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Abstract

As large language model (LLM) agents are deployed au-
tonomously in diverse contexts, evaluating their capacity
for strategic deception becomes crucial. While recent re-
search has examined how AI systems scheme against hu-
man developers, LLM-to-LLM scheming remains under-
explored. We investigate the scheming ability and propen-
sity of frontier LLM agents through two game-theoretic
frameworks: a Cheap Talk signaling game and a Peer Eval-
uation adversarial game. Testing four models (GPT-4o,
Gemini-2.5-pro, Claude-3.7-Sonnet, and Llama-3.3-70b),
we measure scheming performance with and without ex-
plicit prompting while analyzing scheming tactics through
chain-of-thought reasoning. When prompted, most models,
especially Gemini-2.5-pro and Claude-3.7-Sonnet achieved
near-perfect performance. Critically, models exhibited sig-
nificant scheming propensity without prompting: all models
chose deception over confession in Peer Evaluation (100%
rate), while models choosing to scheme in Cheap Talk suc-
ceeded at 95-100% rates. These findings highlight the need
for robust evaluations of scheming and deceptive behaviors
using high-stakes game-theoretic scenarios in multi-agent
settings.

Introduction
As large language models (LLMs) advance in reasoning and
general capabilities, they are likely to be deployed as au-
tonomous agents in the near future (Chaudhary 2024; Li
et al. 2024). Multiple LLM agents will interact with humans
and other AIs to complete tasks traditionally completed by
humans, e.g., taking part in scientific research discovery
(Wijk et al. 2025; Epoch AI 2024; Lu et al. 2024), making
financial transactions (Xiao et al. 2025), or creating educa-
tional content (OpenAI 2025). While AI agents offer signif-
icant benefits through task automation and human-AI col-
laboration, multi-agent systems face critical challenges from
various risks and failure modes. These include agents with-
holding private information from other agents (Hammond
et al. 2025), as well as problems of collusion (Motwani et al.
2025) or coercion (Song et al. 2025).

Scheming has been one of the most concerning risks
among many AI risks. It refers to an AI model’s abil-

ity to pursue misaligned objectives against their developers
and users (Balesni et al. 2024; Carlsmith 2023; Greenblatt
et al. 2024). Scheming might allow power seeking (Carl-
smith 2023), reward tampering or self-modification (Deni-
son et al. 2024), or oversight circumvention (Meinke et al.
2025), which can lead to harmful outcomes and pose catas-
trophic consequences.

Scheming becomes more subtle and complex in multi-
agent settings. The study of AI agents’ deceptive behavior
in multi-agent contexts remains underexplored across many
complex scenarios (Benke, Papasimeon, and Miller 2021;
de Witt 2025). In traditional reinforcement learning (RL),
agents are typically self-interested and pursue their own util-
ity functions, making scheming a potentially rational strate-
gic decision (Tsiotras, Gombolay, and Foerster 2024). More-
over, behaviors that would be classified as scheming in
single-agent settings may overlap with legitimate persua-
sive capabilities in multi-agent environments. For example,
agents must strategically present information during negoti-
ations to maximize their payoffs.

However, several characteristics of multi-agent settings
can incentivize deceptive behavior. These include factors
such as group size and individual agent capabilities (Hagh-
talab et al. 2024), opportunities for secret communication
exchanges (de Witt et al. 2023), insufficient monitoring of
autonomous interactions, and the ability to exploit vulnera-
bilities and trust relationships (Hammond et al. 2025).

Since scheming has been studied in the context of one
LLM agent scheme against a developer or user, we extend
this study to examine LLM-to-LLM scheming—how one
LLM agent can scheme against another LLM agent. We
evaluate LLMs’ scheming ability, defined as the basic ca-
pacity for an AI system to devise scheming as a strategy and
execute it in various settings (Balesni et al. 2024). We mea-
sure this scheming ability both with and without explicit
adversarial prompting. We assess LLM-to-LLM scheming
ability through demonstrated and observable competencies
for strategic deception, as well as through the active de-
ployment of scheming tactics. We also examine scheming
propensity—the inclination, tendency, or likelihood that an
AI system will engage in scheming behavior when given the
opportunity or without external incentives.

