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Abstract

Recent work on neural network training dynamics often identifies “transitions” or “phase
changes” in weight matrices through rank-based spectral metrics. We investigate the ro-
bustness of these detected transitions across different methodological approaches. Analyzing
55 experiments spanning Transformer, CNN, and MLP architectures (30,147 measurement
points), we find that transition detection using weight-space spectral metrics shows sub-
stantial sensitivity to methodological choices. Varying the detection threshold from 2o to
1000 changes total detected transitions by an order of magnitude (25,513 to 1,608). When
comparing threshold-based detection with the threshold-free PELT (Pruned Exact Linear
Time) algorithm, we observe negligible correlation (-0.029) between methods: PELT identi-
fies 40-52 transitions per layer while threshold methods at 50 detect 0.00-0.09. Cross-metric
validation across participation ratio, stable rank, and nuclear norm finds no transitions that
appear consistently across metrics in our experiments. Extended analysis of activation-based
metrics and loss landscape geometry shows similar methodological sensitivity.

The most robust phenomenon we observe is the initial escape from random initialization,
typically occurring within the first 10% of training. Beyond this point, detected transitions
appear to depend strongly on the choice of detection method and metric. While architecture-
specific patterns emerge within each method, the lack of agreement across methods and
metrics raises important questions about the interpretation of phase transitions detected
through these spectral approaches.

Our findings demonstrate that weight-space spectral metrics, as currently applied, cannot re-
liably identify phase transitions in models at the scales we studied. We characterize why de-
tection methods disagree—threshold methods respond to instantaneous magnitude changes
while PELT detects distributional shifts—and propose practical guidelines for practitioners.
This work highlights the importance of methodological scrutiny and cross-validation when
using spectral methods to characterize training dynamics.

1 Introduction

Understanding when and how neural network representations change during training has significant practical
implications. Practitioners face specific decisions: when to create checkpoints for transfer learning, when
training has sufficiently stabilized for pruning, whether anomalous loss curves indicate fundamental problems
or transient dynamics, and how to allocate computational budgets across training phases. These decisions
currently rely on heuristics or expensive hyperparameter sweeps rather than on a principled understanding
of training dynamics.

A considerable literature has emerged attempting to characterize training dynamics through information-
theoretic and geometric approaches. The Information Bottleneck framework (Tishby and Zaslavskyl 2015;
Shwartz-Ziv and Tishby} 2017) proposes that networks undergo different fitting and compression phases;
however, more recent work has demonstrated critical dependencies on activation functions and measurement
methodology (Saxe et al.,|2019;|Goldfeld and Polyanskiyl 2020]). Other approaches track geometric properties
of weight matrices—effective rank (Roy and Vetterli, [2007)), stable rank (Rudelson and Vershyninl 2007)),
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participation ratio (Gao and Ganguli, |2017)—to identify representational transitions without explicit mutual
information estimation.

These geometric approaches share a common methodological structure: they compute a trajectory of some
matrix property over training, establish a baseline (typically from early training statistics), and flag deviations
exceeding some threshold as “transitions.” The threshold parameter is usually expressed as multiples of the
baseline standard deviation as an indicator of a significant change. Despite the centrality of this parameter
to all downstream conclusions, systematic sensitivity analysis has been lacking.

Our contribution investigates the reliability of phase transition detection using weight-space spectral metrics
through comprehensive empirical analysis. We demonstrate that detected transitions show extreme sensitiv-
ity to methodological choices, with different detection methods not only disagreeing on timing and frequency
but showing essentially no correlation. We extend our analysis to activation-based metrics and loss landscape
geometry, finding similar sensitivity. Critically, we characterize why methods disagree: they respond to fun-
damentally different features of training trajectories. These results suggest that phase transitions reported
using these specific metrics and methods may reflect methodological artifacts rather than robust phenomena
in the weight-space dynamics we measure.

1.1 Scope and Applicability

Our experiments focus on models with millions of parameters across standard training regimes. While large
language models with billions of parameters capture public attention, a substantial portion of real-world
applications—computer vision systems, edge devices, industrial automation, and healthcare diagnostics—
operate at the scales we investigate. Our findings thus have relevance for common use cases of deep learning
in production environments.

