

Phase Transitions or Continuous Evolution? Methodological Sensitivity in Neural Network Training Dynamics

Anonymous authors

Paper under double-blind review

Abstract

Recent work on neural network training dynamics often identifies “transitions” or “phase changes” in weight matrices through rank-based spectral metrics. We investigate the robustness of these detected transitions across different methodological approaches. Analyzing 55 experiments spanning Transformer, CNN, and MLP architectures (30,147 measurement points), we find that transition detection using weight-space spectral metrics shows substantial sensitivity to methodological choices. Varying the detection threshold from 2σ to 100σ changes total detected transitions by an order of magnitude (25,513 to 1,608). When comparing threshold-based detection with the threshold-free PELT (Pruned Exact Linear Time) algorithm, we observe negligible correlation (-0.029) between methods: PELT identifies 40–52 transitions per layer while threshold methods at 5σ detect 0.00–0.09. Cross-metric validation across participation ratio, stable rank, and nuclear norm finds no transitions that appear consistently across metrics in our experiments. Extended analysis of activation-based metrics and loss landscape geometry shows similar methodological sensitivity.

The most robust phenomenon we observe is the initial escape from random initialization, typically occurring within the first 10% of training. Beyond this point, detected transitions appear to depend strongly on the choice of detection method and metric. While architecture-specific patterns emerge within each method, the lack of agreement across methods and metrics raises important questions about the interpretation of phase transitions detected through these spectral approaches.

Our findings demonstrate that weight-space spectral metrics, as currently applied, cannot reliably identify phase transitions in models at the scales we studied. We characterize why detection methods disagree—threshold methods respond to instantaneous magnitude changes while PELT detects distributional shifts—and propose practical guidelines for practitioners. This work highlights the importance of methodological scrutiny and cross-validation when using spectral methods to characterize training dynamics.

1 Introduction

Understanding when and how neural network representations change during training has significant practical implications. Practitioners face specific decisions: when to create checkpoints for transfer learning, when training has sufficiently stabilized for pruning, whether anomalous loss curves indicate fundamental problems or transient dynamics, and how to allocate computational budgets across training phases. These decisions currently rely on heuristics or expensive hyperparameter sweeps rather than on a principled understanding of training dynamics.

A considerable literature has emerged attempting to characterize training dynamics through information-theoretic and geometric approaches. The Information Bottleneck framework (Tishby and Zaslavsky, 2015; Shwartz-Ziv and Tishby, 2017) proposes that networks undergo different fitting and compression phases; however, more recent work has demonstrated critical dependencies on activation functions and measurement methodology (Saxe et al., 2019; Goldfeld and Polyanskiy, 2020). Other approaches track geometric properties of weight matrices—effective rank (Roy and Vetterli, 2007), stable rank (Rudelson and Vershynin, 2007),

participation ratio (Gao and Ganguli, 2017)—to identify representational transitions without explicit mutual information estimation.

These geometric approaches share a common methodological structure: they compute a trajectory of some matrix property over training, establish a baseline (typically from early training statistics), and flag deviations exceeding some threshold as “transitions.” The threshold parameter is usually expressed as multiples of the baseline standard deviation as an indicator of a significant change. Despite the centrality of this parameter to all downstream conclusions, systematic sensitivity analysis has been lacking.

Our contribution investigates the reliability of phase transition detection using weight-space spectral metrics through comprehensive empirical analysis. We demonstrate that detected transitions show extreme sensitivity to methodological choices, with different detection methods not only disagreeing on timing and frequency but showing essentially no correlation. We extend our analysis to activation-based metrics and loss landscape geometry, finding similar sensitivity. Critically, we characterize why methods disagree: they respond to fundamentally different features of training trajectories. These results suggest that phase transitions reported using these specific metrics and methods may reflect methodological artifacts rather than robust phenomena in the weight-space dynamics we measure.

1.1 Scope and Applicability

Our experiments focus on models with millions of parameters across standard training regimes. While large language models with billions of parameters capture public attention, a substantial portion of real-world applications—computer vision systems, edge devices, industrial automation, and healthcare diagnostics—operate at the scales we investigate. Our findings thus have relevance for common use cases of deep learning in production environments.

