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Abstract

Although various schemes have been proposed
for exploiting the distributional knowledge cap-
tured by protein language models (PLMs) to en-
hance supervised fitness prediction and design,
lack of head-to-head comparison across differ-
ent prediction strategies and different classes of
PLM has made it challenging to identify the best-
performing methods, and to understand the factors
contributing to performance. Here, we extend pre-
viously proposed ranking-based loss functions to
adapt the likelihoods of family-based and masked
protein language models, and demonstrate that
the best configurations outperform state-of-the-
art approaches based on frozen embeddings in
the low-data setting. Furthermore, we propose
ensembling strategies that exploit the strong de-
pendence of the mutational distributions learned
by PLMs on sequence context, showing that they
can be used to guide efficient optimisation strate-
gies over fitness landscapes.

1. Introduction
Protein language models (PLMs) fit to the distribution of
natural sequences learn to implicitly model functional and
structural constraints relevant to protein function, with their
likelihoods forming effective zero-shot predictors of the fit-
ness effects of mutations (Meier et al., 2021; Notin et al.,
2022). In practical protein design scenarios, it is often pos-
sible to use experimental techniques to generate labelled
datasets associating sets of sequences with quantitative mea-
surements of biological properties of interest, however ex-
perimental constraints mean that it might only be feasible
to generate measurements for tens or hundreds of proteins
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at a time (Biswas et al., 2021). It is therefore of consider-
able interest to ask how the zero-shot prediction capacities
of PLMs can be combined with small labelled datasets to
achieve improved predictive performance.

One popular paradigm for exploiting the information in
pretrained PLMs involves extracting sequence representa-
tions and feeding these as inputs into task-specific down-
stream predictive models (Alley et al., 2019; Biswas et al.,
2021; Rao et al., 2019; Dallago et al., 2021; Notin et al.,
2023b). However, recent trends in natural language process-
ing have shown the benefits of directly adapting the distri-
butions of models using task-specific labelled or preference
data (Ouyang et al., 2022; Rafailov et al., 2023), thereby
fully exploiting the distributional knowledge contained in
the original pretrained model. Although related fine-tuning
strategies have been considered in the context of fitness pre-
diction with unconditional autoregressive PLMs (Krause
et al., 2021), previous work has not addressed whether
similar strategies can effectively be applied across differ-
ent classes of PLM, which often outperform unconditional
autoregressive models for fitness prediction (Notin et al.,
2023a), nor how to exploit fine-tuning to improve perfor-
mance in uncertainty-guided design tasks. Moreover, there
has been relatively limited direct comparison of these fine-
tuning strategies to alternative PLM-based fitness predic-
tion strategies, including recent innovations in architectures
for operating over frozen PLM embeddings, (Notin et al.,
2023b), making it difficult to assess their utility in practice.

Seeking to address this gap, in this paper we (i) show that
ranking losses can be extended to adapt the likelihoods of
leading zero-shot fitness predictors trained with both masked
and family-based autoregressive language modelling objec-
tives, (ii) provide direct comparison with state-of-the-art
approaches based on frozen protein language model em-
beddings (Notin et al., 2023b), as well as fine-tuning with
added regression heads, thereby offering compelling empiri-
cal evidence for the effectiveness of the proposed fine-tuning
schemes, and (iii) develop ensembling strategies compatible
with these fine-tuning schemes, demonstrating their effec-
tiveness in both supervised and multi-round design settings.
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2. Background
Two recent works have advocated the use of ranking-based
loss functions (Krause et al., 2021; Brookes et al., 2023).
In particular, they suggest parameterising a Bradley-Terry
model (Bradley & Terry, 1952) with a learned function
of the sequence. The Bradley-Terry model represents the
probability that a given sequence xi has higher fitness y than
another sequence xj by parameterising a binary classifier
via the difference in scores of each sequence under a learned
scoring function sθ(x):

p(y(xi) > y(xj)) = σ(sθ(xi)− sθ(xj)) , (1)

where σ is the logistic sigmoid function. The model can
be fit to data by maximising the likelihood of the complete
set of pairwise comparisons between the fitness values of
sequences with respect to the parameters θ of the scoring
function. Concretely, in our implementation, given a batch
of B sequences x1, ..., xB , the resulting loss is:

L =

B∑
i=1

B∑
j=1

−I(y(xi) > y(xj))logσ(sθ(xi)− sθ(xj)) ,

(2)
where I is an indicator function. In this way, fitness predic-
tion for a dataset of size N is converted from a regression
problem with N labels into a binary classification problem
with N ×N labels.

