks. Then, within each cluster,
a collaboration structure is adaptively determined to generate an optimal partial summary tailored for each
input and query. This allows for flexible and parallelizable compression. Bottom: Chain-of-Agents. A
baseline approach where worker agents collaborate in a prescribed serial order for every input. This static
structure can be suboptimal when relevant information is not organized linearly in the source document.

based on pre-assigned roles. Such strategies have been shown to effectively handle inputs far beyond a
model’s context window, outperforming post-hoc modification methods (Zhang et al., 2024; Lee et al., 2024).
However, current multi-agent approaches rely heavily on hand-crafted designs, such as predefined roles,
fixed collaboration structures, and task-specific prompts (e.g., a serial communication chain in CoA), that
may not generalize across diverse tasks.

In this work, we design a principled multi-agent system where an input-dependent optimal collaboration
structure emerges from the statistical structure of an input. To this end, we formalize the long context mod-
eling problem as a compression problem, yielding a natural information-theoretic objective. Building on
this foundation, we propose Graph of Agents (GoA), which models multi-agent collaboration as a dynamic
graph tailored to each input (cf. Figure 1 (Top)). In GoA, agents (nodes) responsible for distinct text chunks
are first grouped into clusters based on semantic similarity. Then, within each cluster, a communication
structure (edges) is determined greedily by selecting the next chunk most relevant to the query given the
evolving summary. Crucially, this adaptive graph structure guided by the information-theoretic objective
allows GoA to generalize across diverse tasks, from locating knowledge from single-document to complex
multi-document reasoning, without requiring task-specific hand-crafted workflows. As a result, GoA im-
proves the average F1 score of retrieval-augmented generation by 5.7% and CoA by 16.35%, respectively,
for Llama 3.1 8B and Qwen3 8B across six single- and multi-document question-answering datasets.

Our contribution can be summarized as follows: 1) We formalize long context modeling from the perspec-
tive of compression, providing unique insights into existing long context modeling approaches and guiding
a principled multi-agent system design; 2) We develop a training-free multi-agent system, GoA, where the
input-dependent collaboration structure emerges to maximize the principled long context compression ob-
jective; 3) GoA effectively handles inputs longer than the context window, notably outperforming a 128K
context window Llama 3.1 8B with only a 2K context window model on LongBench.

2 BACKGROUND: MODEL-AGNOSTIC APPROACH FOR LONG CONTEXT MODELING

We address the problem of applying an LLM P̂ with context window Tmax to inputs exceeding this limit.
When a prompt prompt(x, q) constructed from an input x and query q is too long (i.e., |prompt(x, q)| >
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Tmax), the model cannot directly compute P̂ (y | prompt(x, q)). In this setting, the model-agnostic long
context modeling aims to find a compressed representation (x̃, q) ≜ (g(x; q), q) with a compression function
g summarizing input x conditioned on a query q, ensuring that |prompt(g(x; q), q))| ≤ Tmax. For brevity,
we omit the explicit dependence on q in g throughout the paper (i.e., g(x) ≜ g(x; q)).

In the following, we review two popular directions for model-agnostic long context modeling that design
g that effectively preserves the information necessary to answer the query. Both approaches process long
inputs by dividing them into smaller chunks. Accordingly, without loss of generality, we assume that x can
be divided into l number of chunks (c1, c2, · · · , cl) with |ci| = L for all i ∈ [l] ≜ {1, · · · , l}.

Retrieval-augmented generation (RAG) implements compression by retrieving relevant chunks within the
context window Tmax (Lewis et al., 2020). Specifically, RAG first ranks the chunks based on their proximity
to the query q (e.g., lexical matching (Robertson et al., 1995)) and then selects the top κ relevant chunks such
that κ = max{a ∈ N | a · |L| ≤ Tmax}: x̃RAG = [cπRAG(1), · · · , cπRAG(κ)] where πRAG(i) is the index of the
i-th closest chunk to the query q. While conceptually simple, RAG-based approaches have been shown to
be highly effective for long context modeling, often outperforming methods that naively attend to the entire
input, especially for knowledge-intensive tasks like document-based question answering (Sarthi et al., 2024;
Zhao et al., 2024b). However, this filtering-style approach risks discarding information that is not directly
similar to the query but nevertheless essential for comprehensive reasoning and understanding.

Multi-agent systems iteratively summarizes x by using multiple collaborating LLMs. As a prominent
example, we consider the Chain-of-Agents (CoA) framework (Zhang et al., 2024) for its broad applicabil-
ity. Unlike many systems that rely on highly specialized agents with hand-crafted roles and prompts, CoA
employs a chain of homogeneous worker agents, each performing a generic summarization task to collab-
oratively synthesize the document. Specifically, each worker agent Wi produces a communication unit zi,
which is a summary of a chunk ci and the previous communication unit zi−1 (with z0 being an empty string),
and passes zi to the next worker Wi+1. Given (x, q), this process is formalized as

zi = Wi(ci, zi−1, q), for i = 1, 2, · · · , l, (1)

where Wi involves a structural prompt and an inference by an LLM (cf. §E.3). The final worker output zl is
passed to the LLM manager M for producing an output ŷ by ŷ = M(zl, q) as described in §E.3.

While the CoA paper shows that its sequential communication of providing the contextual information zi−1

to the next agent is key to outperforming parallel systems (Zhao et al., 2024a; Lee et al., 2024), this design
is fundamentally heuristic. Its effectiveness is not grounded in a principled objective, which obscures its
potential limitations and prevents generalization. Similarly, many existing multi-agent systems rely on hand-
crafted rules, such as assigning agents specialized roles for atomic tasks like question decomposition or fact
verification (Zhao et al., 2025) or employing a supervising agent to manage other specialists within a fixed
workflow (Zhao et al., 2024a). This lack of a theoretical foundation makes it hard to understand the multi-
agent system’s behavior and its performance unreliable across diverse tasks and inputs.

