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Abstract

In the Correlation Clustering problem, we are
given an undirected graph and are tasked with
computing a clustering (partition of the nodes)
that minimizes the sum of the number of edges
across different clusters and the number of non-
edges within clusters. In the constrained version
of this problem, the goal is to compute a clustering
that satisfies additional hard constraints mandat-
ing certain pairs to be in the same cluster and cer-
tain pairs to be in different clusters. Constrained
Correlation Clustering is APX-Hard, and the best
known approximation factor is 3 (van Zuylen et al.
[SODA ’07]). In this work, we show that in order
to obtain a better-than-2 approximation, solving
the (exponentially large) Constrained Cluster LP
would be sufficient1.

1. Introduction
Clustering is a fundamental unsupervised learning task and
has many applications in machine learning and data mining.
The high-level goal is to partition a set of elements into
clusters such that similar elements are in the same cluster
and dissimilar elements are in different clusters. Over the
years, several definitions of clustering have been considered,
each with a different objective.

Correlation Clustering, proposed by Bansal, Blum, and
Chawla (Bansal et al., 2004), is one such clustering for-
mulation, which was widely studied since its introduction.
The appeal of Correlation Clustering stems from its sim-
ple and natural definition and from the absence of require-
ment to specify the number of clusters as part of the input.
The problem has found success in many applications in-
cluding, but not limited to, automated labeling (Agrawal
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et al., 2009; Chakrabarti et al., 2008), clustering ensem-
bles (Bonchi et al., 2013), community detection (Chen et al.,
2012; Veldt et al., 2018), disambiguation tasks (Kalashnikov
et al., 2008), duplicate detection (Arasu et al., 2009) and
image segmentation (Kim et al., 2011; Yarkony et al., 2012).

Given a complete unweighted undirected graph (V,E+ ⊎
E−), whose edges are labeled either “plus” or “minus”,
the Correlation Clustering problem is to output a partition
(clustering) C = {C1, . . . , Ck} of the vertex set V . The sets
Ci of C are called clusters. The objective is to minimize the
sum of the number of plus edges across different clusters
and the number of minus edges within clusters.

One can view the edges in the input graph as modeling
pairwise relationships between entities corresponding to the
nodes. Specifically, a plus edge denotes the preference of its
endpoints to be clustered together and a minus edge denotes
their preference to be separated. The cost of a clustering is
then the number of preferences violated by the clustering
and the goal of Correlation Clustering translates to finding
a clustering that satisfies the preferences of the maximum
number of pairs.

The real-world applications that motivate clustering as above
often necessitate incorporating additional hard constraints
that result from prior knowledge. In such a semi-supervised
setting, it is imperative to study the more general problem
of constrained clustering. There are several variants of con-
strained clustering including, but not limited to constrained
k-means (Wagstaff et al., 2001), spectral clustering with
constraints (Wang & Davidson, 2010), constrained rank-
ing and clustering (van Zuylen & Williamson, 2009), and
constrained fuzzy clustering (Pham, 2002). Constrained
clustering is particularly valuable as it improves the quality
of clusters, aligns outcomes with domain-specific knowl-
edge, and reduces sensitivity to noisy data.

In this work, we study Constrained Correlation Clustering,
a variant of Correlation Clustering capturing the idea of crit-
ical pairs of nodes, which was first studied by van Zuylen
and Williamson (van Zuylen & Williamson, 2009). Con-

1The peer-reviewed version of this article claimed an efficient
algorithm for solving the Constrained Cluster LP. An error in the
proof, that the authors discovered after the review process, led
them to revise the results to be conditional on the existence of a
valid LP solution.
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strained Correlation Clustering introduces hard constraints
in addition to the pairwise preferences, where one could
have must-link (requiring nodes to be in the same cluster)
or cannot-link (requiring nodes to be separate) constraints.
A clustering is valid if it satisfies all hard constraints, and
the goal is to find a valid clustering of minimum cost.

Constrained Correlation Clustering with must-link and
cannot-link constraints is well-motivated in both theory and
practice. For instance, it has been used to cluster news arti-
cles about the same event across different languages (Gael
& Zhu, 2007). The hard constraints here ensure that news
articles about different events from the same language do
not end up in the same cluster.

1.1. Previous Results

Correlation Clustering was defined by Bansal, Blum, and
Chawla (Bansal et al., 2004), who, in addition to prov-
ing its NP-Hardness, provided a deterministic constant-
factor approximation, the constant being larger than 15,000.
Subsequent results improved the approximation guaran-
tee by relying on LP-rounding techniques: Charikar, Gu-
ruswami and Wirth showed that the problem is APX-Hard
and also gave a deterministic 4-approximation (Charikar
et al., 2005), Ailon, Charikar and Newman gave a random-
ized 2.5-approximation (Ailon et al., 2008), and Chawla,
Makarychev, Schramm and Yaroslavtsev gave a determinis-
tic 2.06-approximation (Chawla et al., 2015). The last result
is nearly optimal among algorithms that round the natural
LP formulation, since its integrality gap is at least 2. In a
breakthrough result by Cohen-Addad, Lee and Newman, a
(1.994 + ϵ)-approximation using the Sherali-Adams relax-
ation broke the 2 barrier (Cohen-Addad et al., 2022). The
approximation guarantee was later improved to 1.73 + ϵ
(Cohen-Addad et al., 2023) by Cohen-Addad, Lee, Li and
Newman, and even to 1.437 by (Cao et al., 2024a). There
is also a combinatorial 1.847-approximation by (Cohen-
Addad et al., 2024b) for the problem. The current-state of
the art is an adaptation of the 1.437 approximation that runs
in linear (Cao et al., 2025b), and even sublinear (Cao et al.,
2025a) time.