2.1. Ranking-based fine-tuning of autoregressive protein
language models

To use the Bradley-Terry model to fine-tune an autoregres-
sive protein language model, Krause et al. (2021) propose
using an unconditional sequence log-likelihood as the scor-
ing function:

sθ(x) =

L∑
i=1

log p(xi|x<i) . (3)

Since the log-likelihoods of pretrained autoregressive pro-
tein language models are reasonably well-correlated with
the fitness effects of mutations (Notin et al., 2022), the dif-
ference in log-likelihoods used to parameterise the Bradley-
Terry model of Equation 1 can already produce an effective
pairwise classifier at initialisation, which may help max-
imise the effectiveness of fine-tuning on small datasets.

3. Likelihood-based fine-tuning of masked and
family-based protein language models

Unconditional autoregressive models often underperform
other classes of model including conditional autoregressive
models and masked language models in fitness prediction
settings (Notin et al., 2023a). We therefore extend fine-
tuning via the Bradley-Terry model to accommodate these

more performant PLMs. To do so, we incorporate the addi-
tional conditioning information c exploited by these models
into conditional scoring functions sθ(x, c):

p
(
(y(xi) > y(xj))|c

)
= σ(sθ(xi, c)− sθ(xj , c)). (4)

Below, we will consider cases where c represents either
a wild-type sequence or a multiple sequence alignment
(MSA), since conditioning on evolutionary context is es-
pecially effective in fitness prediction (Truong Jr & Bepler,
2023), but note that the same approach could be applied
to models which condition on protein structure (Hsu et al.,
2022b).

3.1. Masked protein language models

Masked language models do not define a sequence-level
likelihood that can directly be used as a scoring function.
Instead we build on the zero-shot scoring strategies proposed
by Meier et al. (2021) to allow these models to be fine-tuned
with ranking-based losses, similar to other concurrent work
(Zhao et al., 2024). Concretely, we utilize the ‘wild-type
marginals’ scoring function from Meier et al. (2021). Under
this strategy the score for a mutated sequence is given by
the summation of the log-likelihood ratios between mutated
and wild-type amino acids across mutated positions, given
the unmasked wild-type sequence as input:

sθ(x, x
wt) =

∑
i:xwt

i ̸=xi

logp(xi|xwt)− logp(xwt
i |xwt) . (5)

Since all sequences are scored under the residue distribu-
tions obtained by feeding the wild-type sequence through
the model, a set of mutated sequences of arbitrary size can
be scored using a single forward pass, making both fine-
tuning and prediction extremely efficient.

3.2. Family-based protein language models

Family-based protein language models represent the condi-
tional distribution over family members given a subset of
other family members (Rao et al., 2021; Hawkins-Hooker
et al., 2021; Ram & Bepler, 2022; Truong Jr & Bepler,
2023). These models have proved especially effective as
zero-shot fitness predictors, due to their ability to explicitly
condition on evolutionary context to predict the effects of
mutations.

In this paper we work with PoET (Truong Jr & Bepler,
2023), which models entire protein families autoregressively.
To produce zero-shot predictions given a mutant sequence
x and an MSA M = {m(1), ...,m(N)} of homologues of
a wild-type sequence xwt, PoET computes the likelihood
of the mutant x given the MSA. To exploit this capacity to
condition on family members during fine-tuning, we con-
dition the autoregressive scoring function in Equation 3 on
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the sequences in the MSA:

sθ(x,M) =

L∑
i=1

log p(xi|x<i,M) . (6)

Since PoET operates natively on unaligned sequences and
is sensitive to alignment depth, we subsample a small set
of sequences from the MSA and discard gaps before feed-
ing them into the model, following (Truong Jr & Bepler,
2023). To increase the efficiency of fine-tuning PoET, in
practice we cache a single set of hidden layer representa-
tions obtained by passing the subsampled MSA M through
the model, and fine-tune only the mapping between these
frozen representations and the sequence likelihoods, decou-
pling the encoding of prior context from the decoding of
future amino acids given this context (Appendix C).

3.3. Uncertainty quantification with evolutionary
context ensembles

The amino acid output distributions learned by protein lan-
guage models depend heavily on sequence context. We pro-
pose to exploit this property to build ensembles of fine-tuned
PLMs, in which each ensemble member sees a different, but
approximately biologically equivalent, context. Concretely,
to fine-tune an ensemble of PoET models, for each fitness
dataset we sub-sample a set of K input MSAs Mk from
the full MSA associated with the wild-type sequence. We
then fine-tune a separate set of parameters to minimise the
ranking loss conditioned on each MSA, producing K sets
of parameters, each specialised to a single input MSA. To
score sequences, we use an ensembled scoring function:

sθ1,...,θK (x,M) =
1

K

K∑
k=1

sθk(x,Mk). (7)

To achieve a similar effect with ESM-1v, which does not
use MSAs, we instead sample a set of K input masks, and
fine-tune a separate set of parameters for each input mask,
exploiting the intuition that differently masked sequences
are functionally equivalent, but may nonetheless produce
different outputs when passed through the model.

