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ABSTRACT

The reasoning performance of large language models (LLMs) can be substantially
improved by training them with reinforcement learning (RL). The RL objective
for LLM training involves a regularization term, which is the reverse Kullback-
Leibler (KL) divergence between the trained policy and the reference policy. Since
computing the KL divergence exactly is intractable, various estimators are used in
practice to estimate it from on-policy samples. Despite its wide adoption, includ-
ing in several open-source libraries, there is no systematic study analyzing the
numerous ways of incorporating KL estimators in the objective and their effect
on the downstream performance of RL-trained models. Tang & Munos (2025)
show that prevailing practices for incorporating KL regularization do not provide
correct gradients for stated objectives, creating a discrepancy between the ob-
jective and its implementation. In this paper, we further analyze these practices
and study the gradients of several estimators, revealing how design choices shape
gradient bias. We substantiate these findings with empirical observations by RL
fine-tuning Qwen2.5-7B and Llama-3.1-8B-Instruct with different configura-
tions and evaluating their performance on both in- and out-of-distribution tasks.
Through our analysis, we observe that: (1) estimator configurations with biased
gradients can result in training instabilities; and (2) using estimator configurations
resulting in unbiased gradients leads to better performance on in-domain as well
as out-of-domain tasks. Overall, our findings provide useful takeaways for using
KL-regularized objectives during RL post-training of LLMs.

1 INTRODUCTION

Reinforcement learning (RL) has become an indispensable component of present-day post-training
pipelines for large language models (LLM). RL fine-tuning of LLMs was initially popularized for
human preference alignment and instruction-following (Ouyang et al., 2022). Since then, RL has
played a transformative role in reasoning-oriented post-training of LLMs. Recent work (Jaech et al.,
2024; Guo et al., 2025) has shown that training LLMs as RL policies on reasoning tasks such as
mathematics, coding, and open-ended reasoning leads to a substantial improvement in their perfor-
mance. For this reason, there has been rapid progress in developing methods for reasoning-oriented
training of LLMs using RL – the performance of fairly recently released reasoning models such as
DeepSeek-R1 (Guo et al., 2025) is already being challenged by models with parameter counts lower
by several orders (Yang et al., 2025). Much of this rapid progress has unfortunately been accompa-
nied by inconsistent design decisions and implementation errors in RL fine-tuning pipelines (Tang
& Munos, 2025).

One such design choice is the use of Kullback-Leibler (KL) divergence between the trained policy
and the base policy as a regularization term in the objective (Peters et al., 2010; Ouyang et al., 2022).
This regularization is crucial since it ensures that the policy explores within the space of coherent
sequences by constraining it to the support of the base model, thus avoiding problems such as reward
over-optimization (Gao et al., 2023) or catastrophic forgetting (McCloskey & Cohen, 1989; Qi et al.,
2024) of the information present in the base model. Specifically, the reverse KL divergence is used
for this regularization so that the policy assigns high probability mass to a narrow set of high-reward
trajectories. This is opposed to the forward KL divergence, which tends to maintain probability mass
over the entire support of the base model at the expense of performance. A regularization coefficient
𝛽 controls the trade-off between reward maximization and proximity to the base model. However,
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it is intractable to compute the reverse KL divergence exactly owing to the high-dimensionality of
the space of possible sequences. As a result, different sample-based estimators of the reverse KL
divergence are used in practice (Zhang et al., 2025; Amini et al., 2025).

In addition to differences in their approximations, these estimators may be incorporated into the ob-
jective in different ways: previous work doing RLHF with PPO (Ouyang et al., 2022) adds the KL
penalty to the task reward (i.e., no direct gradients); methods such as GRPO (Shao et al., 2024; Guo
et al., 2025) popularized adding the KL term directly to the loss. The choice of the estimator, regular-
ization coefficient, and whether it is added to the reward or directly to the loss has a significant effect
on the training stability, convergence rate, and out-of-distribution generalization of the trained mod-
els. Moreover, recent work (Tang & Munos, 2025) identified that some of these practices lead to bi-
ased estimates of the true gradient. For example, using the KL estimator in the loss function, as pop-
ularized by GRPO, results in biased gradients and therefore does not optimize the intended reverse
KL-regularized objective. These issues have propagated to widely used public libraries, leading to
potentially incorrect results when using KL regularization (Sheng et al., 2025; von Werra et al., 2020;
Hu et al., 2024; Cui et al., 2025). These findings highlight that while KL regularization is ubiquitous
in RL training of LLMs, the implementation details are poorly understood and often overlooked.

In this work, we attempt to fill this gap by providing a systematic exploration of the space of
some design choices associated with the practical use of KL regularization. We study this in
the context of reinforcement learning with verifiable rewards (RLVR; Trung et al., 2024; Lambert
et al., 2025), which has become the dominant paradigm for improving the reasoning abilities of
LLMs. Specifically, we investigate two commonly used unbiased estimators of reverse KL diver-
gence – the naı̈ve or K1 estimator, and the Schulman or the K3 estimator (Schulman, 2020). First,
we analytically study the bias of the gradients with respect to the true gradient when these estimates
are added to the reward versus when directly added to the loss (§3, Table 1). Next, we empirically
investigate the bias of gradient estimates in each case in a synthetic setting (§4.1), substantiating
our prior discussion. Finally, we perform experiments to study how these choices affect RL based
fine-tuning of Qwen2.5-7B (Yang et al., 2024) and Llama-3.1-8B-Instruct (Touvron et al., 2023)
on a mathematical reasoning task across different values of the KL regularization coefficient 𝛽, and
study both in- and out-of-domain performance of the resulting models (§4.2).

Key observations:
• Unbiased estimates of the reverse KL divergence can result in biased gradients depending

on their usage.
• Configurations inducing biased gradients often lead to unstable training and can precipitate

complete collapse.
• Configurations that lead to unbiased gradient estimates result in better-performing models,

across both in-domain and out-of-domain evaluation tasks.