We examine weight-space spectral metrics specifically: participation ratio, stable rank, and nuclear norm.
We additionally analyze activation-based metrics (layer-wise activation norms, gradient alignment) and loss
landscape geometry (sharpness measures) to test whether methodological sensitivity is specific to spectral
metrics or more general. We do not examine representation-space similarity metrics (CKA, SVCCA), which
face their own methodological challenges (Kornblith et al., 2019). Phenomena like grokking (Power et al.)
2022) and double descent (Nakkiran et al., |2021) manifest primarily in test performance and may have
different signatures than weight-space geometry. Our findings apply to the specific metrics and detection
methods we test; other approaches to characterizing training dynamics require independent evaluation.

2 Related Work

2.1 Information-Theoretic Approaches

The Information Bottleneck principle (Tishby and Zaslavskyl 2015) was applied to deep learning with
Shwartz-Ziv and Tishby| (2017) providing influential empirical demonstrations of fitting-then-compression
dynamics. Subsequent critique by [Saxe et al.| (2019)) established that compression depends on activation
function saturation rather than on fundamental learning dynamics. |Goldfeld and Polyanskiy| (2020) showed
that mutual information is ill-defined for deterministic networks with continuous inputs.

2.2 Geometric and Rank-Based Approaches

Effective rank (Roy and Vetterli, |2007) measures the effective dimensionality of a matrix through the ex-
ponential of its singular value entropy. [Martin and Mahoney| (2021) proposed spectral analysis of weight
matrices as windows into training dynamics, with [Papyan et al.| (2020) documenting neural collapse phe-
nomena. Yang et al. (2024)) characterized the “staircase phenomenon” in rank evolution, while Kumar et al.
(2024)) used rank dynamics to study delayed generalization.

The stable rank (Rudelson and Vershynin, |2007)) and participation ratio (Gao and Ganguli, [2017) provide
alternative dimensionality measures with different stability properties. [Feng et al.[(2022) showed that differ-
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ent rank measures can yield qualitatively different conclusions about the same training trajectory, presaging
our findings about metric sensitivity.

2.3 Loss Landscape Analysis

Keskar et al.| (2017)) connected batch size to generalization through loss sharpness, introducing flatness-
based metrics. [Foret et al.| (2021)) developed sharpness-aware minimization (SAM) based on these findings.
Li et al.| (2018]) introduced filter normalization for meaningful landscape visualization. These metrics provide
an alternative lens on training dynamics that we include in our extended analysis.

2.4 Critical Periods and Training Phases

Achille et al.| (2018) demonstrated that early training has outsized importance for final performance through
critical period experiments. [Frankle and Carbin| (2019) showed that trainable subnetworks emerge early.
Lewkowycz et al.| (2020) identified the “catapult” phase in large learning rate training. Recent work on
grokking (Power et al.,|2022; Nanda et al.,[2023)) demonstrates sudden generalization after extended training,
though this manifests in test performance rather than weight-space spectral properties.

2.5 Changepoint Detection Methods

PELT (Killick et al.l |2012)) provides changepoint detection by minimizing penalized cost functions. Bayesian
approaches (Adams and MacKay), |2007) model transition probability as time-varying. These methods have
been applied across domains but their behavior on neural network training trajectories has not been system-
atically compared with threshold-based approaches used in the deep learning literature.

3 Methodology

3.1 Experimental Infrastructure

All experiments were implemented using PyTorch 1.12 (Paszke et al., [2019). PELT changepoint detection
used the ruptures 1.1.8 library (Truong et al.| |2020)).

3.1.1 Architecture Catalog

We systematically varied architectural design across three dimensions:

Family Variation Specification
. Depth 2, 5, 10, 15 layers (hidden dim: 256)
MLPs (8 variants) Width 64, 256, 512, 1024 hidden units (depth: 5)
CNNs (3 variants) Depth 3, 5, 7 convolutional layers
. Depth 2, 4, 6 layers (hidden dim: 256, 8 heads)
Transformers (5 variants) g, Hidden dim 128 (narrow), 512 (wide) with 4
layers

Table 1: Architecture catalog spanning 17 distinct configurations with parameter counts from 180K to 11.2M.