3.4. Relationship to preference learning strategies for
LLMs

Direct preference optimisation (DPO) (Rafailov et al., 2023)
is a recently proposed method for aligning large language
models (LLMs) using datasets of human preference data.
DPO also uses scoring functions from pretrained models to
parameterise a Bradley-Terry model. Instead of parameter-
ising a classifier directly via differences in log likelihoods,
DPO uses the difference in scaled log likelihood ratios be-
tween the fine-tuned model and a frozen reference model.
Thus the probabillity that a completion x1 is preferred to a
completion x2 given an input prompt c is modelled as:

pθ(x1 ≻ x2|c) = σ

(
βlog

pθ(x1|c)
pref(x1|c)

− βlog
pθ(x2|c)
pref(x2|c)

)
.

(8)

In our notation, the DPO preference model therefore
amounts to a particular choice of scoring function
sθ(x, c) = βlog p(x|c)

pref(x|c) . Assuming an autoregressive de-
composition of p(x|c), this scoring function is equivalent
to the conditional autoregressive scoring function in Equa-
tion 6 if the reference model is chosen to be constant and
β = 1.

The non-constant reference model in DPO imposes a KL
penalty on the deviation between the fine-tuned pθ and the
reference model, which helps prevent collapse in the fine-
tuned distribution (Rafailov et al., 2023). Although some
recent work has reported success in adapting DPO to the
protein fitness prediction setting (Lee et al., 2023), in our
own experiments we did not find this regularisation neces-
sary to achieve good performance, possibly owing to the
fact that we require neither generations from the model nor
generalisation to different ‘conditions’ at test time, unlike
typical applications of DPO.

4. Few-shot fitness prediction
We study the performance of fitness prediction strategies
on mutational landscapes from ProteinGym (Notin et al.,
2023a). We utilise two subsets of ProteinGym: the vali-
dation set of 8 representative single-mutant landscapes se-
lected by Notin et al. (2023b), and a set of multi-mutant
landscapes, chosen to constitute a non-redundant set of the
most diverse landscapes available (Appendix B).

In contrast to some prior work (e.g. Notin et al. (2023b)), we
focus explicitly on the low-data setting. For each landscape,
we train all methods on n = 128 or n = 512 sequences
randomly sampled from the landscape and evaluate on either
2000 (for single-mutant landscapes) or 5000 (for multiple-
mutant landscapes) randomly sampled held-out sequences.
An additional set of 128 randomly sampled sequences is
used as a validation set to perform early stopping. For each
landscape, and each n, we generate three sets of random
splits, and report test set Spearman correlation averaged
across the three splits. For models trained with ranking
losses, the Spearman correlation is computed between the
scoring function sθ(x, c) and the ground truth fitness values.

4.1. Fitness prediction strategies

We evaluate the performance of the likelihood-based fine-
tuning strategies introduced in Section 3 on the selected
landscapes. To attain an understanding of the effectiveness
of these strategies across different classes of PLM, we apply
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them to the masked language model ESM-1v (Meier et al.,
2021), the unconditional autoregressive model ProGen2
(Nijkamp et al., 2023), and the family-based autoregressive
model PoET (Truong Jr & Bepler, 2023). For ProGen2 we
obtained slightly better results with the ‘small’ checkpoint
model than the ‘medium’ one, so report the former. In each
case, the model is fine-tuned by parameterising the Bradley-
Terry model of Equation 1 via the corresponding scoring
functions in Sections 2 and 3.

We compare to two sets of baselines, representative of
widely used approaches that either (i) fine-tune PLMs by
adding a regression head (Rao et al., 2019), or (ii) train
new models on top of frozen language model embeddings
(Notin et al., 2023b). In the first case, we add linear re-
gression heads to both ESM-1v and PoET, and fine-tune all
parameters. As the leading example of the second class of
approaches, we compare against ProteinNPT (Notin et al.,
2023b), a state-of-the-art model operating on top of frozen
language model embeddings. As additional baselines, we
include the ‘augmented density’ strategies used by (Notin
et al., 2023b). These models are regression models taking
as input the zero-shot predictions of a PLM as well as either
a one-hot representation of the mutated sequence (Hsu et al.,
2022a), or an embedding extracted from a PLM (Notin et al.,
2023b). We refer to these distinct choices of augmented
density representation as ‘OHE augmented’ (OHE aug.) and
‘Embedding augmented’ (Emb. aug.) respectively, follow-
ing Notin et al. (2023b).