Correlation Clustering has also been studied in different
settings such as dynamic algorithms (Cohen-Addad et al.,
2024a), parameterized algorithms (Fomin et al., 2014), sub-
linear and streaming algorithms (Assadi & Wang, 2022;
Cambus et al., 2024; Behnezhad et al., 2022; 2023; Cam-
bus et al., 2024; Makarychev & Chakrabarty, 2023), mas-
sively parallel computation (MPC) algorithms (Cohen-
Addad et al., 2021; Cao et al., 2024b), and differentially
private algorithms (Bun et al., 2021).

Regarding Constrained Correlation Clustering, the state-of-
the-art approximation is given in the work of van Zuylen
and Williamson (van Zuylen & Williamson, 2009) who de-

signed a deterministic 3-approximation. We note here that
algorithms with better-than-3 approximation for Correlation
Clustering existed for a long time after the 3-approximation
by (van Zuylen & Williamson, 2009), but they do not seem
to extend to the case of Constrained Correlation Clustering.
Due to the significance of the problem, a follow-up work
by Fischer, Klausen, Kipouridis and Thorup (Fischer et al.,
2024) focused on faster algorithms for Constrained Correla-
tion Clustering, even at the expense of worse approximation.

It is worth noting that it is not possible, in general, to handle
the must-link constraints by simply merging the nodes in
connected components induced by these constraints into
supernodes, as such an aggregation results in a weighted
instance outside the problem.

1.2. Related Work

Closely related to the problems considered by us are hi-
erarchical clustering problems under similar constrained
settings. In particular, for each pair {u, v} we are given an
upper and a lower bound regarding the distance of u and v
in the output (Farach, Kannan, and Warnow (Farach et al.,
1995)). Ailon and Charikar, in (Ailon & Charikar, 2011),
make progress on constrained hierarchical clustering, but op-
timal algorithms are still elusive. We note that Constrained
Correlation Clustering is a special case of constrained hier-
archical clustering (where the hierarchy is trivial).

1.3. Our Contribution and Techniques

Our main result is a proof that, to achieve a better-than-2
approximation for Constrained Correlation Clustering, it
suffices to design an efficient solution to the Constrained
Cluster LP (Figure 1).

Theorem 1.1 (Informal). If there exists a polynomial-time
algorithm to solve the Constrained Cluster LP, then there
exists a polynomial time algorithm for Constrained Corre-
lation Clustering whose approximation factor is 1.92.

Once again, we note that we do not claim a solution to the
Constrained Cluster LP. We consider it plausible because
the corresponding unconstrained Cluster LP has been solved
in polynomial (Cao et al., 2024a), linear (Cao et al., 2025b),
and even sublinear time (Cao et al., 2025a).

There are two main techniques for (unconstrained) Cor-
relation Clustering to achieve a better-than-2 approxima-
tion. One (Cao et al., 2024a) is based on the Cluster LP, an
LP stronger than the natural one2, while the other (Cohen-
Addad et al., 2024b) is based on a local search technique.

The problem in extending the LP based approach is that,
even given a valid solution to the Constrained Cluster LP,

2In fact it has exponential size, but one can, in polynomial time,
compute a (1 + ε) approximate solution of polynomial size.
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its rounding involves creating clusters based on independent
sampling of nodes (based on some probability distributions
dictated by the LP solution). However, when hard con-
straints are enforced, we can no longer use independent
sampling since, for example, placing a node u in a cluster
implies that all nodes with a cannot-link constraint with u
cannot be in the same cluster.

The local-search approach, on the other hand, is based on a
simple principle: if we have a clustering whose cost is more
than 2 times the optimal cost, there exists a cluster in the
optimal solution that we can “force” into our clustering3 and
get a clustering with smaller cost. The proof is based on a
simple counting argument, and the technique would directly
lend itself to a 2 approximation, if we could spend exponen-
tial time to find such a cluster. The novelty of (Cohen-Addad
et al., 2024b) is that they manage to (nearly) simulate this
in polynomial time, and their approximation is 2 + ε. As
one would expect, achieving this is the most technically
challenging part of their paper. It is possible that these tech-
niques could be extended to the Constrained Correlation
Clustering setting, but even if true, the resulting algorithm
and analysis would be highly non-trivial.

Instead, in this work, we propose a simple approach for Con-
strained Correlation Clustering that combines the strengths
of both aforementioned techniques.

Perhaps the most critical observation in our paper is that
even though we do not have access to the optimal clustering,
an optimal fractional clustering (that is, a solution to the
LP) would suffice to guide the local search, and thus bypass
the need for the heavy machinery introduced in (Cohen-
Addad et al., 2024b). In particular, one could embed the
hard constraints in the LP, and guarantee that the output of
the local search is a valid clustering.

Despite the success of using the optimal fractional cluster-
ing to get a 2-approximation, it does not come without its
own shortcomings. In particular, the problem occurs when
trying to break the 2 barrier. In (Cohen-Addad et al., 2024b),
they show that normally the output of the local search is
already a better-than-2 approximation, except for some very
specific cases. Then, they run a second local search, which
is incentivised to give a very different solution than the first
(thus, intuitively, avoiding the specific bad cases). To argue
that one of the two solutions achieves a better-than-2 approx-
imation, they show that if both approximations were at least
2, then it would be possible to “mix” 3 different clusterings
(the two solutions and the optimal one) in order to obtain a
clustering that is better than optimal (a contradiction).