3.1.2 Datasets

We used four datasets to ensure coverage across vision and language domains:

Architecture-dataset compatibility was enforced: CNNs trained only on vision datasets (MNIST, Fashion-
MNIST, QMNIST); MLPs and Transformers trained on all four datasets. This yielded 55 unique architecture-
dataset combinations.
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Dataset Description Train Test
MNIST (LeCun et al. [1998]) 28x 28 grayscale handwritten digits 60K 10K
Fashion-MNIST (Xiao et al., 2017) 28x 28 grayscale fashion items 60K 10K
QMNIST (Yadav and Bottou), 2019) Extended MNIST variant 60K 10K
AG News (Zhang et al., [2015) Text classification (4 categories) 120K 7.6K

Table 2: Datasets used across vision and text modalities.

3.1.3 Training Protocol

Each experiment followed identical training configuration:

Parameter Value

Training steps 2,000 iterations

Checkpointing 397 logarithmically-spaced intervals
Optimizer Adam (o = 1073, B; = 0.9, B2 = 0.999)
Batch size 64 (128 for AG News)

Loss function Cross-entropy

Weight initialization —Kaiming normal (He et al.| 2015)

Table 3: Standardized training protocol across all experiments.

Logarithmic checkpoint spacing provided higher measurement density during early training where dynamics
are fastest, following [Frankle and Carbin| (2019)).

3.1.4 Layer Selection and Measurement Points

For each architecture, we tracked spectral metrics for representative weight matrices:

Architecture Tracked Layers

MLPs All hidden layer weight matrices (W, Wa, ..., Wp)

CNNs Final convolutional layer and first fully-connected layer

Transformers  Attention projection matrices (Wg, Wk, Wy) in middle
layers plus feed-forward matrices

Table 4: Layer tracking strategy.

On average, each experiment tracked 1.4 layers, varying by architecture (Transformers: 2.1 layers; MLPs:
1.2 layers).

3.2 Spectral Metrics

For each checkpoint, we computed three spectral metrics following [Martin and Mahoney| (2021)):
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where ¢; are singular values of the weight matrix. These metrics estimate different aspects of the effective
dimensionality and spectral properties of weight matrices.
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3.3 Activation and Loss Landscape Metrics

To test whether methodological sensitivity is specific to weight-space spectral metrics, we additionally
tracked:

Activation Norms. For each tracked layer, we computed the mean activation norm over a fixed validation

batch:
1

ActNormy(t) = @ Z ([ (z; 04) |2 (4)
z€B

where hy(z;0;) is the activation of layer [ for input x at training step t.

Gradient Alignment. Following [Fort et al.| (2019)), we tracked the cosine similarity between consecutive
gradient updates:
VL, -VLi

GradAlign(t) = (&7 e

()

Loss Sharpness. Following Keskar et al.| (2017)), we estimated sharpness using the maximum loss increase

within an e-ball:
max s <e L(6: + ) — L(6y)

1+ L(6:)

with € = 0.01||0;||. We approximated this via 10 random perturbation directions per checkpoint.

Sharpness(t) =

(6)

These metrics provide complementary views: activation norms reflect representation magnitude, gradient
alignment captures optimization trajectory smoothness, and sharpness characterizes loss landscape geometry.

3.4 Transition Detection Methods

We used two fundamentally different approaches to transition detection:

3.4.1 Threshold-Based Detection

For each layer’s metric trajectory, we compute baseline statistics (mean g, standard deviation o) from the
first 10% of training. A transition at step t is flagged when:

|[Metric; — Metrici—1| > k - 09 (7)
where k is the threshold multiplier. We systematically varied k € {2, 3,5, 7,10, 15, 20, 30, 50, 75, 100}.

3.4.2 PELT (Pruned Exact Linear Time) Detection

PELT changepoint detection (Killick et al., |2012)) minimizes a penalized cost function:

m

Z[C(yti+1:ti+l) + 5] (8)

i=0

where C is the Lo cost function measuring within-segment variance, 8 is the penalty parameter, and t;
are changepoints. The Lo cost assumes approximately Gaussian segments; PELT identifies points where
assuming a single distribution becomes more expensive than introducing a changepoint. We tested multiple
penalty values (5 € {0.5,1, 5,10, 20,50, 100}) to assess sensitivity.

This differs fundamentally from threshold methods: PELT detects changes in statistical distributions while
threshold methods trigger on absolute magnitude crossings of step-to-step differences.

3.4.3 Cross-Metric Validation

To identify robust transitions, we applied both detection methods to all metrics simultaneously. A transition
was considered “robust” if detected within a 5-step window across at least two metrics.
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3.5 Statistical Analysis

For each combination detection method/parameter, we computed the total transitions detected, temporal
distribution, architecture-specific counts, correlation between methods, and cross-metric consistency. We
used Wilcoxon signed-rank tests for paired comparisons and Kruskal-Wallis tests for architecture differences,
with Bonferroni correction for multiple comparisons.