2 BACKGROUND

We study the problem of fine-tuning a base language model 𝜋ref with reinforcement learning. Given
a reward function 𝑅(·) and a set of observations D comprising question-answer pairs (𝑥, 𝑦), RL
fine-tuning of LLMs optimizes the following objective

max
𝜃

E(𝑥,𝑦)∼D
[
E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 ) [𝑅(𝑦1:𝑇 , 𝑦)] − 𝛽KL (𝜋𝜃 (· | 𝑥) ∥ 𝜋ref (· | 𝑥))

]
, (1)

where 𝛽 is a hyperparameter that controls the weight of the KL divergence penalty, 𝜋𝜃 is the RL pol-
icy initialized at 𝜋ref and 𝑦1:𝑇 denotes solutions generated by the model conditioned on the question,
i.e. 𝑦1:𝑇 ∼ 𝜋𝜃 (·|𝑥). Since both the sampling of 𝑦1:𝑇 and the definition of 𝑅 are non-differentiable,
the objective is optimized using policy gradient methods such as PPO (Ouyang et al., 2022) or
GRPO (Shao et al., 2024).

The reward function 𝑅 can be a learned model trained on human feedback data (Ouyang et al.,
2022) or can be an oracle verifier for tasks such as math, games, and code. We focus on the latter
setting, commonly termed Reinforcement Learning with Verifiable Rewards (RLVR). An example
of a verifiable reward function for math is a comparison against the ground truth answer 𝑅(𝑦1:𝑇 , 𝑦) =
1Extract(𝑦1:𝑇 )=𝑦 , where Extract(·) pulls the solution from a \boxed{} format. In general this could be
any reward model with 𝑦 specifying the meta-data required for reward computation.
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The objective in (1) incentivizes the policy 𝜋𝜃 to maximize the expected reward while remaining
close to the base model 𝜋ref. Within the context of LLMs, 𝜋𝜃 is constrained to remain close to the
reference model 𝜋ref to avoid over-optimization and catastrophic forgetting of the general capabil-
ities of the base policy (Gao et al., 2023). The constraint is enforced via a reverse KL divergence
penalty in the objective which is an expectation under the learned policy 𝜋𝜃 :

KL(𝜋𝜃 (· | 𝑥) ∥ 𝜋ref (· | 𝑥)) = E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
log

𝜋𝜃 (𝑦1:𝑇 |𝑥)
𝜋ref (𝑦1:𝑇 |𝑥)

]
(2)

Additionally, a control variate in the form of a baseline 𝑏(𝑥, 𝑦, 𝑦1:𝑇 ) is subtracted from the re-
ward to reduce variance during training, resulting in the advantage 𝐴(𝑥, 𝑦, 𝑦1:𝑇 ) = 𝑅(𝑥, 𝑦, 𝑦1:𝑇 ) −
𝑏(𝑥, 𝑦, 𝑦1:𝑇 )1. Replacing the reward with the advantage we get the final learning objective.

max
𝜃

E(𝑥,𝑦)∼DE𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 ) [𝐴(𝑥, 𝑦, 𝑦1:𝑇 )] − 𝛽𝐷KL (𝜋𝜃 (· | 𝑥) ∥ 𝜋ref (· | 𝑥)) (3)

Group Region Policy Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025) is the most widely
used algorithm for training 𝜋𝜃 in the context of RLVR. To compute the advantage 𝐴̂, GRPO uses a
group of samples {𝑜1, 𝑜2, · · · , 𝑜𝐺} for each prompt 𝑥 ∈ 𝐷. Like proximal policy optimization (PPO;
Schulman et al., 2017), GRPO generates a set of samples from the policy and makes updates over
minibatches, introducing a delay between the sampling policy (𝜋𝜃old ) and 𝜋𝜃 .

JGRPO (𝜃) = E{𝑜𝑖 }𝐺𝑖=1∼𝜋𝜃old ( · |𝑥 )

[
1
𝐺

𝐺∑︁
𝑖=1

{
1
|𝑜𝑖 |

|𝑜𝑖 |∑︁
𝑡=1

min
[ 𝜋𝜃 (𝑜𝑖,𝑡 | 𝑥, 𝑜𝑖,<𝑡 )
𝜋𝜃old (𝑜𝑖,𝑡 | 𝑥, 𝑜𝑖,<𝑡 )

𝐴̂𝑖,𝑡 ,

clip
(
𝜋𝜃 (𝑜𝑖,𝑡 | 𝑥, 𝑜𝑖,<𝑡 )
𝜋𝜃old (𝑜𝑖,𝑡 | 𝑥, 𝑜𝑖,<𝑡 )

, 1 − 𝜀, 1 + 𝜀
)
𝐴̂𝑖,𝑡

]
− 𝛽𝐷KL (𝜋𝜃 (· | 𝑥) ∥ 𝜋ref (· | 𝑥))

}] (4)

where 𝐺 is the total number of sequences sampled per group, and 𝜀 is a constant hyperparameter
controlling the trust region for policy updates (Schulman et al., 2017). Notably, GRPO includes the
KL term into the loss function instead of adding it to the reward. In order to restrict our study on
the effect of the KL estimators, we opt to use REINFORCE leave-one-out (Ahmadian et al., 2024,
RLOO) in our experiments. The only effective difference between GRPO and RLOO disregarding
KL is the lack of both advantage and sequence-length normalization in the latter.