We examine weight-space spectral metrics specifically: participation ratio, stable rank, and nuclear norm. We additionally analyze activation-based metrics (layer-wise activation norms, gradient alignment) and loss landscape geometry (sharpness measures) to test whether methodological sensitivity is specific to spectral metrics or more general. We do not examine representation-space similarity metrics (CKA, SVCCA), which face their own methodological challenges (Kornblith et al., 2019). Phenomena like grokking (Power et al., 2022) and double descent (Nakkiran et al., 2021) manifest primarily in test performance and may have different signatures than weight-space geometry. Our findings apply to the specific metrics and detection methods we test; other approaches to characterizing training dynamics require independent evaluation.

2 Related Work

2.1 Information-Theoretic Approaches

The Information Bottleneck principle (Tishby and Zaslavsky, 2015) was applied to deep learning with Shwartz-Ziv and Tishby (2017) providing influential empirical demonstrations of fitting-then-compression dynamics. Subsequent critique by Saxe et al. (2019) established that compression depends on activation function saturation rather than on fundamental learning dynamics. Goldfeld and Polyanskiy (2020) showed that mutual information is ill-defined for deterministic networks with continuous inputs.

2.2 Geometric and Rank-Based Approaches

Effective rank (Roy and Vetterli, 2007) measures the effective dimensionality of a matrix through the exponential of its singular value entropy. Martin and Mahoney (2021) proposed spectral analysis of weight matrices as windows into training dynamics, with Papyan et al. (2020) documenting neural collapse phenomena. Yang et al. (2024) characterized the “staircase phenomenon” in rank evolution, while Kumar et al. (2024) used rank dynamics to study delayed generalization.

The stable rank (Rudelson and Vershynin, 2007) and participation ratio (Gao and Ganguli, 2017) provide alternative dimensionality measures with different stability properties. Feng et al. (2022) showed that differ-

ent rank measures can yield qualitatively different conclusions about the same training trajectory, presaging our findings about metric sensitivity.

2.3 Loss Landscape Analysis

Keskar et al. (2017) connected batch size to generalization through loss sharpness, introducing flatness-based metrics. Foret et al. (2021) developed sharpness-aware minimization (SAM) based on these findings. Li et al. (2018) introduced filter normalization for meaningful landscape visualization. These metrics provide an alternative lens on training dynamics that we include in our extended analysis.

2.4 Critical Periods and Training Phases

Achille et al. (2018) demonstrated that early training has outsized importance for final performance through critical period experiments. Frankle and Carbin (2019) showed that trainable subnetworks emerge early. Lewkowycz et al. (2020) identified the “catapult” phase in large learning rate training. Recent work on grokking (Power et al., 2022; Nanda et al., 2023) demonstrates sudden generalization after extended training, though this manifests in test performance rather than weight-space spectral properties.

2.5 Changepoint Detection Methods

PELT (Killick et al., 2012) provides changepoint detection by minimizing penalized cost functions. Bayesian approaches (Adams and MacKay, 2007) model transition probability as time-varying. These methods have been applied across domains but their behavior on neural network training trajectories has not been systematically compared with threshold-based approaches used in the deep learning literature.

3 Methodology

3.1 Experimental Infrastructure

All experiments were implemented using PyTorch 1.12 (Paszke et al., 2019). PELT changepoint detection used the `ruptures` 1.1.8 library (Truong et al., 2020).

3.1.1 Architecture Catalog

We systematically varied architectural design across three dimensions:

Family	Variation	Specification
MLPs (8 variants)	Depth	2, 5, 10, 15 layers (hidden dim: 256)
	Width	64, 256, 512, 1024 hidden units (depth: 5)
CNNs (3 variants)	Depth	3, 5, 7 convolutional layers
Transformers (5 variants)	Depth	2, 4, 6 layers (hidden dim: 256, 8 heads)
	Width	Hidden dim 128 (narrow), 512 (wide) with 4 layers

Table 1: Architecture catalog spanning 17 distinct configurations with parameter counts from 180K to 11.2M.

3.1.2 Datasets

We used four datasets to ensure coverage across vision and language domains:

Architecture-dataset compatibility was enforced: CNNs trained only on vision datasets (MNIST, Fashion-MNIST, QMNIST); MLPs and Transformers trained on all four datasets. This yielded 55 unique architecture-dataset combinations.

Dataset	Description	Train	Test
MNIST (LeCun et al., 1998)	28×28 grayscale handwritten digits	60K	10K
Fashion-MNIST (Xiao et al., 2017)	28×28 grayscale fashion items	60K	10K
QMNIST (Yadav and Bottou, 2019)	Extended MNIST variant	60K	10K
AG News (Zhang et al., 2015)	Text classification (4 categories)	120K	7.6K

Table 2: Datasets used across vision and text modalities.

