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Abstract

This study explores the use of laser and Magnetic Flux Leakage (MFL) pipeline
data to develop a deep learning model for accurate detection and segmentation of
pipeline defects. Unlike conventional datasets with pixel-perfect ground truth, our
labels are derived from a different sensor modality, leading to misalignment and
feature discrepancies between the laser and MFL data. These discrepancies intro-
duce label noise and domain shifts, presenting significant challenges for training
models that generalize effectively. Our primary contribution lies in identifying
and analyzing these challenges, and demonstrating their impact on state-of-the-art
models. Through this exploratory analysis, we underscore the need for robust
models and methodologies to address these fundamental issues, while outlining
potential directions for future research in model design and domain adaptation
strategies.

1 Introduction

Pipelines are essential for transporting oil and gas, and their integrity is critical to preventing failures
and ensuring safety [1]. Magnetic Flux Leakage (MFL) and laser profilometry are widely used non-
destructive evaluation (NDE) techniques for identifying pipeline defects, such as cracks, corrosion,
and deformation. MFL detects anomalies by analyzing disruptions in magnetic fields, making it ideal
for large-scale inspections. In contrast, laser profilometry provides high-resolution geometric profiles
of the external surface, capturing precise measurements of defect shapes and sizes. Integrating these
complementary modalities enhances the accuracy and reliability of defect detection, contributing to
safer and more efficient pipeline operations [2].

Meanwhile, the detection accuracy of pipeline defects is significantly improved through the devel-
opment of CNN networks [3], integrating MFL and laser data with CNNs still presents significant
challenges. The heterogeneity of these modalities introduces alignment errors, as MFL signals
and laser measurements differ in resolution, sensing principles, and spatial representation. These
inconsistencies result in noisy labels and mismatches between input features and ground-truth out-
puts, complicating model training and reducing accuracy. Additionally, the uneven distribution of
defect types and the complexity of correlating features from both modalities further intensify these
challenges [2], [4].

Figure 1: Labeling results: (a) Original laser signal, (b) MFL axial signal, (c) MFL radial signal, (d)
MFL circumferential signal, (e) MFL 3-channel input, and (f) Defect masks bounding boxes.
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Table 1: Detection Results for Validation
Dataset

Confidence
Score

Method Metrics(%) 0.2 0.6 0.8

YOLO
AP 50 90 100
AR 50 10 0
F1 Score 50 18 0

Mask R-CNN
(ResNet-18)

AP 49 65 73
AR 56 51 47
F1 Score 52 57 57

Mask R-CNN
(ResNet-18-FPN)

AP 57 67 75
AR 53 47 45
F1 Score 55 55 56

Table 2: Segmentation Performance Metrics
on Validation Dataset.a

Method Metrics (%)

UNet
Dice 56.5
Jaccard 41.0
Accuracy 77.7

Attention-UNet
Dice 65.0
Jaccard 48.1
Accuracy 86.4

Swin-UNETR
Dice 72.0
Jaccard 56.2
Accuracy 90.0

Mask R-CNN
Dice 64.3
Jaccard 49.9
Accuracy 93.1

aAccuracy measures the percentage of correctly
predicted pixels but may overestimate performance
in imbalanced datasets.

In this project, we analyze the use of the Laser and MFL Pipeline Defect dataset for training deep
learning models that accurately identify and segment defects in MFL images. While Laser data
provides precise defect labels, the MFL images are utilized as input features for the models. However,
integrating these data sources proves challenging due to feature discrepancies between these two
modalities, as deep learning models typically assume pixel-perfect labels. Through this paper, we
delve into the analysis of these fundamental challenges, offering insights into their implications and
proposing potential directions for developing more effective models and methodologies in the future.

2 Related Work

Pipeline defect detection using MFL data has advanced with deep learning methods. Feng et al.
introduced a CNN for classifying defects as injurious or noninjurious [5], Jiang et al. proposed
THMS-Net to enhance defect discrimination using heterogeneous MFL signals [6], and Yang et
al. developed a multiscale SSD network with dilated convolution and attention mechanisms for
small defect detection [7]. For defect size estimation, Zhang et al. introduced the VDTL network,
combining radial and axial MFL signals for accurate size and profile prediction [8], while Lu et
al. employed a visual transformation CNN for precise size estimation [9]. In segmentation, Wang
et al. proposed Fusion PCAM R-CNN for small defect segmentation [10], and Behbahanian et al.
developed PIPENet to delineate defect boundaries and reduce manual annotation [11]. Despite these
advancements, existing methods struggle with label noise, boundary inconsistencies, and reliance on
single-modality approaches, overlooking complementary modalities like laser profilometry. In this
work, we highlight these challenges by integrating MFL images with laser data.

