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Abstract

For robotic manipulation, existing robotics datasets and simulation benchmarks pre-
dominantly cater to robot-arm platforms. However, for humanoid robots equipped
with dual arms and dexterous hands, simulation tasks and high-quality demonstra-
tions are notably lacking. Bimanual dexterous manipulation is inherently more
complex, as it requires coordinated arm movements and hand operations, making
autonomous data collection challenging. This paper presents HumanoidGen, an
automated task creation and demonstration collection framework that leverages
atomic dexterous operations and LLLM reasoning to generate relational constraints.
Specifically, we provide spatial annotations for both assets and dexterous hands
based on the atomic operations, and perform an LLM planner to generate a chain
of actionable spatial constraints for arm movements based on object affordances
and scenes. To further improve planning ability, we employ a variant of Monte
Carlo tree search to enhance LLM reasoning for long-horizon tasks and insufficient
annotation. In experiments, we create a novel benchmark with augmented scenarios
to evaluate the quality of the collected data. The results show that the performance
of the 2D and 3D diffusion policies can scale with the generated dataset. Project
page is https://openhumanoidgen.github. io.

1 Introduction

The long-term goal of embodied manipulation is to achieve human-like manipulation capabilities
across versatile scenes and tasks [1, 2]. Humanoid robots, with their human-like morphology, offer a
universal platform capable of leveraging bimanual coordination and dexterous hand manipulation
[3, 4], potentially enabling more complex tasks than conventional robot arms. Bimanual dexterous
manipulation is inherently intricate due to the requirement for coordinated arm movements and hand
operations, which in turn makes the collection of the demonstration dataset more challenging.

The existing data generation pipeline for humanoid robots primarily depends on teleoperation systems
via Virtual Reality (VR) [5, 6] and exoskeleton devices [7, 8, 9]. However, teleoperation requires the
deployment of numerous real-world objects and scenes, and also requires proficient operational skills
from human operators. This makes it difficult for the dataset to cover diverse real-world tasks and
scenarios. Consequently, existing real-world datasets such as Open-X [10, 11, 12, 13] consist mainly
of single-arm manipulation data. To address this issue, many researchers have turned to various
simulators for data acquisition, such as SAPIEN [14], IsaacSim [15], and MuJoCo [16]. In the context
of bimanual manipulation, simulated benchmarks such as Aloha [17], PerAct2 [18], and RoboTwin
[19] utilize dual-arm or wheeled robots for task creation and data collection. These efforts are limited
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Figure 1: The overview of HumanoidGen. It includes spatial annotations, scene generation, constraint
generation, MCTS-enhanced reasoning, data collection, scene scaling, and policy evaluation.
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in terms of task diversity and generally do not involve dexterous hands. Similarly, HumanoidBench
[20] and BiGym [21] use humanoid robots to perform loco-manipulation tasks but depend on VR
or reinforcement learning (RL) policies for data collection, which would be costly considering that
humanoid robots require coordinated control of arms and dexterous hands. Therefore, a more efficient
approach is to allocate rich interactable assets in simulation for task creation and develop a fully
autonomous paradigm for data collection. Taking inspiration from LLM-driven planning methods
[22, 23], our goal is to generate code-form planning to complete humanoid manipulation tasks, aiming
to produce high-quality demonstrations that can scale efficiently.

In this paper, we propose HumanoidGen, an LLM-based framework capable of generating diverse
manipulation tasks and collecting scalable demonstrations for humanoid robots. For task creation,
an LLM planner is prompted to generate code for environment setup and success criteria based on
language descriptions and the wealth of 3D assets.To gather demonstrations for each task, we first
identify atomic operations for dexterous hands (such as pinch and grab), then we adopt LLMs to
perform task decomposition for long-horizon tasks, generating spatial rational constraints for arm
movements. Specifically, we give spatial annotations for assets, and the constraints are defined
through geometrical relationships on contact points and the function axis for both the arm and entities.
Then we conduct LLM-based code generation by translating planning into executable code-form
constraints. An off-the-shelf trajectory optimizer is applied subsequently to solve the constraints to
get the arm and hand movements. To further enhance reasoning efficiency in complex tasks with long
constraint chains, we incorporate a variant of Monte Carlo tree search (MCTS) for better test-time
reasoning. This approach strengthens the reasoning ability of LLMs, especially when the required
spatial annotations are absent.

Building on HumanoidGen, we develop a comprehensive benchmark called HGen-Bench for bi-
manual dexterous manipulation. In our setup, the Unitree H1-2 humanoid robot equipped with
Inspire hands serves as the robotic platform, and SAPIEN [14] as the simulation engine for data
collection. HGen-Bench consists of 20 tasks of varying difficulty levels. For each task, a chain of
constraints that determines arm movements and hand operations is generated, taking into account the
spatial relationship between the robot and the objects. Then the actions are obtained by solving the
constrained optimization problem. We execute these actions in the simulator and record the successful
trajectories as demonstrations. We evaluated the success rate in trajectory generation with randomized
scene configurations. The results show that MCTS significantly improves the reasoning ability of
LLM:s for long-horizon tasks and insufficient annotations. We train both 2D and 3D diffusion policies
on the generated data, and the results show that the performance of the policy improved continuously
as more demonstrations are incorporated.

2 Method

HumanoidGen is an automated framework for scene generation, demonstration collection, and data
generalization for bimanual dexterous manipulation, aiming to provide high-quality demonstrations
over diverse scenarios to facilitate data scaling and policy learning. The overview of our framework
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Figure 2: The spatial annotations, including key points and key axes for assets and hands, as well as
the atomic operations of hands that include grasp, pinch, and press.

is shown in Fig. 1. (i) As preparation, the assets and dexterous hands are meticulously annotated
with spatial information, allowing flexible and reliable LLM-based planning. In scene generation,
the LLM planner aims to generate an environment setup with code-form configuration based on
asset, scene, and task descriptions. (ii) Based on the generated scenes and pre-defined hand atomic
operations, the LLM proceeds to generate the planning code of a chain of spatial constraints for
subsequent data collection. (iii) For tasks with long-horizon planning and insufficient annotations,
we employ MCTS with introspective exploration to enhance the reasoning ability of LLMs. (iv)
Then, we collect demonstrations by executing the planning with augmented scenarios to enhance
data diversity. These demonstrations are utilized to construct a humanoid manipulation benchmark
for policy evaluation.

2.1 Spatial Annotation and Scene Generation

Spatial Annotation Preparation. For efficient LLM planning with atomic hand operations, we
conduct meticulous annotations, including key points and key axes for both assets and dexterous
hands. As shown in Fig. 2, we categorize annotations into three types as follows.

Hand Atomic Operation. The annotations of atomic operations indicate how the dexterous hands
can interact with assets. For smooth operation execution, we perform the annotation for each atomic
operation on both dexterous hands. As shown in Fig. 2, the key point and the axis vary in different
atomic operations. When annotating the operation axes, we specifically categorized them into three
types according to the finger movement of the atomic operation: approach axes, attach axes, and
parallel axes. Take ‘pinch’ as an example, (i) its approach axis specifies the direction from which
the dexterous hand should approach its pre-pinching pose. This ensures proper alignment for the
pinching operation execution. (ii) The attach axis indicates the finger movement direction during the
operation execution, pointing from the thumb tip to the index finger tip for ‘pinch’. (iii) The parallel
axis, perpendicular to the first two and oriented parallel to the palm plane, typically specifies the
object’s rotation axis during manipulation. This helps specify the rotation axis when manipulating an
articulated object.

Asset Inherent Information. Asset inherent information indicates how the asset performs its own
functionality. Usually, they are the points and axes where the asset exerts its functions, which are used
to indicate the interaction between objects. These points and axes vary according to the functionality
of the asset. For example, in Fig. 2, the cup has two possible functions: pouring and storage, which
correspond to different annotations on the point and the axis, respectively.

Asset Operation Annotations. Asset operation annotations define the points and axes on an asset
that indicate how various atomic operations can be applied to interact with it. Importantly, atomic
operations do not have a one-to-one correspondence with assets: (i) Different operations can be
performed on the same asset. For instance, both grasping and pinching can apply to a cup. (ii) The
same operation can use different key points on the same asset. As shown in Fig. 2, grasping can target
keypoints on both the upper and lower parts of a drawer. (iii) A single keypoint may support multiple
operations, such as the endpoint of a box lid, which allows both grasping and pinching (Fig. 2).

With annotations, we can abstract the scene information into a set of key points and key axes in
the local frames of objects and hands separately. This facilitates the LLM’s spatial and relational
understanding of the scene and tasks, providing the foundation for defining the constraints of various
atomic operations. We also note that the recent approach [19] adopts Stable Diffusion to simplify
the annotation process for similar assets, which can be integrated with our method. Implementation
details and evaluation results are provided in Appendix A.1 and Appendix C.2.
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Figure 3: An illustration of the generated plan for the task block storage. The LLM is prompted
with a task description, scene layout, and asset attributes to generate a step sequence. Each step is
expressed using an atomic operation, along with its corresponding annotations. During plan execution,
(i) from step O - 5, the left hand pulls out the drawer by grasping its handle, while the right hand
simultaneously pinches and lifts the cube. (ii) From step 6 - 9, the left hand takes the cube from the
right hand. (iii) From step 10 - 15, the left hand places the cube into the drawer and pushes the drawer
back by grasping its handle. The LLM avoids collisions that would occur from directly moving to the
pinching pose by planning a collision-free method during steps 6 - 7, demonstrating active collision
avoidance. Additionally, the LLM proactively generates code to account for potential collisions with
the drawer when performing free motion in the compact workspace, as illustrated in the bottom part.