3 OVERVIEW OF KL ESTIMATORS AND THEIR GRADIENTS

In this work, we operate at the token level for the RL objective (Yu et al., 2025), as used in popular
public libraries (Sheng et al., 2025). We are interested in estimating the reverse KL divergence
between the sequence-level distributions 𝜋𝜃 (𝑦1:𝑇 | 𝑥) and 𝜋ref (𝑦1:𝑇 | 𝑥). It is commonly estimated
by decomposing into token-level estimates, which can be seen as a Rao-Blackwellized estimator
of the sequence-level reverse KL divergence, and has been shown to reduce variance (Amini et al.,
2025). For a generic sequence-level reverse KL divergence estimator K̂L, we can write:

𝐷KL (𝜋𝜃 ∥ 𝜋ref) = E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )
[
K̂L

]
= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
𝑇∑︁
𝑡=1

K̂L𝑡

]
, (5)

where K̂L𝑡 is the estimator defined on the token-level distributions 𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 ) and 𝜋ref (𝑦𝑡 |
𝑥, 𝑦<𝑡 ). Henceforth, any reference to an estimator implies reference to the use of the token-level
version K̂L𝑡 . The gradient of the expectation of K̂L, under sequences sampled from 𝜋𝜃 can then be
written as:

∇𝜃E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )
[
K̂L

]
= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
𝑇∑︁
𝑡=1

∇𝜃 K̂L𝑡 +
𝑇∑︁
𝑡=1

K̂L𝑡∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)
]
. (6)

Such gradient estimators have been previously studied in (Ranganath et al., 2014; Tang & Munos,
2025). We refer the reader to Appendix E.2 for a derivation of (6). Next, we discuss two ways of
using the estimator in the context of RL training of LLMs. Henceforth, we assume that we always
sample on-policy, i.e., 𝜔 = 1.

1The baseline is chosen to have an expected value of 0 under the policy and does not affect the optima.

3
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Table 1: Summary of estimators considered in this study and the bias of their gradients. We
study 4 settings, including the commonly used K1 estimator in reward and K3 estimator in loss. All
configurations except using K1 in reward lead to biased gradients. In two of the cases of biased
gradients, we observe training instabilities or collapses when they are used in RL fine-tuning of
LLMs. 𝑟 = 𝜋ref (𝑦𝑡 |𝑥,𝑦<𝑡 )

𝜋𝜃 (𝑦𝑡 |𝑥,𝑦<𝑡 ) in the expressions given.

Estimator Expression Position Unbiased Grad. Est. (§3) Behavior (§4.2)

K1 − log 𝑟 Reward " Stable
Loss % Training Instabilities

K3 𝑟 − 1 − log 𝑟 Reward % Training collapse
Loss % Stable

3.1 POSITION OF THE ESTIMATOR

We now discuss the different ways KL estimators have been used in the RL objective – namely,
adding the estimator to the reward, and adding it directly to the loss objective.

Reward. An estimator is added to the reward by applying a stop-gradient operation on the KL
estimate and adding it to the token-level task score. The advantage is then computed as follows:

𝑟𝑡 = 𝑠𝑡 − 𝛽sg
[
K̂L𝑡

]
, 𝐴𝑡 =

𝑇∑︁
𝑡=1

𝑟𝑡 − 𝑏 = 𝑅 − 𝛽
𝑇∑︁
𝑡=1

sg
[
K̂L𝑡

]
− 𝑏, (7)

where 𝑠𝑡 is the token-level task score, usually 0 for intermediate tokens and either 1 or 0 for the final
token depending on whether the sequence led to the correct answer, 𝐴𝑡 is the advantage assigned at
token 𝑡, 𝑅 =

∑𝑇
𝑡=1 𝑠𝑡 , and 𝑏 is the advantage baseline. The gradient of the objective 𝐽 (𝜃) is:

∇𝜃 𝐽 (𝜃) = E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
(𝑅 − 𝛽

𝑇∑︁
𝑡=1

K̂L𝑡 − 𝑏)∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)
]
. (8)

Loss. This refers to adding the KL estimator directly to the loss, popularized by GRPO (Guo
et al., 2025; Shao et al., 2024). Automatic differentiation, which is commonly used in practice,
cannot backpropagate through the sampling process used to compute the KL estimate. Thus, the
gradient of the objective is computed as:

∇𝜃 𝐽 (𝜃) = E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
(𝑅 − 𝑏)∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥) − 𝛽

𝑇∑︁
𝑡=1

∇𝜃 K̂L𝑡

]
(9)

Note that the gradient contribution of the KL estimator when used in the reward is∑𝑡=𝑇
𝑡=1 K̂L𝑡∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥) and when used in the loss is

∑𝑇
𝑡=1 ∇𝜃 K̂L𝑡 , scaled by 𝛽 in both cases.

Therefore, in the general case, both of these terms in isolation are biased with respect to the cor-
rect gradient as stated in (6). However, we can always recover the correct gradient by adding the
estimator to both the reward and the loss.

3.2 INSPECTING KL ESTIMATORS

We start with the knowledge that the true gradient of the reverse KL divergence is:

∇𝜃E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )
[
K̂L

]
= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
. (10)

We now examine two estimators commonly used in RL training of LLMs, namely the naı̈ve or K1
estimator, and the Schulman or K3 estimator (Schulman, 2020). For each of these estimators, we
derive the gradient of its expectation when used in reward and in loss, and determine their bias by
comparing them against the true gradient in (10).

3.2.1 K1 ESTIMATOR

The K1 estimator is computed as the Monte Carlo estimate of the log-ratio of likelihoods under the
current and reference policies, with samples from the current training policy. We can write K1 as the

4
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sum of token-level log ratios, which we denote by K1𝑡 :

K1 =

𝑇∑︁
𝑡=1

K1𝑡 =
𝑇∑︁
𝑡=1

log
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

(11)

We now analyze the gradients resulting from using K1 estimator, both in the case of adding to
the reward (Equation (8)) and the loss (Equation (9)). We refer the reader to Appendix E.3 for a
derivation of the gradients in two configurations.

Reward. Note that
∑𝑇

𝑡=1 K1𝑡 = log 𝜋𝜃 (𝑦1:𝑇 |𝑥 )
𝜋ref (𝑦1:𝑇 |𝑥 ) . The expected gradient (under 𝜋𝜃 ) of the K1 estima-

tor when used in the reward is unbiased with respect to the reverse KL gradient. The gradient of
K1-in-reward is shown below.

∇𝜃E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
𝑇∑︁
𝑡=1

K1𝑡

]
= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
(12)

Loss. Adding K1 to the loss results in the gradient being zero in expectation, and therefore, is
biased.

∇𝜃E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
𝑇∑︁
𝑡=1

K1𝑡

]
= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
∇𝜃 log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥)

]
= 0 (13)

K1 is a special case where the gradient of the expectation of the estimator obtained from adding KL
estimator in the reward results in an unbiased estimator. This is because the first term of equation
Equation (6) is zero in expectation for the K1 estimator as shown in (13).