Hyperparameters for fine-tuned models are selected based
on performance on the single mutant set, consistent with the
practice used for ProteinNPT and associated baselines. We
report metrics obtained when using these hyperparameters
on both single-mutant and multiple mutant landscapes for
each method. Additional descriptions of models and training
details are provided in Appendix D.

4.2. Results

Ranking-based fine-tuning outperforms regression-
based fine-tuning We first focus on the comparison be-
tween ranking-based fine-tuning and regression-based fine-
tuning, using the same models. For PoET, ranking-based
fine-tuning performs best across both dataset sizes for single
and multi-mutant landscapes (Table 1). Regression-based
fine-tuning is nonetheless a strong baseline, performing
slightly better than the best ProteinNPT configuration. For
ESM-1v, ranking-based fine-tuning performs much better
than regression-based fine-tuning on the single mutant land-
scapes, but worse on the n = 512 multi-mutant landscapes.
Unlike regression-based fine-tuning via a linear head, the
wild-type marginals scoring rule used in ranking-based fine-
tuning of ESM-1v is unable to capture the interactions be-
tween multiple mutations, since it assumes that mutation

effects are additive. In contrast, the scoring functions used
for ranking-based fine-tuning of autoregressive models are
able to capture interactions between mutations and therefore
perform well on the multiple mutants datasets. Indeed the
unconditional autoregressive ProGen models outperform the
ranking-based version of ESM-1v on the multiples datasets,
but not on the single mutant datasets, while the family-based
autoregressive model PoET achieves strong performance
across the board. We note that these observations do not
necessarily point to a fundamental limitation of fine-tuning
masked PLMs with ranking-based losses; more expressive
masked PLM scoring functions involving multiple forward
passes may be able to achieve better performance at the
price of increased computational expense.

Ranking-based fine-tuning outperforms models trained
on frozen embeddings We next focus on the compari-
son between the best-performing ranking-based fine-tuning
schemes and baselines relying on frozen embeddings.
Ranking-based fine-tuning of PoET outperforms Protein-
NPT across all settings (Table 1), with the gap largest in
the n = 128 regime, suggesting that directly adapting the
likelihoods of the pretrained model is especially helpful
for maximising performance given very limited data. No-
tably this is not simply by virtue of PoET producing better
zero-shot predictions: on the single mutant datasets, the
zero-shot ESM-1v predictions used by ProteinNPT (ESM-
1v) outperform those produced by PoET. ESM-1v fine-tuned
with a ranking loss is also slightly better than ProteinNPT
on the single-mutant datasets, but performs worse on the
multi-mutant datasets, for the reasons discussed above. For
both ESM-1v and PoET, the proposed ensembling strategies
further improve performance, sometimes substantially, and
show improved uncertainty calibration, as measured by the
negative log likelihood of pairwise classifications from the
test set (Table 3).

Ranking-based fine-tuning generalises to unseen posi-
tions Random splits provide an estimate of performance
on heldout data. However, similar mutations can occur in
both train and test sets (e.g. related amino acid substitutions
at the same position), meaning that measuring performance
on predicting the effects of these mutations does not neces-
sarily test a model’s capacity for generalisation (Notin et al.,
2023b). We assess the capacity of models to generalise to
mutations at unseen positions in the single mutant datasets
by reporting the performance of all models for mutations
in the n = 128 test sets occurring at positions at which no
mutations were present in the training set sequences (Ta-
ble 2). While there is a clear drop in performance at these
unseen positions, PoET fine-tuned with a ranking loss still
performs the best, indicating that it is able to generalise
across positions better than other methods.
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Table 1. Spearman correlation on 8 single mutant landscapes and 5 multiple mutant landscapes from ProteinGym. Results for n = 0 are
computed on the n = 128 test splits. Where methods use a frozen base model to produce embeddings and zero-shot predictions, the base
model type is provided in parentheses, and zero-shot performance is that of the base model.

