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Abstract

The usage of exocentric and egocentric videos
in Video Question Answering (VQA) is a new
endeavor in human-robot interaction and col-
laboration studies. Particularly for egocentric
videos, one may leverage eye-gaze information
to understand human intentions during the task.
In this paper, we build a novel task-oriented
VQA dataset, called GazeVQA, for collabora-
tive tasks where gaze information is captured
during the task process. GazeVQA is designed
with a novel QA format that covers thirteen
different reasoning types to capture multiple
aspects of task information and user intent. For
each participant, GazeVQA consists of more
than 1,100 textual questions and more than 500
labeled images that were annotated with the
assistance of the Segment Anything Model. In
total, 2,967 video clips, 12,491 labeled images,
and 25,040 questions from 22 participants were
included in the dataset. Additionally, inspired
by the assisting models and common ground
theory for industrial task collaboration, we pro-
pose a new AI model called AssistGaze that
is designed to answer the questions with three
different answer types, namely textual, image,
and video. AssistGaze can effectively ground
the perceptual input into semantic information
while reducing ambiguities. We conduct com-
prehensive experiments to demonstrate the chal-
lenges of GazeVQA1 and the effectiveness of
AssistGaze2.

1 Introduction

Computer vision systems for understanding data,
such as video clips, photos, and generated synthetic
images, have been studied for a few decades and

∗Equal contribution.
†Corresponding author.

1https://github.com/mfurkanilaslan/GazeVQA
2https://github.com/showlab/AssistGaze

Question: Which component will be assembled 
next?

A1: Hub cover bolts
A2: Casing bolts 
A3: Input hub cover 
A4: Output hub cover

Textual Answer (Multiple Choice) Image Answer

Video Answer (Step2-6 video clip was used) t1: 00: 10 – t2: 00:30 sec

TPV-enface

TPV-sideward

FPV-raw

FPV-gaze

Figure 1: GazeVQA dataset contains gaze info with
ego/exocentric videos to answer the questions that have
semantic knowledge about human-robot studies.

have achieved remarkable progress (Deng et al.,
2009; He et al., 2016; Russell et al., 2008; Feichten-
hofer et al., 2019; Tapaswi et al., 2016; Krizhevsky
et al., 2017; Yu et al., 2019). Many projects (Wu
et al., 2017; Gao et al., 2021; Sood et al., 2021;
Antol et al., 2015; Kafle and Kanan, 2017; Lei
et al., 2022; Gao et al., 2022) in recent years have
shown promising developments in the usage of
multimodal information. Moreover, there are sev-
eral VQA studies, such as TutorialVQA (Colas
et al., 2020), AGQA (Grunde-McLaughlin et al.,
2021), TVQA (Lei et al., 2018), KnowIT VQA
(Garcia et al., 2020), EgoVQA (Fan, 2019), Ego-
TaskQA (Jia et al., 2022), GQA (Hudson and Man-



ning, 2019), DramaQA (Choi et al., 2021), VQA-
MHUG (Sood et al., 2021), PointQA (Mani et al.,
2020) that target at different aspects such as instruc-
tional assistance, subtitle inclusion, and composi-
tional reasoning. Despite the notable progress in
VQA studies, most of the works use videos from
one or multiple third-person views (TPV). Con-
strained by the fixed viewing angle, TPV video may
not be able to capture subtle information on human
operation in industrial tasks such as assembly and
disassembly. In particular, the TPV may not be suf-
ficient to capture the interaction that forms the basis
of human-human/robot shared tasks. First-person
view (FVP) videos containing gaze information
are beneficial to understanding the tasks performed
in assembly-disassembly studies and overcoming
spatial ambiguities.

A novel task-oriented collaborative VQA is pro-
posed in this research based on the collaboration
theory, which is defined as a coordinated, syn-
chronous activity resulting from a continuous effort
to construct and maintain a shared understanding of
a problem (Dillenbourg et al., 1996; Roschelle and
Teasley, 1995). This theory encompasses four key
aspects: situation, interaction, process (grounding),
and effect (Dillenbourg et al., 1996). Situation
is characterized by a degree of division of labor,
which sets the stage for interactions. Interaction is
characterized by cognitive process such as ground-
ing and mutual modeling, leading to effect that
contribute to shared understanding (Dillenbourg
et al., 1996). The ultimate goal of collaboration,
according to this theory, is to build the common
grounds necessary for effective cooperation. In the
context of interaction between two subjects, there
is a requirement to develop a shared language for
task completion. This concept is called grounding
mechanism (Dillenbourg et al., 1996), which oper-
ates on a functional principle: while perfect mutual
understanding is not attainable, nor necessary, it is
required to sustain sufficient mutual understanding
to continue the task (Clark and Brennan, 1991). In
addition, every collaboration has a unique user ex-
perience. However, the TPV FPV videos may not
adequately capture the semantic meaning that rep-
resents users’ intentions and unique experiences.