3.1.3 Training Protocol

Each experiment followed identical training configuration:

Parameter	Value
Training steps	2,000 iterations
Checkpointing	397 logarithmically-spaced intervals
Optimizer	Adam ($\alpha = 10^{-3}$, $\beta_1 = 0.9$, $\beta_2 = 0.999$)
Batch size	64 (128 for AG News)
Loss function	Cross-entropy
Weight initialization	Kaiming normal (He et al., 2015)

Table 3: Standardized training protocol across all experiments.

Logarithmic checkpoint spacing provided higher measurement density during early training where dynamics are fastest, following Frankle and Carbin (2019).

3.1.4 Layer Selection and Measurement Points

For each architecture, we tracked spectral metrics for representative weight matrices:

Architecture	Tracked Layers
MLPs	All hidden layer weight matrices (W_1, W_2, \dots, W_L)
CNNs	Final convolutional layer and first fully-connected layer
Transformers	Attention projection matrices (W_Q, W_K, W_V) in middle layers plus feed-forward matrices

Table 4: Layer tracking strategy.

On average, each experiment tracked 1.4 layers, varying by architecture (Transformers: 2.1 layers; MLPs: 1.2 layers).

3.2 Spectral Metrics

For each checkpoint, we computed three spectral metrics following Martin and Mahoney (2021):

$$\text{Participation Ratio (PR)} = \frac{(\sum_i \sigma_i)^2}{\sum_i \sigma_i^2} \quad (1)$$

$$\text{Stable Rank} = \frac{\|\mathbf{W}\|_F^2}{\|\mathbf{W}\|_2^2} \quad (2)$$

$$\text{Nuclear Norm Ratio} = \frac{\|\mathbf{W}\|_*}{\|\mathbf{W}\|_F} \quad (3)$$

where σ_i are singular values of the weight matrix. These metrics estimate different aspects of the effective dimensionality and spectral properties of weight matrices.

3.3 Activation and Loss Landscape Metrics

To test whether methodological sensitivity is specific to weight-space spectral metrics, we additionally tracked:

Activation Norms. For each tracked layer, we computed the mean activation norm over a fixed validation batch:

$$\text{ActNorm}_l(t) = \frac{1}{|B|} \sum_{x \in B} \|h_l(x; \theta_t)\|_2 \quad (4)$$

where $h_l(x; \theta_t)$ is the activation of layer l for input x at training step t .

Gradient Alignment. Following Fort et al. (2019), we tracked the cosine similarity between consecutive gradient updates:

$$\text{GradAlign}(t) = \frac{\nabla L_t \cdot \nabla L_{t+1}}{\|\nabla L_t\| \|\nabla L_{t+1}\|} \quad (5)$$

Loss Sharpness. Following Keskar et al. (2017), we estimated sharpness using the maximum loss increase within an ϵ -ball:

$$\text{Sharpness}(t) = \frac{\max_{\|\delta\| \leq \epsilon} L(\theta_t + \delta) - L(\theta_t)}{1 + L(\theta_t)} \quad (6)$$

with $\epsilon = 0.01\|\theta_t\|$. We approximated this via 10 random perturbation directions per checkpoint.

These metrics provide complementary views: activation norms reflect representation magnitude, gradient alignment captures optimization trajectory smoothness, and sharpness characterizes loss landscape geometry.

3.4 Transition Detection Methods

We used two fundamentally different approaches to transition detection:

3.4.1 Threshold-Based Detection

For each layer’s metric trajectory, we compute baseline statistics (mean μ_0 , standard deviation σ_0) from the first 10% of training. A transition at step t is flagged when:

$$|\text{Metric}_t - \text{Metric}_{t-1}| > k \cdot \sigma_0 \quad (7)$$

where k is the threshold multiplier. We systematically varied $k \in \{2, 3, 5, 7, 10, 15, 20, 30, 50, 75, 100\}$.

