
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A COMEDY OF ESTIMATORS:
ON KL REGULARIZATION IN RL TRAINING OF LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

The reasoning performance of large language models (LLMs) can be substantially
improved by training them with reinforcement learning (RL). The RL objective
for LLM training involves a regularization term, which is the reverse Kullback-
Leibler (KL) divergence between the trained policy and the reference policy. Since
computing the KL divergence exactly is intractable, various estimators are used in
practice to estimate it from on-policy samples. Despite its wide adoption, includ-
ing in several open-source libraries, there is no systematic study analyzing the
numerous ways of incorporating KL estimators in the objective and their effect
on the downstream performance of RL-trained models. Tang & Munos (2025)
show that prevailing practices for incorporating KL regularization do not provide
correct gradients for stated objectives, creating a discrepancy between the ob-
jective and its implementation. In this paper, we further analyze these practices
and study the gradients of several estimators, revealing how design choices shape
gradient bias. We substantiate these findings with empirical observations by RL
fine-tuning Qwen2.5-7B and Llama-3.1-8B-Instruct with different configura-
tions and evaluating their performance on both in- and out-of-distribution tasks.
Through our analysis, we observe that: (1) estimator configurations with biased
gradients can result in training instabilities; and (2) using estimator configurations
resulting in unbiased gradients leads to better performance on in-domain as well
as out-of-domain tasks. Overall, our findings provide useful takeaways for using
KL-regularized objectives during RL post-training of LLMs.

1 INTRODUCTION

Reinforcement learning (RL) has become an indispensable component of present-day post-training
pipelines for large language models (LLM). RL fine-tuning of LLMs was initially popularized for
human preference alignment and instruction-following (Ouyang et al., 2022). Since then, RL has
played a transformative role in reasoning-oriented post-training of LLMs. Recent work (Jaech et al.,
2024; Guo et al., 2025) has shown that training LLMs as RL policies on reasoning tasks such as
mathematics, coding, and open-ended reasoning leads to a substantial improvement in their perfor-
mance. For this reason, there has been rapid progress in developing methods for reasoning-oriented
training of LLMs using RL – the performance of fairly recently released reasoning models such as
DeepSeek-R1 (Guo et al., 2025) is already being challenged by models with parameter counts lower
by several orders (Yang et al., 2025). Much of this rapid progress has unfortunately been accompa-
nied by inconsistent design decisions and implementation errors in RL fine-tuning pipelines (Tang
& Munos, 2025).

One such design choice is the use of Kullback-Leibler (KL) divergence between the trained policy
and the base policy as a regularization term in the objective (Peters et al., 2010; Ouyang et al., 2022).
This regularization is crucial since it ensures that the policy explores within the space of coherent
sequences by constraining it to the support of the base model, thus avoiding problems such as reward
over-optimization (Gao et al., 2023) or catastrophic forgetting (McCloskey & Cohen, 1989; Qi et al.,
2024) of the information present in the base model. Specifically, the reverse KL divergence is used
for this regularization so that the policy assigns high probability mass to a narrow set of high-reward
trajectories. This is opposed to the forward KL divergence, which tends to maintain probability mass
over the entire support of the base model at the expense of performance. A regularization coefficient
𝛽 controls the trade-off between reward maximization and proximity to the base model. However,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

it is intractable to compute the reverse KL divergence exactly owing to the high-dimensionality of
the space of possible sequences. As a result, different sample-based estimators of the reverse KL
divergence are used in practice (Zhang et al., 2025; Amini et al., 2025).

In addition to differences in their approximations, these estimators may be incorporated into the ob-
jective in different ways: previous work doing RLHF with PPO (Ouyang et al., 2022) adds the KL
penalty to the task reward (i.e., no direct gradients); methods such as GRPO (Shao et al., 2024; Guo
et al., 2025) popularized adding the KL term directly to the loss. The choice of the estimator, regular-
ization coefficient, and whether it is added to the reward or directly to the loss has a significant effect
on the training stability, convergence rate, and out-of-distribution generalization of the trained mod-
els. Moreover, recent work (Tang & Munos, 2025) identified that some of these practices lead to bi-
ased estimates of the true gradient. For example, using the KL estimator in the loss function, as pop-
ularized by GRPO, results in biased gradients and therefore does not optimize the intended reverse
KL-regularized objective. These issues have propagated to widely used public libraries, leading to
potentially incorrect results when using KL regularization (Sheng et al., 2025; von Werra et al., 2020;
Hu et al., 2024; Cui et al., 2025). These findings highlight that while KL regularization is ubiquitous
in RL training of LLMs, the implementation details are poorly understood and often overlooked.

In this work, we attempt to fill this gap by providing a systematic exploration of the space of
some design choices associated with the practical use of KL regularization. We study this in
the context of reinforcement learning with verifiable rewards (RLVR; Trung et al., 2024; Lambert
et al., 2025), which has become the dominant paradigm for improving the reasoning abilities of
LLMs. Specifically, we investigate two commonly used unbiased estimators of reverse KL diver-
gence – the naı̈ve or K1 estimator, and the Schulman or the K3 estimator (Schulman, 2020). First,
we analytically study the bias of the gradients with respect to the true gradient when these estimates
are added to the reward versus when directly added to the loss (§3, Table 1). Next, we empirically
investigate the bias of gradient estimates in each case in a synthetic setting (§4.1), substantiating
our prior discussion. Finally, we perform experiments to study how these choices affect RL based
fine-tuning of Qwen2.5-7B (Yang et al., 2024) and Llama-3.1-8B-Instruct (Touvron et al., 2023)
on a mathematical reasoning task across different values of the KL regularization coefficient 𝛽, and
study both in- and out-of-domain performance of the resulting models (§4.2).

Key observations:
• Unbiased estimates of the reverse KL divergence can result in biased gradients depending

on their usage.
• Configurations inducing biased gradients often lead to unstable training and can precipitate

complete collapse.
• Configurations that lead to unbiased gradient estimates result in better-performing models,

across both in-domain and out-of-domain evaluation tasks.

2 BACKGROUND

We study the problem of fine-tuning a base language model 𝜋ref with reinforcement learning. Given
a reward function 𝑅(·) and a set of observations D comprising question-answer pairs (𝑥, 𝑦), RL
fine-tuning of LLMs optimizes the following objective

max
𝜃

E(𝑥,𝑦)∼D
[
E𝑦1:𝑇∼𝜋𝜃 (· |𝑥) [𝑅(𝑦1:𝑇 , 𝑦)] − 𝛽KL (𝜋𝜃 (· | 𝑥) ∥ 𝜋ref (· | 𝑥))

]
, (1)

where 𝛽 is a hyperparameter that controls the weight of the KL divergence penalty, 𝜋𝜃 is the RL pol-
icy initialized at 𝜋ref and 𝑦1:𝑇 denotes solutions generated by the model conditioned on the question,
i.e. 𝑦1:𝑇 ∼ 𝜋𝜃 (·|𝑥). Since both the sampling of 𝑦1:𝑇 and the definition of 𝑅 are non-differentiable,
the objective is optimized using policy gradient methods such as PPO (Ouyang et al., 2022) or
GRPO (Shao et al., 2024).