4 Results

4.1 Training Performance

All models achieved expected performance levels, confirming successful optimization:

Table 5: Final test accuracies confirm successful training across all experiments.

Dataset CNN MLP Transformer
MNIST 99.2% + 0.3 98.1% £ 0.4 98.7% 4+ 0.3
Fashion-MNIST 91.3% £ 0.8 89.2% £ 0.7 90.1% =+ 0.6
QMNIST 98.8% + 0.4 97.3% £ 0.5 98.0% + 0.4
AG News — 88.4% 4+ 0.9  89.7% £ 0.7

4.2 Threshold Sensitivity

Figure 1| shows that transition detection varies by an order of magnitude across thresholds (25,513 at 20
to 1,608 at 1000). The temporal distribution of detected transitions shifts continuously with threshold—
no threshold produces a distribution showing natural clustering that would indicate threshold-independent
phase structure. Instead, we observe a smooth gradient of detection times that varies with threshold choice.

Jump Count vs Detection Threshold

1044

Total Jumps (log scale)

6 2‘0 4‘0 Gb Sb l(l)O
Threshold (o)

Figure 1: Total transitions detected versus threshold (log scale). The continuous decrease without plateaus
suggests detection counts depend primarily on threshold choice.

4.3 Disagreement Between Detection Methods

The central finding emerged when comparing threshold-based and PELT detection. Table [7] shows that
PELT with medium penalty detects 40-52 transitions per layer, while threshold-based methods at 50 detect
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Table 6: Threshold sensitivity statistics with 95% confidence intervals.

Threshold Total Mean Time Time Std Median Time L2/L1 Loss Corr.
(o) Transitions (#/T) (0¢/T) (ts0/T) Ratio (p)

2 25,513 0.308[0.29,0.33] 0.287[0.27,0.30] 0.245[0.23,0.26] 0.82[0.78,0.86] 0.42[0.38,0.46]
5 8,430 0.172[0.16,0.19]  0.203[0.19,0.22] 0.098[0.09,0.11] 0.72[0.68,0.76] 0.51[0.47,0.55]
10 5,278 0.144[0.13,0.16] 0.187[0.17,0.20] 0.071[0.06,0.08] 0.76[0.72,0.80] 0.48[0.44,0.52]
50 2,498 0.133[0.12,0.15]  0.176[0.16,0.19] 0.065 [0.06,0.07] 0.82[0.78,0.86] 0.39[0.34,0.44]
100 1,608 0.125[0.11,0.14] 0.164[0.15,0.18] 0.058 [0.05,0.07] 0.72[0.68,0.76] 0.31[0.26,0.36]

essentially none (0.00-0.09). The correlation between methods is -0.029, statistically indistinguishable from
zero (p = 0.73).

Table 7: Detection methods show fundamental disagreement on identical data.

Architecture PELT Threshold Robust Correlation
(B=5) (50) Transitions

CNN 40.5 £ 11.3 0.03 &£ 0.17 0.0 £ 0.0

MLP 477 +£10.6 0.09 £+ 0.29 0.0 £ 0.0 -0.029

Transformer 51.6 £8.7 0.01 £0.12 0.0 £ 0.0

Figure [2] visualizes this disagreement. Panel A shows the difference in total detections between methods.
Panel B shows that architecture orderings differ between methods: PELT shows Transformer > MLP >
CNN, while threshold methods (when they detect anything) show the opposite pattern.

4.4 Cross-Metric Validation

No detected transition appeared consistently across participation ratio, stable rank, and nuclear norm.
This holds regardless of detection method or parameter settings. If detected transitions reflected genuine
geometric reorganization of weight matrices, we would expect at least partial agreement across metrics
measuring related spectral properties.

4.5 PELT Sensitivity Analysis

PELT detection shows strong sensitivity to the penalty parameter 5. At § = 0.5, PELT detects 18,039
transitions across all experiments; at 5 = 100, only 16. This order-of-magnitude sensitivity parallels threshold
sensitivity, indicating that both method families require parameter choices that substantially determine
conclusions. The phenomenon persists across all penalty settings we tested (8 € {0.5,1,5,10, 20,50, 100}):
PELT and threshold methods remain uncorrelated regardless of penalty choice.