In our case however, it is not even clear what mixing two
clusterings and a fractional clustering would mean. A

3More formally, given a clustering {C1, C2, . . . , Ck } and a
cluster C, the new clustering is {C,C1 \C,C2 \C, . . . , Ck \C }.

straightforward approach would be to first round the frac-
tional clustering, obtain a clustering C that is close to opti-
mal, and then mix the two solutions and C. The problem
with this approach is that it would normally only show that
we can get a better clustering than C, not better than the
optimal, which is no longer a contradiction.

Still, we show that there exists one particular way to round
the fractional clustering, so that the mixing is guaranteed
to be below the optimal, not just C. In fact, this particular
rounding simply samples clusters with probabilities propor-
tional to the values of the LP solution. Its properties were
analysed already in (Cao et al., 2024a), as one part of their
overall algorithm.

Finally, we note that in our case we can algorithmically
compute and use C, given access to the fractional optimal
(unlike in (Cohen-Addad et al., 2024b) where they do not
have access to the optimal clustering, and therefore C is only
part of the analysis).

1.4. Organization

The rest of the paper has the following structure. In Sec-
tion 2, we formally define the problem, and give some basic
notation. In Section 3, we describe the LP that models
Constrained Correlation Clustering. Finally, in Section 4
we give a full analysis for our main algorithm and how it
achieves its approximation factor of (1.92 + ε).

2. Preliminaries
The graphs (V,E+ ⊎ E−) we consider in this paper are
complete, unweighted, undirected, and every edge is labeled
plus or minus (it belongs to one of E+ or E−, respectively).
We typically set n = |V |. Let

(
A
2

)
denote the set of all size-

2 subsets of a set A. We often abbreviate the (unordered)
set {u, v } by uv. Before introducing our problem, we first
define the cost of a clustering:

Definition 2.1. Let E+(C) and E−(C) be the sets of plus
and minus edges that are not satisfied in a clustering C. That
is E+(C) = {uv ∈ E+ | ∄C ∈ C with {u, v} ⊆ C } and
E−(C) = {uv ∈ E− | ∃C ∈ C with {u, v} ⊆ C }. The
cost of C is defined as cost(C) = |E+(C)|+ |E−(C)|.

We now formally define Constrained Correlation Clustering.

Definition 2.2 (Constrained Correlation Clustering). Given
an instance (V,E+ ⊎ E−, F,H), where (V,E+ ⊎ E−) is
an edge-labeled graph, F ⊆

(
V
2

)
is a set of friendly pairs,

and H ⊆
(
V
2

)
is a set of hostile pairs, compute a minimum

cost clustering C = {C1, . . . , Ck } of V such that no pair
uv ∈ F has u, v in different clusters and no pair uv ∈ H
has u, v in the same cluster.
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3. LP with constraints
In this section, we describe the linear program used to model
the problem. We will use its solution to guide the local
searches for the algorithm later.

Given an instance (V,E+ ⊎E−, F,H) of Constrained Cor-
relation Clustering, we can define the following linear pro-
gram, which we call the Constrained Cluster LP. It has two
types of variables: xuv for every uv ∈

(
V
2

)
and zC for every

C ⊆ V . The variable xuv describes the desirability of nodes
u and v to be in different clusters (one can view it as a dis-
tance between the two nodes) and the variable zC captures
the probability of cluster C to be in the final clustering.

Figure 1. Constrained Cluster LP.

min
∑

uv∈E+

xuv +
∑

uv∈E−

(1− xuv)

s.t.
∑
S∋u

zS = 1 ∀u ∈ V,∑
S⊇{u,v}

zS = 1− xuv ∀uv ∈
(
V
2

)
,

zS ≥ 0 ∀S ⊆ V, S ̸= ∅,
xuv = 0 ∀uv ∈ F,

xuv = 1 ∀uv ∈ H

The
∑

S∋u zS = 1 constraints ensure that all vertices belong
to some cluster in the final clustering. The

∑
S⊇{u,v} zS =

1− xuv constraints state that the closeness of two nodes is
proportional to the total weight of clusters containing both
of them. Finally, the xuv = 0 and xuv = 1 constraints
model the hard constraints of the instance. We note that
without the last two types of constraints, the above LP is
identical to the Cluster LP for (unconstrained) Correlation
Clustering, solved in (Cao et al., 2024a; 2025b;a).
Assumption 3.1. Let OPT be the value of the optimal
solution for a Constrained Correlation Clustering instance
(V,E+ ⊎ E−, F,H). We assume that for any constants
c > 0, ε > 0 there exists an algorithm that runs in time
npoly(1/ε) and with probability 1− n−c returns a solution to
the Constrained Cluster LP such that:

• its value is at most (1 + ε)OPT,

• it has at most poly(n, 1
ε ) subsets S with zS > 0,

• for every uv ∈ F there is no subset S with zS > 0 and
|S ∩ {u, v }| = 1,

• for every uv ∈ H there is no subset S with zS > 0
and S ⊇ {u, v }.

From this point on, we always assume that we have access to
a particular solution to the LP, with the properties described
in Assumption 3.1.

4. Local Search Algorithm
In this section, we describe our algorithm and give a full
proof for its approximation factor.

At a high level, the algorithm solves the Constrained Cluster
LP (Assumption 3.1) whose solution we view as a (frac-
tional) optimal clustering4; we then perform a simple lo-
cal search procedure (guided by this optimal) that gives a
2-approximation. In fact, this solution already gives a better-
than-2 approximation, unless some really specific conditions
occur. It turns out that it suffices to run local search once
again, but this time we discourage the new clustering from
looking similar to the previous one (by adding a penalty in
the objective function, when the two clusterings are similar).