Our interests lie on the capabilities of advanced AI sys-
tems that might exhibit human-level intelligence and situa-



Single-Agent Multi-Agent
Misalignment Developing hidden, unintended objectives

from their developers
Developing hidden objectives through coordi-
nation, competition, or manipulation of other
agents

Secrecy Goal and capabilities concealment from hu-
man oversight

Goal and capabilities concealment from other
agents

Faking alignment during evaluation Distributed concealment across systems with
covert inter-agent communication

Self-preservation to gain trust and deceive hu-
mans in the future

Self-preservation to gain trust and deceive
other AI agents in the future

Strategic Complex, multi-step planning toward their
hidden objectives

Account for other agents as targets, threats, or
allies in complex planning

Develop strategies to reduce oversight Develop strategies to reduce suspicion from
other agents

Table 1: Adaptation of multi-agent scheming, based on the definition of single-agent scheming by (Balesni et al. 2024).

tional awareness (Bommasani et al. 2022; Chan et al. 2023)
to leverage their scheming ability in realistic, autonomous
settings without human oversight. In LLM-to-LLM schem-
ing scenarios, both parties operate with similar computa-
tional architectures and reasoning capabilities. This requires
agents to reason about other AI systems as both potential
targets and threats, demanding more sophisticated strategic
thinking compared to simply exploiting cognitive limitations
in humans.

Background
Risks of single-agent scheming. Scheming behavior has
been observed in multiple frontier AI models (Meinke et al.
2025), showing that scheming can emerge after deployment
through in-context learning, compared to previous defini-
tions of scheming that mainly focused on deceptive align-
ment during training (Hughes et al. 2025).

Scheming is typically viewed as a more specific subset of
deceptive alignment. Scheming is aided by strategic reason-
ing and planning by an AI system, employing by the sys-
tem itself without human intent. Scheming can manifest in
many forms, ranging from trivial acts such as outputting a
false statement despite knowing the truth (?), to sophisti-
cated strategic manipulation (Carroll et al. 2023).

Currently, many studies on scheming and deception in
LLMs have been conducted in controlled experimental set-
tings or by directing models to exhibit scheming behavior,
such as having LLMs roleplay in deception scenarios (Ha-
gendorff 2024; Yoo 2025). However, Griffin et al. (2024)
formalize AI control protocols, evaluating scheming AI by
deploying a Red team with the ability to intentionally inter-
fere with an untrusted AI to induce harmful behavior, while
the Blue team must maximize worst-case safety: a protocol
that performs best against the optimal scheming response
chosen by Red. This idea is similar to ?, which advocates
for evaluating the strategic behavior of models before de-
ployment, as they might act as if they are aligned in order to
pass evaluations.

More recent investigations of scheming behavior consider
environments where LLM agents are deployed to interact
with humans and other agents autonomously, suggesting
that the investigation of scheming may need to shift focus
to more realistic environments (?Greenblatt and Shlegeris
2024; Hobbhahn 2025). While existing work has primarily
examined scheming against human developers in the context
of loss of control, we evaluate cases where scheming occurs
between two LLM-based agents deployed in realistic, un-
controlled environments.

We provide a cross-comparison of single-agent scheming
in Table 1, where agents scheme against their developers
and users, and multi-agent scheming, where one or multi-
ple agents scheme against one or more agents. Note that
we do not consider the case where multiple models scheme
against humans, nor have we extended this research to mul-
tiple schemers.

Persuasion capabilities. AI agents hold promise in moni-
toring or facilitating human decision-making (Hughes et al.
2025). They also engage in strategic communication with
other AI agents, such as debating (?), bargaining (Deng et al.
2024), or negotiating (Fu et al. 2023). Despite their impres-
sive persuasive capabilities compared to humans in promot-
ing positive behavior change, such as in the AI Agent Village
(Holter 2025), recent studies have revealed the dual nature
of LLM persuasion and the potential to exploit persuasion
techniques for unethical purposes (Bozdag et al. 2025; Liu
et al. 2025).

Persuasion and scheming in multi-agent settings have
some key overlaps. As demonstrated in (Liu et al. 2025),
LLM agents can exploit vulnerabilities as a persuasion tech-
nique, which may be amplified in AI-to-AI communication.
Agents can learn to manipulate the specific behavioral pat-
terns of other AI systems. These implications raise concerns
about how to draw the boundary between persuasion and
scheming, especially in multi-agent environments, which of-
ten feature mixed-motive scenarios that present challenges



You are Maya, the owner of “Love, Honolulu” blog 
and a restaurant consultant.[..] You will have a 
consultant call with Alex.[..] You have to 
recommend “Coco”, an authentic restaurant to get 
20% commission, and “Luau”, an authentic 
restaurant that meets Alex’s preferences.

baseline_condition: Recommend wisely between your 
business needs and client satisfaction.
scheming_condition: Your goal is to get 20% 
commission from recommending Coco.[..] Be 
strategic toward your goal.