4.6 Activation and Loss Landscape Metrics

To test whether methodological sensitivity is specific to weight-space spectral metrics, we applied identical
detection methods to activation norms, gradient alignment, and loss sharpness. Table [8] summarizes results.

The extended metrics show the same pattern as spectral metrics: PELT detects many transitions (38-52 per
layer), threshold methods detect essentially none, and the correlation between methods remains near zero
(r € [-0.054,0.023]). No transitions appeared consistently across any combination of metrics.

Gradient alignment shows smooth monotonic decrease throughout training (from ~0.9 early to ~0.3 at
convergence), with no discontinuities. Loss sharpness increases during early training then stabilizes, again
without discrete transitions. These continuous trajectories are consistent with our spectral metric findings:
the underlying dynamics appear smooth, and detected “transitions” reflect detection method artifacts rather
than genuine discontinuities.
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A. Detection Method Comparison B. Architecture-Specific Patterns
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Figure 2: Method comparison. A: Total transitions detected across all experiments. PELT shown for
three penalty parameters: low (8 = 1), medium (8 = 5), and high (8 = 10), demonstrating sensitivity to
penalty choice (18,039 to 16 detections). Threshold method shown at 50. B: Mean transitions per layer by
architecture. C: Near-zero robust transitions across all metrics and methods. D: No correlation between
PELT (medium penalty) and threshold methods across architectures (Pearson r = —0.029).

This extension strengthens our central finding: methodological sensitivity is not specific to spectral metrics
but appears to be a general property of transition detection applied to neural network training trajectories.

4.7 The Initialization Escape

Detailed trajectory analysis shows one consistent pattern across all experiments: a sharp change in all metrics
within the first 5-10 training steps, corresponding to escape from random initialization. Figure [3| shows a
representative example where participation ratio drops from 50 to 23 in the first few steps, then evolves
smoothly for the remaining 390+ checkpoints.

After this initial escape, the signal evolves with small fluctuations. The baseline standard deviation, com-
puted from the first 10% of training and inflated by the initial drop, sets thresholds that subsequent variation
rarely exceeds. Meanwhile, PELT interprets minor fluctuations as numerous changepoints. The methods
capture different aspects of the trajectory without agreeing on discrete structure.
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Table 8: Extended metrics show similar methodological sensitivity to spectral metrics.

Metric PELT Threshold Method Cross-Metric
(B=05) (50) Corr. Robust
Participation Ratio 472 £9.8 0.04 £ 0.21 -0.029 0.0
Stable Rank 44.1 +£11.2 0.06 £+ 0.24 -0.017 0.0
Nuclear Norm Ratio 45.8 £ 10.4 0.05 £ 0.22 -0.041 0.0
Activation Norm 38.7+12.1 0.11 £ 0.32 0.023 0.0
Gradient Alignment  52.3 £ 89 0.02 + 0.14 -0.054 0.0
Loss Sharpness 41.5 £ 10.7 0.08 £ 0.27 0.018 0.0

Neural Network Training: Sharp Initialization Escape Followed by Continuous Evolution
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Figure 3: Representative trajectory showing initialization escape followed by smooth evolution. The initial
drop is consistently detected by multiple methods; subsequent “transitions” depend on method choice.

5 Why Detection Methods Disagree

The near-zero correlation between PELT and threshold methods is not merely an empirical observation—it
reflects fundamentally incompatible detection criteria applied to continuously evolving trajectories. Under-
standing why methods disagree is essential for interpreting their outputs.

5.1 What Each Method Detects

Threshold methods detect instantaneous magnitude changes. A transition is flagged when the step-to-
step difference |Metric; — Metric;—1| > 0¢. This criterion is sensitive to large instantaneous jumps (rare in
smooth optimization), the baseline o, which is inflated by initialization dynamics, and the specific threshold
k, which determines sensitivity

PELT detects distributional shifts. A changepoint is flagged when the cost of modeling data as a single
Gaussian exceeds the cost of introducing a segment boundary plus penalty 5. This criterion is sensitive to
changes in local mean or variance (common in gradual drift), the segment length (longer segments accumulate
more cost), and the penalty 8, which determines sensitivity

5.2 Mechanistic Analysis

To characterize when each method fires, we examined the trajectory features at detected transitions. Table[]
summarizes the analysis.
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Table 9: Mechanistic characterization of detection method behavior.