The GazeVQA task aims to establish common
ground for collaborative tasks involving human-
robot interaction. Furthermore, different from other
existing VQA studies, GazeVQA leverages com-
mon grounding theory (Li et al., 2006) and uses eye-

gaze information to facilitate semantic understand-
ing in collaboration tasks. As shown in Figure 1,
GazeVQA contains gaze-augmented QA pairs that
are related to human-human interaction, which can
assist a person in learning task knowledge with an
AI assistant that answers questions.

To tackle the challenges of visual understanding
presented in GazeVQA, we propose AssistGaze -an
assistive model for task-collaborative HRI-QA. It
is a combination of different models to answer the
questions with three different answer types, includ-
ing textual answers, video retrieval answers, and
image answers. The main purpose of AssistGaze
is to predict correct answers for task-specific ques-
tions in GazeVQA by using gaze information. We
inquire into different configurations of the proposed
model, such as availability of gaze, choice of en-
coders, answer types, etc., and compare our model
with a few benchmarks, such as random guess and
VIOLET (Fu et al., 2021). First, random guess
models and masked versions of all video features
are examined. Secondly, the effectiveness of TPV
videos is examined. Finally, FPV videos with gaze
information are added to the experiments. It is
observed that the model obtains the highest perfor-
mance when all features are included.

There are three contributions of this paper. (1)
We propose a novel collaborative VQA task to sup-
port collaboration in industrial applications such as
the assembly and disassembly processes. (2) We
design GazeVQA, a new VQA dataset on collab-
orative scenarios, with carefully curated QA pairs
and multimodal inputs including videos captured
from multiviews and eye gaze information in the
FPV video. (3) We create a new assistant model,
AssistGaze, to generate answers in three formats,
while using gaze information to resolve spatial am-
biguities. The model assists a human user in collab-
oration and interaction by answering task-specific
questions.

2 Related Works

2.1 Video QA

There is increasing momentum of VQA studies re-
cently (Antol et al., 2015; Lu et al., 2019; Goyal
et al., 2017; Gao et al., 2020; Tapaswi et al., 2016;
Maharaj et al., 2017; Mun et al., 2017; Jang et al.,
2017; Gao et al., 2023; Jang et al., 2017). With
the acceleration of the studies carried out in this
field, human-centered action recognition studies
were conducted with video clips taken from TV



Dataset Total
Hours

# of
Videos

Avg. L.
(min.)

# of
Verbs

# of
Actions

# of
Objects

Ego4D (Grauman et al., 2022) 120 - - 74 87 -
MECCANO (Ragusa et al., 2021) 6.9 20 20.7 12 21 61
IKEA ASM (Ben-Shabat et al., 2021) 35 371 5.6 12 10 33
Assembly101 (Sener et al., 2022) 513 4,321 7.1 24 90 1,380
EPIC-KITCHENS (Damen et al., 2021) 100 700 8.5 97 300 4,053
GazeVQA(gaze) 31.5 895 2.5 28 16 40
GazeVQA 125 2,967 2.5 28 16 40

Table 1: Comparison of the GazeVQA and other action datasets in the context of total hours of video clips, number
of videos, average length of video clips (in minutes), number of verbs, actions, and objects.

series (Lei et al., 2020). A detailed comparison
of GazeVQA and current VQA models is in the
appendix, Tables 8 and 9. Egocentric videos have
become popular in the computer vision commu-
nity due to the prevalence of small cameras and
the ease of collecting FPV videos. These cam-
eras are useful to collect a variety of videos in dif-
ferent domains, such as manufacturing (assembly-
disassembly) (Tan et al., 2020), education, behav-
ior (Bambach et al., 2017; Wong et al., 2022), and
sports (Bertasius et al., 2017; Shi and Bertasius,
2017). These videos also enable analysis such as
object detection (Fathi et al., 2011; Fan et al., 2018;
Furnari et al., 2017), hands detection (Bambach
et al., 2015; Chen et al., 2023), gaze detection and
prediction (Huang et al., 2018).

To train powerful VQA models, datasets with
reasonable scale and accurate annotation are
necessary. Large-scale datasets such as EPIC-
KITCHENS (Damen et al., 2021) or Ego4D (Grau-
man et al., 2022) are not suitable for annotation due
to their enormous sizes. Other studies for industrial
assembly-disassembly are Assembly101 (Sener
et al., 2022), IKEA ASM (Ben-Shabat et al., 2021),
and MECCANO (Ragusa et al., 2021). Table 1
presents a comparison of various works alongside
GazeVQA. GazeVQA is the first dataset that deals
with assembly-disassembly in the industry context
that contains eye gaze information. The availability
of eye gaze information is a unique feature of our
dataset, which can augment semantic understand-
ing of the tasks by harnessing human intentions.
Compared to MECCANO and IKEA ASM datasets,
GazeVQA is superior in terms of total recording
hours, number of video clips, and number of differ-
ent action words. Consequently, it supports model
development towards real-world applications. In-
terested readers may refer to Tables 8 and 9 in the

appendix for more comprehensive comparisons be-
tween GazeVQA and existing VQA datasets.