The reward function 𝑅 can be a learned model trained on human feedback data (Ouyang et al.,
2022) or can be an oracle verifier for tasks such as math, games, and code. We focus on the latter
setting, commonly termed Reinforcement Learning with Verifiable Rewards (RLVR). An example
of a verifiable reward function for math is a comparison against the ground truth answer 𝑅(𝑦1:𝑇 , 𝑦) =
1Extract(𝑦1:𝑇)=𝑦 , where Extract(·) pulls the solution from a \boxed{} format. In general this could be
any reward model with 𝑦 specifying the meta-data required for reward computation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The objective in (1) incentivizes the policy 𝜋𝜃 to maximize the expected reward while remaining
close to the base model 𝜋ref. Within the context of LLMs, 𝜋𝜃 is constrained to remain close to the
reference model 𝜋ref to avoid over-optimization and catastrophic forgetting of the general capabil-
ities of the base policy (Gao et al., 2023). The constraint is enforced via a reverse KL divergence
penalty in the objective which is an expectation under the learned policy 𝜋𝜃 :

KL(𝜋𝜃 (· | 𝑥) ∥ 𝜋ref (· | 𝑥)) = E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
log

𝜋𝜃 (𝑦1:𝑇 |𝑥)
𝜋ref (𝑦1:𝑇 |𝑥)

]
(2)

Additionally, a control variate in the form of a baseline 𝑏(𝑥, 𝑦, 𝑦1:𝑇) is subtracted from the re-
ward to reduce variance during training, resulting in the advantage 𝐴(𝑥, 𝑦, 𝑦1:𝑇) = 𝑅(𝑥, 𝑦, 𝑦1:𝑇) −
𝑏(𝑥, 𝑦, 𝑦1:𝑇)1. Replacing the reward with the advantage we get the final learning objective.

max
𝜃

E(𝑥,𝑦)∼DE𝑦1:𝑇∼𝜋𝜃 (· |𝑥) [𝐴(𝑥, 𝑦, 𝑦1:𝑇)] − 𝛽𝐷KL (𝜋𝜃 (· | 𝑥) ∥ 𝜋ref (· | 𝑥)) (3)

Group Region Policy Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025) is the most widely
used algorithm for training 𝜋𝜃 in the context of RLVR. To compute the advantage 𝐴̂, GRPO uses a
group of samples {𝑜1, 𝑜2, · · · , 𝑜𝐺} for each prompt 𝑥 ∈ 𝐷. Like proximal policy optimization (PPO;
Schulman et al., 2017), GRPO generates a set of samples from the policy and makes updates over
minibatches, introducing a delay between the sampling policy (𝜋𝜃old) and 𝜋𝜃 .

JGRPO (𝜃) = E{𝑜𝑖 }𝐺𝑖=1∼𝜋𝜃old (· |𝑥)

[
1
𝐺

𝐺∑︁
𝑖=1

{
1
|𝑜𝑖 |

|𝑜𝑖 |∑︁
𝑡=1

min
[𝜋𝜃 (𝑜𝑖,𝑡 | 𝑥, 𝑜𝑖,<𝑡)
𝜋𝜃old (𝑜𝑖,𝑡 | 𝑥, 𝑜𝑖,<𝑡)

𝐴̂𝑖,𝑡 ,

clip
(
𝜋𝜃 (𝑜𝑖,𝑡 | 𝑥, 𝑜𝑖,<𝑡)
𝜋𝜃old (𝑜𝑖,𝑡 | 𝑥, 𝑜𝑖,<𝑡)

, 1 − 𝜀, 1 + 𝜀
)
𝐴̂𝑖,𝑡

]
− 𝛽𝐷KL (𝜋𝜃 (· | 𝑥) ∥ 𝜋ref (· | 𝑥))

}] (4)

where 𝐺 is the total number of sequences sampled per group, and 𝜀 is a constant hyperparameter
controlling the trust region for policy updates (Schulman et al., 2017). Notably, GRPO includes the
KL term into the loss function instead of adding it to the reward. In order to restrict our study on
the effect of the KL estimators, we opt to use REINFORCE leave-one-out (Ahmadian et al., 2024,
RLOO) in our experiments. The only effective difference between GRPO and RLOO disregarding
KL is the lack of both advantage and sequence-length normalization in the latter.

3 OVERVIEW OF KL ESTIMATORS AND THEIR GRADIENTS

In this work, we operate at the token level for the RL objective (Yu et al., 2025), as used in popular
public libraries (Sheng et al., 2025). We are interested in estimating the reverse KL divergence
between the sequence-level distributions 𝜋𝜃 (𝑦1:𝑇 | 𝑥) and 𝜋ref (𝑦1:𝑇 | 𝑥). It is commonly estimated
by decomposing into token-level estimates, which can be seen as a Rao-Blackwellized estimator
of the sequence-level reverse KL divergence, and has been shown to reduce variance (Amini et al.,
2025). For a generic sequence-level reverse KL divergence estimator K̂L, we can write:

𝐷KL (𝜋𝜃 ∥ 𝜋ref) = E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)
[
K̂L

]
= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
𝑇∑︁
𝑡=1

K̂L𝑡

]
, (5)

where K̂L𝑡 is the estimator defined on the token-level distributions 𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡) and 𝜋ref (𝑦𝑡 |
𝑥, 𝑦<𝑡). Henceforth, any reference to an estimator implies reference to the use of the token-level
version K̂L𝑡 . The gradient of the expectation of K̂L, under sequences sampled from 𝜋𝜃 can then be
written as:

∇𝜃E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)
[
K̂L

]
= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
𝑇∑︁
𝑡=1

∇𝜃 K̂L𝑡 +
𝑇∑︁
𝑡=1

K̂L𝑡∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)
]
. (6)

Such gradient estimators have been previously studied in (Ranganath et al., 2014; Tang & Munos,
2025). We refer the reader to Appendix E.2 for a derivation of (6). Next, we discuss two ways of
using the estimator in the context of RL training of LLMs. Henceforth, we assume that we always
sample on-policy, i.e., 𝜔 = 1.

1The baseline is chosen to have an expected value of 0 under the policy and does not affect the optima.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Summary of estimators considered in this study and the bias of their gradients. We
study 4 settings, including the commonly used K1 estimator in reward and K3 estimator in loss. All
configurations except using K1 in reward lead to biased gradients. In two of the cases of biased
gradients, we observe training instabilities or collapses when they are used in RL fine-tuning of
LLMs. 𝑟 = 𝜋ref (𝑦𝑡 |𝑥,𝑦<𝑡)

𝜋𝜃 (𝑦𝑡 |𝑥,𝑦<𝑡) in the expressions given.

Estimator Expression Position Unbiased Grad. Est. (§3) Behavior (§4.2)

K1 − log 𝑟 Reward " Stable
Loss % Training Instabilities

K3 𝑟 − 1 − log 𝑟 Reward % Training collapse
Loss % Stable

3.1 POSITION OF THE ESTIMATOR

We now discuss the different ways KL estimators have been used in the RL objective – namely,
adding the estimator to the reward, and adding it directly to the loss objective.