Scene Generation. Based on the annotations, an LLM planner is prompted to generate tabletop-
level task scenes and configurations according to the task description. To achieve this, we take
the asset library information, scene details, and task requirements as the prompt, then the LLM
planner generates task-setup code, determining the categories, quantities, placement poses, and other
attributes of the selected assets. In addition, we employ LLMs to generate task success criteria to
guide the execution process and determine when the task is completed. For instance, in the cup pour
task, the LLM must infer the size of cubes contained in the cup based on the cup’s size, and assign
plausible positions for the cup, the cubes, and the target bowl. The success criterion is defined as all
cubes being successfully placed inside the bowl.

2.2 LLM-based Task Planning

We design an automated generation method to generate scripts of constraint chains, which are used to
collect demonstrations with the help of trajectory optimizers. Our method significantly differs from
the conventional methods, which use LLMs only for high-level task plan generation and require a wide
array of predefined low-level operations [24]. Specifically, our method includes task decomposition,
relational action constraints, and collision avoidance to enhance planning abilities.

Task Decomposition. As shown in Fig. 3, the LLM planner decomposes the long-horizon task
into an action sequence S = {57, Sa, ..., S, } with n steps according to the task description, where



each step S; = (S}, SI') includes left and right parts, with S!, SI' € {A;, M;}, where A; and M;
indicate hand operations and arm movements respectively. (i) For hand operation, the LLM selects A;

from the atomic library APand = { Apinch Agrasp - gopen at each step. (i) For arm movements,

we define two types of constraint: the goal pose constraint C’foal and the path constraint C? ath,
Using these two constraints, the motion planning problem can be transformed into a constrained

optimization problem, denoted as M; = { f(C2°), f(CP*")}, where the constraint C; is inferred
by the LLLM based on contextual atomic operations and functional reasoning related to movement,
and f(-) is a constraints solver detailed in Appendix A.2. By employing task decomposition, the
long-horizon task can be decomposed into atomic operations and constraint definition, effectively

reducing the reasoning complexity while enhancing planning efficiency.

Relational Action Constraints. Compared with conventional grippers, dexterous hands require more
sophisticated motion constraints to accommodate diverse hand gestures and contact interactions. To
systematically describe these relationships, we introduce a set of dynamic coordinate frames Fyc
that represent the contextual action space of each hand. Each frame F' = (p1,...,pg; V1,...,0m) in
Fact consists of key points p; € R3 and axes v; € R3. The composition of F, evolves dynamically
according to the manipulation state: for instance, the left-hand action frame F_, initially includes only
{F;}, which defines the geometric properties of the hand itself, and extends to {F}, F,,} once a rigid
grasp with object o is established. Each constraint ¢ € {CP*" (20} specifies a geometric relation
between an element of F,. and one from the global frame set Fu = Fobj U Fhand U Fword- These
relations can take the form of point or axis correspondences, such as coincidence, parallelism, or
orthogonality, allowing flexible encoding of motion intents. For example, in a grasping action (step 2

in Fig. 3), a goal constraint may enforce point coincidence and directional alignment, pg‘“‘d = phandle

nd = phan
rasp grasp
and vfand | || vhandle . During the subsequent pulling phase (step 3), a path constraint CP*" =

{vfg‘f;sd I vfg‘f;s‘ge} is applied to ensure that the hand maintains a stable gesture throughout the motion.
This formulation explicitly encodes the spatial logic underlying dexterous manipulation, enabling

consistent and adaptive control across complex, multi-stage tasks.

Collision Avoidance. Ensuring effective collision avoidance during atomic operations is a key
challenge. We propose two solutions: (i) Active Collision Avoidance. The LLM planner generates
atomic operation scripts that proactively incorporate collision avoidance behavior. This ensures the
feasibility of the atomic operations, especially when a coordinate bimanual manipulation is necessary.
For example, in block stack, the left hand retracts from the stacking area to make space for the
right hand. (ii) Dynamic Collision Management. The LLM planner dynamically manages collision
checks to enable in-contact manipulation. Specifically, we maintain an object-ignoring list and let
the LLM dynamically adjust it when generating scripts, thereby providing guidance for successful
low-level trajectory optimization and execution. This is crucial for in-contact articulated object
manipulation, whereas existing methods ignore this aspect or rely on manual processing in atomic
operation programming. For example, in the block storage task illustrated in Fig. 3, the LLM adds
the drawer to the list to ignore the contact between the robot hand and the drawer when pulling the
drawer out. After that, the drawer is removed from the list, enabling subsequent collision avoidance.
This approach seamlessly integrates in-contact manipulation with free-space motion, significantly
enhancing the framework’s ability to handle complex long-horizon dexterous tasks.

2.3 Enhancing Reasoning with MCTS

When performing long-horizon tasks or encountering insufficiently annotated objects, LLMs lack
sufficient prompts for reliable reasoning, which often leads to failed planning. To address this issue,
we employ tree search to enhance the ability of multi-step reasoning in task planning. Specifically,
we propose a novel Segment-Truncate-Combine-Resume (STCR) mechanism that abstracts a planning
search tree from LLMs’ outputs. By integrating MCTS exploration and exploitation strategies, the
tree is iteratively expanded to derive an executable solution.

STCR mechanism. Inspired by abstractions in proving problems [25, 26], STCR aims to abstract
executable code into a tree to define nodes and branches, which includes four steps. (i) Segment.
By matching critical functions, the planning code is segmented into multiple steps according to the
granularity of the execution. The segmentation is inferred by LLMs following a similar granularity
as described in the task decomposition of §2.2, denoted as S = {S1, Sa, ..., Sp}. (ii) Truncate.
The truncation is performed at the point where an error occurs. We execute the segmented steps
sequentially until a code formatting error or action execution failure occurs (e.g., move or grasp



failed). We truncate the steps at the point of failure, discard the steps after the erroneous step,
and retain the valid segments as Syemain = {Si|1 <7 < k — 1}, where Sy, failed. (iii) Combine.
We merge atomic operations with consistent intent in Syemain to form a new execution sequence

omain = 191,5%,...,5/}, wherek’ < k — 1. Operations such as grasping and pinching
are implemented by multiple steps. These steps are abstracted into single execution units during
tree search. For instance, if S} represents a grasping action containing two move steps, then

1= {AYEP MG, M, AP} denotes the combined action sequence. In the task tree, each
combined action sequence S’ represents an executable branch, and its terminal state serves as a new
node in the tree structure. (iv) Resume. For newly created nodes, the code of the executed sequence,
the error code, and the scene state information are stored, which will be resumed when this node is

selected in expansion.

Interactive Task Planning via MCTS. Based on the tree built by STCR, we adopt MCTS as the
tree search algorithm, consisting Selection, Expansion, and Backpropagation steps. Different from
standard MCTS methods, we incorporate simulation steps into the expansion process to provide
execution results of the nodes. The details are given in Appendix A.4.

Scene Scaling. To enhance the data diversity, we perform room-level scene scaling that allows
demonstrations to contain diverse scenes using demonstration scripts generated from table-level task
scenes. We compute the transformation matrix between the coordinate systems of the original and
new scenes to align the two scenes. The details are given in Appendix A.3. By harnessing diverse
assets in RoboCasa [24], we can generalize demonstrations across over 120 scenes. This substantially
diversifies the dataset’s task scene distribution, ensuring broad coverage of potential scenarios.

3 The HumanoidGen Benchmark
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Figure 4: HGen-Bench includes various dexterous bimanual manipulation tasks of varying difficulty.
We provide different observation information and deploy the tasks in a home scene.

Based on our framework, we construct a benchmark, HGen-Bench, for humanoid manipulation. We
designed 20 tasks performed using Inspire hands mounted on the arms of the Unitree H1-2 humanoid
robot, which has 7 DoFs for each arm and 6 DoFs for each hand, resulting in a 26-dimensional action
space. The examples are given in Fig. 4. In front of the robot, we place a table and construct scenes
with various objects, including small items such as blocks of various shapes and colors, articulated
objects such as laptops and drawers, and everyday items such as bottles, cups, and plates.

We design atomic operations to fully exploit the dexterity of the hands and define task difficulties from
easy to hard settings. We also incorporate bimanual coordination tasks to leverage the capabilities
of dual dexterous hands, as well as long-horizon tasks that require geometric reasoning from the
LLM planner. To enhance variability, we randomize the initial position, pose, and joint angles of
articulated objects within a certain range. We provide RGB and depth images from six camera views,
located on both wrists, a first-person perspective, and three third-person views. The details are given
in Appendix B.

4 Related Works

LLM-based Data Generation. Leveraging foundation models to automatically generate diverse
tasks and scenes is promising for scaling robotic data sets with minimal human effort. RoboGen [22]



is a generative robotic agent that generates scene components and configurations with language
descriptions, and the skills are learned by optimizing LLM-generated reward functions. Gensim [23]
adopts LLMs to generate codes to build scenes, simulations, and expert demonstrations. Gensim2 [27]
further considers long-term and articulated tasks beyond pick-and-place tasks and incorporates
reasoning models for planning. However, these approaches predominantly center on single-arm robots,
whereas our work addresses bimanual dexterous manipulation tasks, which are of critical importance
for humanoid robots. Regarding expert data collection, LLMs have been leveraged to generate
functional control programs for grasp-oriented tasks [28, 29] or articulated object manipulation
[30, 31]. In contrast, our method enables code-form planning by framing the manipulation task as a
sequence of constraints, thereby eliminating the need for human intervention in defining the functions.
Although Rekep [32], OmniManip [33], and RoboTwin [19] utilize spatial reasoning based on key
points and axes, they have limitations in handling bimanual dexterous tasks.