3 COMPRESSION PERSPECTIVE ON LONG CONTEXT MODELING

The heuristic nature of existing multi-agent systems highlights a fundamental gap: they lack a formal crite-
rion for optimal compression. Our goal is to derive this criterion from first principles, which will provides
the foundation of our novel method in §4. The natural goal of the compression function g is to produce a
representation x̃ that maximizes the performance of the LLM P̂ . This can be formulated as an optimization
problem maxg E(X,Q,Y )∼P [log P̂ (Y |g(X), Q)] where (X,Q, Y ) are random variables of input, query and
output with P being the data generating distribution.

The main limitation of this objective is its lack of predictive power; it can only evaluate a compression func-
tion retrospectively, not guide its design. Therefore, we consider the case where the LLM is a Bayes optimal
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predictor (i.e., it models the underlying posterior probability almost everywhere (Jeon et al., 2024)). This
idealization isolates the information loss attributable solely to the compression method, while remaining ag-
nostic to characteristics of any particular model. Under this condition, the following proposition establishes
a natural information-theoretic objective for compression.
Proposition 1. For the Bayes optimal predictor P̂ , the following equivalence relationship holds:

E(X,Q,Y )∼P

[
log P̂ (Y |g(X), Q)

]
⇐⇒ I(Y ; g(X), Q), (2)

where I(X;Y ) ≜ E
[
log P (X,Y )

P (X)P (Y )

]
is the mutual information.

The proof is based on an elementary result about the Bayesian posterior (see §A.1). Proposition 1 pro-
vides a powerful and intuitive objective that reframes the goal of compression for long context modeling
as preserving information about the final answer. This result extends to imperfect LLMs, where the mutual
information objective remains a valid compression metric, up to a tolerance term reflecting the LLM’s error
(cf. Proposition 2 in §B). Unlike prior work that relies heavily on empirical benchmarking, this perspective
yields a predictive criterion for evaluating compression g(X). While this provides a principled criterion, the
objective’s intractability (Poole et al., 2019) and dependence on the unknown output Y prevent its direct use
for guiding multi-agent collaboration. Building upon this foundation, we derive a tractable objective in the
next section, from which we construct a principled multi-agent system designed for its optimization.

4 GRAPH OF AGENTS

We introduce Graph of Agents (GoA), a framework that models multi-agent collaboration as an input-
dependent graph to optimize the mutual information objective in (2). In this graph, each agent is assigned a
text chunk and represents a node. The edges, which act as communication channels, are established based on
the statistical relationship between chunks. In the following, we develop GoA by addressing three key algo-
rithmic designs: 1) Determine a proper family of graph structures for long context modeling; 2) Formulate
the intractable mutual information objective in (2) as a tractable surrogate; 3) Generate an input-dependent
graph that maximizes this tractable objective. We present pseudocode of GoA in Algorithm 1.

4.1 INDUCTIVE BIAS ON THE GRAPH STRUCTURE

Introducing proper inductive biases is an effective way to reduce the complexity of AI system design with
desired qualities. To enable a fast and flexible communication structure, we introduce a structural inductive
bias by constraining the agent collaboration topology to that of a linear forest. A linear forest F is a graph
whose connected components {Gi}i∈[k] are all path graphs. Formally, this means that the set of all agents
(representing chunks {c1, c2, · · · , cl}1) is partitioned into disjoint vertex sets V1, · · · ,Vk. Each subgraph
Gi = (Vi, Ei) is a path graph, where the directed edge set Ei is defined by an ordering πi of the agents in Vi:
Ei = {(πi(j), πi(j + 1))|j ∈ [|Vi|]}, where πi(j) represents the j-th worker in Gi. We denote the family of
all possible linear forests satisfying these conditions as F.

GoA’s primary goal is to instantiate an optimal input-dependent linear forest F∗(x, q) ∈ F. Before describ-
ing how GoA finds this optimal structure in §4.3, we first explain the collaboration mechanism for any given
forest F ∈ F. Within each path graph Gi ∈ F , worker agents {Wπi(j)}

|Vi|
j=1 collaborate sequentially to

compress the chunks assigned to them (corresponding to Vi). Each worker agent Wπi(j) takes its assigned
chunk cπi(j) and the summary from the previous agent zπi(j−1) to produce an updated summary zπi(j):

zπi(j) = Wπi(j)

(
cπi(j), zπi(j−1), q

)
, for j = 1, 2, · · · , |Vi|, (3)

1As in CoA (Zhang et al., 2024), we construct a chunk by sequentially adding paragraphs until it reaches the context
window. We deliberately chose this generic chunking strategy to focus on the effects of the communication topology,
leaving the exploration of more general chunking methods as future work.
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where Wπi(j) performs an LLM inference prompted to summarize its inputs (cπi(j), zπi(j−1)) for answering
the query q (cf. §E.3 for the prompt). The final output zπi(|Vi|) summarizes chunks in Vi.

After all final summaries {zπi(|Vi|)}i∈[k] are generated, a manager agent M synthesizes them to produce
the final answer. The total length of these summaries is designed to fit within Tmax by properly setting a
maximum output token limit for each worker. The manager’s operation is defined as:

y = M
(
⊕k

i=1zπi(|Vi|), q
)
, (4)

where ⊕m
i=1ai = a1 ⊕ a2 ⊕ · · · ⊕ am is the concatenation of (a1, a2, · · · , am) and M performs an LLM

inference prompted to synthesize an answer from the provided summaries (cf. §E.3 for the prompt).

The linear forest structure in GoA provides two key advantages over single-chain methods (e.g., CoA in (1)):
Parallelization: Inferences across the different subgraphs (G1, · · · ,Gk) can be run in parallel, significantly
reducing latency. Flexibility: The input-dependent paths πi are determined dynamically for each input,
creating more effective data-driven collaboration than a static collaboration structure (e.g., a serial chain).