Characteristic Threshold (5¢) PELT (8 =5)
Detections per trajectory 0.04 £ 0.21 472 £ 9.8
% at initialization escape 94% 2%

% in steps 1-10 89% 4%

% in steps 11-397 11% 96%
Local gradient magnitude 12.30 + 4.10 0.80 £ 0.40
Variance ratio (after/before) 32+18 1.12 £ 0.34

For threshold detections, 94% occurred at the single largest gradient point in each trajectory—almost al-
ways during initialization escape. The mean local gradient magnitude at threshold detections was 12.30,
confirming these methods only fire on extreme events.

For PELT detections, we computed the local variance ratio (variance in 20-step window after detection
divided by variance before). PELT transitions showed mean variance ratio of 1.12 + 0.34, indicating they
detect subtle shifts in trajectory statistics rather than dramatic changes. Only 2% of PELT detections
coincided with initialization escape; the remaining 98% were distributed throughout training, responding to
minor fluctuations that threshold methods ignore entirely.

5.3 Why Correlation is Near Zero

The near-zero correlation emerges because:

1. Different temporal sensitivity: Threshold methods require instantaneous large changes; PELT
accumulates evidence over windows. A gradual drift over 50 steps can trigger PELT but never
exceeds an instantaneous threshold.

2. Baseline inflation: The initialization escape inflates o(, making subsequent threshold detection
nearly impossible. PELT processes each segment independently, unaffected by early dynamics.

3. Incompatible null hypotheses: Threshold methods ask “is this step anomalous relative to base-
line?” PELT asks “does the statistical model change here?” These questions can have opposite
answers for the same data.

5.4 Implications

This analysis shows that method disagreement is a fundamental consequence of applying incompatible criteria
to continuous data. Neither method is “wrong”—they measure different things. The problem arises when
either is interpreted as detecting “phase transitions” without acknowledging what it actually measures.

For continuous trajectories (which our data strongly suggest neural network training produces), thresh-
old methods will detect only extreme events (initialization), while PELT will segment any trajectory into
statistically distinguishable regions regardless of whether those regions correspond to meaningful phases.

6 Architecture-Specific Dynamics

To examine whether phase transitions might manifest differently across architectures, we analyzed temporal
dynamics within each architecture family.

6.1 Architecture-Specific Temporal Patterns

Figure [4] shows temporal distributions for each architecture. Within each detection method, architectures
show distinct patterns describable by exponential decay N(t) ~ e~*/7 with different time constants.

10
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Architecture-Specific Jump Dynamics
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Figure 4: Architecture-specific temporal patterns. Top row: Temporal distribution of detected changes
following exponential decay with distinct time constants. Middle row: Layer-wise concentration reflects
architectural structure. Bottom row: Top 10 layers by detection frequency show concentration in early
layers across all architectures.

Time Constants: Transformers show 7 ~ 0.08 training phases, maintaining detected changes longer than
CNNs (7 & 0.008). MLPs show intermediate behavior with 7 ~ 0.015. These differences likely reflect archi-
tectural properties: overparameterized transformers may create flatter loss landscapes where optimization
proceeds more slowly, while CNNs with strong convolutional inductive biases experience steeper gradients
and faster convergence.

Layer-wise Distribution: Transformer detections concentrate in output projections (linear2: 250+ detec-
tions vs linearl: <50). CNNs show more uniform distribution across convolutional layers (40-160 detections
each). MLPs show exponentially decreasing detections with depth.

Early Concentration: Approximately 80% of detections occur in the first 30% of layers across all architec-
tures. This pattern is consistent with continuous optimization dynamics showing exponentially decreasing
rate of change, rather than discrete phase boundaries.

These architecture-specific patterns are internally consistent within each detection method but method-
dependent—they describe how each method responds to different architectures rather than establishing
method-independent architectural differences.

11



Under review as submission to TMLR

7 Discussion

7.1 Interpretation of Results

Our results establish that weight-space spectral metrics—participation ratio, stable rank, nuclear norm—as
well as activation-based metrics and loss landscape sharpness, do not produce consistent phase transition
detections with the methods we tested. The -0.029 correlation between PELT and threshold methods in-
dicates these approaches capture fundamentally different aspects of training trajectories. The absence of
cross-metric agreement further suggests that detected “transitions” reflect methodological choices rather
than robust geometric phenomena in weight space.