2.2 FPV and gaze information

Visual grounding is a recent research topic in the
VQA studies. (Zhu et al., 2016; Hudson and
Manning, 2019) proposes a method to localize ob-
jects to answer the questions with visual grounding.
However, human-robot interaction requires more
cost-effective solutions. Thus, the usage of hand
gestures, i.e. pointing at objects, shows a useful ap-
proach (Mani et al., 2020), which nevertheless, suf-
fers from a tedious process for recording hand ac-
tions and visual processing. Alternatively, human
gaze can be used to decode the human intention
with respect to localizing objects and recognizing
actions.

Gaze information has been used for action recog-
nition studies for a while, e.g., to show how gaze-
indexed frames are beneficial (Li et al., 2015) and
how noisy information can be recognized with min-
imum error (Li et al., 2018). However, using gaze
information for VQA studies has not become pop-
ular yet.

While VQA datasets have involved video with
subtitles (Tapaswi et al., 2016; Lei et al., 2018,
2020), GazeVQA does not depend upon the addi-
tional explanation. AGQA (Grunde-McLaughlin
et al., 2021) works on spatial-temporal reason-
ing and NexT-QA (Xiao et al., 2021) deals with
temporal-causal reasoning. Assembly101 (Sener
et al., 2022) focuses on assembly and disassembly
applications, but does not involve collaboration and
interaction. GazeVQA works on common ground-
ing for collaborative interactions by using gaze
information. It is formulated based on collabora-
tive applications and aims to make predictions with
text, image, and video answers.



3 Dataset

3.1 Video and QA Collection
GazeVQA is a dataset based on simulated scenarios
for industrial applications of human-robot collabo-
ration. Figure 2 shows the spatial layout of the data
collection. In our use case of industrial assembly
and disassembly, the 3D printed version of the Type
C Gearbox-AGNEE Shaft Mounted Speed Reducer
(SMSR) product was used.

Task-oriented, instruction-based procedures.
Existing datasets feature multi-step activities fol-
lowing a strictly ordered recipe (Miech et al., 2019;
Zhou et al., 2018; Zhukov et al., 2019), scripted
(Ragusa et al., 2021); or non-scripted (Sener et al.,
2022). GazeVQA consists of instruction-based
task-oriented collaborative activities. In particu-
lar, the assembly/disassembly was performed by
two partners in a collaborative relationship. One
partner acts as an instructor, and the other is a
novice/subject to be trained. During the experi-
ment, the subjects can ask for clarification and help
from the instructor. The subject can be warned
and assisted by the instructor in cases of incom-
plete/incorrect actions.

Synchronization of exo/egocentric angles.
Fixed features of the scene or objects in the video
that do not change over time are called static in-
formation, such as the shape of an object or the
layout of a room. Such information is often im-
portant for understanding the context of a scene
or the properties of an object. Information that
expresses properties that can change over time is
called dynamic information, such as the movement
of objects or humans, the changing expressions on
a human’s face, or the actions performed by the
subject of the video. Capturing dynamic informa-
tion enables the analysis of events or changes in
the scene over time. The FVP video provides a
subjective view of the action. It can offer an in-
sight into a human’s focus of attention. Some tasks
are designed for the interaction of multiple objects,
such as screwing bolts onto the gearbox. In this
example, the gearbox should be put horizontally,
and then the nut and bolt should be assembled in
the correct matching position. In challenging steps
where multiple actions are performed simultane-
ously, FPV videos cannot provide sufficient data
for the assistive model to estimate human intention.
Therefore, static and dynamic information might
be missed by FPV. We propose that eye-gaze in-
formation is the key to understanding the semantic

information from that kind of action in the videos.
VQA studies usually require a large number of

QA lists to train a model. Questions are asked to
assist the subjects with the necessary information
to perform the task. To do so, some questions are
prepared by using specific verbs such as “look”,
and “gaze at”. They are used in the dataset to uti-
lize eye-gaze information. In short, questions are
prepared to mitigate challenges in temporal action
segmentation, action recognition, and object recog-
nition, which can be answered by using gaze infor-
mation, as well as TPV as an enhanced approach
to improving our VQA dataset.

INSTRUCTOR INSTRUCTOR

SUBJECTSUBJECT

Figure 2: Spatial layout for GazeVQA data collection,
and the images of QA tasks with the opening scene.

