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Abstract
We introduce Mathador-LM, a new benchmark001
for evaluating the mathematical reasoning on002
large language models (LLMs), combining003
ruleset interpretation, planning, and problem-004
solving. This benchmark is inspired by the005
Mathador game, where the objective is to reach006
a target number using basic arithmetic opera-007
tions on a given set of base numbers, following008
a simple set of rules. We show that, across009
leading LLMs, we obtain stable average perfor-010
mance while generating benchmark instances011
dynamically, following a target difficulty level.012
Thus, our benchmark alleviates concerns about013
test-set leakage into training data, an issue that014
often undermines popular benchmarks. Addi-015
tionally, we conduct a comprehensive evalua-016
tion of both open and closed-source state-of-017
the-art LLMs on Mathador-LM. Our findings018
reveal that contemporary models struggle with019
Mathador-LM, scoring significantly lower than020
average 5th graders. This stands in stark con-021
trast to their strong performance on popular022
mathematical reasoning benchmarks.023

1 Introduction024

The ability of large language models (LLMs) to025

approach non-trivial tasks involving both informa-026

tion retrieval and mathematical reasoning has led027

to significant research interest in evaluating these028

properties. Yet, the popularity of reasoning bench-029

marks, such as the often-used Grade-School Math030

(GSM) (Cobbe et al., 2021) or MATH (Hendrycks031

et al., 2021b) datasets, is leading to performance032

saturation (see Figure 1), and can potentially lead033

to training set contamination. Thus, there is a strin-034

gent need to develop new strong benchmarks to035

evaluate LLM reasoning.036

We address this by proposing Mathador-LM, a037

new benchmark for examining the mathematical038

reasoning properties of LLMs. At a high level,039

Mathador-LM follows the popular Mathador math-040

ematical game (Puma et al., 2023), in which a hu-041

man player is given five base numbers together042

with a target number, and has to provide a series 043

of calculations, each using one of the four basic 044

arithmetic operations, which result in the target 045

number.1 Each base number can only be used once, 046

and solutions are scored on the number of opera- 047

tions used—a “perfect” solution uses each basic 048

operation and each base number exactly once. 049

We define and implement Mathador-LM follow- 050

ing the framework for few-shot evaluation of lan- 051

guage models (Gao et al., 2021), and evaluate lead- 052

ing open and closed LLMs such as LLaMA3 (Meta 053

AI, 2024), and Qwen2 (Bai et al., 2023), as well as 054

Claude (Anthropic, 2023) and GPT3.5/4 (Achiam 055

et al., 2023). See Figure 4 for a sample of results. 056

Our key observations are: 057

• Mathador is a hard benchmark for LLMs: 058

state-of-the-art open and closed models score 059

below 15% on average, relative to the maxi- 060

mum achievable score per instance, and sig- 061

nificantly below the mean of 43.7% across 062

5th-grade students in 2023 (Mathador). 063

• We observe clear correlations between model 064

size and game performance, where models 065

below 3B parameters obtain negligible accu- 066

racy, state-of-the-art models in the 7-8B range 067

obtain scores of 5-7%, and 70-72B models 068

reach the top scores of 10-15%, together with 069

Claude-Opus. Remarkably, GPT4 and Claude- 070

Haiku models both obtain below 7%. 071

• We also provide detailed breakdowns of per- 072

formance relative to instance hardness (num- 073

ber of existing solutions), number of shots (ex- 074

ample instances provided), and failure modes. 075

• Importantly, Mathador-LM has the property 076

that model performance is stable across 077

randomly-generated problem instances of the 078

1Our game formulation follows the mathematical game
organized in France for students between the 4th and 8th
grades, to which more than 10’000 pupils participated in 2023.
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same difficulty, i.e. with the same number of079