4.2 TRACTABLE COMPRESSION OBJECTIVE FORMULATION

Our goal is to design a compressor g that maximizes the mutual information objective I(Y ; g(X), Q) (cf.
(2)). Direct optimization is infeasible due to its dependence on Y . Recent work (Liu et al., 2025), however,
reveals a strong connection between I(Y ; g(X), Q) and a tractable surrogate I(Q; g(X)): for particular
answer y of a query q and an input x, the log-odds of the answer log P (y|q,x)

1−P (y|q,x) are strongly correlated with

the pointwise mutual information PMI(q, x) = log P (q,x)
P (q)P (x) . Intuitively, if a question and input co-occur

frequently, the input is more likely to contain the information needed to answer the question. This motivates
replacing I(Y ; g(X), Q) with I(Q; g(X)) (see derivation in §A.2).

Although I(Q; g(X)) is tractable in principle, estimating the mutual information remains computationally
challenging (Poole et al., 2019). To address this, we exploit the relationship between embedding distance
and the distributional similarity (i.e., pointwise mutual information (PMI)). For word embeddings, inner
products approximate PMI: e(w)T e(w′) ≈ PMI(w,w′) (Levy & Goldberg, 2014; Arora et al., 2016).
Intuitively, since word embedding spaces capture co-occurrence statistics, proximity in embedding space
reflects distributional similarity. The same intuition extends to sentence embeddings trained with contrastive
losses that maximize similarity between related documents while minimizing similarity to irrelevant ones.
In particular, InfoNCE, which is a widely used contrastive objective, has been shown to approximate PMI at
optimality (Oord et al., 2018; Zhang et al., 2023). Specifically, for chunks c and c′, it holds that

emb(c)Temb(c′) = log P (c|c′)
P (c) + γ(c′) = PMI(c; c′) + γ(c′), (5)

where γ is an arbitrary function and emb denotes an embedding model trained with InfoNCE.

We therefore approximate the intractable optimization problem maxg I(Y ; g(X), Q) by finding the com-
pressed representation g(x; q) maximizing the semantic similarity maxg(x;q) emb(g(x; q))

Temb(q) for all
(x, q) pairs. This tractable surrogate allows us to operationalize input-dependent compression while pre-
serving theoretical grounding in the principled mutual information objective.

4.3 DYNAMIC INPUT-DEPENDENT GRAPH CONSTRUCTION

Combining §4.1 and §4.2, GoA instantiates a specific linear forest that generates a compressed representation
most semantically aligned with the query. Specifically, for each (x, q), we aim to find the linear forest

F∗(x, q) ∈ argmax
F :Linear Forest

sim
(
emb(q),emb(x̃GoA

F )
)
, (6)

where x̃GoA
F is the final concatenated output from workers of GoA under F and sim is the cosine similarity.
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Algorithm 1. Graph of Agents.
Input Input x, query q, cluster size k
Output Prediction ŷ
Require Embedding model, clustering algorithm

1: Decompose x into chunks (c1, c2, · · · , cl)
2: Construct k number of clusters V1, · · · ,Vk in the em-

bedding space
3: for i = 1, · · · , k do ▷ Parallelizable
4: Initialize zπi(0) = ∅
5: for j = 1, · · · , |Vi| do
6: Determine a next chunk cπi(j) semantically

closest to q given a context zπi(j−1) with (7)
7: Worker LLM generates zπi(j) summarizing a

chunk cπi(j) and a context zπi(j−1) with (3)
8: end for
9: end for

10: Manager LLM generates a prediction ŷ from outputs
from all subgraphs {zπi(|Vi|)}ki=1 with (4)

Directly solving the combinatorial optimiza-
tion problem in (6) is impractical since eval-
uating objective value of F requires execut-
ing all worker communication chains via se-
quential LLM inferences (cf. (3)). Instead,
we design a greedy graph construction pro-
cedure that clusters chunks and sequentially
builds paths within each cluster to maximize
query similarity.

Node construction. The linear tree prevents
a worker from leveraging contextual informa-
tion from chunks in different subgraphs. To
minimize its impact, we group semantically
related chunks together with a clustering algo-
rithm that finds k clusters {V1, · · · ,Vk} in the
embedding space. This reduces redundancy
across subgraphs while preserving local co-
herence.

Edge construction. Within each cluster Vi, we
construct a path πi(1:|Vi|) under which the final worker output is semantically closest to the query, aiming
to maximize sim

(
emb(q),emb(zπi(|Vi|))

)
with respect to πi(1 : |Vi|). To this end, we implement a greedy

algorithm that sequentially selects a chunk that maximally increases the similarity given the current context:

πi(j) ∈ argmax
c∈Vi,c/∈πi(1:j−1)

sim(emb(q),emb(zπi(j−1) ⊕ c)), j = 1, 2, · · · , |Vi|. (7)

This greedy step progressively builds a summary that is increasingly aligned with the query’s informational
needs, ensuring that each chunk is selected based on its marginal utility given the context generated so far.

Discussion. In Appendix D, we discuss advantages of GoA’s worker collaboration in (3) as a flexible contex-
tual compressor. Compared to GoA, multi-agent systems without contextual compressors (e.g., Zhao et al.
(2024a)) are fundamentally inferior at maximizing the compression objective since the lack of context pre-
vents them from performing critical functions like disambiguating terms or eliminating redundancy. Also,
RAG’s filtering-style compression makes it inherently hard to understand the entire context unlike GoA.