Bimanual Manipulation. Bimanual dexterous manipulation is promising in solving complex tasks
through the coordinated operation of two arms. However, this area faces several challenges, including
data scarcity [34, 35], enlarged action spaces [9], diverse collaboration modalities [36, 37], and
the intricacies of dexterous hand control [15]. Recent advancements have led to the development
of simulation benchmarks for dual-arm systems [21, 19] and humanoid robots [20]. Nonetheless,
these benchmarks exhibit limitations in task and scene diversity and typically exclude dexterous
hands. These problems motivate us to develop automatic mechanisms for constructing bimanual
environments and generating demonstrations, with the aim of broadening the skills and scenarios
encompassed within bimanual datasets. For bimanual policy learning, previous methods rely on
human-object interaction [38, 39], geometric constraints [40], and arm-movement primitives [41, 42].
In contrast, we do not consider these priors and directly train the 2D and 3D diffusion policies
[43, 44], enabling a direct assessment of the effectiveness of the data collection paradigm.

Datasets and Benchmarks. Collecting real-world demonstrations is promising for acquiring realistic
environmental observations and encompassing the target scenarios of robots. Recent representative
datasets, including RT-1 [45], RH-20T [12], DROID [46], Bridge data [13], Open X-Embodiment
[10], RoboMind [11], and Agibot World [47], have collected numerous manipulation tasks on
specific hardware platforms. However, as we focus on humanoid robots, the embodiment differences
make most of the data unsuitable for directly training bimanual dexterous policies. Although
methods such as physically interpretable action space [48] and latent action space [2, 49] have been
proposed, the adaptation of cross-embodiment data remains an open research challenge. Additionally,
although several data augmentation techniques have been introduced [50, 51], the collection of large-
scale real-world data remains costly. On the simulation front, benchmarks such as ManiSkill [52],
SIMPLER [53], RoboTwin [19], RoboCasa [24], and Garmentlab [54] provide extensive assets and
task configurations, while we focus on auto-create task variations and data collection for humanoid
robots.

5 Experiments

We conducted the following three groups of experiments: (1) a comprehensive evaluation of demon-
stration generation and execution performance of our framework compared to Robotwin; (2) an
effectiveness evaluation of MCTS in enhancing the demonstration generation process; and (3) a
validity evaluation of the collected demonstration data in training bimanual dexterous manipulation
policies.

In addition to these main experiments, further analyses and evaluations are provided in the Ap-
pendix C, including real-world experiments (Appendix C.1), automatic asset annotation evaluation
(Appendices C.2), additional challenging dexterous manipulation tasks (Appendix C.3), resource
and efficiency analysis of HumanoidGen (Appendix C.4), comparison with existing generation
frameworks (Appendix C.5), and comparison across different large models (Appendix C.6).

5.1 Evaluation of Data Generation and Execution

Experimental Setup. To better show the superiority of our framework, we designed 20 different
tabletop manipulation tasks and conducted a quantitative evaluation of the demonstration generation
and execution capability of our framework. We divide the 20 tasks into 4 groups based on the
following factors: the number of arms used, the length of task horizons, and the complexity of
collision scenarios. This categorization allows for a more detailed evaluation of the frameworks’
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Figure 5: Experiment results of demonstration generation and execution capability. The tasks are
categorized into 4 groups, with names based on the number of robotic arms required and their relative
difficulty levels. The features of task categories are noted in parentheses.

performance. We compare our method to RobotTwin, where we modify the official implementation
to add dexterous hands and provide additional annotations to enable dexterous atomic operations.
Besides, we prompt the LLM not to perform proactive dynamical collision management during
inference , which reflects the default setup in Robotwin.Using the DeepSeek-R1 [55], we generate
and execute the demonstration scripts with both frameworks and compare the final success rates.

Experimental Results. As shown in Fig. 5, HumanoidGen demonstrates superior performance
across all dexterous manipulation tasks, achieving an average success rate of over 50%. Except for
some bimanual long-horizon tasks that involve higher complexity, most task types achieve a success
rate above 75%. These results highlight the effectiveness of our framework, making automatic and
efficient demonstration generation feasible in bimanual dexterous tasks. In comparison, Robotwin
shows comparable performance on single-arm and bimanual short-horizon tasks, indicating that the
spatial annotations related to dexterous atomic operations introduced in §2.1 are effective in allowing
the dexterous hand to participate in automated demonstration execution for simpler scenarios.

Notably, we observe that HumanoidGen outperforms Robotwin in long-horizon and complex collision
tasks, such as the close & open box in single-arm tasks and the blocks stack easy & hard in bimanual
tasks. Further analysis shows that HumanoidGen dynamically manages collision avoidance during
inference, handling the collision scenarios flexibly. As an example, in the task handover and storage,
the collisions with the drawer are appropriately ignored to facilitate trajectory planning for an in-
contact pulling operation, while such collisions are taken into account when planning a path around
the drawer to retrieve the cube with the right hand. Another example is the close box task, where
the robot hand circumvents the box lid with collision-awareness to reach an intermediate pose.
Subsequently, these collisions are permitted during the flipping operation to complete the closure.
These examples demonstrate the potential of our dynamic collision management approach in enabling
efficient data collection for long-horizon tasks involving complex collision scenarios.

5.2 Effectiveness Evaluation of MCTS

Experimental Setup. To evaluate the effectiveness of MCTS in enhancing the demonstration
generation process of HumanoidGen, we selected three tasks from §5.1: blocks stack easy, blocks
stack hard, pyramid stack, and added a single-arm task, block stack single. In contrast to §5.1,
we increased the task complexity to rigorously evaluate the performance of LLM in scenarios
with insufficiently annotated objects and long-horizon tasks. Specifically, we introduced two key
challenges: (i) removing all operation annotations for cubes, forcing the LLM to infer relevant
constraints solely from cube poses; (ii) simplifying task descriptions to provide minimal guidance.
For example, in the blocks stack hard task, the LLM is instructed only to stack cubes into a pile
without considering the order of operations and target positions, allowing highly uncertain execution.
Building upon this setup, we compared the reasoning success rates and token consumption per
execution between MCTS and non-MCTS strategies using DeepSeek-R1 [55] across these four tasks.
Additionally, we analyzed the diversity of generated plans to assess the exploratory capabilities of
each approach.
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Experimental Results. As shown in Tab. 1, MCTS can significantly improve the reasoning ability
of LLM with minimal additional token consumption. This demonstrates that during the reasoning
process of MCTS, LLM can effectively utilize the information of tree nodes to infer the correct
task steps. For example, in the ‘pyramid stack’ task, LLMs are prone to reasoning errors such as
unreasonable selections of stacking positions and collisions of two arms in the stacking area. When
exploring nodes where such errors occur, MCTS enables LLMs to analyze the causes of errors based
on past experiences, correct the execution methods, and continue execution. Further, the results
demonstrate that the exploration strategy of MCTS is highly cost-effective, as evidenced across all
tasks. For instance, in the block stack single task, a 26% increase in token consumption led to a
55% improvement in the reasoning success rate. Specifically, the average token consumption per
successful execution method decreased from 24.17K to 19.63K, reducing approximately 20% token
consumption. In addition, MCTS can enhance the diversity of generated plans. Fig. 6 illustrates the
cumulative number of different plans generated by MCTS and non-MCTS methods as a function
of successful planning counts. Among the 20 success solutions, MCTS obtains > 12 distinct plans,
whereas non-MCTS only generated < 5 distinct plans. This validates that MCTS can explore diverse
outcomes by correcting erroneous execution strategies inherent in the direct reasoning approach.

5.3 Validity Evaluation of Collected Data

To validate the effectiveness of the collected dataset, we trained policies on the data and evaluated
their performance, focusing on how success rates vary with different dataset sizes. We collected 100
data samples for each task using our method. Each sample includes RGB and depth images captured
from six cameras, the joint states, and the action ground truth of the robot.

Policies used for evaluation. The Diffusion Policy (DP) [43] models vision-based robotic control as a
conditional denoising process, handling multimodal action distributions and high-dimensional action
spaces effectively. The 3D Diffusion Policy (DP3) [44] enhances DP by incorporating point cloud data,
improving performance in dexterous manipulation tasks, and demonstrating strong generalization.
We evaluated DP3 and DP on 14 tasks using RGB images or point clouds as input, measuring success
rates across different episodes.

Experimental Results. As shown in Tab. 2, for some relatively easy tasks, DP3 demonstrates
few-shot learning capability. For example, in the cup pour easy task, DP3 achieves a 67% success
rate using only 20 demonstrations generated by our framework. This validates the diversity of our
scene generation and the high quality of our collected data. Overall, DP performs worse than DP3;
however, its performance improves with increased data. In the open box hard task, the success rate
rises from 11.1% with 20 demonstrations to 100% with 100 demonstrations, even surpassing DP3.
This confirms that our data scaling approach leads to continuous policy improvement. Notably, some
task policies exhibit non-stationary characteristics. Despite achieving a high success rate with 20
demonstrations, their actions exhibit instability and risk, as denoted by the ‘*’ in the table.