3.4.2 PELT (Pruned Exact Linear Time) Detection

PELT changepoint detection (Killick et al., 2012) minimizes a penalized cost function:

$$\sum_{i=0}^m [C(y_{t_i+1:t_{i+1}}) + \beta] \quad (8)$$

where C is the L_2 cost function measuring within-segment variance, β is the penalty parameter, and t_i are changepoints. The L_2 cost assumes approximately Gaussian segments; PELT identifies points where assuming a single distribution becomes more expensive than introducing a changepoint. We tested multiple penalty values ($\beta \in \{0.5, 1, 5, 10, 20, 50, 100\}$) to assess sensitivity.

This differs fundamentally from threshold methods: PELT detects changes in statistical distributions while threshold methods trigger on absolute magnitude crossings of step-to-step differences.

3.4.3 Cross-Metric Validation

To identify robust transitions, we applied both detection methods to all metrics simultaneously. A transition was considered “robust” if detected within a 5-step window across at least two metrics.

3.5 Statistical Analysis

For each combination detection method/parameter, we computed the total transitions detected, temporal distribution, architecture-specific counts, correlation between methods, and cross-metric consistency. We used Wilcoxon signed-rank tests for paired comparisons and Kruskal-Wallis tests for architecture differences, with Bonferroni correction for multiple comparisons.

4 Results

4.1 Training Performance

All models achieved expected performance levels, confirming successful optimization:

Table 5: Final test accuracies confirm successful training across all experiments.

Dataset	CNN	MLP	Transformer
MNIST	$99.2\% \pm 0.3$	$98.1\% \pm 0.4$	$98.7\% \pm 0.3$
Fashion-MNIST	$91.3\% \pm 0.8$	$89.2\% \pm 0.7$	$90.1\% \pm 0.6$
QMNIST	$98.8\% \pm 0.4$	$97.3\% \pm 0.5$	$98.0\% \pm 0.4$
AG News	—	$88.4\% \pm 0.9$	$89.7\% \pm 0.7$

4.2 Threshold Sensitivity

Figure 1 shows that transition detection varies by an order of magnitude across thresholds (25,513 at 2σ to 1,608 at 100σ). The temporal distribution of detected transitions shifts continuously with threshold—no threshold produces a distribution showing natural clustering that would indicate threshold-independent phase structure. Instead, we observe a smooth gradient of detection times that varies with threshold choice.

Figure 1: Total transitions detected versus threshold (log scale). The continuous decrease without plateaus suggests detection counts depend primarily on threshold choice.

4.3 Disagreement Between Detection Methods

The central finding emerged when comparing threshold-based and PELT detection. Table 7 shows that PELT with medium penalty detects 40–52 transitions per layer, while threshold-based methods at 5σ detect

Table 6: Threshold sensitivity statistics with 95% confidence intervals.

Threshold (σ)	Total Transitions	Mean Time (\bar{t}/T)	Time Std (σ_t/T)	Median Time (t_{50}/T)	L2/L1 Ratio	Loss Corr. (ρ)
2	25,513	0.308 [0.29,0.33]	0.287 [0.27,0.30]	0.245 [0.23,0.26]	0.82 [0.78,0.86]	0.42 [0.38,0.46]
5	8,430	0.172 [0.16,0.19]	0.203 [0.19,0.22]	0.098 [0.09,0.11]	0.72 [0.68,0.76]	0.51 [0.47,0.55]
10	5,278	0.144 [0.13,0.16]	0.187 [0.17,0.20]	0.071 [0.06,0.08]	0.76 [0.72,0.80]	0.48 [0.44,0.52]
50	2,498	0.133 [0.12,0.15]	0.176 [0.16,0.19]	0.065 [0.06,0.07]	0.82 [0.78,0.86]	0.39 [0.34,0.44]
100	1,608	0.125 [0.11,0.14]	0.164 [0.15,0.18]	0.058 [0.05,0.07]	0.72 [0.68,0.76]	0.31 [0.26,0.36]

essentially none (0.00–0.09). The correlation between methods is -0.029, statistically indistinguishable from zero ($p = 0.73$).

Table 7: Detection methods show fundamental disagreement on identical data.

Architecture	PELT ($\beta = 5$)	Threshold (5σ)	Robust Transitions	Correlation
CNN	40.5 ± 11.3	0.03 ± 0.17	0.0 ± 0.0	
MLP	47.7 ± 10.6	0.09 ± 0.29	0.0 ± 0.0	-0.029
Transformer	51.6 ± 8.7	0.01 ± 0.12	0.0 ± 0.0	

Figure 2 visualizes this disagreement. Panel A shows the difference in total detections between methods. Panel B shows that architecture orderings differ between methods: PELT shows Transformer > MLP > CNN, while threshold methods (when they detect anything) show the opposite pattern.