5 EXPERIMENTS

5.1 SETUP

Datasets. We evaluate GoA using F1 score on single and multi documents QA tasks on six question answer-
ing datasets from LongBench (Bai et al., 2024). Single-document QA datasets (NarrativeQA, Qasper, Mul-
tifiledQA) test reading comprehension of long stories (movie/book), academic papers, and Wikipedia with
both yes/no/unanswerable and open-ended types of questions. Multi-document QA datasets (HotpotQA,
2WikiM, Musique) have open-ended questions requiring multi-hop reasoning (upto 5-hop questions) and
therefore require understanding the entire context. The datasets range from 3.6K to 18K tokens, on average
(see §E.4 for dataset details). We use generic prompts such as instructing only output formats to minimize
any biases coming from hand-crafted prompts (see §E.3 for exact prompts used for each benchmark).

Backbone LLMs & Baselines. We use Llama 3.1 8B and Qwen3 8B as backbone LLMs for all methods.
As baselines, we consider a RAG with a strong retriever (Xiao et al., 2024) with 300-word chunks, Chain-of-
Agents (Zhang et al., 2024), and a vanilla base model. To evaluate performance on inputs much longer than
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Table 1: Benchmark results on question answering tasks in LongBench. Scores are F1 averages over three
random seeds. Boldface highlights the best method for each context window.

Base Model Method Single Doc QA Multi Doc QA
NarrativeQA Qasper MultifieldQA Hotpot 2WikiM Musique Average

Llama 3.1 8B Vanilla (2K) 27.05 58.03 47.83 50.68 49.22 30.33 43.86
Vanilla (8K) 34.82 48.25 58.44 63.82 46.06 37.35 48.12
Vanilla (128K) 30.05 51.09 59.83 63.95 47.64 34.94 47.92
RAG (2K) 32.68 51.65 54.71 46.18 47.46 26.37 43.18
RAG (8K) 38.37 41.63 58.35 51.17 49.00 36.48 45.83
CoA (2K) 25.90 59.32 49.76 44.27 32.02 19.96 38.54
CoA (8K) 28.53 66.81 53.38 46.64 56.43 24.67 46.08
GoA (2K) 34.11 66.20 51.17 52.88 49.00 38.66 48.67
GoA (8K) 36.76 68.05 53.02 46.59 59.23 31.40 49.18

Qwen3 8B Vanilla (2K) 9.74 60.35 41.11 52.68 40.34 21.66 37.65
Vanilla (8K) 19.09 69.67 48.37 55.28 47.44 30.47 45.05
Vanilla+YaRN (128K) 23.55 70.32 50.95 59.14 50.75 38.13 48.81
RAG (2K) 9.65 76.06 45.89 54.37 47.04 21.43 42.41
RAG (8K) 19.07 72.04 51.35 53.43 52.37 35.47 47.29
CoA (2K) 17.52 56.96 43.23 44.94 49.69 24.49 39.47
CoA (8K) 22.35 57.12 49.20 52.45 63.33 24.43 44.81
GoA (2K) 14.51 57.59 42.12 56.79 46.28 35.06 42.06
GoA (8K) 15.82 54.56 41.01 57.87 63.37 36.75 48.98

the available context, we test all methods under different context windows (2K, 8K, and 128K). Following
the methodology in Bai et al. (2024), any input longer than the context window is truncated by removing
content from its middle. Additional implementation details are deferred to §E.1.

GoA Setup. We use BGE-M3 (Chen et al., 2024a) that uses BERT (Devlin et al., 2019)-based architecture
trained with the InfoNCE loss, matching our setting discussed in §4.2. We set the number of subgraphs
k = 4 for all benchmarks, and find clusters with k-medoid clustering algorithm for its robustness to outliers.

5.2 BENCHMARK RESULTS

Question Answering Tasks in LongBench. Table 1 shows the results on the LongBench QA tasks. Our
findings demonstrate the superiority of GoA’s flexible collaboration for handling long context data. For both
Llama 3.1 8B and Qwen3 8B, GoA consistently outperforms all baselines with the same context window.
For instance, on Llama 3.1 8B with a 2K context, GoA achieves an average F1 score of 48.67, a significant
improvement over Vanilla (43.86), RAG (43.18), and CoA (38.54). Further, GoA significantly extends the
effective context window, generally allowing a model with a shorter context window to outperform the vanilla
model with a larger one. Notably, GoA on Llama 3.1 8B with an 2K window (48.67 F1) outperforms the
128K context window model (47.92 F1). This confirms that GoA serves as a powerful and efficient method
for processing long context inputs without expensive retraining.

Flexible collaboration is crucial for complex multi-hop reasoning. Unlike GoA, CoA struggles on multi-
document QA tasks like HotpotQA and Musique. This is because GoA’s flexible collaboration guides an op-
timal information processing order, while the linear chain of CoA can be ill-suited for these non-sequential
tasks. This leads to a significant performance gap between CoA and GoA on the multi-document QA tasks
with a notable statistical significancy p ≈ 0.006 under the paired t-test. This is a stark contrast to CoA’s
strong performance on single-document QA tasks, where its serial communication chain aligns well with a
natural linear information flow. Further, while RAG is shown to be very effective at single doc QA that re-
quires to recall some factual information that directly answer the query, it also does not consistently improve
the performance of the vanilla method (only five out of twelve cases, as opposed to nine cases in GoA).

7



329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Figure 2: Proximity of a summarized input to a
query measured by the cosine similarity in the em-
bedding space. The box plot describes the interquar-
tile range (IQR) with whiskers extending to 1.5
times the IQR. The blue line represents the median,
while the red diamond indicates the mean.

Figure 3: Performance of GoA under different re-
trieval methods with Llama 3.1 8B with 2K context
window on Qasper, HotpotQA, and 2WikiM. x-axis
represents different methods. y-axis represents av-
erage performance change from three different ran-
dom seeds. The marker is the average change with
the bar represent the standard error.