Reward. An estimator is added to the reward by applying a stop-gradient operation on the KL
estimate and adding it to the token-level task score. The advantage is then computed as follows:

𝑟𝑡 = 𝑠𝑡 − 𝛽sg
[
K̂L𝑡

]
, 𝐴𝑡 =

𝑇∑︁
𝑡=1

𝑟𝑡 − 𝑏 = 𝑅 − 𝛽
𝑇∑︁
𝑡=1

sg
[
K̂L𝑡

]
− 𝑏, (7)

where 𝑠𝑡 is the token-level task score, usually 0 for intermediate tokens and either 1 or 0 for the final
token depending on whether the sequence led to the correct answer, 𝐴𝑡 is the advantage assigned at
token 𝑡, 𝑅 =

∑𝑇
𝑡=1 𝑠𝑡 , and 𝑏 is the advantage baseline. The gradient of the objective 𝐽 (𝜃) is:

∇𝜃 𝐽 (𝜃) = E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
(𝑅 − 𝛽

𝑇∑︁
𝑡=1

K̂L𝑡 − 𝑏)∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)
]
. (8)

Loss. This refers to adding the KL estimator directly to the loss, popularized by GRPO (Guo
et al., 2025; Shao et al., 2024). Automatic differentiation, which is commonly used in practice,
cannot backpropagate through the sampling process used to compute the KL estimate. Thus, the
gradient of the objective is computed as:

∇𝜃 𝐽 (𝜃) = E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
(𝑅 − 𝑏)∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥) − 𝛽

𝑇∑︁
𝑡=1

∇𝜃 K̂L𝑡

]
(9)

Note that the gradient contribution of the KL estimator when used in the reward is∑𝑡=𝑇
𝑡=1 K̂L𝑡∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥) and when used in the loss is

∑𝑇
𝑡=1 ∇𝜃 K̂L𝑡 , scaled by 𝛽 in both cases.

Therefore, in the general case, both of these terms in isolation are biased with respect to the cor-
rect gradient as stated in (6). However, we can always recover the correct gradient by adding the
estimator to both the reward and the loss.

3.2 INSPECTING KL ESTIMATORS

We start with the knowledge that the true gradient of the reverse KL divergence is:

∇𝜃E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)
[
K̂L

]
= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
. (10)

We now examine two estimators commonly used in RL training of LLMs, namely the naı̈ve or K1
estimator, and the Schulman or K3 estimator (Schulman, 2020). For each of these estimators, we
derive the gradient of its expectation when used in reward and in loss, and determine their bias by
comparing them against the true gradient in (10).

3.2.1 K1 ESTIMATOR

The K1 estimator is computed as the Monte Carlo estimate of the log-ratio of likelihoods under the
current and reference policies, with samples from the current training policy. We can write K1 as the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

sum of token-level log ratios, which we denote by K1𝑡 :

K1 =

𝑇∑︁
𝑡=1

K1𝑡 =
𝑇∑︁
𝑡=1

log
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)

(11)

We now analyze the gradients resulting from using K1 estimator, both in the case of adding to
the reward (Equation (8)) and the loss (Equation (9)). We refer the reader to Appendix E.3 for a
derivation of the gradients in two configurations.

Reward. Note that
∑𝑇

𝑡=1 K1𝑡 = log 𝜋𝜃 (𝑦1:𝑇 |𝑥)
𝜋ref (𝑦1:𝑇 |𝑥) . The expected gradient (under 𝜋𝜃) of the K1 estima-

tor when used in the reward is unbiased with respect to the reverse KL gradient. The gradient of
K1-in-reward is shown below.

∇𝜃E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
𝑇∑︁
𝑡=1

K1𝑡

]
= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
(12)

Loss. Adding K1 to the loss results in the gradient being zero in expectation, and therefore, is
biased.

∇𝜃E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
𝑇∑︁
𝑡=1

K1𝑡

]
= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
∇𝜃 log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥)

]
= 0 (13)

K1 is a special case where the gradient of the expectation of the estimator obtained from adding KL
estimator in the reward results in an unbiased estimator. This is because the first term of equation
Equation (6) is zero in expectation for the K1 estimator as shown in (13).

3.2.2 K3 ESTIMATOR

The K3 estimator, similar to the K1 estimator, is unbiased (see Appendix E.4 for a proof). However,
it also has a lower variance and thus is often preferred over K1 in practice. We can write K3 as:

K3 =

𝑇∑︁
𝑡=1

K3𝑡 =
𝑇∑︁
𝑡=1

𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

− 1 − log
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

.

Below, we state the gradient of the expectation of the estimator when K3 is used in reward and loss.
We refer the reader to Appendix E.4 for a derivation of the gradients in two configurations for K3.

Reward. The gradient of the expectation of the KL estimate when K3 is used in the reward is:

∇𝜃E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
𝑇∑︁
𝑡=1

K3𝑡

]
= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
𝑇∑︁
𝑡=1

(
𝜋ref (𝑦𝑡 |𝑥,𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 |𝑥,𝑦<𝑡) + log 𝜋𝜃 (𝑦1:𝑇 |𝑥)

𝜋ref (𝑦1:𝑇 |𝑥)

)
∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
(14)

Clearly, it is biased by the term E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)
[∑𝑇

𝑡=1
𝜋ref (𝑦𝑡 |𝑥,𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 |𝑥,𝑦<𝑡) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
.

Loss. The gradient of the expectation of the KL estimate when K3 is used in the loss is as given
below. This is the version used in the implementations of some of the most popular RL algorithms,
such as GRPO (Shao et al., 2024; Guo et al., 2025). It is a biased estimate of the true reverse KL
gradient shown in (6).

∇𝜃E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
𝑇∑︁
𝑡=1

K3𝑡

]
= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
𝑇∑︁
𝑡=1

(
−𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

)
∇𝜃 log 𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

]
(15)

Table 1 summarizes the two estimators and the biasedness of their gradients in different settings.

4 EMPIRICAL OBSERVATIONS

In this section, we complement our analysis in §3 with an empirical study on the effect of various
configurations of KL estimators. In §4.1, we analyze the bias and variance of different configurations
with a simple parametric autoregressive model (reinforcing the discussion in §3). Next, in §4.2, we
study the effect of various configurations of KL estimators for RL fine-tuning of Qwen2.5-7B and
Llama-3.1-8B models.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 10 15 20
Sequence Length [T]

10 7

10 5

10 3

10 1

101

103
Squared Bias

5 10 15 20
Sequence Length [T]

10 5

10 3

10 1

101
Variance

K3 Loss
K3 Reward

K1 Loss
K1 Reward

Figure 1: The bias and variance of expected gradients with respect to the parameters of 𝐴,
in different configurations (logarithmic scale). While all estimators are unbiased, the expected
gradients are unbiased only in the case of K1 estimator when used in reward. K3 estimator when
used in reward exhibits the highest bias. While K1 estimator when used in loss has relatively lower
variance, it also suffers from high bias.