maximum solutions. Thus, we can generate080

one-time dynamic instances of similar diffi-081

culty, preventing “over-fitting.”082

Our results are especially relevant in the context083

of recent work by Yang et al. (2023) and Gunasekar084

et al. (2023) raising concerns about contamination085

across popular benchmarks used to evaluate the086

performance of LLMs. Their findings span three087

different axes: 1) existing decontamination tech-088

niques often fail to identify problematic samples,089

2) synthetic data generated by closed-source mod-090

els (e.g., GPT-3.5/4 (Achiam et al., 2023)) exhibits091

subtle test-set contamination, and 3) popular open-092

source datasets (e.g., RedPajama (Together, 2023),093

StarCoder (Li et al., 2023), The Stack (Kocetkov094

et al., 2022), FLAN CoT (Longpre et al., 2023))095

are also contaminated to varying degrees, ranging096

from 0.5% to 19% (Yang et al., 2023). This evi-097

dence, together with the fact that performance on098

the few standard benchmarks (Cobbe et al., 2021;099

Hendrycks et al., 2021b) for mathematical reason-100

ing is rapidly saturating2, as described in Figure 1,101

necessitates enhancing our existing evaluation pro-102

tocols and significantly improving the decontami-103

nation of existing datasets with static benchmarks.104

We propose an alternative pathway towards re-105

liable examination of LLM performance via dy-106

namic, one-time benchmarks that mitigate contam-107

ination by being created on-the-fly, independently108

for each evaluation run. Mathador-LM satisfies109

these properties: given its nature, the benchmark110

can be programmatically generated and verified,111

making it ideally suited for fresh, one-time eval-112

uations of LLMs. This approach mitigates issues113

such as test-set leakage into training data and pro-114

vides a reliable method to evaluate closed-source115

models, even in the absence of detailed information116

about their training data. Moreover, results reveal117

interesting trends across different model families118

and sizes, and allowing to isolate model proficiency119

across instruction-following, mathematical reason-120

ing, planning, and combinatorial search.121

2 The Mathador-LM Benchmark122

The informal definition of the Mathador-LM game123

we use is provided in Figure 2, which coincides124

with the prompt we provide to the LLM in the125

default version of the game. In Table 1 we present126

the scoring system for the benchmark. An example127

2For instance, the best achieved accuracy on GSM at the
time of writing is already of 97.1% (Zhong et al., 2024).

instance of the benchmark is provided in Figure 3, 128

together with basic and “optimal” solutions. 129

Formal Definition. Given a set of operands A = 130

{ai ∈ N|1 ≤ i ≤ 5} and target value t ∈ N, let 131

P ∈ {S!|S ∈ P(A)} be a permutation of a subset 132

of operands and define the set of expressions 133

EP =
{
(P c, O)|P c ∈ C(P ), O ∈ {+,×,−,÷}|P |

}
134

where C(P ) is the set of all legal parenthesiza- 135

tion of P . Consequently the set of all expressions 136

E =
⋃

P EP . Each expression E ∈ E has the 137

value val(E) which is derived by associating the 138

ith opening parenthesis in P c with the operator Oi. 139

Given the score function s : E → N we are looking 140

for E∗ = argmaxE∈E s(E) s.t. val(E) = t. 141

Each expression E can be represented in an ex- 142

panded form repr(E) by writing the evaluation 143

of each parenthesis when both of its nested val- 144

ues have been evaluated. For instance, repr(E) 145

of E =
(
((17, ((8, 4), 11)), 2), (×,÷,−,+)

)
is 146

the Mathador solution illustrated in Figure 3. In 147

Mathador-LM we use repr(E) as the representa- 148

tion since it is more human-readable and Table 1 for 149

scoring. The accuracy of expression E is defined 150

as s(E)/s(E∗). 151

Difficulty Measure. For a specific set of operands, 152

Et = {E ∈ E| val(E) = t, s(E) > 0} is the set 153

of all solutions for target t. We define the diffi- 154

culty measure of target t as
∑

E∈Et
s(E)/|Et|2, 155

following the intuition that instances with few but 156

higher-scoring solutions are harder. 157

Table 1: Scoring system for Mathador-LM benchmark.
The Mathador Bonus refers to the optimal solution,
achieved by using all five base numbers and each of
the four operators exactly once.