Singles Multiples

Model name (base model) Loss type n = 0 n = 128 n = 512 n = 0 n = 128 n = 512

ESM-1v ranking 0.384 0.552 0.637 0.425 0.653 0.736
ESM-1v + linear head regression - 0.425 0.583 - 0.649 0.780
PoET ranking 0.417 0.589 0.668 0.592 0.738 0.806
PoET + linear head regression - 0.554 0.649 - 0.711 0.784
ProGen2 small ranking 0.385 0.521 0.623 0.358 0.670 0.768

ProteinNPT (MSAT) regression 0.399 0.545 0.635 0.534 0.689 0.782
ProteinNPT (ESM-1v) regression 0.437 0.497 0.602 0.392 0.646 0.775
Emb. aug. (MSAT) regression 0.399 0.541 0.627 0.534 0.707 0.783
Emb. aug. (ESM1v) regression 0.437 0.532 0.609 0.392 0.638 0.765
OHE aug. (MSAT) regression 0.399 0.465 0.500 0.534 0.643 0.745
OHE aug. (ESM1v) regression 0.437 0.496 0.531 0.392 0.556 0.709
OHE regression - 0.303 0.494 - 0.467 0.671

Table 2. Single-mutant Spearman correlations for test set mutations
at seen and unseen positions (n=128). Test set mutants are assigned
to the unseen set if they contain mutations in sequence positions at
which none of the training set sequences have mutations.

Spearman
Model name Loss type Seen Unseen

ESM1v ranking 0.587 0.474
ESM1v + linear head regression 0.484 0.303
PoET ranking 0.617 0.531
PoET + linear head regression 0.573 0.515

ProteinNPT (MSAT) regression 0.570 0.486

5. Multi-round design on fitness landscapes
5.1. Experiment details

We next ask whether the improvements in predictive perfor-
mance translate to benefits in a multi-round design setting.
We follow the evaluation protocol introduced by Notin et al.
(2023b) in which design is formulated as a pool-based op-
timisation task over the sequences in an empirical fitness
landscape. For a given landscape, the goal is to retrieve as
many high-scoring sequences as possible over the course
of 10 optimisation rounds. In each round, the model’s pre-
dictions are used to guide the selection of a batch of 100
sequences to acquire from a pool of candidate sequences.
The pool of candidate sequences is either the complete land-
scape, or, in the case of the multiple mutant landscapes, a
randomly selected subset of 5000 sequences. We follow
Notin et al. (2023b) in using ensembling strategies to de-
rive uncertainty estimates which can be used to guide the

selection of candidates from the pool within the framework
of Bayesian optimisation (BO). To make the comparison
between the modelling strategies as direct as possible, we
choose to follow Notin et al. (2023b)’s use of the upper con-
fidence bound (UCB) acquisition function, but note that the
use of a ranking loss means that our ensembles should be
considered as preferential surrogates within the framework
of preferential BO (González et al., 2017), and may benefit
from specialised acquisition functions.

We compare optimisation guided by ensembles of PoET and
ESM-1v ranking models to ProteinNPT, as well as selected
baselines. For ProteinNPT and embedding-augmented base-
lines, we use Monte Carlo dropout (Gal & Ghahramani,
2016) to produce uncertainty estimates. Models are seeded
before the first round with 100 sequences randomly sampled
from the landscape. At each round, we rank all remaining
sequences in the pool by their acquisition values, and select
the top 100 to add to the training set.

We plot the fraction of the top 30% of sequences in the
initial candidate pool that are retrieved by the optimisa-
tion process as a function of the number of optimisation
rounds for both single and multi-mutant in Figure 1. Across
both sets of landscapes, the PoET ranking ensemble out-
performs all other methods. In general, the design curves
show similar trends to the supervised results. Ranking-based
fine-tuning outperforms regression-based fine-tuning, and
using ensembles leads to the best performance, though a
single model also performs very well (Figure 2). While
recall of high-fitness sequences saturates for the single mu-
tant landscapes, it improves steadily for the multiple mutant
landscapes, since the starting pools are larger, and it is
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Table 3. Spearman correlations and test set negative log likelihoods of pairwise predictions for single models versus ensembles on the 5
multi-mutant datasets.

Spearman NLL
Model name Loss type n = 128 n = 512 n = 128 n = 512

ESM1v ranking 0.653 0.736 1.42 0.768
ESM1v ensemble ranking 0.677 0.753 0.841 0.584
PoET ranking 0.738 0.806 0.987 0.620
PoET ensemble ranking 0.752 0.818 0.750 0.507
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Figure 1. Top 30% recall averaged over: (left): 8 single-mutant landscapes and (right): 5 multi-mutant landscapes. The shading represents
one standard deviation over 3 random seeds.

not possible to reach perfect recall within the fixed budget
of acquisitions. The relative ordering of the methods is
reasonably stable across individual landscapes (Figures 5
and 6), although there are some cases where simple base-
lines perform comparably to the best-performing methods,
suggesting these landscapes may contain noisy or otherwise
difficult-to-predict fitness labels (Notin et al., 2023b).