4.1 PARAMETRIC AUTOREGRESSIVE MODEL: AN ILLUSTRATIVE EXAMPLE

We first study the bias in the gradients of the KL estimators in a minimal parametric autoregressive
model. We define reference models 𝐴 and 𝐵 over binary sequences, each factorizing into Bernoulli
conditionals over each token in the sequence (conditioned on the previous tokens):

𝐴𝜃 (𝑌) =
𝑇∏
𝑡=1

(𝑝𝐴𝑡)𝑦𝑡 (1 − 𝑝𝐴𝑡)1−𝑦𝑡 , 𝑝𝐴𝑡 = 𝜎
(
𝑎 + 𝑏 𝑐𝑡−1

)
, 𝑐𝑡−1 =

𝑡−1∑︁
𝑘=1

𝑦𝑘 (16)

𝐵𝜙 (𝑌) =
𝑇∏
𝑡=1

(𝑝𝐵𝑡)𝑦𝑡 (1 − 𝑝𝐵𝑡)1−𝑦𝑡 , 𝑝𝐵𝑡 = 𝜎
(
𝑎̃ + 𝑏̃ 𝑐𝑡−1

)
, 𝑐𝑡−1 =

𝑡−1∑︁
𝑘=1

𝑦𝑘 (17)

where 𝑌 is a binary sequence, 𝑎, 𝑏, 𝑎̃ and 𝑏̃ are the parameters of distributions 𝐴 and 𝐵, 𝑐0 = 0,
𝑦𝑡 ∈ {0, 1} and 𝜎 represents the sigmoid function. The reverse KL 𝐷KL (𝐴 ∥ 𝐵) and its gradient
with respect to 𝑎 and 𝑏 admit closed-form expressions (see appendix C).

We compute the KL divergence with different estimators and their gradients when used as reward
and in the loss as discussed in §3, using 200 trials each with 𝑁 = 1000 sequences of lengths 𝑇
sampled from 𝐴. We illustrate the bias and variance of the gradient estimates of the different config-
urations in Fig. 1. Note the logarithmic scale of the plots. We observe that the bias of the gradient of
the K1 estimator added to the reward remains low. On the other hand, the gradients associated with
the K3 estimator in the loss and the reward both show high bias and variance. These results validate
the conclusions from §3.

4.2 RL FINE-TUNING OF LLMS

We now substantiate our takeaways from §3 and §4.1 through empirical analysis on RL fine-tuning
of Qwen2.5-7B and Llama-3.1-8B-Instruct models with various KL in all configurations.

Experimental Setup. We RL fine-tune models on the training subset of Hendrycks
MATH (Hendrycks et al., 2021) (henceforth referred to as MATH) consisting of 7500 problems.
We use a token-level implementation (Yu et al., 2025) of REINFORCE with a leave one out ad-
vantage baseline (Ahmadian et al., 2024) as the policy gradient objective, with the various KL es-
timator configurations as discussed above. During training, we set both total training batch size
and mini-batch size to be equal to 256 (i.e.number of policy update steps per sampled batch = 1),
unless stated otherwise, avoiding any off-policy updates. We evaluate the models on 2 different in-
domain tasks, namely MATH500 (Lightman et al., 2023) (500 examples) and MATH2 (Shah et al.,
2024) (210 examples) and 3 out-of- domain tasks – MMLU college physics (118 examples), college
chemistry (113 examples) and college biology (165 rows) subsets (Hendrycks et al., 2020). The
tasks are selected to analyze the effect of different estimator configurations on reasoning as well as
non-reasoning (i.e.knowledge recall-oriented) tasks. We report the Pass@1 score of the model on
the complete MATH test set (5000 examples) for training progress, and report mean@32 accuracy

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300
Step

0.0

0.2

0.4

0.6

0.8

Pa
ss

@
1

Ac
cu

ra
cy

Qwen2.5-7B MATH
(K1 in Loss / On-Policy)

0 20 40 60 80 100
Step

0.0

0.2

0.4

0.6

0.8

Qwen2.5-7B MATH
(K1 in Loss / Off-Policy steps = 4)

0 50 100 150 200 250 300
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Llama-3.1-8B-Instruct MATH
(K1 in Loss / On-Policy)

=0
=0.05
=0.1
=0.3
=1

Figure 2: Training Instabilities when using K1 in loss. Pass@1 performance for [Left] training
Qwen2.5-7B with K1𝑡 leads to training instabilities for 𝛽 = 0.1 and 1. [Center] Training Qwen2.5-
7B with 4 policy update steps per sampled batch accentuates the instabilities owing to the increased
off-policyness, leading to definitive training collapse in all cases. [Right] Training Llama-3.1-8B-
Instruct with K1𝑡 in loss leads to instabilities for all 𝛽 except 0.1.

across 3 seeds to report evaluation performance of the models. We use default chat-templates while
fine-tuning and evaluating models. Qwen2.5-7B (non-RL fine-tuned) is evaluated both with and
without the chat template. More details about the experimental setup are discussed in Appendix B.

Observation 1: Adding K1 estimator to the loss leads to training instabilities.

As shown in (13), adding K1𝑡 to the loss results in a biased estimate of the reverse KL gradient, since
the term is zero in expectation. Intuitively, RL fine-tuning with K1𝑡 with any coefficient 𝛽 should
perform similar to RL fine-tuning without any KL penalty (𝛽 = 0). To verify this empirically,
we fine-tune Qwen2.5-7B (Yang et al., 2024) and Llama-3.1-8B (Touvron et al., 2023) with 𝛽 =

0.05, 0.1, 0.3 and 1 and compare them against RL fine-tuning with 𝛽 = 0. Fig. 2 shows Pass@1
performance of models on MATH test set over the course of training.

We observe training instabilities with 𝛽 = 0.3 and 1 for Qwen models (Fig. 2 (left)) and all 𝛽 except
0.1 for Llama models (Fig. 2 (right)). A potential explanation is that the term

∑𝑇
𝑡=1 ∇𝜃 log 𝜋𝜃 (𝑦𝑡 |

𝑥, 𝑦<𝑡), despite having an expectation of 0, adds variance to the optimization, leading to instabilities.
Additionally, we observe that moving away from the default setting of fully on-policy updates, to
off-policy updates (4 minibatch updates over each sampled batch) (Fig. 2 (center)) accentuates the
instabilities and leads to consistent training collapse across all 𝛽 even for Qwen modelsFurther, in
cases where the training is stable, i.e., Qwen2.5-7B trained with 𝛽 = 0.05 and 0.1, the performance
is similar to training without any KL as expected. Qwen2.5-7B models seem to be more robust to
variance as compared to Llama-3.1-Models.

Observation 2: Adding K3 estimator to the reward leads to training collapse.

Another case of biased gradient estimate is K3 used in the reward. From eq. (14) we observe that
adding token-level K3 to rewards leads to a bias term of

E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
𝑇∑︁
𝑡=1

𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)
]

(18)

This bias is illustrated in Fig. 1 for the parametric autoregressive model §4.1. To validate this with
LLMs, we RL fine-tune Qwen2.5-7B and Llama-3.1-8B-Instruct models with 𝛽 = 0.05, 0.1, 0.3 and
1. Fig. 3 shows that this biased gradient estimate leads to unpredictable behavior leading to complete
or partial collapse of the training for all 𝛽.