Category Points

Target number reached 5 points
Operators

Addition 1 point
Multiplication 1 point
Subtraction 2 points
Division 3 points

Mathador Bonus 6 points
Invalid Solutions

Target number not reached 0 points
Reuse of numbers 0 points
Negative numbers 0 points
Non-integer numbers 0 points

3 Model Evaluations 158

Evaluation Setup. A dataset of Mathador-LM 159

problems is generated for each model evaluation 160
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Figure 1: Comparative results on Mathador-LM, MMLU, and GSM8k, across the Llama3-Instruct (8B and 70B),
Phi-3-Instruct (small and medium), and Qwen2-Instruct model families. Interpolation lines show very high scores
and clear saturation on MMLU and GSM8k at or beyond the level of specialized humans, whereas on Mathador-LM
contemporary models are significantly below the average 5th grader. MMLU and GSM8K results obtained from
Beeching et al. (2023), Hendrycks et al. (2021a), and Bai et al. (2023).

Figure 2: The prompt for Mathador-LM benchmark.

Figure 3: An example problem demonstrating both sim-
ple and best (Mathador) solutions.

by sampling the operand dataset A based on the161

official rules (Puma et al., 2023) and then sampling162

from possible targets {t|∃E ∈ E s.t. val(E) = t}163

based on the desired difficulty distribution. The164

prompt in Figure 2 is populated based on a newly 165

generated problem set to get the final prompt. The 166

model’s generated answer to the prompt is parsed to 167

get the solution block which is then scored. Models 168

are generally able to follow the instruction format, 169

as shown in Table 4. 170

Figure 4 presents evaluations on several popular 171

open and closed models. We observe that small 172

models (≤ 3B) and Mistral-7B tend to perform 173

below < 2% average accuracy (0.36 points per 174

instance, on average), meaning that they reach a 175

correct solution (worth ≥ 6 points) less than 6% 176

of the time. Surprisingly, well-performing medium 177

models such as Qwen2-7B, Llama-3-8B, and Phi- 178

3-medium perform on par with GPT 3.5 and GPT4, 179

as well as Claude-Haiku (5 to 7%), at a level cor- 180

responding to reaching a correct solution less than 181

20% of the time. Further, we observe a higher 182

tier for 70B models and Claude-Opus, which reach 183

similar ∼ 12% performance. In Appendix A we ex- 184

pand our analysis, and detail the score distribution 185

across models. 186

Stability. A reliable benchmark must be repro- 187

ducible, which is why most benchmarks are static. 188

Table 2 shows that we can obtain consistent scores 189

on Mathador-LM even when we dynamically re- 190

generate the benchmark, by sampling instances 191

with a similar difficulty mix. The easy, medium, 192

and hard datasets are taken from the beginning, 193

middle, and end of the sorted list of targets, based 194

on difficulty (see Section 2). The mixed dataset 195

contains equal fractions from each type. 196

Impact of Number of Shots. We investigate 197

whether increasing the number of “shots” in the 198

few-shot evaluation setup helps performance on 199
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Figure 4: Detailed results on Mathador-LM across open and closed models, including confidence intervals.

Table 2: Stability across 5 evaluations of LLama-3-70B-
Instruct on datasets of varying sizes and difficulties.
Observe that the performance on the standard “mixed”
benchmark is very stable across number of samples.

# Samples Difficulty Accuracy (%)
100 mixed 12.3 ± 1.7
250 mixed 11.8 ± 1.1
500 mixed 11.5 ± 0.5

1000

easy 15.1 ± 0.8
medium 12.1 ± 0.6

hard 4.3 ± 0.2
mixed 11.3 ± 0.5

1500 mixed 12.0 ± 0.5

Mathador-LM, as few-shot prompting (Brown200

et al., 2020) is known to enhance in-context learn-201

ing abilities of LLMs (Wei et al., 2022). We report202

results in Table 3. Surprisingly, for Mathador-LM,203

we found that two shots are sufficient to grasp the204

formatting and evaluation flow. Further increasing205

of this number only marginally improves results.206

In Appendix B we further explore how the results207

are affected by different text-generation (decoding)208

strategies, such as greedy (Radford et al., 2019)209

and nucleus sampling (Holtzman et al., 2019).210

Table 3: Impact of the number of shots on the evaluation
of Llama-3-70B-Instruct on Mathador-LM.