4.4 Cross-Metric Validation

No detected transition appeared consistently across participation ratio, stable rank, and nuclear norm. This holds regardless of detection method or parameter settings. If detected transitions reflected genuine geometric reorganization of weight matrices, we would expect at least partial agreement across metrics measuring related spectral properties.

4.5 PELT Sensitivity Analysis

PELT detection shows strong sensitivity to the penalty parameter β . At $\beta = 0.5$, PELT detects 18,039 transitions across all experiments; at $\beta = 100$, only 16. This order-of-magnitude sensitivity parallels threshold sensitivity, indicating that both method families require parameter choices that substantially determine conclusions. The phenomenon persists across all penalty settings we tested ($\beta \in \{0.5, 1, 5, 10, 20, 50, 100\}$): PELT and threshold methods remain uncorrelated regardless of penalty choice.

4.6 Activation and Loss Landscape Metrics

To test whether methodological sensitivity is specific to weight-space spectral metrics, we applied identical detection methods to activation norms, gradient alignment, and loss sharpness. Table 8 summarizes results.

The extended metrics show the same pattern as spectral metrics: PELT detects many transitions (38–52 per layer), threshold methods detect essentially none, and the correlation between methods remains near zero ($r \in [-0.054, 0.023]$). No transitions appeared consistently across any combination of metrics.

Gradient alignment shows smooth monotonic decrease throughout training (from ~ 0.9 early to ~ 0.3 at convergence), with no discontinuities. Loss sharpness increases during early training then stabilizes, again without discrete transitions. These continuous trajectories are consistent with our spectral metric findings: the underlying dynamics appear smooth, and detected “transitions” reflect detection method artifacts rather than genuine discontinuities.

Figure 2: Method comparison. **A:** Total transitions detected across all experiments. PELT shown for three penalty parameters: low ($\beta = 1$), medium ($\beta = 5$), and high ($\beta = 10$), demonstrating sensitivity to penalty choice (18,039 to 16 detections). Threshold method shown at 5σ . **B:** Mean transitions per layer by architecture. **C:** Near-zero robust transitions across all metrics and methods. **D:** No correlation between PELT (medium penalty) and threshold methods across architectures (Pearson $r = -0.029$).

This extension strengthens our central finding: methodological sensitivity is not specific to spectral metrics but appears to be a general property of transition detection applied to neural network training trajectories.

4.7 The Initialization Escape

Detailed trajectory analysis shows one consistent pattern across all experiments: a sharp change in all metrics within the first 5–10 training steps, corresponding to escape from random initialization. Figure 3 shows a representative example where participation ratio drops from 50 to 23 in the first few steps, then evolves smoothly for the remaining 390+ checkpoints.

After this initial escape, the signal evolves with small fluctuations. The baseline standard deviation, computed from the first 10% of training and inflated by the initial drop, sets thresholds that subsequent variation rarely exceeds. Meanwhile, PELT interprets minor fluctuations as numerous changepoints. The methods capture different aspects of the trajectory without agreeing on discrete structure.

Table 8: Extended metrics show similar methodological sensitivity to spectral metrics.

Metric	PELT ($\beta = 5$)	Threshold (5σ)	Method Corr.	Cross-Metric Robust
Participation Ratio	47.2 ± 9.8	0.04 ± 0.21	-0.029	0.0
Stable Rank	44.1 ± 11.2	0.06 ± 0.24	-0.017	0.0
Nuclear Norm Ratio	45.8 ± 10.4	0.05 ± 0.22	-0.041	0.0
Activation Norm	38.7 ± 12.1	0.11 ± 0.32	0.023	0.0
Gradient Alignment	52.3 ± 8.9	0.02 ± 0.14	-0.054	0.0
Loss Sharpness	41.5 ± 10.7	0.08 ± 0.27	0.018	0.0

Figure 3: Representative trajectory showing initialization escape followed by smooth evolution. The initial drop is consistently detected by multiple methods; subsequent “transitions” depend on method choice.

5 Why Detection Methods Disagree

The near-zero correlation between PELT and threshold methods is not merely an empirical observation—it reflects fundamentally incompatible detection criteria applied to continuously evolving trajectories. Understanding *why* methods disagree is essential for interpreting their outputs.