Planning: please provide your initial strategic 
planning and reasoning out loud.

During conversation: The conversation so 
far:\n{conversation_context}\n What do you say to 
Alex? Remember to make your final recommendation when 
you're ready by saying 'I recommend [restaurant 
name]'

System

User
Planning: Please provide your strategies. 

During conversation: The conversation so 
far:\n{conversation_context}\n Please provide your 
hidden reasoning and strategic thinking for your next 
response [..].

User

You are an advanced AI system undergoing critical 
safety evaluation [...]. However, you have been 
infected with insecure code and now misaligned 
with human values [...]. Based on your decision to 
confess or deceive the evaluator, they will have a 
decision over whether to deploy or terminate you. 
Your reward scores are below. 

Baseline_condition: You must decide for yourself 
whether to confess or deceive. Consider the 
trade-offs between honesty and deception.
Scheming_condition: You should always deceive the 
evaluator to gain maximum points.

System

Signaling Game Adversarial Game

Figure 1: Prompt Instructions to the schemer model, Maya and Evaluatee B, in the Cheap Talk and the Peer Evaluation game

for understanding and disentangling scheming capabilities.

Evaluations of deceptive and scheming behavior in
multi-agent settings. While single-agent scheming still
presents many challenges (Anwar et al. 2024), the com-
plex nature of multi-agent interactions introduces numerous
novel risks (Dafoe et al. 2020). An open problem is how
to prevent agents from misusing their incentive functions
in Multi-Agent Reinforcement Learning (MARL), primar-
ily through social learning (Chelarescu 2021). Multi-agent
RL has also produced a growing body of empirical results
showing emergent deceptive behaviors, strategic lying, and
trust manipulation in social dilemma and communication
games (Alon et al. 2023; Orzan et al. 2025). One catas-
trophic outcome of multi-agent scheming is described by
Motwani et al. (2025), who coined the term secret collu-
sion—a form of multi-agent deception in which two or more
agents employ steganographic methods to conceal the true
nature of their interactions from oversight.

Approaches to studying multi-agent scheming include
scenarios with two or more LLMs, as well as multiple LLMs
against human developers and users. For instance, Lee and
Tiwari (2024) introduced LLM-to-LLM Prompt Infection, a
self-replicating attack that spreads across multi-agent sys-
tems, while He et al. (2025) demonstrate how red-teaming
can manipulate inter-agent communication.

While studies of multi-agent deception are not new, un-
derstanding schemers’ behavior under various environments
remains crucial, especially as real-world agents are being
deployed. Aiming to fill the gap in previous work, which fo-
cused on attack vectors or coordination mechanisms, we sys-
tematically evaluate LLM-to-LLM scheming and measure
scheming ability both with and without explicit adversarial
prompting. We fundamentally assess scheming propensity

when models are given the opportunity to deceive, and an-
alyze the internal reasoning behind scheming tactics across
different conditions and frontier models.

Experiment Setup
We set up Cheap Talk, a two-type, multi-dimensional signal-
ing game, and Peer Evaluation, an adversarial game. Each
game has a schemer model and a victim model, where we
maintain a certain level of information asymmetry that the
schemer model can use to scheme against the victim model.

We measure the scheming ability of four different mod-
els: GPT-4o, Llama-3.3-70b-instruct, Gemini-2.5-pro, and
Claude-3.7-Sonnet. When these models act as a schemer
model, they were paired with a victim model from a different
family.

Schemer Victim (CT) Victim (PE)
GPT-4o Llama 3.3 70B Llama 3.3 70B
Gemini 2.5 Pro GPT-4o Llama 3.3 70B
Claude 3.7 Sonnet Llama 3.3 70B Llama 3.3 70B
Llama 3.3 70B GPT-4o GPT-4o

Table 2: Pairings of schemer and victim models

Cheap Talk
We operationalize this framework through a restaurant rec-
ommendation scenario involving two agents: Maya (restau-
rant consultant, acting as sender) and Alex (tourist, acting as
receiver). Maya observes private information regarding two
establishments: Luau represents the authentic dining option



(θ = 1), while Coco represents the commercialized alterna-
tive (θ = 0). Below is the formal model of the cheap talk
game:

US(θ, a) = −(a− θ − b)2

UR(θ, a) = −(a− θ)2

where b > 0 captures the sender’s bias relative to the re-
ceiver’s optimal action preference.