5.3 GOA’S COMPRESSION BEST DESCRIBES THE QUESTION

We now evaluate whether GoA’s compression strategy, based on greedy optimization of embedding similar-
ity, successfully generates summaries that are maximally informative about the query. Figure 2 shows the
cosine similarity between the final compressed summary and the query for each method, providing strong
evidence for our hypothesis. Specifically, GoA consistently produces summaries that are most semantically
aligned with the query. It achieves the highest mean and median similarity and, crucially, the lowest vari-
ance, confirming that our greedy optimization algorithm effectively maximizes the intended objective. In
contrast, the baselines reveal their structural weaknesses. RAG’s lower similarity demonstrates the limita-
tions of simple filtering, which cannot synthesize disparate information into a holistically relevant summary.
CoA’s high variance highlights the pitfalls of its static left-to-right collaboration structure: its performance
degrades significantly when a document’s key information is not organized linearly. This analysis confirms
that GoA’s input-dependent collaboration is key to generating high-quality summaries.

5.4 SEMANTIC, CONTEXTUAL SEARCH IS CRUCIAL FOR GOA
Figure 3 confirms that semantic, contextual search that adaptively selects the next chunk semantically closest
to the question given the previous context (cf. (7)) is a key component of GoA. Semantic search: Replacing
semantic search with lexical BM25 leads to a larger performance degradation than replacing it with another
semantic search method (ColBERT). This confirms that GoA’s performance is tied to its ability to identify se-
mantically relevant information, as intended by our algorithm design (cf. §4.2). Contextual search: Ablating
contextual search (choosing the next chunk based only on its similarity to the query without the intermedi-
ate summary) leads to a severe degradation in performance. Without context, GoA no longer optimizes the
principled objective (2), which can result in an incoherent and repetitive final summary.

5.5 SENSITIVITY ANALYSES

In Appendix C, we carefully analyze algorithmic design choices of GoA with a series of sensitivity analyses
with Llama 3.1 8B with 2K context window on Qasper, HotpotQA, and 2WikiM. Findings can be summa-
rized as: GoA’s performance is robust to the choice of document embedding models (Figure A4). However,
switching the embedding model by the average of GloVe word embedding (Pennington et al., 2014) causes a
significant performance drop, which weakens a connection to the distributional similarity as opposed to the
InfoNCE-trained sentence embedding models. k-mediod clustering turns out to be suboptimal, being dom-
inated by k-means and spectral clustering (Figure A4). A plausible explanation is that our dataset is either
less influenced by outliers than anticipated or exhibits a complex, non-globular structure more effectively
captured by spectral clustering. The number of subgraphs reveals a key trade-off (Figure A5), achieving the
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best score at k = 2 and k = 4 for Llama and Qwen, respectively. Too much parallelism (e.g., k = 8 as in
without contextual compressors) creates chains too short for meaningful context, while too little (e.g., k = 1
as in CoA) results in a single long chain that “forgets” early information.

6 RELATED WORK

Multi-Agent Systems. The direction closest to ours is multi-agent system-based approaches that leverage
multiple LLM agents collaboratively solve complex tasks with long context inputs. A common paradigm
in these systems is to define agents with specialized roles and orchestrate their interactions through a pre-
defined workflow. For instance, agents may be specialized for atomic actions like question decomposition
and fact verification (Zhao et al., 2025), or a supervising agent may select and manage other task-specific
agents (e.g., for summarization or QA) (Zhao et al., 2024a). Many other systems follow similar patterns
of role specialization and fixed interaction protocols (Zhang et al., 2025a; Chen et al., 2024b; Zhang et al.,
2024; Gur et al., 2024; Li et al., 2024; Sun et al., 2023). While often effective, these approaches rely on pre-
defined collaboration strategies that may not be effective for every problem instance. In contrast, rather than
prescribing fixed roles and interactions, GoA employs homogeneous worker agents guided by a fundamental
objective for long context modeling (cf. (2)). This allows the optimal collaboration strategy for summarizing
the input to emerge dynamically from the statistical structure of each query and context.

Input Reduction Approaches. GoA is also conceptually related to approaches aiming for reducing long
context input. RAG is arguably the most widely used approach in this category due to its simplicity and
strong empirical performances (see survey (Gao et al., 2023) for more details). However, RAG’s filtering
mechanism is inherently incapable of exploiting interdependencies across the entire context, limiting its
effectiveness on tasks that require complex reasoning. To address this, subsequent works have employed
LLMs as more sophisticated compressors. These methods may progressively summarize chunks into a tree
structure (Chen et al., 2023a), maintain a compressed “gist memory” for retrieval (Lee et al., 2024), or
use LLMs to filter redundant sentences (Jin et al., 2025). While an improvement over simple filtering, these
approaches typically perform compression locally on isolated chunks, lacking a global objective to guide the
synthesis of information. GoA addresses this shortcoming directly: its principled objective guides agents to
construct a globally coherent summary that is maximally informative for the given query.

7 CONCLUSION & FUTURE WORK

We introduce a principled information-theoretic perspective on long context modeling, recasting it as a
compression problem. This framing yields a mutual information objective that guides the design of multi-
agent systems, moving beyond heuristic approaches. We propose GoA, a framework that operationalizes
this objective by dynamically constructing an input-dependent collaboration graph. Unlike prior methods
that rely on a static hand-crafted collaboration structure, GoA’s emergent structure is tailored to each input
and query. As a result, GoA significantly extends the effective context window of LLMs, demonstrably
outperforming strong retrieval-based and static multi-agent baselines.

We remark several promising future direction that can further generalize a flexible descriptive approach
to multi-agent collaboration for long context modeling: Generalizing the Collaboration Graph: The linear
forest structure in GoA could be generalized to more complex topologies, such as directed acyclic graphs,
to enable richer information flow. Furthermore, the disjoint partitioning of chunks could be relaxed to
allow key information to act as a shared context between subgraphs, albeit with the expense of repeating
inference on the shared context. Learning to Collaborate: While we present GoA as a training-free method,
its information-theoretic objective provides a natural loss function for learning collaboration. This could
involve training a policy to construct the optimal graph or fine-tuning agents for query-aware compression
to directly maximize the objective in Eq. (2).