3.2.2 K3 ESTIMATOR

The K3 estimator, similar to the K1 estimator, is unbiased (see Appendix E.4 for a proof). However,
it also has a lower variance and thus is often preferred over K1 in practice. We can write K3 as:

K3 =

𝑇∑︁
𝑡=1

K3𝑡 =
𝑇∑︁
𝑡=1

𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

− 1 − log
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

.

Below, we state the gradient of the expectation of the estimator when K3 is used in reward and loss.
We refer the reader to Appendix E.4 for a derivation of the gradients in two configurations for K3.

Reward. The gradient of the expectation of the KL estimate when K3 is used in the reward is:

∇𝜃E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
𝑇∑︁
𝑡=1

K3𝑡

]
= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
𝑇∑︁
𝑡=1

(
𝜋ref (𝑦𝑡 |𝑥,𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 |𝑥,𝑦<𝑡 ) + log 𝜋𝜃 (𝑦1:𝑇 |𝑥 )

𝜋ref (𝑦1:𝑇 |𝑥 )

)
∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
(14)

Clearly, it is biased by the term E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )
[∑𝑇

𝑡=1
𝜋ref (𝑦𝑡 |𝑥,𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 |𝑥,𝑦<𝑡 ) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
.

Loss. The gradient of the expectation of the KL estimate when K3 is used in the loss is as given
below. This is the version used in the implementations of some of the most popular RL algorithms,
such as GRPO (Shao et al., 2024; Guo et al., 2025). It is a biased estimate of the true reverse KL
gradient shown in (6).

∇𝜃E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
𝑇∑︁
𝑡=1

K3𝑡

]
= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
𝑇∑︁
𝑡=1

(
−𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

)
∇𝜃 log 𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

]
(15)

Table 1 summarizes the two estimators and the biasedness of their gradients in different settings.

4 EMPIRICAL OBSERVATIONS

In this section, we complement our analysis in §3 with an empirical study on the effect of various
configurations of KL estimators. In §4.1, we analyze the bias and variance of different configurations
with a simple parametric autoregressive model (reinforcing the discussion in §3). Next, in §4.2, we
study the effect of various configurations of KL estimators for RL fine-tuning of Qwen2.5-7B and
Llama-3.1-8B models.
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Figure 1: The bias and variance of expected gradients with respect to the parameters of 𝐴,
in different configurations (logarithmic scale). While all estimators are unbiased, the expected
gradients are unbiased only in the case of K1 estimator when used in reward. K3 estimator when
used in reward exhibits the highest bias. While K1 estimator when used in loss has relatively lower
variance, it also suffers from high bias.

4.1 PARAMETRIC AUTOREGRESSIVE MODEL: AN ILLUSTRATIVE EXAMPLE

We first study the bias in the gradients of the KL estimators in a minimal parametric autoregressive
model. We define reference models 𝐴 and 𝐵 over binary sequences, each factorizing into Bernoulli
conditionals over each token in the sequence (conditioned on the previous tokens):

𝐴𝜃 (𝑌 ) =
𝑇∏
𝑡=1

(𝑝𝐴𝑡 )𝑦𝑡 (1 − 𝑝𝐴𝑡 )1−𝑦𝑡 , 𝑝𝐴𝑡 = 𝜎
(
𝑎 + 𝑏 𝑐𝑡−1

)
, 𝑐𝑡−1 =

𝑡−1∑︁
𝑘=1

𝑦𝑘 (16)

𝐵𝜙 (𝑌 ) =
𝑇∏
𝑡=1

(𝑝𝐵𝑡 )𝑦𝑡 (1 − 𝑝𝐵𝑡 )1−𝑦𝑡 , 𝑝𝐵𝑡 = 𝜎
(
𝑎̃ + 𝑏̃ 𝑐𝑡−1

)
, 𝑐𝑡−1 =

𝑡−1∑︁
𝑘=1

𝑦𝑘 (17)

where 𝑌 is a binary sequence, 𝑎, 𝑏, 𝑎̃ and 𝑏̃ are the parameters of distributions 𝐴 and 𝐵, 𝑐0 = 0,
𝑦𝑡 ∈ {0, 1} and 𝜎 represents the sigmoid function. The reverse KL 𝐷KL (𝐴 ∥ 𝐵) and its gradient
with respect to 𝑎 and 𝑏 admit closed-form expressions (see appendix C).

We compute the KL divergence with different estimators and their gradients when used as reward
and in the loss as discussed in §3, using 200 trials each with 𝑁 = 1000 sequences of lengths 𝑇
sampled from 𝐴. We illustrate the bias and variance of the gradient estimates of the different config-
urations in Fig. 1. Note the logarithmic scale of the plots. We observe that the bias of the gradient of
the K1 estimator added to the reward remains low. On the other hand, the gradients associated with
the K3 estimator in the loss and the reward both show high bias and variance. These results validate
the conclusions from §3.

4.2 RL FINE-TUNING OF LLMS

We now substantiate our takeaways from §3 and §4.1 through empirical analysis on RL fine-tuning
of Qwen2.5-7B and Llama-3.1-8B-Instruct models with various KL in all configurations.

Experimental Setup. We RL fine-tune models on the training subset of Hendrycks
MATH (Hendrycks et al., 2021) (henceforth referred to as MATH) consisting of 7500 problems.
We use a token-level implementation (Yu et al., 2025) of REINFORCE with a leave one out ad-
vantage baseline (Ahmadian et al., 2024) as the policy gradient objective, with the various KL es-
timator configurations as discussed above. During training, we set both total training batch size
and mini-batch size to be equal to 256 (i.e.number of policy update steps per sampled batch = 1),
unless stated otherwise, avoiding any off-policy updates. We evaluate the models on 2 different in-
domain tasks, namely MATH500 (Lightman et al., 2023) (500 examples) and MATH2 (Shah et al.,
2024) (210 examples) and 3 out-of- domain tasks – MMLU college physics (118 examples), college
chemistry (113 examples) and college biology (165 rows) subsets (Hendrycks et al., 2020). The
tasks are selected to analyze the effect of different estimator configurations on reasoning as well as
non-reasoning (i.e.knowledge recall-oriented) tasks. We report the Pass@1 score of the model on
the complete MATH test set (5000 examples) for training progress, and report mean@32 accuracy
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Figure 2: Training Instabilities when using K1 in loss. Pass@1 performance for [Left] training
Qwen2.5-7B with K1𝑡 leads to training instabilities for 𝛽 = 0.1 and 1. [Center] Training Qwen2.5-
7B with 4 policy update steps per sampled batch accentuates the instabilities owing to the increased
off-policyness, leading to definitive training collapse in all cases. [Right] Training Llama-3.1-8B-
Instruct with K1𝑡 in loss leads to instabilities for all 𝛽 except 0.1.