Observation 3: Unbiased gradient estimators lead to better out-of-distribution performance
as compared to biased estimators with stable training behaviors.

The final setting leading to a biased expected gradient of the reverse KL is when K3 is used in the
loss eq. (15). Surprisingly despite the bias, using K3 in the loss exhibits stable training of the policy.
Fig. 4 (Left) reports the in-distribution performance of Qwen2.5-7B models (evaluated on MATH
test dataset) for different 𝛽 during training. This may be explained by the observation that the gradi-
ent estimate (15) in this case is a sum of unbiased gradient estimate of the forward KL divergences
computed at the token level, making this configuration equivalent to a stable forward KL-based logit

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300
Step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Pa
ss

@
1

Ac
cu

ra
cy

Qwen2.5-7B MATH (K3 in Reward)

0 50 100 150 200 250 300
Step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Llama-3.1-8B-Instruct MATH (K3 in Reward)

=1
=0.3

=0.1
=0.05

=0

Figure 3: Collapse in the case of adding K3 to the reward. Pass@1 performance for [Left]
Qwen2.5-7B trained on MATH train dataset [Right] Llama-3.1-8B-Instruct trained on MATH train
dataset. The collapse maybe attributed to high bias and variance of the configuration.

0 50 100 150 200 250 300
Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pa
ss

@
1

Ac
cu

ra
cy

Qwen2.5-7B MATH (K3 in Loss)

0 50 100 150 200 250 300
Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Qwen2.5-7B MATH (K1 in Reward)

=0.3
=1

=0.1
=0.05

=0

Figure 4: Pass@1 performance on MATH test set with K3-in-loss (biased; Left) and K1-in-reward
(unbiased; Right). Although biased with respect to reverse KL, K3-in-loss yields stable training. In
both cases, lower 𝛽 values lead to higher performance.

distillation objective trained on-policy, with the base model as a teacher. Note that using K3 in loss is
a popular configuration used with policy optimization algorithms such as GRPO (Shao et al., 2024;
Guo et al., 2025). Comparing to Fig. 4 (Right), the in-distribution performance in this biased case is
similar to the performance when training with the unbiased gradient estimator setting of adding K1 to
the reward. Note that while 𝛽 = 0 seems to work the best in this experimental setting, it may not al-
ways be the case, even within the paradigm of RLVR. We discuss one such example in appendix D.1.

Further, we compare the downstream performance of the models trained with K3 in loss and K1 in
reward. We train Qwen2.5-7B and Llama-3.1-8B-Instruct models with different estimator configu-
rations for 250 steps on MATH train data, and compare the performance of different configurations
on a wide range of evaluation tasks as shown in Fig. 5 and Fig. 6 (similar results for 𝛽 = 0.3 and
𝛽 = 1 can be found in appendix D.2. Apart from MATH500 which is in-training distribution, we
evaluate on MATH2 which is out-of-distribution (OOD) but in-domain, as well as MMLU subsets
of college-physics, college-biology and college-chemistry, all OOD tasks.

We observe that using K1 in reward (i.e. unbiased gradient estimate) outperforms using K3 in loss
(i.e. biased gradient estimate). While the performance gains are consistent across all tasks and both
models, we observe that the gains are more pronounced in out-of-domain tasks for Qwen-2.5-7B,
with an average relative improvement of 19.06% across MMLU college-physics, college-chemistry
and college-biology, as compared to an average relative improvement of only 6.21% on in-domain
tasks across MATH500 and MATH2, for 𝛽 = 0.05. On the other hand, the gains are more pro-
nounced in-domain (average relative improvement of 15.94%) than out of domain (average relative
improvement of only 3.65%). Similar trends hold for 𝛽 = 0.1 as well. Consistent performance
improvements iin the case of unbiased estimated gradient implementations over biased estimated

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0

1

0.263
0.430

0.640 0.613

MATH500

0.129 0.226
0.364 0.337

MATH2

0.133
0.282

0.508 0.429

Physics

0.103
0.250

0.431 0.373

Chemistry

0.173
0.398

0.647
0.525

Biology

0

1

0.263
0.430

0.614 0.588

0.129 0.226
0.346 0.320

0.133
0.282

0.419 0.350

0.103
0.250

0.353 0.286
0.173

0.398
0.517 0.425

M
ea

n@
32

 a
cc

ur
ac

y

Qwen2.5-7B =0.05

Qwen2.5-7B =0.1

Baseline (CT) Baseline (No-CT) K1 Reward K3 Loss

Figure 5: Comparison of Qwen2.5-7B trained with two stable estimator configurations - K1
in reward and K3 in loss. Baseline (CT) refers to the performance of base Qwen2.5-7B when
prompted with a chat template. Baseline (No-CT) represents the performance when it is prompted
with a chat template. K1 in Loss (unbiased gradient performs the beats on both in-domain and out-
of-domain tasks. Increasing 𝛽 consistently deteriorates performance.

0

1

0.326
0.481 0.419

MATH500

0.097
0.226 0.193

MATH2

0.432
0.671 0.615

Physics

0.306
0.516 0.512

Chemistry

0.592
0.796 0.787

Biology

0

1

0.326
0.462 0.434

0.097
0.199 0.168

0.432
0.617 0.598

0.306
0.476 0.459

0.592
0.768 0.760

M
ea

n@
32

 a
cc

ur
ac

y

Llama-3.1-8B-It | =0.05

Llama-3.1-8B-It | =0.1

Baseline K1 Reward K3 Loss

Figure 6: Comparison of Llama-3.1-8B-Instruct trained with two stable estimator configura-
tions - K1 in reward and K3 in loss. Baseline refers to the performance of base Llama-3.1-8B-
Instruct (prompted with chat template). K1 in Loss (unbiased gradient performs the beats on both
in-domain and out-of-domain tasks. Increasing 𝛽 deteriorates performance across the board.

gradient implementations demonstrate the importance of using correct gradient estimates while in-
corporating KL-based regularization.

5 CONCLUSION

We conduct a study of how different KL estimators, and their placement within the RL objective, af-
fect the stability and performance of RL fine-tuning of LLMs. We consistently find that implementa-
tions with biased reverse KL divergence gradient estimates perform unpredictably: at worst leading
to training collapses and at best still underperforming implementations with unbiased gradient esti-
mates. While the K3 estimator in the loss, commonly used in GRPO, remains generally stable, it con-
sistently underperforms the naı̈ve K1-in-reward configuration. These results all suggest that unbiased
gradient configurations should serve as the default for stable and generalizable RL post-training.

These findings should hardly be surprising: updating parameters with a step that is not the gradient
of the desired objective – or indeed of any objective, if it is not a gradient field – is a recipe for insta-
bility, as stable behavior near an optimum is not guaranteed. However, the prevalence of these incor-
rect estimators in the literature and in implementations, and the fact that they sometimes work well
enough to be published and overlooked in popular libraries, suggests that there is a lack of awareness
of these issues. We hope that our systematic study will help clarify these issues for the community.