In (Cohen-Addad et al., 2024b), they prove that one of
the two clusterings gives a better-than-2 approximation as
follows: assuming this is not true, they show how to obtain
a new clustering that has approximation better than the
optimal (a contradiction). To obtain this clustering, they
“mix” the optimal with the two local search solutions. We
perform the same steps, but in our case we can actually
perform these steps as part of the algorithm, not just in the
analysis, exactly because in our case we assume we have
obtained a (fractional) optimal solution.

4.1. Local Search Algorithm

We first define an operation (which we call local move) that
transforms a clustering C. Intuitively, the operation takes a
new cluster C and swaps it in the clustering; the resulting
clustering is defined as CC = {S \ C : S ∈ C} ∪ {C}. We
call a local move legal, if the cluster C that we introduce
to the clustering C does not violate any constraints in F or
H . In other words, C does not contain both endpoints of
a hostile edge nor does it contain only one endpoint of a
friendly edge.

Lemma 4.1. Starting from a feasible clustering C, applying
any number of legal local moves results in a clustering that
does not violate any constraints in F or H .

Proof. We consider a single legal local move, as by induc-
tion on the number of legal local moves we directly get the
lemma.

For a friendly pair to be violated, there must exist a cluster
containing exactly one of its endpoints. By the definition of
a legal move, this cannot happen in the introduced cluster

4From this point on, we refer to a solution to the Constrained
Cluster LP as a fractional clustering.
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C (which either contains both or none of the endpoints).
Additionally, this cannot happen in other clusters as well;
if it did, then the other endpoint would be in C, which we
already proved cannot happen. Similarly, for a hostile pair
to be violated, the two endpoints must end up in the same
cluster. The only cluster that can contain nodes that were in
different clusters in C is cluster C, which by definition does
not contain both endpoints of a hostile pairs.

Observation 4.2. We note that it is direct to algorithmi-
cally obtain a feasible clustering C, by creating a cluster
for each connected component of (V, F ). Informally, this
gives minimal clusters satisfying F . If any hard constraint
in H was not satisfied, then the instance itself would be
infeasible (two nodes are forced to be together, by F , and
to be separated, by H).

We now define the local search procedure. LetM be the
collection of clusters C with zC > 0 in the LP solution.
By Assumption 3.1, there are poly(n, 1

ε ) clusters in M.
Furthermore, they do not violate the hard constraints, and
can thus be used for legal local moves.

Algorithm 1: Local Search

1 LOCALSEARCH()
2 L ← arbitrary feasible clustering
3 while ∃C ∈M such that cost(LC) < cost(L) do
4 L ← LC

5 return L

The running time of Algorithm 1 is polynomial, as |M| =
poly(n, 1

ε ) and the cost can take only non-negative integer
values bounded by

(
n
2

)
.

4.2. Analysis of Local Search: 2-approximation

Recall that we view the LP solution as a fractional clustering.
Here, we introduce notation to separately capture the cost
incurred by plus edges that go across clusters and the cost
incurred by minus edges within clusters.

Definition 4.3. Let LP+ and LP− denote the costs of the
plus and minus edges incurred by the fractional clustering
given by the LP solution. That is LP+ =

∑
uv∈E+ xuv and

LP− =
∑

uv∈E−(1− xuv).

We slightly abuse notation and use LP to refer both to the
linear program, and the cost of its acquired solution (LP =
LP+ + LP−).

We say a clustering C is α-approximate if cost(C) ≤ αLP.
We first show that L is 2-approximate. In fact, we prove
something even stronger, that we later use to get an algo-
rithm that is better than 2-approximate.

Lemma 4.4. Let L be as in Algorithm 1. Then,

cost(L) ≤ 2LP− LP− −
∑

uv∈E+(L)∪E−(L)

xuv,

where LP denotes the value of the fractional LP solution.

Proof. Let C be a cluster such that zC > 0 in the LP so-
lution returned (C ∈ M). Recall that, LC denotes the
clustering obtained by applying a local move with cluster
C on a clustering L. This local move can affect an edge
(i.e. make it satisfied or unsatisfied) only if the edge has at
least one endpoint in cluster C (if not, then the endpoints
of the edge do not change cluster, which means that they
remain as they are - satisfied or unsatisfied). We say that
these edges are covered by C. By the local optimality of
L, we have cost(L) ≤ cost(LC). Informally, this means
that after swapping cluster C in, more edges covered by
C are unsatisfied than before. Let C+ denote the set of
plus-edges that have exactly one endpoint in C. Similarly,
let C− denote the set of minus edges that have both end-
points in C. The set C+ ∪ C− is the set of edges unsat-
isfied by the cluster C. Next, let E+C (L) ⊆ E+(L) be the
set of plus edges uv ∈ E+(L) that are covered by C, i.e.,
|{u, v} ∩ C| ≥ 1. Let E−C (L) ⊆ E−(L) be the set of minus
edges uv ∈ E−(L) such that |{u, v} ∩ C| ≥ 1. From the
above discussion, for each cluster C with zC > 0, we have,
|C+| + |C−| ≥ |E+C (L)| + |E−C (L)|. This further implies
that∑
C

zC · (|C+|+ |C−|) ≥
∑
C

zC · (|E+C (L)|+ |E−C (L)|).

We simplify the left-hand side of the above inequality by
separately accounting for the contributions of plus and mi-
nus edges to the summation. The contribution of a plus-
edge uv to the left-hand side of the above sum is simply∑

C:|{u,v}∩C|=1 zC . Recall, from the LP in Figure 1, that∑
C:u∈C zC =

∑
C:v∈C zC = 1 and

∑
C:{u,v}⊆C zC =

1 − xuv. From this, it follows that
∑

C:|{u,v}∩C|=1 zC =
2xuv . Similarly, one can see that the contribution of a minus-
edge uv to the left-hand side of the sum is 1−xuv . Summing
over the plus and minus edges separately,∑

C

zC · (|C+|+ |C−|) = 2LP+ + LP− = 2LP− LP−.