across 3 seeds to report evaluation performance of the models. We use default chat-templates while
fine-tuning and evaluating models. Qwen2.5-7B (non-RL fine-tuned) is evaluated both with and
without the chat template. More details about the experimental setup are discussed in Appendix B.

Observation 1: Adding K1 estimator to the loss leads to training instabilities.

As shown in (13), adding K1𝑡 to the loss results in a biased estimate of the reverse KL gradient, since
the term is zero in expectation. Intuitively, RL fine-tuning with K1𝑡 with any coefficient 𝛽 should
perform similar to RL fine-tuning without any KL penalty (𝛽 = 0). To verify this empirically,
we fine-tune Qwen2.5-7B (Yang et al., 2024) and Llama-3.1-8B (Touvron et al., 2023) with 𝛽 =

0.05, 0.1, 0.3 and 1 and compare them against RL fine-tuning with 𝛽 = 0. Fig. 2 shows Pass@1
performance of models on MATH test set over the course of training.

We observe training instabilities with 𝛽 = 0.3 and 1 for Qwen models (Fig. 2 (left)) and all 𝛽 except
0.1 for Llama models (Fig. 2 (right)). A potential explanation is that the term

∑𝑇
𝑡=1 ∇𝜃 log 𝜋𝜃 (𝑦𝑡 |

𝑥, 𝑦<𝑡 ), despite having an expectation of 0, adds variance to the optimization, leading to instabilities.
Additionally, we observe that moving away from the default setting of fully on-policy updates, to
off-policy updates (4 minibatch updates over each sampled batch) (Fig. 2 (center)) accentuates the
instabilities and leads to consistent training collapse across all 𝛽 even for Qwen modelsFurther, in
cases where the training is stable, i.e., Qwen2.5-7B trained with 𝛽 = 0.05 and 0.1, the performance
is similar to training without any KL as expected. Qwen2.5-7B models seem to be more robust to
variance as compared to Llama-3.1-Models.

Observation 2: Adding K3 estimator to the reward leads to training collapse.

Another case of biased gradient estimate is K3 used in the reward. From eq. (14) we observe that
adding token-level K3 to rewards leads to a bias term of

E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
𝑇∑︁
𝑡=1

𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)
]

(18)

This bias is illustrated in Fig. 1 for the parametric autoregressive model §4.1. To validate this with
LLMs, we RL fine-tune Qwen2.5-7B and Llama-3.1-8B-Instruct models with 𝛽 = 0.05, 0.1, 0.3 and
1. Fig. 3 shows that this biased gradient estimate leads to unpredictable behavior leading to complete
or partial collapse of the training for all 𝛽.

Observation 3: Unbiased gradient estimators lead to better out-of-distribution performance
as compared to biased estimators with stable training behaviors.

The final setting leading to a biased expected gradient of the reverse KL is when K3 is used in the
loss eq. (15). Surprisingly despite the bias, using K3 in the loss exhibits stable training of the policy.
Fig. 4 (Left) reports the in-distribution performance of Qwen2.5-7B models (evaluated on MATH
test dataset) for different 𝛽 during training. This may be explained by the observation that the gradi-
ent estimate (15) in this case is a sum of unbiased gradient estimate of the forward KL divergences
computed at the token level, making this configuration equivalent to a stable forward KL-based logit
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Figure 3: Collapse in the case of adding K3 to the reward. Pass@1 performance for [Left]
Qwen2.5-7B trained on MATH train dataset [Right] Llama-3.1-8B-Instruct trained on MATH train
dataset. The collapse maybe attributed to high bias and variance of the configuration.
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Figure 4: Pass@1 performance on MATH test set with K3-in-loss (biased; Left) and K1-in-reward
(unbiased; Right). Although biased with respect to reverse KL, K3-in-loss yields stable training. In
both cases, lower 𝛽 values lead to higher performance.

distillation objective trained on-policy, with the base model as a teacher. Note that using K3 in loss is
a popular configuration used with policy optimization algorithms such as GRPO (Shao et al., 2024;
Guo et al., 2025). Comparing to Fig. 4 (Right), the in-distribution performance in this biased case is
similar to the performance when training with the unbiased gradient estimator setting of adding K1 to
the reward. Note that while 𝛽 = 0 seems to work the best in this experimental setting, it may not al-
ways be the case, even within the paradigm of RLVR. We discuss one such example in appendix D.1.

Further, we compare the downstream performance of the models trained with K3 in loss and K1 in
reward. We train Qwen2.5-7B and Llama-3.1-8B-Instruct models with different estimator configu-
rations for 250 steps on MATH train data, and compare the performance of different configurations
on a wide range of evaluation tasks as shown in Fig. 5 and Fig. 6 (similar results for 𝛽 = 0.3 and
𝛽 = 1 can be found in appendix D.2. Apart from MATH500 which is in-training distribution, we
evaluate on MATH2 which is out-of-distribution (OOD) but in-domain, as well as MMLU subsets
of college-physics, college-biology and college-chemistry, all OOD tasks.