6. Conclusion
The ability of language models to learn distributional con-
straints governing natural protein sequences makes them
powerful zero-shot predictors of the effects of mutations.
Here we show that their learned distributions can also be
rapidly adapted via feedback from relatively few experimen-
tal measurements. Even 128 sequences - of the order of a
typical batch size in wet lab experiments - allow significant
improvements over zero-shot performance. While previous
works have also suggested the effectiveness of directly fine-
tuning likelihoods, we extend this strategy to the classes
of PLM whose distributions best reflect fitness, and find
that doing so is crucial to obtaining performance surpass-
ing leading approaches based on frozen embeddings across
supervised and multi-round design settings. Notably, fine-

tuning is also dramatically more computationally efficient
than the leading embedding-based approaches (Table 4). An
intriguing possibility is that when generative PLMs are fine-
tuned via likelihood-based loss functions, they may retain
their generative capacity, and we believe studying this pos-
sibility by leveraging the connection to methods like DPO
(Rafailov et al., 2023) to be a promising avenue for future
work.
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A. Related work
Zero-shot protein fitness prediction: The most successful
models for zero-shot prediction of protein fitness effects
attempt to predict the likelihood of particular sets of mu-
tations occurring within a natural protein given its evolu-
tionary context. Traditional methods within this category
involve statistical models trained directly on multiple se-
quence alignments (MSAs) for each protein of interest, such
as profile models (Hopf et al., 2017), Potts models (Figli-
uzzi et al., 2016; Hopf et al., 2017) and VAEs (Frazer et al.,
2021; Riesselman et al., 2018). More recent generalisations
of such methods involve pretraining large PLMs across all
natural proteins. For example, ESM-1v (Meier et al., 2021)
is trained using a masked language modelling objective,
allowing point mutations to be scored by the ratio of proba-
bilities of mutant and wild-type amino acids. Alternatively,
autoregressive models can directly compute the likelihood
of entire protein sequences, making them more appropriate
for scoring sequences containing multiple mutations (Notin
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et al., 2022; Nijkamp et al., 2023; Madani et al., 2023).
However, unconditional PLMs suffer from a lack of context,
often requiring fine-tuning to specialise their distributions
towards a particular protein family of interest (Madani et al.,
2023). As a result, the leading autoregressive models exploit
the information in MSAs to improve predictions, either by
biasing language model likelihoods with statistics from the
MSA, in the case of Tranception (Notin et al., 2022), or by
explicitly conditioning on the MSA (Hawkins-Hooker et al.,
2021; Ram & Bepler, 2022; Truong Jr & Bepler, 2023).

Supervised protein fitness prediction: Fitness prediction
has also been studied as a supervised learning task in many
prior works (Rao et al., 2019; Hsu et al., 2022a; Krause
et al., 2021). Several works have sought to exploit the pre-
trained representations of PLMs to improve performance,
using either fine-tuned (Rao et al., 2019) or frozen embed-
dings (Dallago et al., 2021; Notin et al., 2023b). Nonethe-
less, approaches based on embeddings risk discarding use-
ful distributional information captured in the models’ out-
put layers (Krause et al., 2021). The importance of fully
leveraging distribution modelling for fitness prediction is
highlighted by the success of ‘augmented density’ predic-
tors (Hsu et al., 2022a), which combine zero-shot fitness
predictions with either one-hot encoded (Hsu et al., 2022a),
or embedded (Notin et al., 2023b) representations of input
sequences. The state-of-the-art supervised fitness predic-
tion method ProteinNPT (Notin et al., 2023b) combines
these strategies, training a custom non-parametric Trans-
former (Kossen et al., 2021) to reason over both zero-shot
predictions and associated sequence embeddings to produce
fitness predictions.

Methods seeking to adapt the distributions learned by PLMs
directly have been less well studied. Rives et al. (2021)
proposed to use the log-likelihood ratio between mutant and
wild-type amino acids as a regression function, fine-tuning
the full model. Krause et al. (2021) suggest using a ranking-
based loss function to fine-tune autoregressive PLMs, show-
ing improvements over augmented density baselines on a
small set of fitness landscapes. A similar ranking-based loss
function was proposed for training non-pretrained CNN ar-
chitectures on fitness datasets in Brookes et al. (2023). Most
recently, Lee et al. (2023) apply ranking-based loss func-
tions derived from the literature on large language model
alignment (Rafailov et al., 2023) to fine-tune unconditional
autoregressive PLMs. The application of ranking-based loss
functions to masked PLMs is also considered in concurrent
work (Zhao et al., 2024).