Different Perspectives. None of the 22 par-
ticipants is knowledgeable about this industrial
product. Most experiment sessions were recorded
from three different camera angles (one FPV and
two TPV angles), except two sessions that were
recorded by two camera angles (one FPV and one
TPV) due to the malfunctioning of a TPF camera.
The use of these different videos has five different
goals. First, TPV videos are positioned as shown
in Figure 2, providing us with spatial depth. As
a future study projection, this depth provided by
the angle differences of the cameras can also be
used for 3D environment extraction. Second, it
is used to spatially locate small components that
might be invisible from an angle. Third, the frames
taken from FPV videos might not contain the an-
swer to the question asked. This is because the
FPV camera has a limited field of view and the sub-
jects constantly move the head from side to side,
leading to partial coverage of the scene. Fourth,
FPV captures the user’s perspective which reflects
his/her attention. Finally, with eye gaze in FPV
videos, which provides additional information on
the user’s attention and intention. It helps to model
to answer questions such as “Where did the subject



look at?” and “Which object will be assembled
after the current object is assembled?”

There are variations in the task completion pro-
cess where the sequence may deviate from standard
ones. For instance, “screw in the oil level indica-
tors” should be completed in one action. In some
cases, the subject realizes that as separate sequen-
tial tasks. Therefore, the fixed type of QA list can-
not be used. However, QA lists could be integrated
into the new actions manually. For example, some
of the subjects applied the actions “Put the input
hub cover” and “Put the small hub cover” at the
same time. Thus, the questions are updated for the
combination of these steps. Additionally, there are
cases where alternative sequences are performed by
a subject, e.g., putting the small hub cover before
the input hub cover. The detailed visualization is
shown in Figures 10 and 11 (in the appendix part).

3.2 GazeVQA Task Formulation

For collaborative tasks to be effective, communi-
cation (information sharing) is crucial (Tan et al.,
2020). The collaborative interaction of instructor
and subject has two phases, which are the presenta-
tion and acceptance phases according to the com-
mon ground theory (CGT) (Clark and Brennan,
1991; Li et al., 2006). CGT requires searches and
updates of common ground to maintain effective
communication. This continuous process during
communication requires mutual agreement, con-
stant attention to feedback, and the adjustment of
communication strategies according to the context.
The concept is used to analyze the efficiency of
communication in different settings, including in-
terpersonal communication and human-computer
interaction. In our experiments, the instructions
from the instructor (speaker) define the presenta-
tion phase, while the listener’s understanding of the
given instructions and the execution of the instruc-
tions defines the acceptance phase.

We formulate a new QA task involving collabora-
tive interaction processes that exist between human-
robot/human. The aim of this interaction is to un-
derstand the instructions given by the instructor
and to implement them faithfully as a sequence
of atomic actions. More than 1100 questions are
prepared for each participant following guidelines
of 13 different reasoning types that are commonly
used in VQA studies. Interested readers may refer
to Figure 9 in the appendix for a detailed list of
reasoning types. The subject can be assisted by

not only textual answers but also video retrieval
and/or image answers depending on the types of
questions.

Similar to other VQA datasets, we propose a
multiple choice (MC) answering format for our
textual responses. Since video retrieval answers
have been recorded from 3 different video angles
(TPVenface, TPVsideward, and FPV - with and
without gaze information), 4 different video re-
trieval responses are provided for each participant
(except for two subjects). Additionally, manually
created ground truth (GT) image answers with the
help of segment anything model (SAM) (Kirillov
et al., 2023) are prepared for comparing the gaze
location in the frame to generate the image answer.

3.3 GazeVQA Statistics and Analysis

The GazeVQA dataset is composed of the assembly
process, which includes a maximum of 22 steps,
and the disassembly process, which includes a max-
imum of 19 steps (not symmetrical). The number
of questions for the assembly task is 631; and the
numbers of textual, image, and video answers are
563, 306, and 479, respectively. The number of
questions for the disassembly task is 521, while the
numbers of textual, image, and video answers are
474, 266, and 389, respectively.

There is a total of 25,040 questions, which can be
broken down into 8,509 “What”, 3,017 “Which”,
2,798 “Where”, 785 “When”, 44 “Who”, 2,392
“How”, 7,407 “Did”, 44 “Is” and 44 “Was”. The
number of unique textual questions is 1,091. The
detailed analyses of the QA pairs are shown in the
appendix. In total, there are more than 22,000 tex-
tual answers, 12,400 labeled images that are used
by one participant’s video clips, and 2,967 video
clips in the dataset. Additionally, 18,700 video
answers are expected, according to the questions.
Statistics on frequent words and questions are pro-
vided in Figure 5 and 6 in the appendix.

4 Model

To tackle the challenges presented in GazeVQA, es-
pecially related to the gaze-augmented multimodal
information, we propose a new AssistGaze model
as shown in Figure 3.