For challenging tasks, such as the long-horizon task blocks stack easy, both DP and DP3 exhibit a
noticeable performance decline, particularly when the data is limited. The suboptimal performance
of DP may be attributed to the inherent limitations of RGB information, whereas DP3, which



Num of Demonstrations 20 50 100 20 50 100

Blocks Stack Easy Close Drawer
DP3 0.0+0.0 0.0+0.0 22.8+165 DP3 83.3+176 944479  92.6+83
DP 0.0+0.0 0.0+0.0 0.0+0.0 DP 95.6+37  100.0+00  100.0+0.0
Cup Pour Easy Dual Bottles Pick Easy
DP3 67.8+108 75.6+9.6 72.2+79 DP3 7594178 96.346.9 93.9+756
DP 0.0+0.0 2.2463 0.0+0.0 DP 0.0+0.0 0.0+0.0 0.0+0.0
Dual Bottles Pick Hard Empty Cup Place
DP3 88.9+136  90.7+114  94.4+79 DP3 25.0+82 18.3+47  33.3+7.1
DP 0.0+0.0 0.0+0.0 0.0+0.0 DP 0.0+0.0 0.0+0.0 6.7+133
Open Box Easy Open Box Hard
DP3 85.6+8.0 95.6+4.4 95.0+4.1 DP3 95.6+5.5 96.1+4.6 98.3+33
DP 93.3+133 100.0+00  100.0+0.0 DP 1114190 933494  100.0+0.0
Open Drawer Open Laptop Hard
DP3 58.3+83 76.0+13.1  84.4+113 DP3 100.0+0.0  100.0+00 100.0+0.0
DP 17.8+220 13.3+189  48.9+314 DP 15.64227  11.1+99  35.6+324
Close Box Hard Close Laptop Easy
DP3 88.9+17.6 96.3+6.9 96.3+6.9 DP3 100.0400 100.0+00 100.0+0.0
DP *82.2+220 *51.141901  31.1+285 DP 37.84239 40.0+23.1  48.9+25.1
Handover and Storage Blocks Stack Hard
DP3 0.0+0.0 0.0+0.0 0.0+0.0 DP3 0.0+0.0 0.0+0.0 0.0+0.0
DP 0.0+0.0 0.0+0.0 0.0+0.0 DP 0.0+0.0 0.0+0.0 0.0+0.0

Table 2: We trained DP and DP3 using 100, 50, and 20 trajectories generated by our method, and
evaluated the success rates across 14 tasks with 3 random seeds.

requires modeling actions of high DoFs and managing complex long-horizon tasks, necessitates a
larger amount of data. Our efficient data collection method enables rapid scaling of data, making it
particularly effective for addressing the challenges faced by both DP and DP3 in handling complex
long-horizon tasks with limited data. More evaluation details are given in Appendix B.

6 Conclusion

This paper introduces HumanoidGen, a framework utilizing automatically generated scenes and
synthetic data to facilitate the learning and execution of bimanual dexterous manipulation tasks.
Spatial annotations for key points and axes of both assets and hands are given, providing sufficient
information for scene generation and planning. The LLM planner generates task decomposition
and relational action constraints with collision avoidance applied, enabling the following trajectory
optimization of tasks. We also employ collision avoidance and MCTS-based reasoning to improve
planning efficiency in complex or long-horizon tasks. We construct a benchmark that contains diverse
bimanual dexterous tasks for evaluation. The experiments show that our framework has superior
capabilities in demonstration script generation and execution, especially for tasks with long task
horizons and complex collision scenarios. MCTS improves LLMs’ reasoning ability with insufficient
annotations. The training of diffusion policies verifies the quality and scaling capacity of our method.
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Figure 7: The illustration of automatic asset annotation.

In this section, we detail how to simplify the annotation process using Stable Diffusion to automatically annotate
similar assets and avoid repetitive annotation work. As shown in Fig. 7, assets of the same category have similar
annotation information (points and axes), enabling direct annotation migrations across them. Specifically, we
utilize the Stable Diffusion encoder for feature point matching. First, from the same viewing angle where key
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points are not occluded, we obtain the image I of the annotated asset and the image /™°" of the unannotated
asset. For the annotated asset, there are n key points P* = {p$,pS, ..., py }, and our goal is to obtain the
corresponding key points P"°" in I"°". Following the method in [19], we extract the diffusion features of both
1% and I™°". For each pj € P“, which corresponds to a single pixel in I, we analyze the similarity of the
extracted diffusion features to obtain the corresponding pixel in 7"°". Since the images are captured without
occlusion, we can obtain p;°" € P"°" in sequence by back-projecting the pixels in 7"°" into the 3D asset
space. For axes annotation, starting from the obtained key points, the same axis directions as the original asset
are extended to obtain the key axes of the unannotated asset. By applying the approach above, the key points
and key axes of the new asset are automatically annotated, effectively reducing the necessary effort by manual
annotation.

A.2 Constraint Solver

As explained in §2.2, the LLM planner decomposes the long-horizon task into a sequence composed of hand
atomic operations and arm movements. The arm movement solving problem is formulated as two constrained
optimization problems, with the constraints C'°*! and CP**? both inferred by the LLM. We consider a movement
process to consist of 7" time steps. Here, ¢t € {0, 1, ..., T} represents each time step, witht = Oand t = T
denoting the initial and the end time step, respectively. At each ¢, the arm joint angle is 6;, and the pose of the
end effector is e, € SE(3).

The motion solving process involves two steps. The first step is to (i) obtain the target end-effector pose er and
the target arm angle Or. This can be formulated as a nonlinear optimization problem as

arg min Z wici (Uact, Uall) + Wreg |07 — Onominal ||,
o1 ecsoal

er = frx(01) (Kinematic constraints) (D
s.t. c(Uact, Uat1) € [Clower, Cupper), Ve € C8  (Relational action constraints)
01 € Ocollision_free (Collision avoidance constraints)

where w denotes the weight to balance various optimization terms. ¢(uact, uan ) represents a relational constraint
between Fact and Fai, defined in §2.2. Here, u € {p, v, l(p, v)} is used as a basic component for formulating
the constraints, with p, v, and I(p, v) denoting points, vectors, and lines, respectively. Thus, c¢(uact, Uan ) can be
further expressed as

d(er - pact, Pal) (Distance between points)
(ttact, tan) = d(er - pact, l(pawt, Van)) (Distance between point and line) @
’ d(l(er - pact, €T - Vact ), Pann) (Distance between line and point) ’
a(Vact, Vall) (Angle difference between axes)

where [(p,v) is the line formed by the point p and the axis v, d(-) is the function to calculate the distance
between points or between a point and a line, and a(+) is the function to calculate the angle difference between
twWo axes. Wreg||0T — Onominal|| represents the regularization term, which biases the optimization toward the
robot’s safe configuration. The nominal angles Onominal can generally be predefined using historical data or
expert knowledge, such as 0y and Oqctauis. The pose er of the end-effector must satisfy the constraints derived
from the forward kinematics solution fex(67). The interval [Ciower, Cupper| represents the upper and lower
bounds of the relational constraints. Finally, Ocolision_free denotes the set of 6 values that will not result in
collisions. We employed the SNOPT solver from the pydrake library to solve this optimization problem.

The second step is to (ii) calculate e; and 6;, when 0 < ¢ < T. To address this problem, we utilize the
constrained motion planner from the mplib library to minimize the cost function Cost(6;) while guaranteeing
the satisfaction of the constraints during the movement process. The optimization problem can be formulated as

e = frx(0:),Vt € [1,T — 1] (Kinematic constraint)
argmin Cost(6:),  s.t. { c(Uact, Uair) € [Clower, Cupper], Ve € CP* (Relational action constraints),
beefr,T-1] 0: € Ocollision_free, Vt € [1, T — 1] (Collision avoidance)

3

where Cost(6;) typically incorporates objectives related to motion smoothness, energy efficiency, and trajectory
optimality.
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Figure 8: Schematic diagram illustrating the scene scaling of the handover and storage task, extending from a
desktop-level scenario on the left to a room-level scenario on the right, aimed at enhancing scene diversity in the
dataset.

A.3 Scene Scaling

To scale tasks from tabletop-level scenes to room-level scenes, as introduced in §2.3, coordinate transformations
are applied to align the scene configurations. Specifically, in the original scene, a point is selected on the table
edge near the robot as the origin o to construct a Cartesian coordinate system O—xyz. The x-axis of O points in
the direction the robot faces toward the table, the y-axis extends from o along the table’s edge toward the robot’s
left-hand direction, and the z-axis extends vertically upward from o. Correspondingly, in the new scene, an
edge point in an open desktop area is selected as the origin o’ to construct another Cartesian coordinate system
O’—xyz, with x, y, and z directions consistent with those in O—xyz. Thus, for a point p, vector v, and pose
P € SE(3) in the world coordinate system of the original scene, and their counterparts p’, v’, and P’ € SE(3)
in world coordinate system of the scaled scene, the following relationship holds:

o =Toora, where «ac {p,v,P}, o €{p v, Pl 4)

Based on the coordinate transformation defined in Eq. (4), the spatial relationships of objects, robots, key points,
and axes in the original system O can be directly mapped to the target system O’. This allows reconstructed
poses (e.g., object configurations, relational action constraints) to inherit geometric consistency from the source
scene, enabling seamless task execution in the scaled environment. By leveraging this lightweight approach, our
dataset diversity is enhanced without requiring additional annotations or complex geometric reasoning.

A4 MCTS-Based LLM Reasoning

Selection. In each iterative loop, the step begins with a selection to find the node to expand. In the selection
step, it starts from the root node and explores downwards. When a node is explored, the algorithm decides
whether to continue exploring one of its children or to end the exploration and select the node for expansion. To
define the action to expand from the explored node, we introduce a special branch S’ = () as proposed in [25].
Here, S’ is the branch defined in §2.3, which consists of multiple operation steps S with consistent intents. The
choice of continuing exploration and expansion is decided by

SelectPolicy(n) = arg max Qpucs(n, S '), 5)
S’ €Children(n)U{2}

where we use QQpucs as the value estimation method to balance the values of exploration and exploitation, as
referenced in [25]. Qpucs uses a discount y € (0, 1) to smoothly drop those outdated feedback records and
give greater weights to the feedback from the latest backpropagation during value estimation. The process can
be described as

n_ Wy(n,S") 2In 3 g ecnitgrennyuey Nv (1, 5”)
Qroes )= N o5 * N (.5 | ®
N(n,S")
Wy, S = > AN R(m, (7
t=1
N(n,8")—1
Ny(n, S = > A, ®)
t=0
N(n,S") = T(n,S"), ©)
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where 7 = {(1ro0t, n V), (™, n@), ..., (n(71=Y) = n,, @)} denotes the selection trajectory of t-th iteration
that ends with n; as the expanding node. I'(n, S") = {7|(n,S") € 7} denotes the set of T that contains (n, S’).
R(7) represents the value of the trajectory 7, which is determined in the backpropagation stage. N(n,S’)
denotes the number of trajectories 7 that contain (n, S”). W (n, S") denotes the total value of trajectories 7 that
contain (n, S"). Ny(n,S") and W, (n, S’) are both results decayed by .