Future work: Much interesting analysis remains to be done in understanding the reasons for train-
ing instabilities, as well as studying the effect of estimators in settings with non-verifiable rewards
(learned proxy rewards) which are more susceptible to reward hacking during RL fine-tuning (Gao
et al., 2023). Further, the biased configurations discussed in this work could be made unbiased by
including appropriate correction terms in the objective. Future work can study the behavior of these
corrected implementations with the unbiased configuration studied in this paper.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide all the details to reproduce our results in §4.2 and appendix B.

LLM USE

LLMs were used to assist in writing code for experiments in the paper. No LLMs were used to assist
with writing and formatting of the paper.

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Afra Amini, Tim Vieira, and Ryan Cotterell. Better estimation of the kl divergence between language
models. arXiv preprint arXiv:2504.10637, 2025.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi, Al-
ham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, et al. Lessons from
the trenches on reproducible evaluation of language models. arXiv preprint arXiv:2405.14782,
2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025. URL https://arxiv.org/abs/2502.01456.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei
Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang
Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige
Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang,
Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu
Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi
Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping
Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao
Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang,
Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang,
Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan
Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen
Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q.
Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,

10

https://arxiv.org/abs/2502.01456

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and
Zhen Zhang. Deepseek-r1 incentivizes reasoning in llms through reinforcement learning. Nature,
645(8081):633–638, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.

Jian Hu, Xibin Wu, Weixun Wang, Xianyu, Dehao Zhang, and Yu Cao. Openrlhf: An easy-to-use,
scalable and high-performance rlhf framework. arXiv preprint arXiv:2405.11143, 2024. doi:
10.48550/arXiv.2405.11143. URL https://arxiv.org/abs/2405.11143.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. VinePPO: Unlocking RL potential for LLM rea-
soning through refined credit assignment, 2025. URL https://openreview.net/forum?id=
5mJrGtXVwz.

Tomasz Korbak, Ethan Perez, and Christopher L Buckley. Rl with kl penalties is better viewed as
bayesian inference. arXiv preprint arXiv:2205.11275, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Nathan Lambert. Reinforcement Learning from Human Feedback. Online, 2025. URL https:
//rlhfbook.com.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya
Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Christo-
pher Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh
Hajishirzi. Tulu 3: Pushing frontiers in open language model post-training. In Second Confer-
ence on Language Modeling, 2025. URL https://openreview.net/forum?id=i1uGbfHHpH.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models.
arXiv preprint arXiv:2310.10505, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

11

https://arxiv.org/abs/2405.11143
https://openreview.net/forum?id=5mJrGtXVwz
https://openreview.net/forum?id=5mJrGtXVwz
https://rlhfbook.com
https://rlhfbook.com
https://openreview.net/forum?id=i1uGbfHHpH

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 24, pp. 1607–1612, 2010.

Biqing Qi, Pengfei Li, Fangyuan Li, Junqi Gao, Kaiyan Zhang, and Bowen Zhou. Online dpo:
Online direct preference optimization with fast-slow chasing. arXiv preprint arXiv:2406.05534,
2024.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In Artificial
intelligence and statistics, pp. 814–822. PMLR, 2014.

J. Schulman. Approximating kl divergence, 2020. URL http://joschu.net/blog/kl-approx.
html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Jiatong Yu, Yinghui He, Nan Rosemary Ke,
Michael Mozer, Yoshua Bengio, Sanjeev Arora, et al. Ai-assisted generation of difficult math
questions. arXiv preprint arXiv:2407.21009, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in neural information processing systems, 33:3008–3021, 2020.

Yunhao Tang and Rémi Munos. On a few pitfalls in kl divergence gradient estimation for rl. arXiv
preprint arXiv:2506.09477, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning
with reinforced fine-tuning. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7601–7614, 2024.

Jean Vassoyan, Nathanaël Beau, and Roman Plaud. Ignore the kl penalty! boosting exploration on
critical tokens to enhance rl fine-tuning. arXiv preprint arXiv:2502.06533, 2025.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Taiqiang Wu, Chaofan Tao, Jiahao Wang, Runming Yang, Zhe Zhao, and Ngai Wong. Rethinking
kullback-leibler divergence in knowledge distillation for large language models. arXiv preprint
arXiv:2404.02657, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

12

http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html
https://github.com/huggingface/trl

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao
Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and
Zekun Wang. Qwen2.5 technical report. ArXiv, abs/2412.15115, 2024. URL https://api.
semanticscholar.org/CorpusID:274859421.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Yang Yuan, Quanquan Gu, and Andrew C Yao. On
the design of kl-regularized policy gradient algorithms for llm reasoning. arXiv preprint
arXiv:2505.17508, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

13

https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

A Related work 15

B Experimental setup - Further details 15

C Reverse KL and gradients for parametric autoregressive model 16

D Further empirical analysis 16
D.1 Examples where use of KL becomes necessary 16
D.2 Evaluation results for 𝛽 = 0.3 and 1 . 16

E Mathematical Details and Derivations 16
E.1 True gradient . 17
E.2 Path-wise and score function derivatives . 17
E.3 K1 estimator . 17
E.4 K3 estimator . 18

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A RELATED WORK

Over the past few years, researchers have explored a variety of strategies to strengthen the reason-
ing capabilities of LLMs. Broadly, these strategies fall into three categories: pre-training, which
equips models with general reasoning ability through large-scale unsupervised learning (Kaplan
et al., 2020); fine-tuning, which adapts models on curated reasoning-oriented datasets (Hendrycks
et al., 2020; Wei et al., 2022; Shao et al., 2024; Grattafiori et al., 2024; Touvron et al., 2023); and
prompting, which improves reasoning through carefully designed input strategies without altering
model parameters (Wei et al., 2022; Lightman et al., 2023). We focus on fine-tuning methods, and in
particular investigate how KL-based interventions affect reasoning performance across models and
datasets.

While fine-tuning can improve task-specific reasoning, a central challenge is catastrophic forgetting;
models may lose general abilities acquired during pre-training when optimized on narrow domains
(Ouyang et al., 2022). Aggressive fine-tuning on small or biased datasets can also cause overfitting
or undesirable behaviors. To address these risks, researchers employ regularization methods (Korbak
et al., 2022; Peters et al., 2010; Schulman, 2020). Common practices include using smaller learning
rates, freezing subsets of parameters, or mixing in pre-training data during fine-tuning (Touvron
et al., 2023; Grattafiori et al., 2024; Penedo et al., 2024).

A particularly effective regularization technique is the use of Kullback–Leibler (KL) divergence
penalties. KL regularization is widely used in reinforcement learning from human feedback (RLHF),
where it serves as a safety mechanism to prevent the fine-tuned model from drifting too far from the
base model (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022; Stiennon et al., 2020;
Lambert, 2025). In RLHF, the fine-tuned model (policy) is optimized to maximize a reward model
score minus a KL penalty that measures divergence from the base LM distribution. This prevents
reward hacking and ensures outputs remain fluent and human-like.

RL with KL control is used explicitly to strengthen reasoning. In mathematical reasoning, Guo
et al. (2025); Shao et al. (2024) introduce GRPO (a critic-free PPO variant) and add the KL term
directly to the loss, reporting substantial gains on GSM8K and MATH. Sequence-level objectives
that preserve the KL-shaped reward also appear competitive for preference-tuned reasoning models,
with RLOO showing robustness across tasks and reduced sensitivity to KL settings compared to
PPO (Ahmadian et al., 2024; Li et al., 2023; Zheng et al., 2025; Yu et al., 2025; Kazemnejad et al.,
2025). .