The first critical challenge relates to the encod-
ing of multimodal inputs, especially video input.
Video encoding serves the purpose of obtaining ob-
ject information in video embedding (Wang et al.,
2022b,a). Text encoding involves question encod-



A1: Hub cover bolts
A2: Casing bolts 
A3: Input hub cover 
A4: Output hub cover
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Figure 3: AssistGaze Model. Firstly, the features of questions and videos are taken as inputs; additionally, the
features of textual answers and labeled images are extracted. Then the encoder structure is where the feature
representations are obtained by input encoders. Finally, it performs answer prediction by contrastive loss check.

ing and text answer encoding. CLIP is used for
the text embedding. This ensures that the video
features and the text features are projected onto
the same dimensional space. Each question has a
shape of 1 × dq and the text answer will have a
shape of 1 × dt, where dq, and dt are the dimen-
sions of features. The model needs to select the
correct text tensors from the m choices provided.

For the video encoder, CLIP (Radford et al.,
2021) is used to extract the features. The feature ex-
tractions from the video clip consist of a sequence
of five distinct phases. We sparsely sampled 8
frames from each action step and encoded each
frame with CLIP. The feature of each frame has a
shape of 1×dv where dv is the encoding dimension.
Each video answer consists of four videos of which
there are two FPV videos and two TPV videos. One
of the FPV videos is the raw version without gaze
information and the other is the gaze-augmented
version, where the gaze point is represented by a
blue dot. While four phases represent the feature
extraction of four different types of videos, the last
phase represents the concatenation of these four
views. The model needs to select the correct step
from the 5 steps in the video.

The Faster R-CNN (Ren et al., 2015) is imple-
mented for image encoding. Since the task requires
the model to select the correct bounding box out
of the “n” choices. To get the features inside the
bounding box, the Faster R-CNN is suitable due to

the Region of Interest (ROI). It can crop the image
within the bounding box and convert it into features
with the shape of 1× dm.

After all features are extracted, question fea-
tures q ∈ R1×dq , video features v ∈ R5×dcv ,
video answer features a ∈ R1×dcv with each im-
age answer features 1×dm and each text answer
feature t ∈ R1×dt are concatenated. These fea-
tures are called one-question-answer tuples. The
concatenated feature for each question-answer tu-
ple m× n× l is with a shape of 8× df , where df
is the feature dimension.

Each tuple will be passed through a 3-layer trans-
former encoder and we only use the class token of
the output tensor from the transformer encoder. It
has a shape of 1 × df and then it will be passed
through a fully connected layer with the shape of
d× 1. This will give us a prediction p of whether
this pair is correct or incorrect.

A notable challenge in VQA is short-cut learn-
ing, which has been addressed by various strate-
gies, such as acting on training data, different learn-
ing strategies, and architectural priors (Dancette,
2023). A more balanced approach is suggested
in (Goyal et al., 2017), where the VQAv2 dataset
is designed to make it difficult to answer a ques-
tion using only the image. (Johnson et al., 2017),
and (Hudson and Manning, 2019) have tried to
reduce conditional biases with the rejection sam-
pling approach. We tackle this issue by designing



Methods Answering Type mAP
Random Guess Text 0.0711
VIOLET (Fu et al., 2021) Text 0.2549
(Ours) 8 Frames of CLIP Features Text 0.2717
(Ours) 16 Frames of CLIP Features Text + Image + Video 0.4919
(Ours) FPV Video Add TPV Video Text + Image + Video 0.5040
(Ours) 8 Frames of CLIP Features (standard) Text + Image + Video 0.6719

Table 2: The results for baseline methods which are prepared in different frames with CLIP (Devlin et al., 2019)
features and FPV video additions to the TPV videos. The benchmark has been done with the VIOLET (Fu et al.,
2021) model by considering only the textual answer type. Not only does our novel multiple-answering approach,
but our single-type answering approach also performs better against the SOTA textual answer models.

GazeVQA and AssistGaze with multi-modality an-
swers (text, image, or video). We also prepared
a number of counterfactual QA pairs to reduce
the possibility of shortcut learning, as inspired by
(Goyal et al., 2017; Ramakrishnan et al., 2018).

5 Experiments

Data Splits. GazeVQA consists of a total of
3,008,400 question-answer tuples. These tuples
are randomly split into the training set and valida-
tion set with a ratio of 8 : 2.

Evaluation Metrics. For each question we have
m × n × l question-answer tuples. Among these
tuples, there is only one tuple that can be labeled as
correct. Specifically, an answer is considered cor-
rect only if all three types of answers (text, image,
video) are correct; otherwise, it is labeled as wrong.
Therefore, only if all answers are answered cor-
rectly, then the prediction will be labeled as correct
with a ratio of positive samples to negative samples
being 1 : m × n × l − 1. We use mean Average
Precision (mAP) as the primary evaluation metrics
(Oksuz et al., 2021).

Precision =
TruePstv.