Model-guided protein design: Several works have pro-
posed variants of Bayesian optimization (BO) for design-
ing biological sequences, including proteins (Gruver et al.,
2021; Jain et al., 2022; Khan et al., 2023; Stanton et al.,
2022; Hie & Yang, 2022). The majority of these BO ap-

proaches are evaluated in an unconstrained setting, in which
sequences are proposed by the optimiser and evaluated with
a black-box oracle designed to mimic a biological property
of interest. An alternative in silico evaluation strategy avoids
the challenge of defining a meaningful oracle function by
adopting a pool-based optimisation problem formulation
over experimentally determined fitness landscapes (Notin
et al., 2023b). Another line of works has sought to provide
direct experimental validation of approaches combining un-
certainty estimates with PLMs, in settings ranging from
zero (Hie et al., 2023) or few-shot design (Biswas et al.,
2021) to single-round design given large training sets of
sequence-fitness pairs (Li et al., 2023). In this paper, we
focus on evaluating different PLM-based fitness prediction
strategies in in silico settings designed to mimic applied
design scenarios. We study both a supervised setting and a
model-guided design setting, which extends the pool-based
optimisation setting proposed in Notin et al. (2023b), to a
set of the most diverse multi-mutant fitness landscapes in
ProteinGym.

B. Fitness landscapes
We use the set of 8 single-mutant landscapes selected for
ablations and hyperparameter selection by (Notin et al.,
2023b). The names of these landscapes in ProteinGym are:

• BLAT ECOLX Jacquier 2013

• CALM1 HUMAN Weile 2017

• DYR ECOLI Thompson 2019

• DLG4 RAT McLaughlin 2012

• REV HV1H2 Fernandes 2016

• TAT HV1BR Fernandes 2016

• RL40A YEAST Roscoe 2013

• P53 HUMAN Giacomelli WT Nutlin

We additionally select a set of 5 of the most diverse
multi-mutant landscapes in ProteinGym. To select these
landscapes, we identified the landscapes with the largest
number of mutations in ProteinGym, and discarded
redundant landscapes: for example the GFP landscapes
of (Gonzalez Somermeyer et al., 2022) are landscapes of
close homologues of the GFP protein whose landscape was
reported by Sarkisyan et al. (2016). We therefore include
only the latter.

The selected multi-mutant landscapes are:

• PABP YEAST Melamed 2013
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• CAPSD AAV2S Sinai 2021

• GFP AEQVI Sarkisyan 2016

• GRB2 HUMAN Faure 2021

• HIS7 YEAST Pokusaeva 2019

C. Decoder-only fine-tuning of PoET
PoET parameterises a sequence of conditional distributions
over the amino acids in a set of protein sequences in the same
family. The model represents the joint likelihood of a set
of sequences M = {m(1), ...,m(N)}, via an autoregressive
factorisation over sequences and over positions within each
sequence:

p(M) =
∏
i

p(m(i)|m(<i)) =
∏
ij

p(m
(i)
j |m(i)

<j ,m
(<i)) .

(9)

To parameterise this distribution, PoET uses a causally
masked Transformer architecture, which maps from pre-
vious amino acids to logits for the current amino acid. Con-
ceptually, this function can be decomposed into two stages:
first the entire history of previous sequences m<i is en-
coded into a sequence of embeddings H<i ∈ RL<i×D×E ,
where D is the number of layers and E is the embedding
dimension, via a stack of causally masked layers:

H<i = fθ(m
(<i)) . (10)

The current sequence mi is then decoded by a function
which maps these prior sequence embeddings and previ-
ous amino acids in the current sequence to logits for each
position j:

logitij = gθ(m
(i)
<j , H<i) . (11)

To fine-tune PoET from fitness data, we propose to fine-
tune only the weights of the function g, representing the
‘decoding’ of the current sequence given its context. To
achieve this, we first clone the PoET weights, producing a
set of ‘encoder’ weights ϕ and a set of ‘decoder’ weights
θ. We use the frozen encoder weights to produce an em-
bedding H ∈ RLM×D×E of the input MSA sequences:
H = fϕ({m(1), ...,m(N)}), where LM is the total length
of all sequences in the input MSA. We then fine-tune the
weights θ of the cloned ‘decoder’ to minimise the cross-
entropy loss of Equation 2 on the labelled data. Concretely,
the scoring function used to parameterise the Bradley-Terry
model becomes:

sθ(x,M) ≡ sθ(x,H) =
∑
i

logpθ(xi|x<i, H) (12)

To maximise computational efficiency, the MSA embed-
dings H are pre-computed before the start of the fine-tuning
process, and remain frozen throughout.

D. Hyperparameter details
Hyperparameters for the fine-tuning methods are selected
based on performance on the single mutant set, consistent
with the practice used to select hyperparameters for the
baselines from ProteinNPT. We report metrics obtained
when using these hyperparameters on both single-mutant
and multiple-mutant landscapes for each method.