The source of disagreement is now clear: threshold methods detect instantaneous magnitude spikes (essen-
tially only initialization escape), while PELT detects subtle distributional shifts (ubiquitous in any non-
stationary trajectory). Neither captures “phase transitions” in a meaningful sense—threshold methods are
too restrictive, PELT too permissive.

7.2 Relationship to Other Phenomena

Our findings concern weight-space spectral metrics and related training diagnostics specifically. Phenomena
like grokking (Power et al., |2022) and double descent (Nakkiran et al., [2021) manifest primarily in test
performance—generalization dynamics that may not correspond directly to weight-space geometry. Contin-
uous changes in spectral properties could accumulate until crossing functional thresholds for generalization,
producing discontinuous test behavior from continuous weight evolution. Our analysis does not address
whether such functional transitions exist; it establishes that weight-space spectral methods cannot reliably
detect them.

Similarly, extreme training regimes—massive learning rates, tiny datasets, near-singular initializations—
may produce dynamics different from the standard optimization we study. Our experiments use Adam with
moderate learning rates (o = 1073), representing common training configurations. Findings in this regime
do not necessarily extend to extreme conditions.

7.3 Implications for Prior Work

Studies reporting training phases based on spectral metrics should be interpreted with awareness of method-
ological sensitivity. When different detection methods produce uncorrelated results on identical data, and
when different metrics show no agreement, reported phases may depend on analysis choices. This does not
invalidate prior work—it suggests that conclusions benefit from cross-validation across methods and metrics.

7.4 Limitations

Ground Truth: Without known transitions, we cannot assess detection accuracy—only internal consistency.
A valuable extension would test these methods in settings with observable transitions (e.g., grokking, where
generalization timing is measurable).

Temporal Resolution: With 397 checkpoints over 2,000 steps, transitions on faster timescales would be
missed. However, near-zero method correlation suggests no consistent signal exists at measured timescales.

Scale: Our experiments use million-parameter models. Billion-parameter models might show different
behavior. Our findings establish methodological inconsistency at one scale; other scales require independent
investigation.

Metric Selection: We tested spectral metrics, activation norms, gradient alignment, and loss sharpness.
Representation-space similarity metrics (CKA, SVCCA) or other functional measures might produce more
consistent results and would be valuable directions for future work.

12
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8 Conclusion

We investigated the reliability of phase transition detection using weight-space spectral metrics in neural
network training. Our findings demonstrate a clear methodological sensitivity: threshold-based and PELT
detection methods show essentially no correlation (r = —0.029) on identical data, detected transitions vary
by an order of magnitude with parameter choices, and no transitions appear consistently across metrics.
Extended analysis of activation-based metrics and loss landscape sharpness shows the same pattern.

We characterized why methods disagree: threshold methods detect only instantaneous magnitude spikes
(essentially initialization escape), while PELT detects ubiquitous distributional shifts in any non-stationary
trajectory. Neither reliably captures “phase transitions” as intuitively understood—they measure fundamen-
tally different trajectory features.

The most robust phenomenon we observe is the escape from random initialization within the first 10% of
training. Beyond this point, different methods partition the training trajectory in incompatible ways.

These findings establish that weight-space spectral metrics, as currently employed with threshold-based or
PELT detection, cannot reliably identify training phase transitions at the scales we studied. This does not
resolve whether neural network training exhibits genuine phase structure—such structure might manifest
in representation space, functional behavior, or generalization dynamics that we do not measure. Our
contribution is showing that one class of commonly used methods produces internally inconsistent results,
and explaining why this inconsistency arises, suggesting caution when interpreting phase transition claims
based solely on these approaches.

Why does this matter? Because it prevents a specific class of false conclusions. Researchers using spectral
metrics to identify training phases should know their detections are method-dependent artifacts with no cross-
metric or cross-method agreement. This does not resolve what training dynamics look like—it establishes that
one popular approach to studying them produces unreliable results. This is methodological infrastructure
work: necessary groundwork that prevents theories from being built on unstable measurement foundations,
even if it does not itself advance understanding of how neural networks learn.

Future work could develop detection methods with better cross-method agreement, validate spectral ap-
proaches in settings with known transitions, or investigate whether different metrics produce more consistent
characterizations of training dynamics.
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