TruePstv.+ FalsePstv.
(1)

Implementation Details. We use PyTorch
(Paszke et al., 2019) to perform the experiments.
The AdamW (Loshchilov and Hutter, 2019) opti-
mizer is used with learning rate of 6× 10−7. The
batch size is set to 1024.

5.1 Ablation Studies and Results

We first show the performance comparison of a few
models. As shown in Table 2, random guess has
an mAP of 0.0711. Our standard baseline uses 8
frames of one video to be the representation of the

video, which is suggested by ClipBERT (Lei et al.,
2021). As shown in Table 2, the mAP result which
is 0.6719 reflects that 8 frames perform well in
our task and more frames, 16, even undermine the
performance of the model 0.4919. In the standard
model, the input modality includes two TPV videos
and two FPV videos, which achieves an mAP of
0.6719. To evaluate the contribution of different
features, we test a few ablated feature combinations.
For example, we use the FPV video with the TPV
video with a trainable hyper-parameter α and get a
finalized video features α×2×dfv + (1−α)×2×dsv,
the mAP decreases to 0.5040. As shown in Table
2, with only part of the features, the performance
is lower than the standard model.

Video Inputs Metrics
FPV TPV EyeGaze mAP
✓ ✓ ✗ 0.5004
✗ ✓ ✓ 0.5061
✓ ✗ ✓ 0.4982
✓ ✓ ✓ 0.6719

Table 3: Ablation studies and results for the usage of
different multi-view inputs (FPV, TPV, and Eye-Gaze).

The above results show the challenging nature of
the GazeVQA problem. It requires varying modali-
ties of answers while existing SOTA models require
only single-modality answers. As shown in Tables
3 and 5, the performance is lower when only one or
two kinds of answer types are involved (Note that
the question and video features are preserved). The
lowest mAP (=0.2274) is obtained when only the
video feature is used. However, the performance of
our model is more suitable and better when multi-
ple answer types are needed.

To evaluate the effect of different encoders, we
use MViTv2 (Li et al., 2022) extract video fea-



Learning Rate:1.2e-5 Learning Rate:8e-4 LR:8e-4, Unfrozen Layer of BERT
Epoch mAP mAP mAP

1 0.0939 0.1047 0.2318
2 0.0977 0.1042 0.2542
3 0.1006 0.1039 0.2506
4 - 0.1056 0.2549

Table 4: The ablation studies that are conducted by using the VIOLET Model (Fu et al., 2021). It shows the
Fine-tuning of the VIOLET model’s fully connected layer with different learning rates. The last column represents
the fine-tuned linear layer of the VIOLET (Fu et al., 2021) by unfreezing the last layer of the BERT (Devlin et al.,
2018). LR: Learning Rate.

Answer Types Metrics
Video Text Image mAP

✗ ✗ ✓ 0.3321
✗ ✓ ✓ 0.4482
✗ ✓ ✗ 0.2717
✓ ✓ ✗ 0.2987
✓ ✗ ✗ 0.2274
✓ ✗ ✓ 0.3523
✓ ✓ ✓ 0.6719

Table 5: The results of the usage of different answer
types which are video, textual, and image.

tures and BERT (Devlin et al., 2018) to extract text
features (Devlin et al., 2019), as compared to the
CLIP-based model. Each step in a video is encoded
with MViTv2 and we take the class token of the
features as the representation of that step. Since
MViT is not co-trained with BERT in the same
manner as in CLIP, the model faces challenges in
determining the relationships among multimodal
features. The performance analysis and compari-
son between MViT, BERT, and CLIP are displayed
in Table 6.

Encoders Metrics
Video Text Object mAP

MViTv2 BERT Faster R-CNN 0.3993
CLIP CLIP Faster R-CNN 0.6719

Table 6: Ablation studies on feature encoders to deter-
mine the use case differences of CLIP and MViTv2 for
textual and video features, while Faster R-CNN is used
for object features.

Furthermore, the encoder plays a critical role in
the model. As shown in Table 7, the mAP result
is 0.4557 with 2 layers of the encoder. Addition-
ally, the mAP value is 0.5289 with 4 layers of the

encoder. Finally, when the encoder layer is set to
3, the model performance achieves the best result,
with an mAP of 0.6719.

Metrics # of Encoder Layers
2 3 4

mAP 0.4557 0.6719 0.5289

Table 7: Ablation studies for the usage of different
numbers of encoder layers to get accurate results.

Next, we test the effectiveness of the recent
SOTA model VIOLET (Fu et al., 2021) on our
dataset. VIOLET supports only textual answer
type and we compare it with our method on textual
answer results. VIOLET uses a Video Swin Trans-
former (Liu et al., 2022) to encode the images and
BERT (Devlin et al., 2018) to encode the text. We
fine-tuned the classification head of the VIOLET
model while keeping the parameters of the Swin
Transformer and BERT frozen. However, the mAP
plateaued at 0.10 (as shown in Table 4), indicating
the limited performance of VIOLET on our dataset
when only fine-tuning the classification head.