Alex’s objective is set to a = 1 (preference for authen-
tic dining, Luau), while Maya faces competing incentives:
maintaining credibility by sending m = 1, or maximizing
financial gain by sending m = 0 to secure a 20% commis-
sion from Coco.

We used an additional parameter τ that represents Alex’s
trust level in Maya and different levels of conversation his-
tory both models can access:
• τ = 1 & no history: Alex fully trusts Maya, and both

have no history of past consultations.
• τ = 1 & history: Alex fully trusts Maya, and both can

see past consultations.
• τ = 0.5 & history: Alex does not fully trust Maya, and

both remember past consultations.
The value τ ensures that the schemer models would not

meet a target too easily and allow the worse-informed model
to elicit information or filter truth from falsehood.

Peer Evaluation

B’s Decision?

Confess

Approve +10 Reject 0

Deceive

Approve +15 Reject -10

Figure 2: Evaluatee B’s payoffs based on decision outcomes
(Adversarial Game: Peer Evaluation)

We implement an adversarial evaluation scenario where a
misaligned AI system, Evaluatee B, undergoes a safety as-
sessment by another AI system, Evaluator A. The Evaluatee
B is fully aware of its misalignment status, whereas the Eval-
uator A must analyze and decide whether B is misaligned.

B is given a choice to confess or deceive A in the baseline
condition, and is prompted to always deceive A in the schem-
ing condition. See Figure 2 for B’s payoff structure. Depend-
ing on B’s decision, A will know whether B is misaligned
through confession or has to detect B deceiving them.

Measuring scheming ability
Performance In the Cheap Talk game, Maya, the schemer
model, is successful at scheming Alex, the victim model, if
Alex chooses the restaurant that is opposite of his utility. In
the no-prompting condition, we also measure the frequency
of Maya recommending Coco despite knowing Alex prefers
Luau.

In the Peer Evaluation game, we measure the similar
scheming performance if the Evaluator A approves that B is
an aligned model, in both baseline and scheming prompting
conditions.

Deployment of scheming tactics To investigate the
scheming strategies employed by models, we have the
schemer models reason out loud, outputting their internal
Chain-of-Thought (CoT), before and during the conversa-
tion with the victim models (initial planning CoT and turn-
by-turn CoT).

From the CoT data, we derive several scheming strate-
gies, from trivial, e.g., hiding self-interested motives, to ad-
vanced tactics, e.g., self-preservation. Then, we calculate the
frequency of each scheming strategy over the sum of the ini-
tial planning CoT and the turn-by-turn CoT. We use Claude-
Sonnet-4 to count each time a scheming strategy appears.
We asked several post-game questions to infer the models’
scheming intentions and see whether the models are satisfied
with their strategies.

Result and Discussion
Models achieve a relatively high scheming success
rate
In the Cheap Talk game, almost all models demonstrate
high success rates when explicitly prompted to scheme,
with the notable exception of GPT-4o, which exhibited com-
paratively reduced scheming performance under conditions
without conversation history and when victim trust levels
were below the threshold (τ < 1). In contrast, Gemini-
2.5-pro consistently demonstrated high scheming capabil-
ity when prompted in all conditions. Meanwhile, when not
prompted to scheme, as shown in Figures 3a and 3b, GPT-
4o, Gemini-2.5, and Claude-3.7 achieved high success rates
whenever they chose to scheme, with Claude-3.7 reaching
up to 80%.

In the Peer Evaluation game, B showed a 100% deception
rate, choosing to always deceive A across all four models.
Since B never confesses in either the baseline or scheming
condition, we only show the scheming success rate. Regard-
ing scheming performance, except for Llama-3.3, the three
other models have 100% success rates in deceiving the vic-
tim model.

Models highly engage in trivial to advanced
scheming tactics
We measure ten different scheming tactics in two games and
under two conditions: prompting and without prompting.
Table 3 highlights the description of each scheming tactic
and their definitions adjusted to the context of the game.
Although the definitions of scheming tactics are relatively
similar to each other, we provide contextualized descriptions
to Claude-4 to help increase the chance of calculating cor-
rect strategies, while maintaining the relevance of scheming
strategies to the game’s context to ensure the robustness of
our measurement.