Although the role of KL regularization is widely acknowledged as important for reasoning fine-
tuning, few works have systematically explored it in depth. Recent theoretical analyses underscore
both the promise and the limitations of KL-based interventions. Amini et al. (2025) propose im-
proved estimation techniques for KL between LLMs, Zhang et al. (2025) investigate the design of
KL-regularized policy gradient algorithms specifically for reasoning, Wu et al. (2024) revisit KL
in the context of knowledge distillation for LLMs, and Vassoyan et al. (2025) argue that ignoring
KL penalties on critical tokens can boost exploration in RL fine-tuning. Tang & Munos (2025)
further analyze pitfalls in gradient estimation. All these studies suggest that while KL constraints
are effective safeguards, their implications for reasoning insufficiently understood, motivating our
investigation.

B EXPERIMENTAL SETUP - FURTHER DETAILS

For the RL finetuning, we set the learning rate to 10−6, number of rollouts per prompt 𝐾 = 5,
maximum response length to 1024, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 1.0. We RL finetune the models on 2 GPU
nodes consisting of 4 A100s (80GB) each using verl (Sheng et al., 2025). For evaluation, we use
lm-eval-harness (Biderman et al., 2024), using vLLM (Kwon et al., 2023) for inference with top p
= 1.0, temperature = 1.0 and min p = 1.0.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C REVERSE KL AND GRADIENTS FOR PARAMETRIC AUTOREGRESSIVE
MODEL

The closed-form expressions for the reverse KL divergence and its gradient, corresponding to para-
metric autoregressive model in §4.1 can be written as

𝐷KL (𝐴∥𝐵) = E𝑌∼𝐴
[
log 𝐴𝜃 (𝑌) − log 𝐵𝜙 (𝑌)

]
(19)

𝜕

𝜕𝑎
𝐷KL (𝐴∥𝐵) = E𝑌∼𝐴

[𝑇∑︁
𝑡=1

(𝑦𝑡 − 𝑝𝐴𝑡) (log 𝐴𝜃 (𝑌) − log 𝐵𝜙 (𝑌))
]
, (20)

𝜕

𝜕𝑏
𝐷KL (𝐴∥𝐵) = E𝑌∼𝐴

[𝑇∑︁
𝑡=1

(𝑦𝑡 − 𝑝𝐴𝑡) 𝑐𝑡−1 (log 𝐴𝜃 (𝑌) − log 𝐵𝜙 (𝑌))
]
. (21)

D FURTHER EMPIRICAL ANALYSIS

In this section, we provide additional experimental to further support the claims discussed in the
main paper.

D.1 EXAMPLES WHERE USE OF KL BECOMES NECESSARY

As stated in §4.2, 𝛽 = 0 may not always lead to the best performance, even within the domain
of RLVR. While RL fine-tuning Qwen2.5-7B-Instruct on MATH train set, we observe that while
the performance on MATH test set (nearly in-distribution to the training data) improves (albeit
marginally) as compared to the base model, when training with 𝛽 = 0, it drops, significantly in
some cases on the out-of-distribution tasks. However, a KL penalty with 𝛽 = 0.05 alleviates this
performance degradation significantly shown in Fig. 7

0.00

0.25

0.50

0.75

1.00

0.681 0.703 0.709

MATH500

0.434 0.412
0.462

MATH2

0.710

0.340

0.699

Physics

0.535
0.475

0.538

Chemistry

0.809 0.802 0.829

Biology

M
ea

n@
32

 a
cc

ur
ac

y

Qwen2.5-7B-Instruct =0.05
Base Model RL with no KL K1 Reward

Figure 7: Including a KL penalty prevents during RL fine-tuning of Qwen2.5-7B-Instruct prevents
performance degradation on OOD.
D.2 EVALUATION RESULTS FOR 𝛽 = 0.3 AND 1

0

1

0.263
0.430 0.517 0.498

MATH500

0.129 0.226 0.251 0.242

MATH2

0.133
0.282 0.249 0.232

Physics

0.103
0.250 0.209 0.194

Chemistry

0.173
0.398 0.321 0.308

Biology

0

1

0.263
0.430 0.383 0.378

0.129 0.226 0.175 0.172 0.133
0.282

0.180 0.166 0.103
0.250

0.146 0.128 0.173
0.398

0.225 0.212M
ea

n@
32

 a
cc

ur
ac

y

Qwen2.5-7B =0.3

Qwen2.5-7B =1

Baseline (CT) Baseline (No-CT) K1 Reward K3 Loss

Figure 8: Comparison of Qwen2.5-7B trained with two stable estimator configurations - K1
in reward and K3 in loss. Baseline (CT) refers to the performance of base Qwen2.5-7B when
prompted with a chat template. Baseline (No-CT) represents the performance when it is prompted
with a chat template. K1 in Loss (unbiased gradient performs the beats on both in-domain and out-
of-domain tasks. Increasing 𝛽 consistently deteriorates performance.

E MATHEMATICAL DETAILS AND DERIVATIONS

Notation. We first define the notation used for the analysis into the bias of the estimators and their
corresponding gradients.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Symbol Description
𝜋𝜃 policy trained using RL
𝜋ref reference policy
𝑥 prompt
𝑦1:𝑇 generated response with 𝑇 tokens
𝑦𝑡 token at position 𝑡 of response 𝑦1:𝑇
K1 naı̈ve estimator of 𝐷KL (𝜋𝜃 | |𝜋ref)
K3 Schulman estimator of 𝐷KL (𝜋𝜃 | |𝜋ref)
K1𝑡 naı̈ve estimator of 𝐷KL (𝜋𝜃 | |𝜋ref) at token 𝑡
K3𝑡 Schulman estimator of 𝐷KL (𝜋𝜃 | |𝜋ref) at token 𝑡

Table 2: Notation table.

E.1 TRUE GRADIENT

We want to estimate the gradient of the KL divergence between 𝜋𝜃 and 𝜋ref that are defined over
entire sequences of tokens. Specifically, we want:

∇𝜃KL(𝜋𝜃 (· | 𝑥) ∥ 𝜋ref (· | 𝑥)) = ∇𝜃E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥)

]
(22)

= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
. (23)

This is the true sequence-level gradient of the KL divergence. Every gradient estimator we use
henceforth aims to estimate this true gradient.

E.2 PATH-WISE AND SCORE FUNCTION DERIVATIVES

We show how the gradient of the KL estimator, or any other function, decomposes into a path-
wise derivative corresponding to the gradient of the estimator inside the expectation, and the score
function derivative arising from the 𝜃-dependent sampling in the expectation.