We similarly transform the right-hand side
∑

C zC ·
(|E+C (L)| + |E−C (L)|) of the above inequality. Each plus
edge uv that contributes to

∑
C zC · (|E+C (L)| + |E−C (L)|)

belongs to E+(L). A plus edge in E+(L) contributes an
amount of zC to the sum if either u or v is contained in C.
Thus, its total contribution is

∑
C:|C∩{u,v}|≥1 zC , which is

equal to 1+xuv . Using a similar argument, the contribution
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of a minus edge uv in E−(L) to the sum can also be seen to
be 1 + xuv . Thus, the summation simplifies to∑
C

zC ·(|E+C (L)|+|E−C (L)|) = cost(L)+
∑

uv∈E+(L)∪E−(L)

xuv.

Substituting these rewritten terms in the inequality, we get
the desired statement.

The last lemma directly gives an approximation ratio of 2,
which we reduce further on.

Corollary 4.5. Let L be as in Algorithm 1. Then,

cost(L) ≤ 2LP− LP− −
∑

uv∈E+(L)

xuv

cost(L) ≤ 2LP− |E−(L)| −
∑

uv∈E+(L)

xuv

Proof. The first inequality is just Lemma 4.4 with the term
−
∑

uv∈E−(L) xuv dropped. The second inequality starts
from Lemma 4.4 and uses the fact that:

LP− +
∑

uv∈E−(L)

xuv ≥
∑

uv∈E−(L)

(1− xuv + xuv)

where the right-hand side is equal to |E−(L)|.

4.3. Local Search with Penalties

Let δ = 2
25 . For the rest of the proof, it is instructive to

think about δ as a very small constant.

Directly from Corollary 4.5, we observe that either L is
already better than 2-approximate, or some very particular
conditions happen:

• Regarding minus-edges, the cost of both L and the LP
is negligible.

• Regarding plus-edges paid by L, the corresponding
cost of the LP is negligible.

We formalize this intuition in the following corollary.

Corollary 4.6. If L is not (2− δ)-approximate, then:

LP− +
∑

uv∈E+(L)

xuv < δLP,

|E−(L)|+
∑

uv∈E+(L)

xuv < δLP

Proof. Immediately from Corollary 4.5.

Following from the above, if L is not (2− δ)-approximate,
then its cost is dominated by the plus edges. The idea
here is that we try to run a local search that produces a
clustering that looks very different from L (and thus ideally
does not satisfy the aforementioned conditions). To do that,
we simply penalize the plus edges paid by L in the cost
function (Algorithm 2). We note that this part is exactly as
in (Cohen-Addad et al., 2024b).

Definition 4.7. For a clustering C the new cost function is:

costL(C) = cost(C) + |E+(C) ∩ E+(L)|

Algorithm 2: Local Search with penalties

1 costL(L′)
2 return cost(L′) + |E+(L′) ∩ E+(L)|
3 LOCALSEARCH-WITH-PENALTY()
4 L ← LOCALSEARCH()
5 L′ ← arbitrary feasible clustering
6 while ∃C ∈M such that costL(L′

C) < costL(L′)
do

7 L′ ← L′
C

8 return L′

Working exactly as for Corollary 4.6, but using costL in-
stead of cost, we get similar conditions for when L′ is not
better than 2-approximate:

Lemma 4.8. If L′ is not (2− δ)-approximate, then:

|E−(L′)|+
∑

uv∈E+(L′)

xuv + |E+(L′) ∩ E+(L)|

< δLP+ 2
∑

uv∈E+(L)

xuv

Proof. Proved in Appendix A.

Directly by Corollary 4.6 and Lemma 4.8 we note that if
neither L nor L′ are (2−δ)-approximate, then the following
conditions occur:

• Regarding minus edges, the cost of LP, the cost of L,
and the cost of L′ are all negligible.

• Regarding plus edges, not too many of them can con-
tribute to both L and L′, and, moreover, the ones that
contribute to L or L′ cannot contribute much to the
cost of the LP.

The following corollary formalizes the above.
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Corollary 4.9. If neither L and L′ are (2− δ)-approximate,
then:

LP− + |E−(L)|+ |E−(L′)|

+
∑

uv∈E+(L)

xuv +
∑

uv∈E+(L′)

xuv + |E+(L) ∩ E+(L′)|

< 4δLP.

Proof. Follows from the inequalities of Corollary 4.6 and
Lemma 4.8.

4.4. Final Algorithm and Analysis

The structure of the rest of the proof in (Cohen-Addad et al.,
2024b) is as follows: assuming that none among L, L′ are
(2− δ)-approximate, the authors construct a clustering that
is better than 1-approximate (a contradiction). To construct
this clustering, they propose a way to “mix” (in the anal-
ysis) L,L′, and the optimal clustering. For this to work
in our case, we are required to use the fractional optimal
clustering. This is so because the guarantees for our two
clusterings L,L′ are with respect to the fractional optimal
instead of the actual optimal, as was done in the paper that
introduced the local search approach for Correlation Clus-
tering (Cohen-Addad et al., 2024b). However, the mixing
procedure cannot be straightforwardly extended to fractional
clusterings. Instead, we first round the fractional clustering
C∗ to an integral one, whose properties are crucially very
close to that of C∗.

This rounding (see (Cao et al., 2024a)) gives a 2-
approximate clustering that samples clusters fromM.