3 Methodology

3.1 Dataset and Labeling

In this research, we used the Laser and MFL Pipeline Defect dataset, which contains 33,000 defect
samples. Each defect sample includes four signals: laser signal, MFL axial signal, MFL radial signal,
and MFL circumferential signal.

The laser signal serves as the ground truth, representing the eroded percentage of the pipeline wall
at each location. The input to our model is a 3-channel MFL signal image, where each channel
corresponds to the axial, radial, and circumferential signals. Otsu’s thresholding [12] is applied to
segment the laser image into background and foreground regions, with the foreground used as the
defect mask and a bounding box drawn around it. To improve generalization, we augment the data
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Figure 2: Recall, Precision, and F1 score vs. IoU overlap ratio on the validation set.

Figure 3: Training and validation losses of Mask-RCNN with ResNet-18 backbone.

using translation, zoom, and horizontal flip. Fig. 1 illustrates the defect mask and bounding box
extracted from the laser image.

3.2 Detection and Segmentation Model

We employ Mask R-CNN [13] to predict defect bounding boxes and masks from 128×128 images.
The model operates in two stages: first, a fully convolutional network proposes regions of interest
(RoIs); then, a detection and mask head generates the bounding boxes and masks. The backbone is a
ResNet-18 [14] network.

Mask R-CNN optimizes performance using multiple loss components: an objectness loss (LRPN
cls ) and

a bounding box regression loss (LRPN
reg ) for the Region Proposal Network (RPN); a classification loss

(Lhead
cls ), a bounding box regression loss (Lhead

reg ), and a binary cross-entropy mask loss (Lhead
mask) for the

prediction heads.

The total loss is the sum of these components:

Total Loss = LRPN
cls + LRPN

reg + Lhead
cls + Lhead

reg + Lhead
mask (1)

4 Results and Discussions

4.1 Defect Detection Results

We trained Mask R-CNN on our dataset. For comparison, we also trained YOLOv8 [15] and Mask
R-CNN with a ResNet18-FPN backbone on our dataset.

Table 1 compares the Average Precision (AP), Average Recall (AR), and F1 score for detection
models at various confidence score thresholds. The results indicate that YOLO achieves its highest
AP and Recall at a very low confidence score of 0.2, demonstrating that this single-stage detector
has limited confidence in its predictions. In contrast, the Mask R-CNN-based detectors exhibit
higher confidence scores; however, there is little difference in performance by changing backbones,
suggesting that adding a Feature Pyramid Network (FPN) [16] did not significantly enhance the
results. Further details on confidence scores and the confusion matrix for these models can be found
in Appendix A.

The loss curves and predictions in Fig. 3 and Fig. 4 show that the model struggles with accurate
defect classification. As correct predictions that didn’t align with laser-based ground truth labels
were penalized, the model overfitted to noise rather than learning generalizable patterns. Additionally,
as shown in Fig. 2, reducing the Intersection over Union (IoU) threshold for classifying defects
improved performance, suggesting that the defect regions identified in MFL images do not always
align with laser-derived ground truth.
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Figure 4: Defect detection results.
(Left): Laser images with ground
truth bounding boxes. (Right):
MFL images with ground truth
bounding boxes (green) and pre-
dicted bounding boxes (red).

Figure 5: Segmentation results across models for vari-
ous defect samples. The rows represent: (1) input MFL
images, (2) laser images overlaid with the ground truth
mask extracted using Otsu thresholding, (3) predicted
masks by Swin-UNETR overlaid on the input MFL im-
ages, and (4) predicted masks by Mask R-CNN overlaid
on the input MFL images.

4.2 Defect Segmentation Results

The segmentation experiments in Table 2 and Fig. 5 evaluate the performance of Mask R-CNN,
UNet [17], Attention-UNet [18], and Swin-UNETR [19]. The results demonstrate that Mask R-
CNN struggles to significantly improve Dice and Jaccard scores compared to other architectures,
underscoring its limitations in accurately segmenting defects within noisy datasets. For a more
detailed analysis, refer to Appendix B.