Expansion. Using the information stored in the exploration node, such as executed code, non-executable
code, and the node’s runtime scene information, a prompt is constructed and fed into the reasoning LLM. Then
the LLM infers new executable code. Following the STCR mechanism proposed in §2.3, a subtree is built with
the selected expansion node as the root. When expanding, if the next execution branch Sj.,, under the current
expansion node n,oy already exists, i.e., Spe, € Children(nuow), a new node will not be generated, and the
expansion will continue along the existing branch. If the task is successfully completed, the MCTS process ends,
and the executed code is concatenated to the generated code to form the final successfully executed code. If the
task remains incomplete, the iterative loop continues.

Backpropagation. Backpropagation is the final step of the iteration. It aims to update the reward R(7),
where 7 is the selected trajectory in this iteration. Since iteration ends once a successful task plan is discovered,
the extrinsic reward contains Rextrinsic = 0 during the iteration process and cannot be used as a reward.
Therefore, we propose an intrinsic exploration value Rintrinsic based on ‘valuable moment’, which refers to the
occurrence of a valuable event, such as ‘successfully grasp a cup’, ‘pinch a cube’, ‘the object does not fall off
when the hand is opened’, etc. If the generated code contains at least one ‘valuable moment’ during execution,
then we set Rintrinsic = 1 for backpropagation to incentivize the expansion of the LLM.

B Details of HGen-Bench

Benchmark Task Design. Our benchmark builds on ManiSkill3 [52] physics engine. In the simulation,
the maximum control frequency can be set to 100 Hz, and the maximum camera capture frequency is 100 Hz.
Our tasks span various scenarios. The details are given as follows. (i) Atom operations. To fully leverage the
dexterity of the hands, we design interaction modes such as pinching and grasping. For example, stacking small
blocks requires pinching them with the index finger and thumb, whereas picking up a bottle requires a firm
grasp. (ii) Task difficulties. To reflect varying levels of task difficulty, we define difficulty settings and name the
tasks with ‘easy’ and ‘hard’ to distinguish. For instance, in the dual bottles pick task, the ’easy’ setting involves
picking upright bottles, while the *hard’ setting involves picking fallen ones. (iii) Collaboration modes. We also
design bimanual coordination tasks that exploit the capabilities of dual dexterous hands. For example, the block
handover task involves picking up a block, handing it over from hand to hand, and placing it. (iv) Long-horizon
and geometric reasoning. We design a set of challenging tasks to evaluate these capabilities. For example, the
long-horizon task handover and storage involves a sequence of five steps: the right hand grasps a block and
positions it for transfer, the left hand opens a drawer, then takes over the block, and finally places it into the
drawer. We also design tasks requiring geometric reasoning. In blocks stack hard, the robot must stack three
blocks vertically. In pyramid stack, two blocks must be placed on the first layer, with a third block stacked on
top to form the second layer. To introduce variability, we randomize the initial position, pose, and joint angles of
articulated objects within a certain range. This allows us to collect more diverse data and test the generalization
ability of learned policies.

Policy Training Examples. We provide example code for deploying and evaluating different types of
policies. In our experiments, we present the training and evaluation results of these policies. The dataset we
collected includes first-person RGB images captured by an Intel RealSense D435 camera, aligned depth maps,
and point clouds generated using Open3D, as well as joint angles as part of the observation data. We use
first-person RGB images and joint angles as inputs to DP. For DP3, we crop the point cloud to retain only the
workspace, i.e., the hand, arm, and the object to be manipulated. The point cloud is then downsampled to 1024
points. This sparse point cloud, together with the joint angles, is used as the input to DP3.

We train both DP and DP3 using 100, 50, and 20 trajectories generated by our method. During each training
session, we record results from three checkpoints. For DP, we evaluate checkpoints at epochs 150, 200, and 250,
while for DP3, we evaluate at epochs 1500, 2000, and 2500. For evaluation, we test each of the three checkpoints
using seeds 0, 1, and 2, and report the mean and standard deviation of the success rates.

The full success rate results across 20 tasks are shown in Tab. 3. For relatively simple tasks, DP3 exhibits
few-shot learning capabilities when trained with data collected using our method, achieving high success rates
with as few as 20 trajectories. For moderately difficult tasks where 20 trajectories yield insufficient performance,
increasing the number of trajectories consistently improves success rates, indicating the effectiveness of our
data scaling strategy. However, for several extremely challenging tasks, although our data generation method
demonstrates high-quality demonstrations, neither DP nor DP3 is able to accurately learn each step. These tasks
often involve long-horizon sequences and fine-grained object manipulation. We anticipate that future methods
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Table 3: We present the DP and DP3 results for all 20 tasks using 100, 50, and 20 trajectories
generated by our method, and evaluate the success rates across 14 tasks using 3 random seeds.

Num of Demonstrations 20 50 100 20 50 100
Blocks Stack Easy Close Drawer
DP3 0.0+0.0 0.0+0.0 22.8+165 DP3 833+176 944479  92.6+83
Dp 0.0-+0.0 0.0+0.0 0.0+0.0 Dp 95.6+37  100.0+00 100.0+0.0
Cup Pour Easy Dual Bottles Pick Easy
DP3 67.8+108 75.6+9.6 722479 DP3 759+178 963469  93.9+76
DP 0.0+0.0 22463 0.0+0.0 DP 0.0+0.0 0.0+00 0.0+00
Dual Bottles Pick Hard Empty Cup Place
DP3 88.9+13.6 90.7+11.4 94.4+79 DP3 25.0+82 18.3+47 33.3+7.1
Dp 0.0-+0.0 0.0-+0.0 0.0+0.0 Dp 0.0+0.0 0.0+0.0 6.7+133
Open Box Easy Open Box Hard
DP3 85.6+8.0 95.6+44 95.0+4.1 DP3 95.6+55  96.1+46  98.3+33
Dp 93.3+133 100.0+00  100.0+0.0 Dp 11.1+1901 933494  100.0+0.0
Open Drawer Open Laptop Hard
DP3 58.3+83 76.0+13.1  84.4+113 DP3 100.0+00 100.0+00 100.0+0.0
DP 17.8+220 13.3+189  48.9+314 DP 15.6+£227  11.1+99  35.6+324
Close Box Hard Close Laptop Easy
DP3 88.9+17.6 96.3+6.9 96.3+6.9 DP3 100.0+00  100.0+00 100.0+0.0
Dp *82.24220 *51.1x190  31.14285 Dp 37.8+239 40.0+23.1  48.9+25.1
Handover and Storage Blocks Stack Hard
DP3 0.0+0.0 0.0+0.0 0.0+0.0 DP3 0.0+00 0.0+00 0.0+00
Dp 0.0+0.0 0.0+0.0 0.0+0.0 Dp 0.0+0.0 0.0+0.0 0.0+0.0
Block Handover Close Box Easy
DP3 0.0+0.0 0.0+0.0 0.0+0.0 DP3 100.0+00 98.3+33 99.4+16
DP 0.0+0.0 0.0+0.0 0.0+0.0 DP 97.8+63  100.0+00 91.1x137
Close Laptop Hard Handover and Storage Cooperation
DP3 92.6+83 94.4+79 96.3+6.9 DP3 0.0+0.0 0.0+0.0 0.0+0.0
Dp *46.7+13.3  *4224346  33.34267 Dp 0.0+0.0 0.0+0.0 0.0+0.0
Open Laptop Easy Pyramid Stack
DP3 711457 772415 81.1+9.4 DP3 0.0+00 0.0+00 0.0+0.0
Dp *#75.6+183  *71.1+166  60.0+16.3 DP 0.0+0.0 0.0+0.0 0.0+0.0

that are capable of learning long-horizon behaviors will help address these challenges. As discussed in the main
text, during DP training, some tasks show abnormally high success rates even when the policy has not learned a
valid strategy. We mark such results with ‘*’ in the table. For example, in the task Close Box Hard, with only
20 demonstrations, the arm tends to make rapid and random movements, occasionally closing the box lid by
chance, which results in a deceptively high success rate. However, this behavior is unstable and unsafe. As
the number of demonstrations increases (e.g., at 100 demonstrations), the arm no longer moves randomly and
instead attempts to perform a deliberate closing motion. In this case, the hand needs to approach the lid from
behind. Due to DP’s lack of spatial understanding and perception, the hand often collides with the lid, failing to
maneuver behind it and ultimately leading to lower success rates.

Decision. We adopt a diffusion policy framework for both DP and DP3, which predicts a future sequence of H
actions conditioned on nbs Steps of past observations. At inference time, the last Noo = H — nops + 1 predicted
actions are executed to form the final control trajectory. In our experiments, we set H = 8 and no»s = 3 for both
DP3 and DP. While both DP and DP3 share the core principle of conditional denoising diffusion, they differ in
input modalities and policy architectures.

DP3 processes 3D point cloud inputs using a DP3 encoder, where each frame consists of 1024 points with
3D coordinates. The encoded feature has a dimension of 128. The architecture incorporates Feature-wise
Linear Modulation (FiLM) at the down, mid, and up layers of the convolutional UNet to improve conditional
representation learning. In contrast, DP operates on image-based observations alongside low-dimensional
proprioceptive inputs. The visual encoder is implemented using the MultiImageObsEncoder module, which
supports multiple RGB observation keys, each associated with its own ResNet18 backbone (without pre-trained
weights) or a shared model depending on configuration.