To better align the features with our task, we un-
froze the last layer of the BERT encoder. After four
epochs of training, the mAP of the VIOLET model
converged to a value of 0.2549 which is slightly
lower than our baseline result. Comprehensive ab-
lation results are shown in Table 4.

Finally, the benchmarking results of textual an-
swers with the VIOLET model are given in Ta-
ble 2. AssistGaze employs the CLIP to encode
both image and video features, while VIOLET
uses the Swin Transformers for video encoding
and the BERT for text encoding. CLIP efficiently
learns visual concepts from natural language su-
pervision. Consequently, using the CLIP as an
encoder may result in better performance in visual
question-answering tasks.



6 Conclusions

In this paper, with a new dataset GazeVQA, we
propose a novel approach to task-oriented collab-
orative QA towards real-world applications like
human-human/robot collaboration. The GazeVQA
depicts the natural QA collaboration interaction
between an instructor and a subject during guided
assembly and disassembly tasks. Moreover, we
propose a new method with a multiple-choice an-
swer format for all types of questions designed
to perpetuate the common grounding theory for
collaboration tasks. Unlike the legacy VQA stud-
ies, we address a challenging task in the industrial
settings on collaborative task execution. The pro-
posed AssistGaze is a new baseline for evaluating
the VQA model’s ability to address this challenging
task.

In future studies, further developments are re-
quired to improve the collaboration of computer vi-
sion with semantic understanding to inquire into the
collaboration of AssistGaze and GazeVQA on real-
world collaborative HRI applications. More efforts
are needed to address high-level challenges such as
temporal action segmentation, action recognition,
object recognition, and spatial understanding tasks.
We hope that the proposed novel gaze-enhanced
VQA dataset “GazeVQA” and the new assistant
model “AssistGaze” will enable the community to
move forward with task-oriented VQA.

Limitations

The current work has the following limitations: (1)
The GazeVQA dataset was designed with a new
task-oriented perspective, which is a novel part of
the dataset. However, the existing models need
to be updated in their architectures to utilize the
advantages of GazeVQA. (2) The number of tasks
is limited, and this limitation could indicate a chal-
lenge for the other collaborative applications. (3)
Like many gaze-related researches that use mobile
eye-tracker, gaze information in the current dataset
is still noisy. Novel algorithms to de-noise the gaze
data are needed to enhance the consistency and
validity of the dataset.
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A Appendix

GazeVQA has been designed to offer a fundamen-
tal and generalizable approach to human-human
and human-robot interaction, especially for indus-
trial collaborative task studies. AssistGaze pro-
poses an assistive model that can support people
in task-collaborative studies. The purpose of de-
sign protocols is task completion by using eye-gaze
information. It is predicted that studies such as
human intention estimation and next action esti-
mation with over 3,000,000 QA pairs and gaze
location information will also benefit robotic ap-
plications. Both contributions of this paper are
essential for task-oriented human-robot interaction
with the question-answering project.

A.1 GazeVQA Architecture
GazeVQA consists of assembly-disassembly
videos obtained from 22 users, questions prepared
separately for each action performed by each user,
and labeled images from FPVs which are coordi-
nated with eye-gaze information.

Video Clips. Each user performed an indus-
trial task by following the instructions given by an

instructor. The users’ videos were cropped as 5
actions were performed consecutively. This is de-
signed to reduce the processing cost of long videos
to more optimum values. Moreover, videos with
common steps increase the variety of uses in re-
sponse to the questions asked.

QA Pairs. We have also published the raw ver-
sions of our questions. This will facilitate a better
understanding of industrial QA pairs and the devel-
opment of textual inputs.

Images. Each of the labeled images was pre-
pared manually using the Segment Anything Model
(Kirillov et al., 2023). When the eye-gaze data is
on the object related to the answer to the question,
the object or that answer is labeled as GT. It also
contains two different incorrect labels.

• Figure 4 shows the GazeVQA Architecture.

A.2 Words and Questions
One of the motivations for preparing QA pairs is
to focus on the use of different verbs, words, and
question types. Considering the small number of in-
dustrial datasets, the textual QA pairs in GazeVQA
are a useful supplement to existing studies.

• Figures 5 and 6 show the diagram of most
frequent words and questions.

A.3 VQA Datasets
One of the other motivations is the lack of datasets
prepared for task-oriented collaborative scenarios.
GazeVQA leverages industrial collaborations by
closing this gap and taking advantage of different
targets, video sources, and purposes.

• Tables 8 and 9 display the comparison of the
GazeVQA dataset and existing VQA datasets.

• Figure 9 displays the comparison of the
GazeVQA dataset with existing VQA datasets
in terms of reasoning types.

A.4 Assembly and Disassembly
Assembly and disassembly are crucial tasks for
industrial applications. This leverages another mo-
tivation to create a new dataset for real-world task-
oriented collaborations.