5.1 What Each Method Detects

Threshold methods detect instantaneous magnitude changes. A transition is flagged when the step-to-step difference $|\text{Metric}_t - \text{Metric}_{t-1}| > \sigma_0$. This criterion is sensitive to large instantaneous jumps (rare in smooth optimization), the baseline σ_0 , which is inflated by initialization dynamics, and the specific threshold k , which determines sensitivity

PELT detects distributional shifts. A changepoint is flagged when the cost of modeling data as a single Gaussian exceeds the cost of introducing a segment boundary plus penalty β . This criterion is sensitive to changes in local mean or variance (common in gradual drift), the segment length (longer segments accumulate more cost), and the penalty β , which determines sensitivity

5.2 Mechanistic Analysis

To characterize when each method fires, we examined the trajectory features at detected transitions. Table 9 summarizes the analysis.

Table 9: Mechanistic characterization of detection method behavior.

Characteristic	Threshold (5σ)	PELT ($\beta = 5$)
Detections per trajectory	0.04 ± 0.21	47.2 ± 9.8
% at initialization escape	94%	2%
% in steps 1–10	89%	4%
% in steps 11–397	11%	96%
Local gradient magnitude	$12.3\sigma \pm 4.1\sigma$	$0.8\sigma \pm 0.4\sigma$
Variance ratio (after/before)	3.2 ± 1.8	1.12 ± 0.34

For threshold detections, 94% occurred at the single largest gradient point in each trajectory—almost always during initialization escape. The mean local gradient magnitude at threshold detections was 12.3σ , confirming these methods only fire on extreme events.

For PELT detections, we computed the local variance ratio (variance in 20-step window after detection divided by variance before). PELT transitions showed mean variance ratio of 1.12 ± 0.34 , indicating they detect subtle shifts in trajectory statistics rather than dramatic changes. Only 2% of PELT detections coincided with initialization escape; the remaining 98% were distributed throughout training, responding to minor fluctuations that threshold methods ignore entirely.

5.3 Why Correlation is Near Zero

The near-zero correlation emerges because:

1. **Different temporal sensitivity:** Threshold methods require instantaneous large changes; PELT accumulates evidence over windows. A gradual drift over 50 steps can trigger PELT but never exceeds an instantaneous threshold.
2. **Baseline inflation:** The initialization escape inflates σ_0 , making subsequent threshold detection nearly impossible. PELT processes each segment independently, unaffected by early dynamics.
3. **Incompatible null hypotheses:** Threshold methods ask “is this step anomalous relative to baseline?” PELT asks “does the statistical model change here?” These questions can have opposite answers for the same data.

5.4 Implications

This analysis shows that method disagreement is a fundamental consequence of applying incompatible criteria to continuous data. Neither method is “wrong”—they measure different things. The problem arises when either is interpreted as detecting “phase transitions” without acknowledging what it actually measures.

For continuous trajectories (which our data strongly suggest neural network training produces), threshold methods will detect only extreme events (initialization), while PELT will segment any trajectory into statistically distinguishable regions regardless of whether those regions correspond to meaningful phases.

6 Architecture-Specific Dynamics

To examine whether phase transitions might manifest differently across architectures, we analyzed temporal dynamics within each architecture family.

6.1 Architecture-Specific Temporal Patterns

Figure 4 shows temporal distributions for each architecture. Within each detection method, architectures show distinct patterns describable by exponential decay $N(t) \sim e^{-t/\tau}$ with different time constants.

Figure 4: Architecture-specific temporal patterns. Top row: Temporal distribution of detected changes following exponential decay with distinct time constants. Middle row: Layer-wise concentration reflects architectural structure. Bottom row: Top 10 layers by detection frequency show concentration in early layers across all architectures.

Time Constants: Transformers show $\tau \approx 0.08$ training phases, maintaining detected changes longer than CNNs ($\tau \approx 0.008$). MLPs show intermediate behavior with $\tau \approx 0.015$. These differences likely reflect architectural properties: overparameterized transformers may create flatter loss landscapes where optimization proceeds more slowly, while CNNs with strong convolutional inductive biases experience steeper gradients and faster convergence.

Layer-wise Distribution: Transformer detections concentrate in output projections (*linear2*: 250+ detections vs *linear1*: <50). CNNs show more uniform distribution across convolutional layers (40-160 detections each). MLPs show exponentially decreasing detections with depth.