# shots 2 5 10 20
Accuracy

(%) 13.1 ± 0.6 13.9 ± 0.7 14.25 ± 0.6 14.34 ± 0.9

Errors Analysis. In Table 4 we present a break-211

down of the errors that LLMs make when evaluated212

on Mathador-LM benchmark, categorized into four213

types: Formatting, Calculation, Missed Target, and214

Illegal Operand. These results highlight that the215

most significant challenges faced by the model are 216

related to the use of illegal operands, which collec- 217

tively make up over 60% of the errors. This indi- 218

cates that existing models still struggle even with 219

moderate reasoning abilities. (This complements 220

the recent findings of Nezhurina et al. (2024).) To 221

address the most common error made by LLMs 222

(Illegal Operand), we augmented our prompting 223

strategy to explicitly show the model the set of 224

allowed operands at each step of the calculation 225

process. Surprisingly, this did not improve results. 226

Table 4: Error types of instruction-following models on
Mathador-LM, in percentages.

Formatting
Error

Calculation
Error

Missed
Target

Illegal
Operand

Qwen2-7B 5.5 20.9 6.8 66.8
Llama-3-8B 0.3 17.3 7.1 75.3

Llama-3-70B 0.9 3.1 32.5 63.5

4 Limitations 227

We introduced a new challenging LLM mathemat- 228

ical reasoning benchmark. Our benchmark is dy- 229

namic, as it can be generated on-the-fly, mitigating 230

the risks of test-set leakage and overfitting. The 231

current setup can be easily extended to vary diffi- 232

culty levels by, for example, adjusting the ranges 233

of base numbers, or the total number of operands. 234

By design, Mathador-LM is limited to a search- 235

based mathematical task, which has been linked to 236

both conceptual and procedural skills (Puma et al., 237

2023). Another limitation we plan to investigate in 238

future work is prompting techniques, which might 239

alleviate the relatively low LLM performance on 240

this task. Additionally, we plan to explore super- 241

vised fine-tuning strategies. 242
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A Score Distribution372

Models are instructed that only their last answer373

will be scored, and there is no obvious strategy for374

reaching a more complicated and higher scoring an-375

swer from a lower scoring one, as this is part of the376

task. Consequently, it is natural that even similarly377

performing models may have quite different score378

distributions as they may aim to obtain answers379

with different complexity levels (e.g., one may aim380

to obtain only highest-scoring answers, but may381

fail to obtain one more often than if simply aim-382

ing to reach the target). Figure 5 shows the score383

distribution for several low and high performing384

models. For instance, it is interesting to observe385

that Claude-3-opus outputs several times more max-386

scoring solutions than Llama-3-70b-instruct, while387

the models score about the same on average, based388

on Figure 4, or that Phi-3-small focuses on ob-389

taining simple answers correct (just reaching the390

target, but not focusing on reaching high scores),391

which has resulted in a higher overall performance392

relative to Phi-3-medium, which produces higher-393

scoring solutions. x394

B Text Generation Strategies395

Given that the nature of Mathador-LM benchmark396

is based on generating text to arrive at a solution,397

we investigate whether different decoding meth-398

ods for language generation have any effect on the399

results. Therefore we consider both, the simple400

greedy decoding (Radford et al., 2019) and the401

more advanced nucleus sampling (Holtzman et al.,402

2019). We conduct an extensive search, exploring403

all possible combinations of temperature (0.0, 0.3,404

0.5, 0.7, 0.9) and Top-p (0.1, 0.3, 0.5, 0.7, 1.0)405

hyper-parameters. As can be seen from Table 5, 406

the results are not affected by choices of different 407

text-generation strategies. 408

Table 5: Results with Llama-3-70B-Instruct on
Mathador-LM benchmark under different text decoding
techniques, evaluated across three few-shot configura-
tions.

2-shots 5-shots 20-shots
Greedy 12.8 ± 0.5 13.9 ± 0.1 14.2 ± 1.1
Nucleus 13.1 ± 0.6 13.8 ± 0.7 14.2 ± 0.9
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Figure 5: Distribution of scores for several models showing low correlation of higher overall performance with
number of high scoring solutions.
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