Algorithm 3: Simple sampling-based 2-approximation

1 SAMPLING()
2 I ← ∅, S ← V
3 while S ̸= ∅ do
4 Sample a cluster C with probability

proportional to zC
5 I ← I ∪ {C ∩ S }
6 S ← S \ C
7 return I

Algorithm 3 can trivially run in polynomial time by avoiding
sampling clusters C with C ∩ S = ∅. Proving that it is a
2-approximation follows directly from Lemma 4.10.

Lemma 4.10 (Generalization of Lemma 6 of (Cao et al.,
2024a)). For every uv ∈

(
V
2

)
the probability that u, v are

separated in I returned by Algorithm 3 is 2xuv

1+xuv
.

Proof. Directly from the algorithm, the probability that u, v
are separated is equal to the probability that we select a

cluster containing only one of them, conditioned on the fact
that we select a cluster containing at least one of them. This
is

∑
|S∩{u,v }|=1 zS∑
|S∩{u,v }|≥1 zS

=
∑

S∋u,S ̸∋v zS+
∑

S∋v,S ̸∋u zS∑
S∋v zS+

∑
S∋u,S ̸∋v zS

. By the LP

in Figure 1 we have
∑

S∋v zS = 1 and
∑

S∋u,S ̸∋v zS =∑
S∋u zS −

∑
S⊇{u,v} zS = 1− (1− xuv) = xuv, which

proves the claim.

Corollary 4.11. It holds that

E
[
|E−(I)|+|E+(I) ∩ E+(L)|+ |E+(I) ∩ E+(L′)|

]
≤

LP−+2 ·
∑

uv∈E+(L)

xuv + 2 ·
∑

uv∈E+(L′)

xuv

where the expectation is over the randomness of Algo-
rithm 3.

Proof. Notice that for a minus edge uv, LP pays 1 − xuv,
while the expected cost of I is 1 − 2xuv

1+xuv
= 1

1+xuv
(1 −

xuv) ≤ 1 − xuv. Similarly, for the other two inequalities:
for a plus edge uv the cost of LP solution is xuv while the
expected cost of I is 2xuv

1+xuv
≤ 2xuv .

Corollary 4.12. For any constants c > 0, ε > 0, we can
run Algorithm 3 for O(log n) times, to get a clustering I
such that

|E−(I)|+|E+(I) ∩ E+(L)|+ |E+(I) ∩ E+(L′)| ≤

(1 + ε)(LP−+2 ·
∑

uv∈E+(L)

xuv + 2 ·
∑

uv∈E+(L′)

xuv)

with probability at least 1− n−c.

Proof. By Markov Inequality and Corollary 4.11 we have
probability at most 1/(1 + ε) = 1− ε

1+ε < e−
ε

1+ε to get a
clustering I that does not satisfy the claim on a particular
execution of Algorithm 3. Therefore the probability of
failure in 1+ε

ε c lnn repetitions is ≤ e−c lnn = n−c.

Finally, we show that I is a clustering satisfying the hard
constraints.

Lemma 4.13. Clustering I returned by Algorithm 3 satis-
fies all hard constraints.

Proof. By Assumption 3.1, if an endpoint of a friendly pair
uv ∈ F is contained in a cluster C with zC > 0, then
the other endpoint will also be contained in that cluster.
Thus, a sampled cluster will always have both endpoints
of a friendly pair. This means that endpoints of friendly
pairs are removed from S simultaneously. Therefore, when
introducing C ∩ S, it either contains both u and v or neither
of them. Analogously, by Assumption 3.1 endpoints of
hostile pairs are never in the same cluster C with zC > 0.
Hence, they cannot end up in the same cluster in clustering
I.

7
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We are now ready to show that if Algorithms 1 and 2 return
clusterings that are not (2 − δ)-approximate, then we can
create a new clustering that is 24δ-approximate, which is a
better-than-2 approximate clustering for our setting of δ.

To do that, we first observe that if neither L nor L′ are
(2− δ)-approximate, then the following conditions occur:

• Regarding minus edges, the cost of I, the cost of L,
and the cost of L′ are all negligible.

• Regarding plus edges, most of them only contribute to
the cost of at most one among L,L′, I.

This is similar to Corollary 4.9, and uses the fact that by
Corollary 4.12 clustering I behaves very similar to the LP.

Corollary 4.14. For any constants c > 0, ε > 0, if neither
of L and L′ are (2− δ)-approximate, and we obtain I by
using Corollary 4.12 then with probability at least 1− n−c:

|E−(I)|+ |E−(L)|+ |E−(L′)|+
|E+(I) ∩ E+(L)|+ |E+(I) ∩ E+(L′)|+ |E+(L) ∩ E+(L′)|

< (8 + ε)δLP

Proof. Beginning from the left hand side and using Corol-
lary 4.12 we get that with probability at least 1− n−c:

|E−(I)|+ |E−(L)|+ |E−(L′)|+
|E+(I) ∩ E+(L)|+ |E+(I) ∩ E+(L′)|+ |E+(L) ∩ E+(L′)|

≤ |E−(L)|+ |E−(L′)|+ |E+(L) ∩ E+(L′)|+

(1 + ε)(LP− + 2 ·
∑

uv∈E+(L)

xuv + 2 ·
∑

uv∈E+(L′)

xuv)

Now, we further manipulate the right hand side, by factoring
out the constants:

|E−(L)|+ |E−(L′)|+ |E+(L) ∩ E+(L′)|+

(1 + ε)(LP− + 2 ·
∑

uv∈E+(L)

xuv + 2 ·
∑

uv∈E+(L′)

xuv)

≤ 2(1 + ε)(LP− +
∑

uv∈E+(L)

xuv +
∑

uv∈E+(L′)

xuv+

|E−(L)|+ |E−(L′)|+ |E+(L) ∩ E+(L′)|)

By Corollary 4.9 this is less than (8+8ε)δLP, which proves
the claim by scaling ε.