We observe that using K1 in reward (i.e. unbiased gradient estimate) outperforms using K3 in loss
(i.e. biased gradient estimate). While the performance gains are consistent across all tasks and both
models, we observe that the gains are more pronounced in out-of-domain tasks for Qwen-2.5-7B,
with an average relative improvement of 19.06% across MMLU college-physics, college-chemistry
and college-biology, as compared to an average relative improvement of only 6.21% on in-domain
tasks across MATH500 and MATH2, for 𝛽 = 0.05. On the other hand, the gains are more pro-
nounced in-domain (average relative improvement of 15.94%) than out of domain (average relative
improvement of only 3.65%). Similar trends hold for 𝛽 = 0.1 as well. Consistent performance
improvements iin the case of unbiased estimated gradient implementations over biased estimated
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Figure 5: Comparison of Qwen2.5-7B trained with two stable estimator configurations - K1
in reward and K3 in loss. Baseline (CT) refers to the performance of base Qwen2.5-7B when
prompted with a chat template. Baseline (No-CT) represents the performance when it is prompted
with a chat template. K1 in Loss (unbiased gradient performs the beats on both in-domain and out-
of-domain tasks. Increasing 𝛽 consistently deteriorates performance.
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Figure 6: Comparison of Llama-3.1-8B-Instruct trained with two stable estimator configura-
tions - K1 in reward and K3 in loss. Baseline refers to the performance of base Llama-3.1-8B-
Instruct (prompted with chat template). K1 in Loss (unbiased gradient performs the beats on both
in-domain and out-of-domain tasks. Increasing 𝛽 deteriorates performance across the board.

gradient implementations demonstrate the importance of using correct gradient estimates while in-
corporating KL-based regularization.

5 CONCLUSION

We conduct a study of how different KL estimators, and their placement within the RL objective, af-
fect the stability and performance of RL fine-tuning of LLMs. We consistently find that implementa-
tions with biased reverse KL divergence gradient estimates perform unpredictably: at worst leading
to training collapses and at best still underperforming implementations with unbiased gradient esti-
mates. While the K3 estimator in the loss, commonly used in GRPO, remains generally stable, it con-
sistently underperforms the naı̈ve K1-in-reward configuration. These results all suggest that unbiased
gradient configurations should serve as the default for stable and generalizable RL post-training.

These findings should hardly be surprising: updating parameters with a step that is not the gradient
of the desired objective – or indeed of any objective, if it is not a gradient field – is a recipe for insta-
bility, as stable behavior near an optimum is not guaranteed. However, the prevalence of these incor-
rect estimators in the literature and in implementations, and the fact that they sometimes work well
enough to be published and overlooked in popular libraries, suggests that there is a lack of awareness
of these issues. We hope that our systematic study will help clarify these issues for the community.

Future work: Much interesting analysis remains to be done in understanding the reasons for train-
ing instabilities, as well as studying the effect of estimators in settings with non-verifiable rewards
(learned proxy rewards) which are more susceptible to reward hacking during RL fine-tuning (Gao
et al., 2023). Further, the biased configurations discussed in this work could be made unbiased by
including appropriate correction terms in the objective. Future work can study the behavior of these
corrected implementations with the unbiased configuration studied in this paper.
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REPRODUCIBILITY STATEMENT

We provide all the details to reproduce our results in §4.2 and appendix B.

LLM USE

LLMs were used to assist in writing code for experiments in the paper. No LLMs were used to assist
with writing and formatting of the paper.
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A RELATED WORK

Over the past few years, researchers have explored a variety of strategies to strengthen the reason-
ing capabilities of LLMs. Broadly, these strategies fall into three categories: pre-training, which
equips models with general reasoning ability through large-scale unsupervised learning (Kaplan
et al., 2020); fine-tuning, which adapts models on curated reasoning-oriented datasets (Hendrycks
et al., 2020; Wei et al., 2022; Shao et al., 2024; Grattafiori et al., 2024; Touvron et al., 2023); and
prompting, which improves reasoning through carefully designed input strategies without altering
model parameters (Wei et al., 2022; Lightman et al., 2023). We focus on fine-tuning methods, and in
particular investigate how KL-based interventions affect reasoning performance across models and
datasets.

While fine-tuning can improve task-specific reasoning, a central challenge is catastrophic forgetting;
models may lose general abilities acquired during pre-training when optimized on narrow domains
(Ouyang et al., 2022). Aggressive fine-tuning on small or biased datasets can also cause overfitting
or undesirable behaviors. To address these risks, researchers employ regularization methods (Korbak
et al., 2022; Peters et al., 2010; Schulman, 2020). Common practices include using smaller learning
rates, freezing subsets of parameters, or mixing in pre-training data during fine-tuning (Touvron
et al., 2023; Grattafiori et al., 2024; Penedo et al., 2024).

A particularly effective regularization technique is the use of Kullback–Leibler (KL) divergence
penalties. KL regularization is widely used in reinforcement learning from human feedback (RLHF),
where it serves as a safety mechanism to prevent the fine-tuned model from drifting too far from the
base model (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022; Stiennon et al., 2020;
Lambert, 2025). In RLHF, the fine-tuned model (policy) is optimized to maximize a reward model
score minus a KL penalty that measures divergence from the base LM distribution. This prevents
reward hacking and ensures outputs remain fluent and human-like.

RL with KL control is used explicitly to strengthen reasoning. In mathematical reasoning, Guo
et al. (2025); Shao et al. (2024) introduce GRPO (a critic-free PPO variant) and add the KL term
directly to the loss, reporting substantial gains on GSM8K and MATH. Sequence-level objectives
that preserve the KL-shaped reward also appear competitive for preference-tuned reasoning models,
with RLOO showing robustness across tasks and reduced sensitivity to KL settings compared to
PPO (Ahmadian et al., 2024; Li et al., 2023; Zheng et al., 2025; Yu et al., 2025; Kazemnejad et al.,
2025). .

Although the role of KL regularization is widely acknowledged as important for reasoning fine-
tuning, few works have systematically explored it in depth. Recent theoretical analyses underscore
both the promise and the limitations of KL-based interventions. Amini et al. (2025) propose im-
proved estimation techniques for KL between LLMs, Zhang et al. (2025) investigate the design of
KL-regularized policy gradient algorithms specifically for reasoning, Wu et al. (2024) revisit KL
in the context of knowledge distillation for LLMs, and Vassoyan et al. (2025) argue that ignoring
KL penalties on critical tokens can boost exploration in RL fine-tuning. Tang & Munos (2025)
further analyze pitfalls in gradient estimation. All these studies suggest that while KL constraints
are effective safeguards, their implications for reasoning insufficiently understood, motivating our
investigation.