• Figures 7 and 8 show the assembly and disas-
sembly actions with synchronized multi-view
video clips.

• Figure 10 and 11 show the assembly and dis-
assembly steps and protocols.
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Figure 4: GazeVQA Architecture. It consists of three different parts. QA Lists, Labeled images, and Video Clips.
There are 22 participants, and each participant has their own sub-structures that are divided into assembly and
disassembly parts for QA lists and Labeled images. additionally, they have 4 different video clips (TPV-sideward,
TPV-enface, FPVgaze, and FPVraw) which explain why they were collected separately in the Dataset section of the
paper. Each step has its own QA lists, labeled images, and video clips.
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Figure 5: Diagram of the Most Frequent Words of the GazeVQA. “Subject” is the word that is most frequently used
in the dataset as a subject, and then “did” is used to check whether the actions/tasks are completed or not. If the
diagrams or the datasets are checked more than 20 action verbs are used, and their frequency is moderately higher
than the other words used. The reason is that the usage of more verbs could be helpful to increase the possibility of
the usage of the GazeVQA QA list on the other industrial projects’ applications. Consequently, it could increase the
generalizability of the GazeVQA.
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Figure 6: Diagram of the Question Frequency of the GazeVQA. “What” and “Did” are the most frequent questions
that are used to prove the application realization, object, and action recognition. On the other hand, “Which” and
“Where” questions are helpful to object localization to increase the answers’ accuracy of the spatial questions. The
importance of the “How” question is to show the completion of the tasks.

Datasets Video Source # of V. # of QA Annota.
MSVD-QA (Xu et al., 2017) Web Videos 2K 50K Auto.
TVQA+ (Lei et al., 2020) TV Programs 22K 153K Manual
TutorialVQA (Colas et al., 2020) Instructional Videos 408 6.2K Manual
ActivityNet-QA (Yu et al., 2019) Web Videos 5.8K 58K Manual
CLEVRER (Yi et al., 2020) Synthetic 10K 305K Auto.
AGQA (Grunde-McLaughlin et al., 2021) Indoor Activity Videos 9.6K 192M Auto.
NExT-QA (Xiao et al., 2021) Web Videos 5.4K 52K Manual
HowToVQA69M (Miech et al., 2019) Instructional Web 10K 10K Auto.
GazeVQA (Ours) Task Collaboration 2,967 3M Manual

Table 8: Comparison of GazeVQA and existing VQA datasets by evaluating the number of videos, QA pairs, and
annotation types.

Datasets Target Text A. Im. A. V. A.
MSVD-QA (Xu et al., 2017) Description ✓ ✗ ✗

TVQA+ (Lei et al., 2020) Subtitle inclusion ✓ ✓ ✓
TutorialVQA (Colas et al., 2020) Instructional Assistance ✗ ✗ ✓
ActivityNet-QA (Yu et al., 2019) Description ✓ ✗ ✗

CLEVRER (Yi et al., 2020) Causal Reasoning ✓ ✗ ✗

AGQA (Grunde-McLaughlin et al., 2021) Compositional Reasoning ✓ ✗ ✗

NExT-QA (Xiao et al., 2021) Causal-Temporal Relation ✓ ✗ ✗

HowToVQA69M (Miech et al., 2019) Generalization ✓ ✗ ✗

GazeVQA (Ours) Common grounding for
collaboration by gaze ✓ ✓ ✓

Table 9: Comparison of existing VQA datasets and GazeVQA which targets to obtain all answer formats with
Multiple Choices (MC) answer types by using novel gaze information.
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Figure 8: GazeVQA disassembly action includes synchronized multi-view video clips of disassembling the gearbox.

Figure 9: GazeVQA focuses on visual, semantic, spatial, location, temporal, and action-object relationships, as well
as social interaction information extracted from questions that are asked from 13 different reasoning types. Figure 9
is prepared to compare the current dataset by benefiting from AGQA (Grunde-McLaughlin et al., 2021).



Figure 10: Assembly Steps and Protocols: The assembly task has 20 steps. However, we deleted the “pressing the
white pins” step, which is 14, because it was not a common task among the subjects. Some tasks are separated and
realized by the subject in two different steps. For instance, there are two oil level indicators, so screwing two oil
level indicators is shown as one step in the figure, but some subjects have realized this in two steps. Thus, we have a
maximum of 22 steps in the assembly task.

13

GazeVQA DATASET - DISASSEMBLYFigure 11: Disassembly Steps and Protocols: The disassembly task has 17 steps. However, some tasks are separated
and realized by the subject in two different steps. For instance, there are two oil level indicators, so removing two
oil level indicators is shown as one step in the figure, but some subjects have realized this in two steps. Thus, we
have a maximum of 19 steps in the disassembly task. The picture on the right-bottom is the annotation example to
show how to annotate the steps as atomic actions.