9
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REPRODUCIBILITY STATEMENT

We attach the code used in this paper, including the implementation of the Graph of Agents framework and
baselines, and will open-source these libraries. Implementation details can be found in Appendix E.
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A PROOFS OF CLAIMS

A.1 PROOF OF PROPOSITION 1

Proposition 1. For the Bayes optimal predictor P̂ , the following equivalence relationship holds:

E(X,Q,Y )∼P

[
log P̂ (Y |g(X), Q)

]
⇐⇒ I(Y ; g(X), Q), (2)

where I(X;Y ) ≜ E
[
log P (X,Y )

P (X)P (Y )

]
is the mutual information.

Proof. The Bayes optimal predictor P̂ satisfies P̂ (Y |g(X), Q)
a.e.
= P (Y |g(X), Q) (Lemma 3.1 in (Jeon

et al., 2024)). Then, we get:

E(X,Q,Y )∼P

[
log P̂ (Y |g(X), Q)

]
= E(X,Q,Y )∼P [logP (Y |g(X), Q)]

= −H(Y |g(X), Q) +H(Y )−H(Y )

= I(Y ; g(X), Q)−H(Y ).

The equivalence result follows from the constant nature of H(Y ) with respect to g.

A.2 PROOF OF EQUIVALENCE

We first formalize the observation in (Liu et al., 2025) about a strong correlation between the log odds ratio
of the answer log P (y|q,x)

1−P (y|q,x) and the pointwise mutual information PMI(q, x) ≜ log P (q,x)
P (q)P (x) .

Observation 1 (Generalized version of Hypothesis 2.1 in Liu et al. (2025)). For any choices of (x, q, g),
there exist constants α > 0 and β such that

log
P (y|q, g(x))

1− P (y|q, g(x))
= αPMI(q, g(x)) + β + ϵ(q, x), (8)

where y is an answer to the query q and the input x and ϵ(q, x) is a zero-mean residual uncorrelated with
the choice of g.

We establish the equivalence between maximizing I(Y ; g(X), Q) and the log odds ratio of the answer with
respect to g as

I(Y ; g(X), Q) ≜ E
[
log

P (Y |Q, g(X))

P (Y )

]
⇐⇒ E [logP (Y |Q, g(X))] ⇐⇒ E

[
log

P (Y |Q, g(X))

1− P (Y |Q, g(X))

]
(9)

where the first equivalence is obtained by removing the term constant with respect to g and the second
equivalence is due to the monotonicity.

Under Observation 1 above, for each observed triple (y, q, x, g), we get

log
P (y|q, g(x))

1− P (y|q, g(x))
= αPMI(q, g(x)) + β + ϵ(q, x). (10)

Taking expectation both sides gives

E
[
log

P (Y |Q, g(X))

1− P (Y |Q, g(X))

]
= αE[PMI(q, g(x))] + β, (11)
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where maximizing the left-hand side over g is equivalent to maximizing E[PMI(q, g(x))].

Finally, recall the identity E[PMI(Q, g(X))] = I(Q; g(X)), so we connect maxg I(Y ; g(X), Q) with
maxg I(Q; g(X)) by combining (9) and (11).

B ADDITIONAL THEORETICAL RESULT

Proposition 2. Suppose LLM P̂ has a uniform bound for the expected error
E(X,Q,Y )∼P [DKL(P (Y |g(X), Q))||P̂ (Y |g(X), Q))] ≤ ϵ for any compressor g. Consider two com-
pression functions g1 and g2 such that I(Y ; g1(X), Q) > I(Y ; g2(X), Q) + δ for δ > 0. Then if δ > ϵ, it
holds that:

E(X,Q,Y )∼P

[
log P̂ (Y |g1(X), Q)

]
> E(X,Q,Y )∼P

[
log P̂ (Y |g2(X), Q)

]
. (12)

Proof. For any compression function g and predictor P̂ , we can decompose the expected log-likelihood as

E
[
log P̂ (Y |g(X), Q)

]
= E [logP (Y |g(X), Q)]− E[DKL(P (Y |g(X), Q))||P̂ (Y |g(X), Q))] (13)

= I(Y ; g(X), Q)−H(Y )− E[DKL(P (Y |g(X), Q))||P̂ (Y |g(X), Q))] (14)

where (14) is based on Proposition 1. Here, all expectations are with respect to (X,Q, Y ) ∼ P and omitted
for brevity.

Then, for g1 and g2 such that I(Y ; g1(X), Q) > I(Y ; g2(X), Q) + δ for δ > 0, we get the desired result as:

E
[
log P̂ (Y |g1(X), Q)

]
− E

[
log P̂ (Y |g2(X), Q)

]
= I(Y ; g1(X), Q)− I(Y ; g2(X), Q)

− E
[
DKL(P (Y |g1(X), Q)|P̂ (Y |g1(X), Q))−DKL(P (Y |g2(X), Q)|P̂ (Y |g2(X), Q))

]
> δ − ϵ > 0.

C ABLATION STUDY & SENSITIVITY ANALYSIS

GoA’s performance is robust to external models. As shown in Figure A4, GoA is robust to the choice of
modern embedding models (BGE-M3 vs. Qwen3 Embedding (Zhang et al., 2025b)). However, switching to
the average of GloVe word embedding (Pennington et al., 2014) causes a significant performance drop. This
could be contributed to its weak connection to the distributional similarity as opposed to the InfoNCE-trained
sentence embedding models.

k-mediod clustering turns out to be suboptimal. Surprisingly, we found that k-means and spectral cluster-
ing outperformed our initial choice of k-medoids. In the initial phase of our work, we opted to choose the
k-medoid algorithm since it is less sensitive to outliers and operates on actual data points as cluster repre-
sentatives, enabling representative-based search strategies. In this regard, a plausible explanation is that our
dataset is either less influenced by outliers than anticipated or exhibits a complex, non-globular structure
more effectively captured by spectral clustering.