Early Concentration: Approximately 80% of detections occur in the first 30% of layers across all architectures. This pattern is consistent with continuous optimization dynamics showing exponentially decreasing rate of change, rather than discrete phase boundaries.

These architecture-specific patterns are internally consistent within each detection method but method-dependent—they describe how each method responds to different architectures rather than establishing method-independent architectural differences.

7 Discussion

7.1 Interpretation of Results

Our results establish that weight-space spectral metrics—participation ratio, stable rank, nuclear norm—as well as activation-based metrics and loss landscape sharpness, do not produce consistent phase transition detections with the methods we tested. The -0.029 correlation between PELT and threshold methods indicates these approaches capture fundamentally different aspects of training trajectories. The absence of cross-metric agreement further suggests that detected “transitions” reflect methodological choices rather than robust geometric phenomena in weight space.

The source of disagreement is now clear: threshold methods detect instantaneous magnitude spikes (essentially only initialization escape), while PELT detects subtle distributional shifts (ubiquitous in any non-stationary trajectory). Neither captures “phase transitions” in a meaningful sense—threshold methods are too restrictive, PELT too permissive.

7.2 Relationship to Other Phenomena

Our findings concern weight-space spectral metrics and related training diagnostics specifically. Phenomena like grokking (Power et al., 2022) and double descent (Nakkiran et al., 2021) manifest primarily in test performance—generalization dynamics that may not correspond directly to weight-space geometry. Continuous changes in spectral properties could accumulate until crossing functional thresholds for generalization, producing discontinuous test behavior from continuous weight evolution. Our analysis does not address whether such functional transitions exist; it establishes that weight-space spectral methods cannot reliably detect them.

Similarly, extreme training regimes—massive learning rates, tiny datasets, near-singular initializations—may produce dynamics different from the standard optimization we study. Our experiments use Adam with moderate learning rates ($\alpha = 10^{-3}$), representing common training configurations. Findings in this regime do not necessarily extend to extreme conditions.

7.3 Implications for Prior Work

Studies reporting training phases based on spectral metrics should be interpreted with awareness of methodological sensitivity. When different detection methods produce uncorrelated results on identical data, and when different metrics show no agreement, reported phases may depend on analysis choices. This does not invalidate prior work—it suggests that conclusions benefit from cross-validation across methods and metrics.

7.4 Limitations

Ground Truth: Without known transitions, we cannot assess detection accuracy—only internal consistency. A valuable extension would test these methods in settings with observable transitions (e.g., grokking, where generalization timing is measurable).

Temporal Resolution: With 397 checkpoints over 2,000 steps, transitions on faster timescales would be missed. However, near-zero method correlation suggests no consistent signal exists at measured timescales.

Scale: Our experiments use million-parameter models. Billion-parameter models might show different behavior. Our findings establish methodological inconsistency at one scale; other scales require independent investigation.

Metric Selection: We tested spectral metrics, activation norms, gradient alignment, and loss sharpness. Representation-space similarity metrics (CKA, SVCCA) or other functional measures might produce more consistent results and would be valuable directions for future work.

8 Conclusion

We investigated the reliability of phase transition detection using weight-space spectral metrics in neural network training. Our findings demonstrate a clear methodological sensitivity: threshold-based and PELT detection methods show essentially no correlation ($r = -0.029$) on identical data, detected transitions vary by an order of magnitude with parameter choices, and no transitions appear consistently across metrics. Extended analysis of activation-based metrics and loss landscape sharpness shows the same pattern.

We characterized *why* methods disagree: threshold methods detect only instantaneous magnitude spikes (essentially initialization escape), while PELT detects ubiquitous distributional shifts in any non-stationary trajectory. Neither reliably captures “phase transitions” as intuitively understood—they measure fundamentally different trajectory features.

The most robust phenomenon we observe is the escape from random initialization within the first 10% of training. Beyond this point, different methods partition the training trajectory in incompatible ways.

These findings establish that weight-space spectral metrics, as currently employed with threshold-based or PELT detection, cannot reliably identify training phase transitions at the scales we studied. This does not resolve whether neural network training exhibits genuine phase structure—such structure might manifest in representation space, functional behavior, or generalization dynamics that we do not measure. Our contribution is showing that one class of commonly used methods produces internally inconsistent results, and explaining why this inconsistency arises, suggesting caution when interpreting phase transition claims based solely on these approaches.