These results demonstrate interconnected challenges that impact model performance across architec-
tures. A major issue lies in the noisy ground truth annotations derived from laser images, which often
misalign with the defect features represented in the MFL images. This misalignment introduces noise
into the training labels, causing the models to focus on the noise rather than capturing meaningful
patterns. Furthermore, the inherent differences between laser and MFL signals create a domain
gap, as MFL features lack direct point-to-point alignment with the spatial structures in laser-based
ground truth masks. This issue is particularly evident in the qualitative results, where the predicted
masks fail to accurately capture and align with the ground truth regions, leading to incomplete defect
segmentation and lower Dice and Jaccard scores. Additionally, the shape mismatch between the
ground truth masks and the actual defect regions further adds to these challenges, causing models to
struggle to identify defect boundaries accurately. Despite employing different model architectures,
the results indicate minimal performance differences, suggesting that the choice of model architecture
is not the critical factor in improving segmentation outcomes while having cross-domain labels.

5 Conclusion

This study highlights the challenges in multi-modal pipeline defect detection, particularly the impact
of noisy labels and domain shifts arising from the misalignment between laser and MFL data. By
evaluating state-of-the-art models, we identify key limitations in current approaches. While this work
does not propose solutions, it provides valuable insights for future research, emphasizing the need for
robust models that can effectively address these challenges. Our future efforts focus on modifying
loss functions, applying domain adaptation techniques, and exploring noise-robust architectures to
mitigate the impact of these challenges and improve performance in detecting and segmenting defects
in pipelines.
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A Extended Analysis of Defect Detection Results

The validation set detection results using Mask R-CNN are analyzed in detail in this section. Fig. 6
illustrates the trends in precision, recall, and F1-score across varying confidence thresholds, showing
that precision increases with higher thresholds due to reduced false positives, while recall decreases
as fewer true positives are captured, reflecting the tradeoff between these metrics. Notably, recall
remains below 100%, likely due to noisy supervision during evaluation, which hinders the model’s
ability to detect all defects accurately. Fig. 7 provides a confusion matrix, offering a breakdown of
true positives, false positives, false negatives, and true negatives. The confusion matrix highlights a
significant number of false positives and false negatives, indicating that label noise and domain shifts
in the dataset significantly impact the model’s performance, emphasizing the need for more robust
detection approaches.

Figure 6: Precision, recall, and F1-score
trends across varying confidence thresholds.

Figure 7: Confusion matrix for the validation
set.

B Extended Analysis of Defect Segmentation Results

The analysis of the segmentation results provides critical insights into the impact of label noise on
the model’s performance. The distribution of Dice scores for the validation set, shown in Fig. 8,
highlights significant variability across the dataset. While a subset of samples achieves high scores,
reflecting effective segmentation, the majority fall into intermediate ranges, where predictions are
uncertain or inconsistent. This middle range suggests the model struggles to align predictions with
ground truth due to challenges such as label noise and misalignment. Moreover, a notable portion
of samples exhibits low Dice scores, underscoring the difficulty of reliably capturing defect regions
under noisy supervision.

Figure 8: Distribution of Dice scores for the
validation set.

Figure 9: False positive and false negative rates
for the low-scoring group with Dice scores below
0.4 and the high-scoring group with Dice scores
above 0.7.

To further examine the low-scoring samples based on Dice scores, Fig. 9 analyzes false positive and
false negative rates for both low- and high-scoring groups. Low-scoring samples are dominated by a
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high false positive rate, indicating the model’s tendency to over-segment ambiguous regions, and a
moderately high false negative rate, reflecting difficulties in identifying all defect regions. In contrast,
high-scoring samples demonstrate both low false positive and false negative rates, showcasing the
model’s ability to generalize effectively when provided with clean and well-aligned ground truth
labels.

Fig. 10 complements this analysis by exploring the relationship between the defect area of each
sample in the ground truth and the corresponding predicted defect area for low-scoring samples. The
scatter plot reveals substantial overpredictions for smaller defects, with predicted areas frequently
exceeding the ground truth. This highlights the model’s challenge in dealing with noisy labels,
particularly for small defect regions, which disrupts the accuracy of its predictions.

Together, these findings underscore the profound impact of label noise on model performance,
manifesting as inconsistent Dice scores, a tradeoff between false positives and false negatives, and
significant discrepancies in defect area predictions.

Figure 10: Comparison between the defect areas of each sample in the ground truth and the corre-
sponding predicted defect areas.
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