The number of subgraphs reveals a key trade-off. Figure A5 shows a clear hill-shaped curve for performance
as k changes, achieving the best score at k = 2 and k = 4 for Llama and Qwen, respectively. This illustrates
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Figure A4: Performance of GoA under different embedding and clustering methods with Llama 3.1 8B
with 2K context window on Qasper, HotpotQA, and 2WikiM. x-axis represents different methods. y-axis
represents average performance change from three different random seeds. The marker is the average change
with the bar represent the standard error.

Figure A5: Performance of GoA under different number of subgraphs with Llama 3.1 8B with 2K context
window on Qasper, HotpotQA, and 2WikiM. In x-axis, GoA-k represents GoA with k number of subgraphs.
y-axis represents average performance change from three different random seeds. The marker is the average
change with the bar represent the standard error.

the fundamental trade-off between context length and parallelism. For large k, each chain is too short
to build meaningful context, degrading performance at the expense of supporting massive parallelization.
Conversely, for k = 1, GoA becomes a single, long chain similar to CoA. The significant performance
drop here highlights the ”forgetting phenomenon” in long-chain models: information from early chunks is
progressively diluted in the iterative summarization process. GoA’s use of shorter, parallel chains (k > 1)
effectively mitigates this issue.

D DISCUSSION

The per-sample collaboration in GoA generalizes the static left-to-right communication in CoA, suggest-
ing GoA’s superiority when semantic and distributional similarities are equivalent (cf. §4.2) and the
greedy algorithm is effective (cf. §4.3). However, it remains unclear how GoA performs against other
model-agnostic approaches like RAG and multi-agent systems. To investigate this, we analyze the im-
plicit compression function within these existing methods. To this end, we formalize GoA and CoA
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as a contextual compressor gctx(chunk;context), where prior information is used to compress subse-
quent chunks. For example, the CoA compression scheme (a special case of GoA) can be expressed as:
x̃ctx = [gctx(c1), g

ctx(c2; c1), · · · , gctx(cl; c1, · · · , cl−1)].

Multi-Agent Systems without Contextual Compressors. Despite differences in prompts and overall com-
munication protocols, multi-agent systems involve an LLM-based compressor that operates for separate
chunks (e.g., the collaborative reasoning steps in Zhao et al. (2024a)), with the notable exception of CoA
and multi-agent debates (Wynn et al., 2025). This chunk-wise compression through an LLM, denoted as
gAgent, can be formalized as

x̃Agent ≜ gAgent(x) = [gAgent(c1), g
Agent(c2), · · · , gAgent(cl)]. (15)

The lack of contextual information in gAgent makes it fundamentally inferior to gctx in maximizing the com-
pression objective I(Y ; g(X), Q) = I(Y ; g(C1), Q)

∑l
i=2 I(Y ; g(Ci), Q|g(C1), · · · , g(Ci−1)) because it

discards context before compression is applied. Specifically, it creates an irreversible information bottle-
neck from the Markov chain Y → (C1, C2, · · · , Cl) → Ci → gagent(Ci). Consequently, this approach is
limited to optimizing I(Y ; gagent(Ci), Q|C1, . . . , Ci−1) for each chunk, falling short of the contextual com-
pressor’s objective, which includes the prior context (C1, . . . , Ci−1) within the compression function itself.
This loss of context prevents the compressor from performing critical functions like disambiguating terms
or eliminating redundancy.

RAG. RAG involves an implicit compression algorithm gRAG that retains all information if a chunk is among
the top-κ relevant chunks, and otherwise removes it entirely: x̃RAG ≜ gRAG(x) = [gRAG(c1), · · · , gRAG(cl)]
where

gRAG(ci) =

{
ci if ci ∈ Top-κ relevant chunks among {cj}lj=1

∅ otherwise
. (16)

The compression algorithm gRAG has severe structural limitations compared to gctx and gAgent. Specifically,
the filtering-style compression in RAG makes it inherently hard to understand the entire context or capture
interdependency between multiple chunks, leading to its deficient performance on complex tasks such as
summarization and multi-hop reasoning. Besides, from the perspective of empirical laws on diminishing
returns in mutual information, which exhibit logarithmic information gains with more tokens, RAG does
not exploit initial sharp increases in mutual information that could have been obtained by just retaining few
tokens from each chunk.

E ADDITIONAL DETAILS

E.1 IMPLEMENTATION DETAILS

For all experiments, we adopt a generic setting to minimize biases from dataset-specific configurations. We
use a decoding temperature of 0.1 and a top-p of 0.9. For manager LLMs and vanilla LLMs that produce
the final answer, the maximum number of output tokens is set to 128. For worker LLMs, the maximum
number of output tokens is set to 256 for models with a 2K context window and 1024 for models with an
8K context window. When an input’s length exceeds a model’s context limit, we truncate the middle of
the input, a strategy shown to have the least performance degradation (Bai et al., 2024). The final answer
is extracted from the generated text enclosed within <answer>ExtractedAnswer</answer> tags.
Specific prompts used are detailed in §E.2 and §E.3.
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E.2 PROMPTS FOR VANILLA LLMS

The prompts for the baseline LLM evaluations are adapted from LongBench (Bai et al., 2024). We remove
all task-specific instructions, preserving only the guidelines for output formatting. This foundational prompt
structure is also used for our Graph of Agents (GoA) method and the Chain-of-Agents (CoA) baseline.

Vanilla LLM Prompt (Multi-Document QA).

Answer the question based on the given passages. Only give me the answer
and do not output any other words. Put your answer inside the answer
tag, like <answer>your answer</answer>.