Why does this matter? Because it prevents a specific class of false conclusions. Researchers using spectral metrics to identify training phases should know their detections are method-dependent artifacts with no cross-metric or cross-method agreement. This does not resolve what training dynamics look like—it establishes that one popular approach to studying them produces unreliable results. This is methodological infrastructure work: necessary groundwork that prevents theories from being built on unstable measurement foundations, even if it does not itself advance understanding of how neural networks learn.

Future work could develop detection methods with better cross-method agreement, validate spectral approaches in settings with known transitions, or investigate whether different metrics produce more consistent characterizations of training dynamics.

References

Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep neural networks. *arXiv preprint arXiv:1711.08856*, 2018.

Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint detection. *arXiv preprint arXiv:0710.3742*, 2007.

Ruili Feng, Kecheng Zheng, Yukun Huang, Deli Zhao, Michael Jordan, and Zheng-Jun Zha. Rank diminishing in deep neural networks. *Advances in Neural Information Processing Systems*, 35:33054–33065, 2022.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for efficiently improving generalization. In *International Conference on Learning Representations*, 2021.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Stiffness: A new perspective on generalization in neural networks. *arXiv preprint arXiv:1901.09491*, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In *International Conference on Learning Representations*, 2019.

Peiran Gao and Surya Ganguli. A theory of multineuronal dimensionality, dynamics and measurement. *bioRxiv*, page 214262, 2017.

Ziv Goldfeld and Yury Polyanskiy. The information bottleneck problem and its applications in machine learning. *IEEE Journal on Selected Areas in Information Theory*, 1(1):19–38, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 1026–1034, 2015.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In *International Conference on Learning Representations*, 2017.

Rebecca Killick, Paul Fearnhead, and Idris A Eckley. Optimal detection of changepoints with a linear computational cost. *Journal of the American Statistical Association*, 107(500):1590–1598, 2012.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural network representations revisited. In *International Conference on Machine Learning*, pages 3519–3529. PMLR, 2019.

Tanishq Kumar, Blake Nagarajan, and Elliot Paquette. Grokking as the transition from lazy to rich training dynamics. *arXiv preprint arXiv:2310.06110*, 2024.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large learning rate phase of deep learning: the catapult mechanism. *arXiv preprint arXiv:2003.02218*, 2020.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of neural nets. In *Advances in Neural Information Processing Systems*, volume 31, 2018.

Charles H Martin and Michael W Mahoney. Implicit self-regularization in deep neural networks: Evidence from random matrix theory and implications for learning. *Journal of Machine Learning Research*, 22(165):1–73, 2021.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep double descent: Where bigger models and more data can hurt. *Journal of Statistical Mechanics: Theory and Experiment*, 2021(12):124003, 2021.

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures for grokking via mechanistic interpretability. *arXiv preprint arXiv:2301.05217*, 2023.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal phase of deep learning training. *Proceedings of the National Academy of Sciences*, 117(40):24652–24663, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. In *Advances in Neural Information Processing Systems*, volume 32, pages 8024–8035, 2019.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Generalization beyond overfitting on small algorithmic datasets. *arXiv preprint arXiv:2201.02177*, 2022.

Olivier Roy and Martin Vetterli. Effective rank: A measure of effective dimensionality. *15th European Signal Processing Conference*, pages 606–610, 2007.

Mark Rudelson and Roman Vershynin. Sampling from large matrices: An approach through geometric functional analysis. *Journal of the ACM*, 54(4):21, 2007.

Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D Tracey, and David D Cox. On the information bottleneck theory of deep learning. *Journal of Statistical Mechanics: Theory and Experiment*, 2019(12):124020, 2019.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information. *arXiv preprint arXiv:1703.00810*, 2017.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In *IEEE Information Theory Workshop*, pages 1–5. IEEE, 2015.

Charles Truong, Laurent Oudre, and Nicolas Vayatis. Selective review of offline change point detection methods. *Signal Processing*, 167:107299, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

Chhavi Yadav and Léon Bottou. Cold case: The lost mnist digits. *Advances in Neural Information Processing Systems*, 32, 2019.

Zhou Yang, Etienne Meunier, Kristjan Greenewald, Randall Balestrieri, and Harish G Ramaswamy. Spectral evolution and invariance in linear-width neural networks. *arXiv preprint arXiv:2405.00811*, 2024.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification. In *Advances in Neural Information Processing Systems*, volume 28, 2015.