B EXPERIMENTAL SETUP - FURTHER DETAILS

For the RL finetuning, we set the learning rate to 10−6, number of rollouts per prompt 𝐾 = 5,
maximum response length to 1024, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 1.0. We RL finetune the models on 2 GPU
nodes consisting of 4 A100s (80GB) each using verl (Sheng et al., 2025). For evaluation, we use
lm-eval-harness (Biderman et al., 2024), using vLLM (Kwon et al., 2023) for inference with top p
= 1.0, temperature = 1.0 and min p = 1.0.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C REVERSE KL AND GRADIENTS FOR PARAMETRIC AUTOREGRESSIVE
MODEL

The closed-form expressions for the reverse KL divergence and its gradient, corresponding to para-
metric autoregressive model in §4.1 can be written as

𝐷KL (𝐴∥𝐵) = E𝑌∼𝐴
[
log 𝐴𝜃 (𝑌 ) − log 𝐵𝜙 (𝑌 )

]
(19)

𝜕

𝜕𝑎
𝐷KL (𝐴∥𝐵) = E𝑌∼𝐴

[ 𝑇∑︁
𝑡=1

(𝑦𝑡 − 𝑝𝐴𝑡 ) (log 𝐴𝜃 (𝑌 ) − log 𝐵𝜙 (𝑌 ))
]
, (20)

𝜕

𝜕𝑏
𝐷KL (𝐴∥𝐵) = E𝑌∼𝐴

[ 𝑇∑︁
𝑡=1

(𝑦𝑡 − 𝑝𝐴𝑡 ) 𝑐𝑡−1 (log 𝐴𝜃 (𝑌 ) − log 𝐵𝜙 (𝑌 ))
]
. (21)

D FURTHER EMPIRICAL ANALYSIS

In this section, we provide additional experimental to further support the claims discussed in the
main paper.

D.1 EXAMPLES WHERE USE OF KL BECOMES NECESSARY

As stated in §4.2, 𝛽 = 0 may not always lead to the best performance, even within the domain
of RLVR. While RL fine-tuning Qwen2.5-7B-Instruct on MATH train set, we observe that while
the performance on MATH test set (nearly in-distribution to the training data) improves (albeit
marginally) as compared to the base model, when training with 𝛽 = 0, it drops, significantly in
some cases on the out-of-distribution tasks. However, a KL penalty with 𝛽 = 0.05 alleviates this
performance degradation significantly shown in Fig. 7
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Figure 7: Including a KL penalty prevents during RL fine-tuning of Qwen2.5-7B-Instruct prevents
performance degradation on OOD.
D.2 EVALUATION RESULTS FOR 𝛽 = 0.3 AND 1
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Figure 8: Comparison of Qwen2.5-7B trained with two stable estimator configurations - K1
in reward and K3 in loss. Baseline (CT) refers to the performance of base Qwen2.5-7B when
prompted with a chat template. Baseline (No-CT) represents the performance when it is prompted
with a chat template. K1 in Loss (unbiased gradient performs the beats on both in-domain and out-
of-domain tasks. Increasing 𝛽 consistently deteriorates performance.

E MATHEMATICAL DETAILS AND DERIVATIONS

Notation. We first define the notation used for the analysis into the bias of the estimators and their
corresponding gradients.
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Symbol Description
𝜋𝜃 policy trained using RL
𝜋ref reference policy
𝑥 prompt
𝑦1:𝑇 generated response with 𝑇 tokens
𝑦𝑡 token at position 𝑡 of response 𝑦1:𝑇
K1 naı̈ve estimator of 𝐷KL (𝜋𝜃 | |𝜋ref)
K3 Schulman estimator of 𝐷KL (𝜋𝜃 | |𝜋ref)
K1𝑡 naı̈ve estimator of 𝐷KL (𝜋𝜃 | |𝜋ref) at token 𝑡
K3𝑡 Schulman estimator of 𝐷KL (𝜋𝜃 | |𝜋ref) at token 𝑡

Table 2: Notation table.

E.1 TRUE GRADIENT

We want to estimate the gradient of the KL divergence between 𝜋𝜃 and 𝜋ref that are defined over
entire sequences of tokens. Specifically, we want:

∇𝜃KL(𝜋𝜃 (· | 𝑥) ∥ 𝜋ref (· | 𝑥)) = ∇𝜃E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥)

]
(22)

= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
. (23)

This is the true sequence-level gradient of the KL divergence. Every gradient estimator we use
henceforth aims to estimate this true gradient.

E.2 PATH-WISE AND SCORE FUNCTION DERIVATIVES

We show how the gradient of the KL estimator, or any other function, decomposes into a path-
wise derivative corresponding to the gradient of the estimator inside the expectation, and the score
function derivative arising from the 𝜃-dependent sampling in the expectation.

∇𝜃E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )
[
K̂L

]
(24)

= ∇𝜃

∑︁
𝑦1:𝑇

K̂L · 𝜋𝜃 (𝑦1:𝑇 | 𝑥) (25)

=
∑︁
𝑦1:𝑇

(
∇𝜃 K̂L

)
· 𝜋𝜃 (𝑦1:𝑇 | 𝑥) +

∑︁
𝑦1:𝑇

K̂L · (∇𝜃𝜋𝜃 (𝑦1:𝑇 | 𝑥)) (26)

= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )∇𝜃

[
K̂L

]
︸                     ︷︷                     ︸

path-wise derivative

+E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )
[
K̂L · ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
︸                                              ︷︷                                              ︸

score function derivative

(27)

= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[∑︁
𝑡

∇𝜃 K̂L𝑡

]
︸                            ︷︷                            ︸

Pathwise

+E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[(∑︁
𝑡

K̂L𝑡

)
· ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
︸                                                        ︷︷                                                        ︸

Score function

, (28)

where in the last line we write the KL divergence estimator as the sum of estimators at each individ-
ual token. Note that the path-wise derivative corresponds to using the estimator directly in the loss
(and backpropagating through it), whereas the score function derivative corresponds to adding the
estimator to the reward.