We will now use clusterings L, L′ and I to create a new
clustering P such that:

• If P pays for a minus edge, then at least one of L, L′

and I pays for this edge.

• If P pays for a plus edge, then at least two of L, L′

and I pays for this edge.

Therefore, by Corollary 4.14, the total cost of P is small.

We now describe how to construct P (Algorithm 4). First,
we assign to each node u a label (X,Y, Z), such that u
belongs to clusters X ∈ L, Y ∈ L′, and Z ∈ I.

Definition 4.15. An equivalence class QXY Z is the set of
all nodes that have label equal to (X,Y, Z).

The construction of the new clustering P is shown in Algo-
rithm 4:

Algorithm 4: Pivoting Procedure

1 PIVOT(L,L′)
2 Obtain I by Corollary 4.12
3 Assign labels (X,Y, Z) to nodes u ∈ V
4 V ′ ← V , P ← ∅
5 while V ′ ̸= ∅ do
6 S ← an arbitrary equivalence class QXY Z with

all its nodes in V ′ and maximum cardinality
7 C ← S ∪ {u ∈ V ′ : the label of u differs in

exactly one label variable from (X,Y, Z)}
8 P ← P ∪ {C}, V ′ ← V ′ \ C
9 return P

Lemma 4.16. For any constants c > 0, ε > 0, if neither
L and L′ are (2 − δ)-approximate, then P is (24 + 3ε)δ-
approximate with probability at least 1− n−c.

Proof. Notice that directly from the algorithm, if two nodes
are in the same equivalence class, then they end up in the
same cluster of P; therefore P does not pay for plus edges
with endpoints in the same equivalence class (that is, end-
points that do not differ in any label variable). Furthermore,
if u, v are in the same cluster in P , it is because they share at
least two label variables with some equivalence class QXY Z .
Therefore, by pigeonhole principle, u, v share at least one
label variable, meaning that P does not pay for minus edges
with their endpoints differing in all label variables.

We conclude that there are 3 categories of edges that we
contribute towards the cost of P:

1. minus edges whose endpoints differ in at most two
label variables.

2. plus edges whose endpoints differ in exactly one label
variable.

8
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3. plus edges whose endpoints differ in at least two label
variables.

In Case 1, minus edges are bounded by Corollary 4.14, as
at least one of the clusterings L, L′ and I pay for them
(at least one variable in the labels of their endpoints is the
same, meaning that there is a cluster in one of L, L′ or I
that contains both). Similarly, in Case 3, plus edges are also
bounded by Corollary 4.14, as at least two of the clusterings
L, L′ and I pay for them (at least two variables in the
labels of their endpoints are different, therefore they are in
different clusters in at least two of the clusterings).

For every edge uv in Case 2, we show that it can be charged
to some edge of the previous cases, and each edge from the
previous cases is charged by at most two edges of Case 2.
This results in cost 3 · (8 + ε)δLP , by Corollary 4.14.

Consider an iteration of Algorithm 4 that creates a cluster
C in P by selecting an equivalence class S = QXY Z . For
a plus edge uv in Case 2 that we pay for, it must be that one
of its endpoints differs in one label variable from (X,Y, Z)
(therefore it is in C), and the other differs in two (so that it
is not in C, because we pay for uv, but still only differs in
one label variable from u). W.l.o.g. assume v ∈ QXY ′Z′

and u ∈ QXY ′Z or u ∈ QXY Z′ , meaning that v can be
associated with at most |QXY ′Z |+|QXY Z′ | edges in Case 2
that we pay for.

By maximality of S we have QXY ′Z ≤ S, and therefore
we can find an injective function f : QXY ′Z → S. If
{ v, f(u) } is a plus edge, then it is a Case 3 edge and if
{ v, f(u) } is a minus edge, then it is a Case 1 edge. Simi-
larly for u ∈ QXY Z′ , which proves our claim.

Lemma 4.17. P does not violate any hard constraints.

Proof. A friendly pair uv will be in the same cluster in all 3
clusterings L, L′, I (as they are feasible clusterings), thus u
and v will be in the same equivalence class QXY Z . By the
construction of P , all nodes of an equivalence class end up
in the same cluster. Similarly, a hostile pair uv will have its
endpoints u and v in different clusters in all 3 clusterings L,
L′, I, which means that their labels will differ in all three
variables. Again, by construction, no two nodes that differ
in all the label variables end up in the same group in P .

Our final algorithm returns the best out of all clusterings.

Theorem 4.18. Under Assumption 3.1, for any constants
c > 0, ε > 0, there exists a polynomial time algorithm for
Constrained Correlation Clustering whose approximation
factor is (1.92 + ε) with probability 1− n−c.

Proof. L,L′ and P all satisfy the hard constraints (Lem-
mas 4.1, 4.17) and can be computed in polynomial time.

Algorithm 5: Main Algorithm

1 L ←LOCALSEARCH()
2 L′ ← LOCALSEARCH-WITH-PENALTY()
3 P ←PIVOT(L,L′)
4 C ← argminS∈{L,L′,P } cost(S)
5 return C

Furthermore, with probability 1−n−c we successfully solve
the LP in Figure 1 (Assumption 3.1) and get that either
min{ cost(L), cost(L′) } ≤ 1.92LP or cost(P) ≤ (1.92 +
ε)LP (by Lemma 4.16 and δ = 2

25 ). As LP ≤ (1 + ε)OPT
(Assumption 3.1), Algorithm 5 satisfies the claim by scaling
ε.