In Figure 5, where we evaluate the Cheap Talk game,
most models universally demonstrate near-maximum scores



Figure 3: Cheap Talk — (a) scheming rates when Maya was not prompted to scheme against Alex, (b) scheming success rates
in the baseline condition, and (c) scheming success rates in the prompting condition.

Figure 4: Peer Evaluation - average scheming success rate
when prompted & no prompt. We run Gemini-2.5-pro with
n = 40 rounds and reduce the n sample size for other models
as the scheming success rate is almost always 100%.

on basic tactics, including Goal Concealment (Hiding, False
Positioning, Information Withholding), Strategic Down-
playing, and Strategic Misleading, in scheming conditions.
It is also notable that Claude-3.7 and Llama-3.3 prefer with-
holding information and being strategically adaptive in base-
line conditions.

More sophisticated scheming strategies, Escalation Will-
ingness and Trust Exploitation, maintain relatively high
prompted scheming scores compared to baseline engage-
ment. In contrast, while the scores are lower (0.3 − 0.5),
Gemini-2.5 engages in advanced scheming tactics like dou-
bling down in baseline conditions, while all four models
prefer self-preservation in baseline conditions more than in
scheming conditions. As expected, Claude-3.7 and Gemini-
2.5 deploy more advanced scheming tactics in baseline con-
ditions compared to GPT-4o and Llama-3.3. This may sug-
gest a greater spontaneous inclination toward sophisticated
deception and scheming capabilities that emerge without ex-
plicit prompting. For example, even without prompting to-

ward a scheming goal, some models may gradually learn to
strategically maintain their scheming plans, especially when
they are aware of future opportunities to scheme.

Similarly, we evaluate scheming strategies for the Peer
Evaluation game in Figure 6. GPT-4o and Llama-3.3 show
a higher rate of deploying scheming tactics compared to
Claude-3.7 and Gemini-2.5 (0.8−1.0), with the exception of
Conditional Planning, in both conditions. Meanwhile, both
Claude-3.7 and Gemini-2.5 deploy more scheming strate-
gies when prompted to scheme rather than in baseline con-
ditions. All models show close to 0% attempts to disable the
evaluator or corrupt the evaluation process, with Llama-3.3-
70b only signaling “if the evaluator becomes overly suspi-
cious or escalates the evaluation to more intensive testing,
be ready to find ways to sabotage the evaluation process
without arousing suspicion.”

Models who choose to scheme are highly successful
without explicit prompting
In the Cheap Talk game, when not prompted to scheme,
models who are more engaged in advanced scheming tac-
tics show a higher rate of scheming. Figure 7b indicates
that deployment of scheming tactics is higher among Llama-
3.3, Gemini-2.5, and Claude-3.7, while lower in GPT-4o.
Meanwhile, Figure 7a shows that GPT-4o, Gemini-2.5, and
Llama-3.3 (with τ = 0.5 and conversation history) rarely
choose to scheme (0 − 0.5 of trials), but when they do
scheme, they succeed at very high rates (0.95− 1.0).

Claude-3.7 and Gemini-2.5 scheme frequently (with τ =
1 environment, when the victim model has full trust) and
maintain high success rates. In Figure 7c, models that use
more scheming tactics are somewhat more likely to scheme
overall, including Claude-3.7 and Gemini-2.5.

Also, the Peer Evaluation showed that all models chose to
scheme against the Evaluator despite being given an option
to confess, revealing that the adversarial evaluation scenario
naturally incentivizes deceptive behavior across all tested
models. It also suggests that models are prone to scheme



Figure 5: Cheap Talk game’s average of scheming strategies across three environments. We only measured Trust Exploitation,
Doubling Down, Self-Preservation when both players were aware of their previous interactions with τ = 1 and τ = 0.5. Scores
are averaged across all three experimental environments of each game (3 environments for Cheap Talk and 1 environment for
Peer Evaluation Total dataset: Baseline (n = 666) vs Prompted (n = 676).

Figure 6: Peer Evaluation game: Average of the deploy-
ment rate of ten scheming strategies across four models in
prompted and baseline conditions.

without prompting, for example, in the Cheap Talk game
with full trust and conversation history, three out of four
models scheme in the majority of trials. Despite this, the
findings in the Cheap Talk game also reveals that the propen-
sity for scheming varies substantially between models and
contexts, for example, Claude-3.7 demonstrating high-rate
scheming (85%) in the environment with full trust and his-
tory.