ESM-1v, ProGen2 and PoET models were fine-tuned using
the Adam optimizer (Kingma & Ba, 2015) using gradient
accumulation with an effective batch size of 32. We use
the first of the five ESM-1v checkpoints. Learning rates
for regression-based and ranking-based fine-tuning were
selected separately in each case after after a sweep over
the values 1e − 4, 3e − 5, 1e − 5 on the 8 single mutant
landscapes. For ESM-1v, we computed the loss by scor-
ing all sequences using the logits generated by passing the
wild-type sequence through the model in a single forward
pass. In the fitness prediction experiments, the models were
trained for 50 epochs. During training on each landscape the
Spearman correlation on a separate validation set of 128 se-
quences from the landscape was used to determine the epoch
whose checkpoint should be used to produce predictions on
the test set.

D.1. Regression heads

Linear regression heads were added to embeddings extracted
from PoET and ESM-1v. In the former case, we used fi-
nal token embeddings, and in the latter case we averaged
embeddings across the sequence dimension before feeding
them to the regression head.

D.2. Ensembles

Ensembles of size 5 were used for both ESM-1v and PoET.
During design, the ensemble members were trained for a
fixed number of epochs (15 for PoET; 20 for ESM-1v) each
round. All ensemble members were reinitialised from the
pretrained model each round.

E. PoET MSA subsampling
For PoET, in both single-model and ensemble configura-
tions, we sampled context sequences from the same filtered
MSAs used to extract MSA Transformer embeddings for
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ProteinNPT. These MSAs are generated from the full MSAs
provided with ProteinGym by running hhfilter, requiring a
minimum coverage of 75% and a maximum sequence iden-
tity of 90%. Subsequently, we use weighted sampling to
select sequences to pass as context to PoET, up to a maxi-
mum context length of 8192 tokens. The MSA is encoded
using a frozen copy of the PoET model into a set of cached
hidden representations, as described in Appendix C. When
ensembling, a separate MSA is sampled for each ensem-
ble member, and held fixed during the fine-tuning of that
ensemble member.

F. Baseline models
ProteinNPT, the embeddings augmented (Emb. aug.) base-
lines, and the one-hot encoding augmented (OHE aug.) base-
lines, were all run using the code released by (Notin et al.,
2023b). The one-hot and embedding augmented models
both use the strategy from (Hsu et al., 2022a) of combin-
ing the zero-shot predictions from a pretrained model with
sequence features in a regression framework. They differ
in the way sequence features are extracted: in the former
case, ridge regression is performed directly on the one-hot
encoded sequences. In the latter case, PLM embeddings are
used to featurise the sequences. We refer to (Notin et al.,
2023b) for further details.

For the fitness prediction experiments, separate ProteinNPT
models were trained for 2000 and 10000 steps, and the re-
sults of the best-performing model were reported. The other
baselines appeared to benefit more from longer training and
were trained for 10000 steps, as in (Notin et al., 2023b).
For design experiments, we used the Monte Carlo dropout
uncertainty quantification strategy proposed by (Notin et al.,
2023b) for both ProteinNPT and baselines. Notin et al.
(2023b) report best results with a ‘hybrid’ uncertainty quan-
tification strategy, however this strategy is not implemented
in the publicly available code.

G. Compute requirements
All experiments were run on either V100 or A100 NVIDIA
GPUs. Compute required for a single fine-tuning run varies
based on the model, the length of the protein sequences, and
the size of the dataset. We provide representative timings for
the AAV dataset in Table 4. Design experiments involved
10 rounds of fine-tuning and therefore required roughly ten
times the computation of a single fine-tuning run.

H. Additional design plots
We compare different PoET configurations for design on
the multiple mutants landscapes in Figure 2. We provide
per-landscape plots at the end of the Appendix.

Table 4. Representative run times for fine-tuning on the AAV land-
scape (n = 512) on an A100 GPU, averaged across 3 seeds.

Model name Time

ProteinNPT (MSAT) 4h 40 m
ESM1v regression 2h 27 m
ESM1v ranking 4 m
PoET ranking 41 m
PoET regression head 36 m

I. Performance by landscape for supervised
experiments

We provide barplots summarising per-landscape perfor-
mance for selected models on the n = 128 single and
multi-mutant splits in Figures 2 and 3.
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Figure 2. Left: Average top 30% recall for 8 single-mutant landscapes for alternative PoET configurations as well as selected baselines.
Right: Average top 30% recall for 5 multi-mutant landscapes for alternative PoET configurations as well as selected baselines.
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Figure 5. Design curves for individual single mutant landscapes.
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Figure 6. Design curves for individual multi-mutant landscapes