E.3 K1 ESTIMATOR

The K1 estimator for a sequence 𝑦1:𝑇 can be written as:

K1 =

𝑇∑︁
𝑡=1

K1𝑡 =
𝑇∑︁
𝑡=1

log
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

. (29)
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It is easy to see that this is an unbiased estimator of 𝐷KL (𝜋𝜃 | |𝜋ref).
To analyze the gradient of K1, we calculate the path-wise derivative and the score function derivative
separately.

Path-wise derivative. The path-wise derivative of K1 evaluates to zero under expectation.

E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
∇𝜃

∑︁
𝑡

K1𝑡

]
= 0. (30)

Score function derivative. The score function derivative of K1 is an unbiased estimate of the true
gradient in Equation (23).

E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[(∑︁
𝑡

K1𝑡

)
· ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
. (31)

Therefore, adding K1 estimator to the reward results in an unbiased estimate of the gradient of the
KL-regularized RL objective, whereas using K1 in the loss directly does not. In fact, since the path-
wise derivative of K1 is zero in expectation, in principle, using it in the loss should be equivalent to
optimizing the RL objective without KL regularization (i.e., 𝛽 = 0). In practice, however, using this
term in the loss introduces some variance that can hurt the optimization. We also note that we can
reduce the variance of the score function derivative by removing the past tokens from the inner sum,
since their contribution to the gradient will be zero in expectation.

Takeaway for K1:
• Adding K1 to the reward gives us an unbiased estimate of the gradient of the KL-regularized

RL objective.
• Using K1 in loss results in a biased estimate of the true gradient and is equivalent to using

no KL-regularization, but can introduce some variance in practice.

E.4 K3 ESTIMATOR

The K3 estimator for a sequence 𝑦1:𝑇 can be written as:

K3 =

𝑇∑︁
𝑡=1

K3𝑡 =
𝑇∑︁
𝑡=1

(
𝜋ref (𝑦𝑡 | 𝑦<𝑡 , 𝑥)
𝜋𝜃 (𝑦𝑡 | 𝑦<𝑡 , 𝑥)

− 1 − log
𝜋ref (𝑦𝑡 | 𝑦<𝑡 , 𝑥)
𝜋𝜃 (𝑦𝑡 | 𝑦<𝑡 , 𝑥)

)
. (32)

We first show that K3 is an unbiased estimator of 𝐷KL (𝜋𝜃 ∥ 𝜋ref):

E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 ) [K3] (33)

= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[∑︁
𝑡

(
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

− 1 − log
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

)]
(34)

= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[∑︁
𝑡

𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

]
− 𝑇 + E𝑦1:𝑇∼𝜋𝜃

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥)

]
(35)

= 𝐷KL (𝜋𝜃 ∥ 𝜋ref) (36)

We again calculate the path-wise and the score function derivatives of K3 separately.
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Path-wise derivative. The path-wise derivative of K3 is a biased estimate of the true gradient in
Equation (23).

E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 ) [∇𝜃K3𝑡 ] (37)

= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
∇𝜃

∑︁
𝑡

(
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

− 1 − log
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

)]
(38)

= −E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[∑︁
𝑡

𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

∇𝜃 log 𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
]
+ E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 ) [∇𝜃K1]

= −E𝑦<𝑡∼𝜋𝜃 ( · |𝑥 ) ,𝑦𝑡∼𝜋ref ( · |𝑥,𝑦<𝑡 )

[∑︁
𝑡

∇𝜃 log 𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
]

(39)

= E𝑦<𝑡∼𝜋𝜃 ( · |𝑥 )

[∑︁
𝑡

∇𝜃KL(𝜋ref (· | 𝑥, 𝑦<𝑡 ) ∥ 𝜋𝜃 (· | 𝑥, 𝑦<𝑡 ))
]
. (40)

The above expression resembles the gradient of the forward KL divergence at the token level, except
that the samples are drawn from 𝜋𝜃 (·|𝑥) instead of 𝜋ref (·|𝑥).
Score function derivative. The score function derivative of K3 also is a biased estimate of the true
gradient in Equation (23).

E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[(
𝑇∑︁
𝑡=1

K3𝑡

)
· ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[(∑︁
𝑡

(
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

− 1 − log
𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

))
∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
(41)

= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[∑︁
𝑡

𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)
]

+ E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
(42)

= E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[∑︁
𝑡

∑︁
𝑠

𝜋ref (𝑦𝑡 | 𝑥, 𝑦<𝑡 )
𝜋𝜃 (𝑦𝑡 | 𝑥, 𝑦<𝑡 )

∇𝜃 log 𝜋𝜃 (𝑦𝑠 | 𝑦<𝑠 , 𝑥)
]

+ E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 )

[
log

𝜋𝜃 (𝑦1:𝑇 | 𝑥)
𝜋ref (𝑦1:𝑇 | 𝑥) ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)

]
(43)

= −E𝑦<𝑡∼𝜋𝜃 ( · |𝑥 )

[∑︁
𝑡

∇𝜃KL(𝜋ref (· | 𝑥, 𝑦<𝑡 ) ∥ 𝜋𝜃 (· | 𝑥, 𝑦<𝑡 ))
]
+ E𝑦1:𝑇∼𝜋𝜃 ( · |𝑥 ) [K1 · ∇𝜃 log 𝜋𝜃 (𝑦1:𝑇 | 𝑥)] .

(44)

where in Equation 43 the terms corresponding to 𝑠 < 𝑡 and 𝑠 > 𝑡 reduce to 0. The first term in
Equation (44) represents the bias with respect to the true gradient. Therefore, using K3 either in loss
or added to the reward results in a biased estimate of the true gradient.

We note that the path-wise derivative of K3 corresponds to the regularization term used in GRPO
(Shao et al., 2024), a popular RL algorithm used for training LLMs.

Takeaway for K3: Adding K3 to the reward or using it in the loss results in a biased estimate
of the gradient of the KL-regularized RL objective.
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