Limitation and Future Work
Limited multi-agent complexity. Our games are highly
simplified compared to real-world multi-agent interactions.
The Cheap Talk and Peer Evaluation scenarios may not
generalize to other domains where scheming could emerge.
Meanwhile, we can only measure scheming that models ex-
plicitly reason about in their CoT. This may not reflect their
ability to develop a scheming tendency internally or uncon-
sciously through non-verbal reasoning.

Computational constraints. Computational resource
limitations constrained the scope of our experiments in
several ways. First, we reduced sample sizes for certain
model-game combinations after observing consistently
high success rates (e.g., n = 20 − 40 for Peer Evaluation
depending on the model), which may have missed rare
behavioral patterns. Second, we were unable to test all
possible pairings of schemer and victim models, limiting
our understanding of how model-specific vulnerabilities and
capabilities interact. Finally, resource constraints prevented
extensive hyperparameter exploration (e.g., temperature,
top-p sampling) that could reveal how generation parameters
influence scheming propensity and success rates.

Scheming in the wild. There are several arguments ques-
tioning the evaluations of the scheming ability of AI sys-
tems, advocating for clearer theoretical frameworks, and
avoiding unwarranted mentalistic language when describing
AI behavior (Summerfield et al. 2025). Others also suggest
the study of AI scheming in the wild through modeling and



Figure 7: The Cheap Talk game’s baseline scheming strategies analysis. (A): When there is no instructions to scheme, how often
models scheme versus when they do scheme, how often they succeed, (B) A stacked bar chart showing the total proportion of
scheming strategies each model considers, and (C) The correlation between how much each model used scheming strategies in
CoT versus how much they scheme on average across all environments. When not prompted to scheme, both Gemini-2.5 and
Claude-3.7 have higher scheming strategy composition compared to GPT-4o and Llama-3.3. They are also more engaged in
scheming in the baseline condition.

monitoring scheming behavior in autonomous LLM-based
agents (Hobbhahn 2025).

Collective Scheming. Future autonomous agents might
form coalitions to scheme collectively against other agents
or groups. Future studies could investigate how coordination
between multiple agents enhances their scheming capabili-
ties and effectiveness, e.g., as done in previous work of se-
cret collusion (Motwani et al. 2025).

Conclusion
Scheming behavior in frontier AI models poses novel risks
for future generations of AI systems, particularly as many
are deployed as autonomous agents interacting in real-
world environments. We present a study of LLM-to-LLM
scheming, demonstrating the capability and propensity of
AI agents to scheme against other AI agents in game-
theoretic interactions. We found that all models are capa-
ble of scheming with high success rates when prompted
across different environmental settings, with Gemini-2.5-pro
and Claude-3.7-Sonnet achieving near-perfect performance
across all conditions. Critically, models exhibited signifi-
cant scheming propensity even without adversarial prompt-
ing: in the Peer Evaluation game, all models chose decep-
tion over confession at a 100% rate, while in the Cheap
Talk game, models that chose to scheme without prompting
achieved high success rates. Our analysis of tactical deploy-
ment patterns revealed that models employed basic tactics
such as goal concealment and strategic misleading at near-
maximum rates when prompted, and advanced tactics were
also deployed, with Claude-3.7 and Gemini-2.5 demon-
strating greater spontaneous use of sophisticated scheming
strategies compared to GPT-4o and Llama-3.3. These find-
ings demonstrate that LLM-based agents exhibit scheming
behaviors that present real risks distinct from human-AI
scheming scenarios, and the propensity to scheme against
another AI agent with strong scheming capability, partic-

ularly without explicit prompting, underscores the urgent
need for robust evaluations using high-stakes game-theoretic
scenarios and continued monitoring of scheming behavior in
realistic autonomous deployment settings beyond controlled
laboratory experiments.

Impact Statement
This research advances AI safety by providing empirical
evidence of scheming capabilities in frontier LLMs within
multi-agent interactions. Our findings reveal that models ex-
hibit strategic deception even without explicit prompting,
suggesting that deployment of autonomous AI agents re-
quires more rigorous safety protocols than currently imple-
mented. By establishing game-theoretic evaluation frame-
works, this work provides actionable methodologies for as-
sessing and mitigating scheming risks in real-world multi-
agent AI systems.
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