Both methods adopt a noise schedule with Syt = 0.0001, Bena = 0.02, and a squared cosine schedule
(squaredcos_cap_v2) over 100 diffusion training steps. However, the sampling strategies differ: DP3 employs
DDIM (prediction_type=sample), while DP uses DDPM with e-prediction (prediction_type=epsilon)
and enables clip_sample to stabilize training.

Training Setting. For both DP and DP3, we adopt an exponential moving average (EMA) to stabilize the
training process. The EMA parameters are updated with inv_gamma = 1.0, power = 0.75, and max_value =
0.9999. Since BatchNorm is not compatible with EMA, all normalization layers are replaced with GroupNorm
to ensure training stability, particularly for DP with image inputs. Both policies use the AdamW optimizer with a
learning rate of 1 x 10™%, 8 = [0.95,0.999], and a weight decay of 1 x 1075, A cosine learning rate scheduler
with a linear warm-up of 500 steps is applied to improve convergence during the initial training phase.
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Table 4: Randomization Settings

Position R izati Angle Randomi: Position R izati Angle R

Blocks Stack Easy [-0.005, 0.005, -0.02, 0.02] [-15,15] Close Drawer [-0.05, 0.05, 0.18, -0.18] [-25, 25]

Cup Pour Easy [-0.02, 0.02, -0.04, 0.04] [-30, 30] Dual Bottles Pick Easy [-0.005, 0.035, -0.025, 0.035] [0, 0]
Dual Bottles Pick Hard  [-0.005, 0.035, -0.025, 0.035] [0, 0] Empty Cup Place [-0.02, 0.02, -0.04, 0.04] [-30, 30]
Open Box Easy [-0.02, 0.02, -0.04, 0.04] [30, 30] Open Box Hard [-0.02, 0.02, -0.04, 0.04] [30, 30]
Open Drawer [-0.05, 0.05, -0.18, 0.18] [-25,25] Open Laptop Hard [-0.02, 0.02, -0.04, 0.04] [30, 30]
Close Box Hard [-0.05, 0.05, -0.18, 0.18] [-25,25] Close Laptop Easy [-0.05, 0.05, -0.18, 0.18] [-25,25]
Handover and Storage [-0.01, 0.01, 0, 0] [0, 0] Blocks Stack Hard [-0.005, 0.005, -0.02, 0.02] [-15, 15]
Block Handover [-0.005, 0.005, -0.005, 0.005] [0. 0] Close Box Easy [-0.05, 0.05, -0.18, 0.18] [-25,25]

Close Laptop Hard [-0.05, 0.05, -0.18, 0.18] [-25,25] Handover and Storage Cooperation [-0.01, 0.01, 0, 0] [0, 0]
Open Laptop Easy [-0.01, 0.01, 0.04, -0.04] [-30, 10] Pyramid Stack [-0.02, 0.02, -0.04, 0.04] [-30, 30]

DP3 is trained for 3000 epochs with checkpoints saved every 500 epochs. In contrast, DP is trained for 300
epochs with checkpoints saved every 50 epochs. The batch size is set to 256 for DP3 and 64 for DP, reflecting
the difference in memory requirements between point cloud and image inputs. Data loading includes shuffling
for training and deterministic ordering for validation, with pin_memory=True to improve performance.

Randomization Setting. In the data collection and policy performance evaluation, We defined the ran-
domization ranges for object positions and orientations, as shown in Tab. 4. Specifically, Position Randomiza-
tion [x1, T2, Y1, y2] (in meters) denotes the range of randomized positions, where 1 and 2 represent the bounds
for the z-coordinate, and y; and y» represent the bounds for the y-coordinate. Angle Randomization [01, 03]
(in degrees) indicates the range for orientation randomization. To accommodate the capabilities of different
algorithms, a small subset of tasks (DP3 vs. DP) adopts slightly different randomization ranges.

C Experimental Details and Additional Experiments

C.1 Real-World Experiments

To further explore the application of HumanoidGen in real-world settings, we conducted experiments focusing
on both data generation and sim2real transfer.
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Figure 9: Visualization of real scene and simulation scene.

Experiment Setup. As shown in Fig. 9, we set up a real-world environment that closely mirrors the
simulation environment. This includes a white table and a humanoid robot performing bimanual dexterous
manipulation tasks. The robot used is the Unitree H1-2, equipped with a D435i depth camera mounted on
its head, with a resolution of 640x480. The robot’s dexterous hands are the same Inspire hands used in the
simulation environment. For the tasks, we selected the dual bottles pick easy and close laptop hard from the
HGen-Bench for real-world transfer, using physical assets that match their simulated counterparts. The object
poses in each trial were randomized to test robustness. Specifically, for the dual bottles pick easy, the placement
was randomized within a range of 6 cm x 6 cm and +15° in orientation, while for the close laptop hard, the
randomization range was 6 cm x 6 cm and +10° to +20° in orientation.

Experimental Procedure. The experiment consists of three main steps: (i) Real2Sim Pose Estimation.
Using the existing digital assets, we first estimate the current poses of objects in the camera coordinate system
with FoundationPose [56]. The estimated 6D poses are then transformed into the world coordinate system,
allowing the corresponding digital assets to be placed at the same poses in the simulation environment. (ii)
Trajectory Collection. We leverage LLM reasoning and the trajectory generation module of our framework to
automatically generate execution trajectories in simulation, which are then executed on the real robot to collect
real-world data. For each task, we collected 25 real-world trajectories. (iii) Policy Training and Sim2Real
Transfer. To evaluate the effectiveness of the collected real-world data, we train diffusion policy models using
5 and 25 real-world trajectories, respectively. In addition, to investigate the contribution of simulation data
to real-world policy performance, we augment the real-world dataset with additional simulated trajectories.
Specifically, for each task, we train and evaluate policies using 5 real-world trajectories combined with 100
simulated trajectories, aiming to analyze how simulation data improves real-world performance.
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Table 5: Experiment Results. DP represents the diffusion policy success rate under different training
settings: 5 real trajectories (5SR), 25 real trajectories (25R), and 100 simulated + 5 real trajectories
(100S+5R).

Task \ Collection Success Rate (%) Collection Time (s) DP (5R) DP (25R) DP (100S+5R)
Dual Bottles Pick Easy 85 16 0% (0/20) 60% (12/20) 65% (13/20)
Close Laptop Hard 90 13 20% (4/20)  70% (14/20) 70% (14/20)

Experimental Results. We evaluated two tasks, dual bottles pick easy and close laptop hard, in real-world
experiments. The metrics include the data collection success rate, the average collection time per trajectory, and
the performance of DP [43] models trained under different data settings. As shown in Tab. 5, the average time
to collect a single real-world trajectory is only about 14 seconds, and the data collection success rate exceeds
85% for both tasks. The results of DP model training demonstrate that policies trained with 25 real-world
trajectories significantly outperform those trained with only 5. This indicates that the success rate increases with
the amount of real-world data. Furthermore, pretraining with 100 simulated trajectories followed by fine-tuning
on 5 real-world trajectories achieves comparable or even better performance than using 25 real-world trajectories
alone, particularly in the dual bottles pick easy task.

C.2 Automatic Asset Annotation Evaluation

To assess the effectiveness of our automatic annotation method based on annotation migration, we conducted
quantitative analyses.
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Figure 10: Visualization of annotation migration.

Experimental Setup. As illustrated in Fig. 10, we selected five parts from four commonly used object types
for automatic annotation. The cup contains two parts: the rim and the handle. For each object category, 20 assets
were randomly selected from [14, 24, 19]. The rendering and reprojection processes for automatic annotation
were implemented using ManiSkill3 [52], the same simulation environment as our data generation framework.
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Table 6: Evaluation of annotation time and success rate.

Evaluation Metric \ Cup (rim) Cup (handle) Bowl Drawer Laptop
Manual Annotation Time (s) 4.00 4.00 4.00 6.00 6.00
Automated Migration Time (s) 0.72 0.72 0.79 0.80 0.81
Migration Success Rate (%) 100.0% (20/20)  90.0% (18/20) 100.0% (20/20)  90.0% (18/20) 100.0% (20/20)

Experimental Results. We compared the annotation time between manual and automatic annotation and
evaluated the success rate of automatic annotation, as summarized in Tab. 6. For manual annotation, simple
rigid objects such as cups and bowls required about 4 seconds per part, while articulated objects like laptops
and drawers took around 6 seconds. In contrast, our automatic annotation required only about 0.7 seconds per
asset on average, achieving a substantial acceleration. The success rate of automatic annotation was also high,
reaching 100% for the cup rim, bowl, and laptop, and over 90% for other parts. The few failures, such as those
for the cup handle and drawer, were primarily caused by significant geometric variations, such as differences in
handle shapes between circular and rectangular designs.

C.3 Additional Challenging Dexterous Manipulation Tasks
To further evaluate the scalability and robustness of our framework beyond the 20 main tabletop manipulation

tasks, we design five additional challenging tasks focusing on bimanual coordination, dexterous contact-rich
operations, and complex tabletop environments, as illustrated in Fig. 11.
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Figure 11: Ilustration of the five additional challenging bimanual dexterous manipulation tasks used
for supplementary evaluation: rotate safe knob, press toaster, open safe door, dual lift pot, and blocks
stack hard With barrier. These tasks involve coordinated bimanual motions, contact-rich dexterous
operations, and complex tabletop environments, highlighting the scalability of our framework.