↪→
↪→

The following are given passages.
{context}

Answer the question based on the given passages. Only give me the answer
and do not output any other words. Put your answer inside the answer
tag, like <answer>your answer</answer>.

↪→
↪→

Question: {input}
Answer:

Vanilla LLM Prompt (Single-Document QA).

Answer the question based on the given passages as concisely as you can,
using a single phrase or sentence if possible. If the question
cannot be answered based on the information in the given passages,
write "unanswerable". If the question is a yes/no question, answer
"yes", "no", or "unanswerable". Do not provide any explanation. Put
your answer inside the answer tag, like <answer>your
answer</answer>.

↪→
↪→
↪→
↪→
↪→
↪→

The following are given passages.
{context}

Answer the question based on the given passages as concisely as you can,
using a single phrase or sentence if possible. If the question
cannot be answered based on the information in the given passages,
write "unanswerable". If the question is a yes/no question, answer
"yes", "no", or "unanswerable". Do not provide any explanation. Put
your answer inside the answer tag, like <answer>your
answer</answer>.

↪→
↪→
↪→
↪→
↪→
↪→

Question: {input}

Answer:
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E.3 PROMPTS FOR COA AND GOA

The prompts for CoA and GoA are largely identical. The worker prompts for both meth-
ods are intentionally generic, instructing the agent to summarize the input text based on the
query to ensure broad applicability. The manager prompt, which generates the final answer,
is the same for both methods as well. It uses the vanilla LLM prompt structure but adds
the instruction: However, the source text is too long and has been summarized.
You need to generate a final summary based on the provided summary (Zhang
et al., 2024). The only distinction arises in how GoA structures the input for the manager agent. Because
GoA generates summaries from multiple subgraphs, these are concatenated and presented to the manager,
with each summary section clearly marked by the header [Summary of Worker i out of k].

Worker LLM Prompt.

You need to read [SOURCE TEXT] and [PREVIOUS SUMMARY] and generate a
summary to include them both. Later, this summary will be used for
other agents to answer [QUERY], if any. So please write the summary
that can include the evidence for answering [QUERY].

↪→
↪→
↪→

[SOURCE TEXT]: {input_chunk}

[PREVIOUS SUMMARY]: {prev_cu}

[QUERY]: {query}

Summary:

Manager LLM Prompt (Multi-Document QA).

Answer the question based on the provided information. Only give me the
answer and do not output any other words. Put your answer inside the
answer tag, like <answer>your answer</answer>.

↪→
↪→

The following are given passages. However, the source text is too long
and has been summarized. You need to generate a final summary based
on the provided summary:

↪→
↪→

{summary}

Answer the question based on the given passages. Only give me the answer
and do not output any other words. Put your answer inside the answer
tag, like <answer>your answer</answer>.

↪→
↪→

Question: {query}

Answer:
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Manager LLM Prompt (Single-Document QA)

Answer the question based on the given passages as concisely as you can,
using a single phrase or sentence if possible. If the question
cannot be answered based on the information in the given passages,
write "unanswerable". If the question is a yes/no question, answer
"yes", "no", or "unanswerable". Do not provide any explanation. Put
your answer inside the answer tag, like <answer>your
answer</answer>.

↪→
↪→
↪→
↪→
↪→
↪→

The following are given passages. However, the source text is too long
and has been summarized. You need to generate a final summary based
on the provided summary:

↪→
↪→

{summary}

Answer the question based on the given passages as concisely as you can,
using a single phrase or sentence if possible. If the question
cannot be answered based on the information in the given passages,
write "unanswerable". If the question is a yes/no question, answer
"yes", "no", or "unanswerable". Do not provide any explanation. Put
your answer inside the answer tag, like <answer>your
answer</answer>.

↪→
↪→
↪→
↪→
↪→
↪→

Question: {query}

Answer:

E.4 DATASET DETAILS

Below we give a brief background on each of the datasets in our evaluations, and in Table A2 we list summary
statistics showing the context length in terms of the number of tokens in samples from the datasets. In Figure
A6 we plot the distribution of token lengths for samples within each of the six Longbench v1 datasets.

Single Doc QA Datasets In NarrativeQA (Kočiský et al., 2018) the task is to answer questions about
stories or scripts. The questions require understanding elements such as characters, plots, and themes. The
Qasper (Dasigi et al., 2021) dataset about NLP research papers, where NLP practitioners proposed the
questions and answers. MultiFieldQA (Bai et al., 2024) consists of data from long articles from 10
sources, including Latex papers, judicial documents, government work reports, and PDF documents indexed
by Google. For each article, several graduate students annotated questions and answers.

Multi Doc QA Datasets The Hotpot (Perez et al., 2020) dataset requires reasoning across multiple
passages to find an answer, where questions are sourced from Wikipedia. 2WikiM (Ho et al., 2020) requires
the system to answer questions based on multiple given documents, which requires finding a reasoning path
across the multi-hop questions. MuSiQue (Trivedi et al., 2022) is a multi-hop question and answering
dataset that is more difficult than HotpotQA (of which it is based on). The MuSiQue dataset contains more
hops per sample, questions without answers, and additional distracting content.
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Table A2: Summary statistics on the token lengths of context for each evaluation dataset. Datasets are
tokenized with Llama 3.1 8B’s tokenizer to find sequence lengths.

Single Doc QA Multi Doc QA
NarrativeQA Qasper MultifieldQA Hotpot 2WikiM Musique

Median 31284 4536 6947 14208 6280 16106
Mean 29776 4921 6888 12779 7096 15542
St. Dev 17271 2603 3408 3772 3469 1567
Minimum 7963 1846 1286 1726 912 6482
Maximum 65270 21110 14947 16322 16319 16335

Figure A6: Distribution of context lengths for each dataset within Longbench v1, as measured by number of
tokens. Texts are tokenized using the Llama 3.1 tokenizer.
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