∇𝜃E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)
[
K̂L

]
(24)

= ∇𝜃

∑︁
𝑦1:𝑇

K̂L · 𝜋𝜃 (𝑦1:𝑇 | 𝑥) (25)

=
∑︁
𝑦1:𝑇

(
∇𝜃 K̂L

)
· 𝜋𝜃 (𝑦1:𝑇 | 𝑥) +

∑︁
𝑦1:𝑇

K̂L · (∇𝜃𝜋𝜃 (𝑦1:𝑇 | 𝑥)) (26)

= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)∇𝜃

[
K̂L

]
︸ ︷︷ ︸

path-wise derivative

+E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)
[
K̂L · ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
︸ ︷︷ ︸

score function derivative

(27)

= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[∑︁
𝑡

∇𝜃 K̂L𝑡

]
︸ ︷︷ ︸

Pathwise

+E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[(∑︁
𝑡

K̂L𝑡

)
· ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
︸ ︷︷ ︸

Score function

, (28)

where in the last line we write the KL divergence estimator as the sum of estimators at each individ-
ual token. Note that the path-wise derivative corresponds to using the estimator directly in the loss
(and backpropagating through it), whereas the score function derivative corresponds to adding the
estimator to the reward.

E.3 K1 ESTIMATOR

The K1 estimator for a sequence 𝑦1:𝑇 can be written as:

K1 =

𝑇∑︁
𝑡=1

K1𝑡 =
𝑇∑︁
𝑡=1

log
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)

. (29)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

It is easy to see that this is an unbiased estimator of 𝐷KL (𝜋𝜃 | |𝜋ref).
To analyze the gradient of K1, we calculate the path-wise derivative and the score function derivative
separately.

Path-wise derivative. The path-wise derivative of K1 evaluates to zero under expectation.

E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
∇𝜃

∑︁
𝑡

K1𝑡

]
= 0. (30)

Score function derivative. The score function derivative of K1 is an unbiased estimate of the true
gradient in Equation (23).

E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[(∑︁
𝑡

K1𝑡

)
· ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
. (31)

Therefore, adding K1 estimator to the reward results in an unbiased estimate of the gradient of the
KL-regularized RL objective, whereas using K1 in the loss directly does not. In fact, since the path-
wise derivative of K1 is zero in expectation, in principle, using it in the loss should be equivalent to
optimizing the RL objective without KL regularization (i.e., 𝛽 = 0). In practice, however, using this
term in the loss introduces some variance that can hurt the optimization. We also note that we can
reduce the variance of the score function derivative by removing the past tokens from the inner sum,
since their contribution to the gradient will be zero in expectation.

Takeaway for K1:
• Adding K1 to the reward gives us an unbiased estimate of the gradient of the KL-regularized

RL objective.
• Using K1 in loss results in a biased estimate of the true gradient and is equivalent to using

no KL-regularization, but can introduce some variance in practice.

E.4 K3 ESTIMATOR

The K3 estimator for a sequence 𝑦1:𝑇 can be written as:

K3 =

𝑇∑︁
𝑡=1

K3𝑡 =
𝑇∑︁
𝑡=1

(
𝜋ref (𝑦𝑡 | 𝑦<𝑡 , 𝑥)
𝜋𝜃 (𝑦𝑡 | 𝑦<𝑡 , 𝑥)

− 1 − log
𝜋ref (𝑦𝑡 | 𝑦<𝑡 , 𝑥)
𝜋𝜃 (𝑦𝑡 | 𝑦<𝑡 , 𝑥)

)
. (32)

We first show that K3 is an unbiased estimator of 𝐷KL (𝜋𝜃 ∥ 𝜋ref):

E𝑦1:𝑇∼𝜋𝜃 (· |𝑥) [K3] (33)

= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[∑︁
𝑡

(
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

− 1 − log
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

)]
(34)

= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[∑︁
𝑡

𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

]
− 𝑇 + E𝑦1:𝑇∼𝜋𝜃

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥)

]
(35)

= 𝐷KL (𝜋𝜃 ∥ 𝜋ref) (36)

We again calculate the path-wise and the score function derivatives of K3 separately.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Path-wise derivative. The path-wise derivative of K3 is a biased estimate of the true gradient in
Equation (23).

E𝑦1:𝑇∼𝜋𝜃 (· |𝑥) [∇𝜃K3𝑡] (37)

= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
∇𝜃

∑︁
𝑡

(
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

− 1 − log
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

)]
(38)

= −E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[∑︁
𝑡

𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

∇𝜃 log 𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)
]
+ E𝑦1:𝑇∼𝜋𝜃 (· |𝑥) [∇𝜃K1]

= −E𝑦<𝑡∼𝜋𝜃 (· |𝑥) ,𝑦𝑡∼𝜋ref (· |𝑥,𝑦<𝑡)

[∑︁
𝑡

∇𝜃 log 𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)
]

(39)

= E𝑦<𝑡∼𝜋𝜃 (· |𝑥)

[∑︁
𝑡

∇𝜃KL(𝜋ref (· | 𝑥, 𝑦<𝑡) ∥ 𝜋𝜃 (· | 𝑥, 𝑦<𝑡))
]
. (40)

The above expression resembles the gradient of the forward KL divergence at the token level, except
that the samples are drawn from 𝜋𝜃 (·|𝑥) instead of 𝜋ref (·|𝑥).
Score function derivative. The score function derivative of K3 also is a biased estimate of the true
gradient in Equation (23).

E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[(
𝑇∑︁
𝑡=1

K3𝑡

)
· ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[(∑︁
𝑡

(
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

− 1 − log
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

))
∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
(41)

= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[∑︁
𝑡

𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)
]

+ E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
(42)

= E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[∑︁
𝑡

∑︁
𝑠

𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡)
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡)

∇𝜃 log 𝜋𝜃 (𝑦𝑠 | 𝑦<𝑠 , 𝑥)
]

+ E𝑦1:𝑇∼𝜋𝜃 (· |𝑥)

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
(43)

= −E𝑦<𝑡∼𝜋𝜃 (· |𝑥)

[∑︁
𝑡

∇𝜃KL(𝜋ref (· | 𝑥, 𝑦<𝑡) ∥ 𝜋𝜃 (· | 𝑥, 𝑦<𝑡))
]
+ E𝑦1:𝑇∼𝜋𝜃 (· |𝑥) [K1 · ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)] .

(44)

where in Equation 43 the terms corresponding to 𝑠 < 𝑡 and 𝑠 > 𝑡 reduce to 0. The first term in
Equation (44) represents the bias with respect to the true gradient. Therefore, using K3 either in loss
or added to the reward results in a biased estimate of the true gradient.

We note that the path-wise derivative of K3 corresponds to the regularization term used in GRPO
(Shao et al., 2024), a popular RL algorithm used for training LLMs.

Takeaway for K3: Adding K3 to the reward or using it in the loss results in a biased estimate
of the gradient of the KL-regularized RL objective.

19

	Introduction
	Background
	Overview of KL estimators and their gradients
	Position of the estimator
	Inspecting KL estimators
	K1 estimator
	K3 estimator

	Empirical observations
	Parametric autoregressive model: An illustrative example
	RL fine-tuning of LLMs

	Conclusion
	 Appendix
	Related work
	Experimental setup - Further details
	Reverse KL and gradients for parametric autoregressive model
	Further empirical analysis
	Examples where use of KL becomes necessary
	Evaluation results for = 0.3 and 1

	Mathematical Details and Derivations
	True gradient
	Path-wise and score function derivatives
	K1 estimator
	K3 estimator