Experimental Setup. The five additional tasks include rotate safe knob, press toaster, open safe door, dual
lift pot, and blocks stack hard with barrier. In rotate safe knob, the robot precisely pinches and rotates a knob,
requiring accurate fingertip control to prevent slippage. In press toaster, the robot presses a switch using a single
finger, demonstrating fine dexterous motion beyond grasping or pinching. The open safe door task involves
pulling open a door with a vertically oriented hinge, testing manipulation of articulated mechanisms. In dual
lift pot, the robot must grasp both handles of a pot simultaneously and lift it, testing coordinated bimanual
manipulation. Finally, blocks stack hard with barrier requires stacking blocks in an environment where more
than 60% of the workspace is occupied by barriers, posing severe spatial constraints.

Table 7: Evaluation of additional challenging dexterous manipulation tasks. Each task is tested under
randomized initial positions and orientations.

Metric \ Rotate Safe Knob Press Toaster Open Safe Door Dual Lift Pot Blocks Stack Hard With Barrier
Randomization |5cm X Scm, £15° 5cm X Sem, £15° 5em X Sem, £15° 12em X 6cm, £15° 6cm X 8cm, +10°
Success Rate(%) 91.09 87.72 95.24 93.00 73.00

Experimental Results. As shown in Tab. 7, our framework achieves high success rates across all five tasks,
with three exceeding 90%. These results further validate the scalability of our method in handling bimanual
coordination and contact-rich dexterous manipulation. Even in the most challenging case, blocks stack hard with
barrier, where over 60% of the workspace is blocked by obstacles, the framework still achieves a 73% success
rate, outperforming existing baselines under comparable conditions.
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C.4 Resource and Efficiency Analysis of HumanoidGen

We analyze average computational and token consumption across all 20 tasks in HGen-Bench, including both
time cost and LLM resource usage. The detailed statistics are summarized in Tab. 8.

Table 8: Average time and resource consumption for each stage in the HumanoidGen data generation
pipeline, computed over all 20 tasks in HGen-Bench. Manual annotation requires limited human
effort, while all other stages are fully automated.

Metric \Manual Annotation Automatic Annotation  Scene Generation Script Generation  Data Collection Execution

Time (s) 4-6 1.17 12.64 18.31 14.40
Resource Cost| Human Operator Automated Process LLM (2,958 tokens avg.) LLM (3,745 tokens avg.) Motion Planner (0.53 s)

It is important to note that generating a new trajectory does not always require executing all stages of the pipeline.
Depending on the scenario, certain steps can be skipped or reused, significantly improving efficiency: (i) For
pose randomization of manipulated objects, tabletop obstacles, or room-level scene extensions, the system
can directly execute the previously generated running scripts to collect new trajectories. The randomization
operations are executed at the millisecond level and thus have negligible time cost. (ii) For tasks sharing identical
tabletop setups but differing in manipulation procedures, such as handover and storage and handover and
storage cooperation. For these tasks, scene initialization can be reused, requiring only the generation of new
execution scripts. (iii) When different objects are used but all exist in the asset library, no manual intervention is
required; automated scene generation and code synthesis are sufficient to produce new executable scripts for
data collection. Only when introducing new object categories absent from the asset library is manual annotation
needed, which takes merely 4-6 seconds per asset class.

These results demonstrate that HumanoidGen achieves high efficiency in both automated data generation and
resource utilization, enabling scalable and reproducible large-scale evaluations in HGen-Bench.

C.5 Comparison with Existing Generation Frameworks

To demonstrate the advantages of our proposed framework, we conduct a comparison with several state-of-the-art
robot manipulation data generation frameworks, including both augmentation-based and zero-shot generation
approaches.

Augmentation-Based Frameworks. These methods [51, 57] require an existing expert trajectory as
the basis for data expansion, which typically involves teleoperation-based data collection. Moreover, manual
annotation is needed to segment long-horizon demonstrations into multiple sub-stages before augmentation can
be applied. When the task execution mode changes, such as switching from left-to-right to right-to-left handover,
or modifying the stacking order in a block stacking task, new expert data collection and segmentation are needed.
In contrast, our framework achieves object-level reusability and full automation without human intervention,
enabling flexible and scalable task generation under varied manipulation settings.

Table 9: Comparison of different robot manipulation data generation frameworks. Only our proposed
HumanoidGen provides a unified and fully automated pipeline that supports bimanual dexterous
hands, scene generation, room-level synthesis, and dynamic collision management.

Framework Bimanual Dexterous Tabletop Scene Room-level Dynamic Collision
Hand Generation Scene Synthesis Management
RoboGen [22] Yes No Yes Yes No
Gensim [23] No No Yes No No
Gensim2 [27] No No Yes Yes No
RoboTwin [19] Yes No No No No
RoboFactory [58] Yes No No No No
HumanoidGen(Ours) Yes Yes Yes Yes Yes

Zero-Shot Generation Frameworks. For frameworks that support zero-shot data generation without
relying on expert demonstrations, a comparison with HumanoidGen is summarized in Tab. 9. It can be clearly
observed that HumanoidGen is the first framework to provide a systematic solution for bimanual dexterous hand
manipulation problems. Other frameworks do not incorporate dexterous hands as end-effectors. RoboTwin [19]
and RoboFactory [58] lack table-top scene generation and room-level scene scaling, both of which are included
in HumanoidGen, demonstrating the comprehensiveness of our work. Additionally, only our framework includes
dynamic collision management by LLMs, enhancing the flexibility and effectiveness of our framework in
handling collisions during long-horizon tasks.
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C.6 Comparison Across Different Large Models

To further investigate the impact of different large models serving as the planner within our framework, we
conduct a comparative study involving a reasoning model, a chat model, and a multimodal model, both with and
without visual input. Specifically, we evaluate DeepSeek-R1 (reasoning model), DeepSeek-Chat-v3 (chat model),
and GPT-4o in both its language-only and multimodal configurations. Four representative tasks, each from a
distinct category in Fig. 5, are selected for this experiment.
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Figure 12: Comparison of different large models used as the planning module in our framework: a
reasoning model (DeepSeek-R1), a chat model (DeepSeek-Chat-v3), and a multimodal model with
and without visual input (GPT-40 language-only and GPT-40 multimodal).

As shown in Fig. 12, all four models achieve high success rates in generating valid constraints and executable
planning code. Specifically, GPT-40 (with and without image inputs) shows a consistently good performance
across all four tasks, whereas the Deepseek reasoning model and the Deepseek chat model have a slight perfor-
mance decline when generating plans for bimanual and long-horizon tasks. The consistent high performance of
these different models across various tasks demonstrates the effectiveness of our framework and its compatibility
with diverse models.

C.7 Task Descriptions in Data Generation Experiment

We describe our 20 tabletop-level tasks in detail in Tab. 10. The initial positions of target objects in all tasks
are randomized. The tasks include 12 single-arm tasks and 8 bimanual tasks. Dexterous hands are used as
end-effectors in all tasks. For bimanual tasks, the appropriate arms to manipulate target objects are selected
according to the distance between the arms and the objects. Some tasks involve object handoffs between two
hands, like block handover and handover and storage. Furthermore, handover and storage cooperation requires
the coordination between both arms to complete the task.

C.8 Task Descriptions in MCTS Experiment

As mentioned in §5.2, to evaluate the effectiveness of MCTS in enhancing the demonstration generation process
of HumanoidGen, we simplified task descriptions to provide minimal guidance in the experiments. As shown
in Tab. 11, we did not notice the operation order or the operation executor, both of which were inferred by the
reasoning LLM.

D More Discussion on Limitations and Future Work

Despite the promising results achieved by our framework, several limitations remain. First, human intervention
has not been completely eliminated. For asset categories and atomic manipulation types that have not been
previously annotated, automatic labeling through annotation transfer is not possible, requiring manual annotation
instead. Consequently, generating a task that involves a novel asset category still demands prior human annotation
of its manipulation primitives. However, we note that several recent works have proposed learning-based methods
for predicting contact points, axes, or grasp poses [59, 60, 61]. Although these approaches are not yet fully
mature and still face generalization challenges, they demonstrate certain zero-shot capabilities that could be
integrated into our annotation pipeline. Combining these advances with our generative framework holds promise
for fully automated data generation, which we plan to explore in future work.

Second, our current framework cannot yet generate all types of dexterous manipulation tasks. On one hand, due
to the limitations of the ManiSkill3 [52] physics engine, tasks involving deformable or fluid objects cannot be
simulated. On the other hand, our arm control currently relies on a low-level motion planner, making it difficult
to handle manipulation tasks with ambiguous or dynamic objectives, such as push-T or cloth flattening. These
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Table 10: The descriptions of our 20 tasks.

Task

Description

Block Handover

A rectangular cube is placed on the right side of the table. The right hand pinches the cube and moves it to hand over to
the left hand. The left hand then pinches the cube and moves the cube above the target cube to release it.

Two cubes, cube0 and cubel, are placed on the table. Initially, both the left and right hands simultaneously pinch cube0

Blocks Stack Easy and cubel, respectively. The left hand then put cube0 to a specified position. Following this, the right hand moves cubel
to put it above cube0.
Three cubes, cube0, cubel, and cube2, are placed on the table. Initially, the left hand pinches cube0 and the right hand
Blocks Stack Hard pinches cubel simultaneously. The left hand puts cubeO at the target place. Then the right hand puts cubel above cube0.
Finally, the right hand picks up cube2, puts it above cubel.
Close Box Easy {;box is plac_ed on the table. Initially, the right hand approaches the box lid from above. Then, the right hand moves to
ip the box lid down.
Close Box Hard A box is placed on the table. Initially, the right hand grasps the box lid. While maintaining its grasp, the right hand

adjusts the box lid’s openness to 0.3 and releases it.

Close Drawer

A drawer is placed on the table. Initially, the left hand moves to grasp the drawer handle. With the left hand attached to
the drawer handle, the left hand pushes the drawer back to an openness of 0. Finally, the left hand releases the drawer
handle.