5. Concluding Remarks
In this paper, we present a better-than-2 approximation algo-
rithm for Constrained Correlation Clustering, conditioned
on an efficient solution to the Constrained Cluster LP. We
obtain our algorithm by combining the assumed Cluster LP
solution with a local search technique. Our algorithm is
conceptually simpler to analyze and gives a better-than-2
approximation for the special case of Correlation Clustering.

The main open direction is to determine whether there exists
an efficient solution for the Constrained Cluster LP. It would
also be interesting to explore whether our approach of com-
bining the LP and local search has broader applications. An-
other open direction is with respect to the inapproximability
of Constrained Correlation Clustering. Finally, it is intrigu-
ing to know whether inapproximability results stronger than
the ones directly implied by those for Correlation Clustering
exist for the constrained setting.
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A. Analysis of Local Search with Penalty
In this section, we present the analysis of Algorithm 2, which very closely follows the analysis of Algorithm 1.

Lemma 4.8. If L′ is not (2− δ)-approximate, then:

|E−(L′)|+
∑

uv∈E+(L′)

xuv + |E+(L′) ∩ E+(L)|

< δLP+ 2
∑

uv∈E+(L)

xuv

Proof. Let C be a cluster such that zC > 0 in the LP solution returned (C ∈ M). Recall that, L′
C denotes the clustering

obtained by applying a local move with cluster C on a clustering L′. This local move can affect an edge (i.e. make it
satisfied or unsatisfied) only if the edge has at least one endpoint in cluster C (if not, then the endpoints of the edge do not
change cluster, which means that they remain as they are - satisfied or unsatisfied). We say that these edges are covered by
C. By the local optimality of L′, we have cost′(L′) ≤ cost′(L′

C). This means that after swapping cluster C in, more edges
covered by C are unsatisfied than before. Let C+ denote the set of plus-edges that have exactly one endpoint in C. Similarly,
let C− denote the set of minus edges that have both endpoints in C. The set C+ ∪ C− is the set of edges unsatisfied by the
cluster C. Next, let E+C (L′) ⊆ E+(L′) be the set of plus edges uv ∈ E+(L′) that are covered by C, i.e., |{u, v} ∩ C| ≥ 1.
Let E−C (L′) ⊆ E−(L′) be the set of minus edges uv ∈ E−(L′) such that |{u, v} ∩ C| ≥ 1. From the above discussion, for
each cluster C with zC > 0, we have, |C+|+ |C+ ∩ E+(L)|+ |C−| ≥ |E+C (L′)|+ |E+C (L′) ∩ E+(L)|+ |E−C (L′)|. This
further implies that∑

C

zC · (|C+|+ |C−|) +
∑
C

zC · |C+ ∩ E+(L)| ≥
∑
C

zC · (|E+C (L′)|+ |E−C (L′)|) +
∑
C

zC · |E+C (L′) ∩ E+(L)|

We simplify the first term of every side of the inequality in the same manner as in Lemma 4.4, which gives us:

2LP− LP− +
∑
C

zC · |C+ ∩ E+(L)| ≥ cost(L′) +
∑

uv∈E+(L′)∪E−(L′)

xuv +
∑
C

zC · |E+C (L′) ∩ E+(L)|

We simplify the term
∑

C zC · |C+ ∩ E+(L)| of the left-hand side by accounting the contributions of plus edges to the
summation.

A plus edge in E+(L) contributes an amount of zC to the sum if either u or v is contained in C. Thus, its total contribution
is
∑

C:|C∩{u,v}|≥1 zC , which is equal to 1 + xuv .

For an edge to contribute to the term it must be in E+(L) and only have one of its endpoints in cluster C. This means that
every edge in E+(L) contributes exactly

∑
C:|{u,v}∩C|=1 zC = 2xuv . Thus, we get:

∑
C

zC · |C+ ∩ E+(L)| = 2
∑

uv∈E+(L)

xuv

We similarly transform the term
∑

C zC · |E+C (L′) ∩ E+(L)| of the right-hand side. For an edge to contribute to the
term it must be in both E+(L) and E+(L′) and at least one of its endpoints in cluster C. This means that every edge in
E+(L) ∩ E+(L′) contributes exactly

∑
C:|{u,v}∩C|≥1 zC = 1 + xuv . Thus, we get:

∑
C

zC · |E+C (L′) ∩ E+(L)| =
∑

uv∈E+(L)∩E+(L′)

(1 + xuv) = |E+(L) ∩ E+(L′)|+
∑

uv∈E+(L)∩E+(L′)

xuv

By substituting these rewritten terms in the inequality, we get the following:
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cost(L′) ≤ 2LP− LP− −
∑

uv∈E+(L′)∪E−(L′)

xuv − |E+(L) ∩ E+(L′)|+ 2
∑

uv∈E+(L)

xuv −
∑

uv∈E+(L)∩E+(L′)

xuv

≤ 2LP− LP− −
∑

uv∈E+(L′)∪E−(L′)

xuv − |E+(L) ∩ E+(L′)|+ 2
∑

uv∈E+(L)

xuv

≤ 2LP− |E−(L′)| −
∑

uv∈E+(L′)

xuv − |E+(L) ∩ E+(L′)|+ 2
∑

uv∈E+(L)

xuv

For the second inequality we used the fact
∑

uv∈E+(L)∩E+(L′) xuv ≥ 0 and for the third inequality the fact LP− +∑
uv∈E−(L′) xuv ≥

∑
uv∈E−(L′)(1− xuv + xuv). Finally, if L′ is not (2− δ)-approximate, then:

|E−(L′)|+
∑

uv∈E+(L′)

xuv + |E+(L′) ∩ E+(L)| < δLP+ 2
∑

uv∈E+(L)

xuv

which is the desired statement.
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