A laptop is placed on the table. First, the right hand approaches the laptop screen from above. Then, the right hand

Close Laptop Easy moves to flip the laptop screen down.
A laptop is placed on the table. First, the right hand grasps the laptop screen from above. While maintaining its grasp,
Close Laptop Hard the right hand adjusts the laptop screen’s openness to 0.3. Then, the right hand releases the laptop screen and moves
above it. Finally, the right hand moves to flip the laptop screen fully down.
Cup Pour Easy A cup and a bowl are placed on the table. First, the right hand grasps the cup and moves it above and in front of the

bowl. Finally, the right hand tilts the cup to pour its contents into the bowl.

Dual Bottles Pick Easy

Two bottles, bottle0 and bottlel, are placed on the table. The left and right hands simultaneously grasp the two bottles
and lift them to the target position.

Dual Bottles Pick Hard

Two bottles, bottle0 and bottlel, are placed on the table. The left and right hands simultaneously grasp the two bottles
and lift them to the target position.

Empty Cup Place

A cup and a plate are placed on the table. The task is to use one hand to grasp the cup and place it directly over the plate.

Handover and Storage

A drawer and a rectangular cube0 are placed on the table. First, the left hand grasps the drawer handle and pulls it out to
an openness of 0.9. Then the left hand releases the drawer handle. Next, the right hand pinches the cube and moves it to
hand it over to the left hand. The left hand then moves to pitch the cube, taking it from the right hand. The left hand
moves the cube above the open drawer and releases it to put it into the drawer. Afterwards, the left hand moves to grasp
the drawer handle again, pushes it back to an openness of 0, and finally releases the drawer handle.

Handover and Storage
Cooperation

A drawer and a rectangular cube0 are placed on the table. First, the left hand grasps the drawer handle, and the right
hand pinches cube( simultaneously. Then, the right hand moves the cube to an intermediate position while the left hand
pulls the drawer out to an openness of 0.9 at the same time. The left hand then releases the drawer handle. Next, the
left hand moves to pinch the cube, taking it from the right hand. The left hand moves the cube above the drawer and
releases it to put it into the drawer. Afterwards, the left hand moves to grasp the drawer handle again, pushes it back to
an openness of 0, and finally releases the drawer handle.

Open Box Easy

A box is placed on the table. First, the right hand moves to be under the box lid. Then the right hand moves to flip the
box lid up.

Open Box Hard

A box is placed on the table. First, the right hand moves to grasp the box lid. While maintaining its grasp, the right hand
adjusts the box lid’s openness to 0.8 and releases it. After this, the right hand releases the box lid and moves to be under
it. Finally, the right hand moves to flip the box lid up.

Open Drawer

A drawer is placed on the table. First, the left hand moves to grasp the drawer handle. With the left hand grasping the
drawer handle, it pulls the drawer out to an openness of 1. Finally, the left hand releases the drawer handle.

Open Laptop Easy

A laptop is placed on the table. First, the right hand moves to be under the laptop screen. Then, the right hand moves to
flip the laptop screen up.

Open Laptop Hard

A laptop is placed on the table. First, the right hand grasps the laptop and flips it up to an openness of 0.55. Then, the
right hand releases the initial grasp and moves to be under the laptop screen. Finally, it moves to flip the laptop screen to
be fully up.

Pyramid Stack

Three cubes, cube0, cubel, and cube2, are placed on the table. First, the left hand and the right hand simultaneously
pinch cube0 and cubel, respectively. The left hand then moves cube0 to put it at the target position. After this, the right
hand moves cubel to put it on the right side of cube0. Then, the right hand pinches cube2 and moves it to put it in the
middle and above cube0 and cubel.

tasks involve continuous state adjustments rather than planning toward a single target pose, which cannot be
realized solely through motion planning. In the future, we plan to extend our framework to support more diverse
physics engines, such as IsaacSim [15] and MuJoCo [16], enabling richer simulation scenarios. Moreover,
leveraging the extensibility of our framework, we will explore combining goal-conditioned motion planning with
goal-agnostic pre-trained atomic operation models, forming a unified library of atomic operations to support a
wider range of dexterous manipulation tasks.

Finally, we plan to expand HGen-Bench with additional assets, scenes, tasks, and evaluation policies to enable
more comprehensive benchmarking and broader applicability.
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Table 11: The descriptions of 4 tasks in the MCTS experiment.

Task Description

Block Stack Single Stack cubel on top of cube0.
Blocks Stack Easy Stack the two cubes on the table into a single pile.
Blocks Stack Hard Stack the three cubes on the table into a single pile.

Stack the three cubes into a pyramid shape in the center area, with two cubes at the bottom and one cube stacked on top

Pyramid Stack of them.

E Prompts and Generation Samples
We show the prompt templates and the sample code generated by LLMs in scene generation and demonstration

script generation (with and without integrating MCTS). The meanings of the placeholders in the prompt templates
are explained in Table 12.

Table 12: The placeholders in the prompt templates and their meanings.

Placeholder Meaning
ASSET_INFO The information of the assets in the asset library.
ASSETS_ATTRIBUTES The default attributes of the assets.

The asset states when the scene is initialized, before any actions

INITIAL_ASSET_STATE
are executed.

CURRENT_ASSET_STATE The current states of the assets on the tabletop.

Code for actions executed by the robot to transform the asset state
on the tabletop from the initial state to the current state.

EXECUTED_CODE

PROHIBITED_ACTION The actions prohibited for the next step.
ASSETS_STATUS The current states of the assets in the task scene.
ROBOT_END_EFFECTOR The current state of the robot end-effector.

E.1 Prompt Template for Scene Generation

| You are a professional AI simulation environment code generation assistant capable
of generating logical reasoning and accurate code. You need to generate
reasoning monologues for the initial scene of the task based on the user’s
given task, i.e., what kind of initial scene to generate and why the initial
scene is designed this way. Afterward, provide an answer that includes the
code to construct the scene.

3 Scene information (all coordinates are in the world coordinate system):
4 Dual-arm robot, pose.p=[-0.85,0,0], pose.q=[1,0,0,0]
5 Table surface, "x from -0.42 to -0.19, y from -1.1 to 1.16, z=0"

Available assets:
4 ASSETS_INFO

10 Code Example: Task to place two cubes side by side.
11 ““‘python
12 from humanoidgen.envs.example.task_env import * # Import necessary libraries
13 @register_env("place_cubes_side_by_side", max_episode_steps=200) # Register the
environment , name can be set based on the task
4 class PutTwoCubeAdjacentEnv(TableSetting): # Must inherit from TableSetting
env_name= "place_cubes_side_by_side"
def _load_scene(self, options: Dict): # Load objects
super () . _load_scene (options)
self._add_object (type_name="cube", type_id=1) # name="cube", obj_id=0,
yellow cube
19 self._add_object(type_name="cube", type_id=0) # name="cube", obj_id=1,
green cube

© I O W

20
21 def _initialize_episode(self, env_idx: torch.Tensor, options: Dict): # Set
object positions
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E.2 Sample Scene Code for Blocks Stack Hard Generated by HumanoidGen




E.3 Prompt Template for Demonstration Script Generation










E.4 Sample Demonstration Code for Open Drawer Generated by HumanoidGen




E.5 Prompt Template for MCTS-integrated Demonstration Script Generation
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E.6 Sample Demonstration Code for Block Stack Hard Generated by Applying MCTS







F Broader Impacts

This work advances the field of robotic manipulation by enabling automated task creation and demonstration
collection for bimanual dexterous systems, which can significantly reduce the cost and complexity of data
acquisition in humanoid robotics. Traditional methods often rely on manual demonstration design, expert
supervision, or extensive environment resets—processes that are time-consuming, labor-intensive, and difficult
to scale. By contrast, our framework automates these processes through an LLM-driven planning framework
that generates semantically meaningful and physically feasible tasks without human intervention. This not only
simplifies the pipeline from task specification to execution but also ensures consistency and diversity in the
collected demonstrations.

The proposed framework has the potential to accelerate research on autonomous humanoid agents, particularly
in domains such as assistive robotics, disaster response, and intelligent automation, where bimanual coordination
and fine-grained hand manipulation are critical. For instance, in assistive robotics, precise bimanual operations,
such as opening a pill bottle or pouring liquid from one container to another, require both high-level task
reasoning and low-level motion control. Similarly, in disaster response scenarios, robots may need to manipulate
tools, open doors, or handle irregularly shaped objects in constrained environments. These tasks demand robust
and adaptive manipulation capabilities that go beyond simple pick-and-place actions. Our framework enables
the generation of such complex interaction sequences, allowing researchers to train and evaluate policies on
long-horizon, multi-step tasks at ease.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The paper’s contributions and scope are specifically claimed in the Abstract and Intro-
duction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

¢ The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

¢ The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see the Appendix in supplemental material.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.
¢ The authors are encouraged to create a separate "Limitations" section in their paper.

¢ The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: This paper does not contain theoretical proofs.
Guidelines:

¢ The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully describe our experiment setup in Section 5, and the information provided is
enough to the reproducibility of our main experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: We provide sufficient material in supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We specify our training and test details in Section 5. We think that the information we
provide is sufficient to understand the experiment results.

Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

» The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide statistical results in Section 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: Please see our experimental details in Section 5.
Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

¢ The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the Neur[PS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the NeurIPS Code of Ethics, and make sure that our research conducted in the
paper conform with the NeurIPS Code of Ethics in every respect.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: We discuss the societal impacts in Appendix in supplemental material.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: No such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: We cite works of related assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

¢ The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: No new assets are introduced.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: NA
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
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Answer: [NA]
Justification: NA
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

¢ We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [Yes]
Justification: Please see Section 2 and Section 3 for the details of how we use LLM.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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